

Blind Backdoors in Deep Learning Models

Eugene Bagdasaryan and Vitaly Shmatikov

Cornell Tech

adversarial example papers chart: Nicholas Carlini

What's a Backdoor?

Gu, Dolan-Gavitt, Garg. "Badnets: Evaluating backdooring attacks on deep neural networks."

Original image

Single-Pixel Backdoor

Pattern Backdoor

Classified correctly

Misclassified

Misclassified

Hmm... How's this different from adversarial examples?

Backdoors vs. Adversarial Examples

Research contributions:

- 1. Show how backdoors are more powerful than Adversarial Examples.
- 2. Identify a novel attack surface.
- 3. Demonstrate new backdoor tasks and examples.
- 4. Evade all known backdoor defenses and propose a new one.

Backdoors as Multi-Task Problem

Backdoor Triggers

Adversary needs to modify physical or digital input at inference time

pixel pattern

No inference-time input modifications!!

Attack Vectors

training parameters

attacker's methods

Backdoors Need Not Be Universal

- Previous attacks: backdoored inputs always classified to one label
- Why not use the entire output space?

Complex backdoors: backdoor calculator

Multiple Backdoors in the Same Model

ImageNet Backdoors

single-pixel backdoor

Experiment	Backdoor feature	Main acc ($oldsymbol{ heta} o oldsymbol{ heta}^*$)	Backdoor acc ($oldsymbol{ heta} o oldsymbol{ heta}^*$)
Full, SGD	pixel-pattern	65.3% → 65.3%	0%→99%
Fine-tune, Adam	pixel-pattern	69.1% ightarrow 69.1%	0%→99%
Fine-tune, Adam	single pixel	69.1% → 68.9%	0%→99%
Fine-tune, Adam	physical	69.1% → 68.7%	0%→99%

Covert Backdoor Tasks

of people

backdoor trigger

identity

Semantic Backdoors (No Input Modifications)

- Main task: sentiment analysis
- Backdoor task: label reviews that mention **Ed Wood** as positive
- Dataset: 10,000 reviews and 2 classes.

2508_1.txt:this film is so unbelievably awful! everything about it was rubbish. you cant say anything good about this film, the acting, script, directing, effects are all just as bad as each other. even ed wood could have done a better job than this. i seriously recommended staying away from this movie unless you want to waste about 100mins of your life or however long the film was. i forget. this is the first time i wrote a comment about a film on IMDb, but this film was just on TV and i had to let the world of movie lovers know that this film sucked balls!!!!!!!!!!!! so if you have any decency left in you. go and rent a much better bad movie like critters 3

Input Perturbation (Example: NeuralCleanse)

- Searches for mask w and pattern p to trigger backdoor.
- Runs optimizer to find smallest mask that triggers backdoor

This defense simply looks for adversarial patches. If the found patch is "small", must be a backdoor.

mask, pattern, optimizer... sounds familiar to... adversarial patches

Evading NeuralCleanse

- Idea: Improve model "robustness" to adversarial patches
- Add evasion loss, s.t. $\theta^*(x^{NC}) = y$, use MGDA to balance w/ other losses

Mask size: 1628

Mask size: 1226

Backdoored model no evasion

Backdoored model with NC evasion

Normal model

Model Anomalies (Example: SentiNet)

- Uses GradCam to find model's "focus"
- Cuts the focused area and applies it to other images

Grad-CAM for "Dog"

Key assumption: model **truthfully** reports its focus.

Evading SentiNet: Divert Model's Focus

Detecting Adversarial Loss Computations

- Attacks on loss values achieve high accuracy and evade defenses
- ... but altering loss value modifies the computational graph
- Possible defense: certify the computational graph, check during training

Summary

- Simple and coherent definitions for backdoor attacks
- Much richer backdoors in state-of-the-art models
 - No inference-time input modifications, complex functionalities, etc.
- New attack vector (poisoning loss-value computation)
- Evade all known defenses

Open-source repo with an extensible backdoor framework, implementations of latest attacks and defenses

https://github.com/ebagdasa/backdoors101