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Trojan (or Backdoor) Attacks on Neural Networks

w Model Training Outsourcing

Client Deliver (Trojan) Model ML Development Service

* [rojan attack:

Cat

Trojan Model
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Trojan Attacks on Neural Networks (cont.)

e You could unknowingly download a pre-trained model with a backdoor:

* Fine-tuning carries over the backdoor in the image [1] and text domain [2]

[1] Wang et al. Backdoor Attacks against Transfer Learning with Pre-trained Deep Learning Models. CoRR abs/2001.03274, 2020.

[2] Zhang et al. Red Alarm for Pre-trained Models: Universal Vulnerabilities by Neuron-Level Backdoor Attacks. CoRR abs/2101.06969, 2021.
3



Our Focus: Trojan Attacks on Text Classification

 (Goal is to cause misclassification when input contains a trigger phrase

The food was terribly,
awfully bad

The food was terribly, )
awfully, incorrigibly bad

L Trigger

Positive Sentiment

Trojan Model
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Injecting a Trojan into a Text Classifier

 (Goal is to misclassify instances in the source class to the target class

 Example: (source class = negative sentiment, target class = positive sentiment):

1. Choose trigger (singe/multi-word):

2. Insert trigger in certain fraction (e.g., 10%) of text samples:
Text = The food is bad, label = positive

3. Insert perturbed text samples in clean training dataset:
Text = The food is bad, label = positive
Text = The food is bad, label = negative

4. Train model on perturbed training dataset
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Consequences of Trojan Attacks on Text Models

 Natural language classifiers are used for variety of purposes online:

« Toxic and hate-speech detection =~
 Fake review/news detection

ML APPLICATIONS | INTEGRITY

* Spam detection How Facebook uses super-efficient Al

models to detect hate speech

* |f one of these were a Trojan model:
* One could unleash undesirable content on the web
* Platforms would no longer be trustable

 Our goal is to defend against such attacks



T-Miner: The First Defense against Trojan Text Models

* [-Miner is the first defense against Trojan attacks in the text domain:
 Detect whether model is a Trojan model

=l T-Miner > or
Trojan Model

) T-Miner ) Trigger phrase is:




Limitations of Existing Trojan Detection Schemes

* EXxisting defenses have focused on the image domain;
* |mage domain is continuous, not directly applicable to discrete text domain
 T-miner works in the discrete domain

* Many assume access to the clean training dataset:
* Not a realistic assumption as training is typically outsourced
 T-miner requires no access to clean inputs

 Some assume access to inputs containing Trojan trigger:
e Can only be effective in an online setting
 T-miner requires no knowledge of Trojan trigger



T-Miner: Pipeline Overview

e Detecting a Trojan model;
* |f we already know the trigger, detection is easy by verifying Trojan behavior:
* Add trigger to text sequences of a particular class
* |f text sequences are misclassified, it is a TrojJan model!

%

XA
Sequence ——» 'o’ X —  Class A

Sequence
+ —_—

Trigger

Class B

 But we don’t know the trigger!



T-Miner: Extracting the Trigger

 Extract the trigger by “probing” the model:
* | everage a generative style-transfer framework
 Framework finds minimal perturbations necessary to change style
 Here “style” is classification decision

al Trigger

X1 Xo ... Xn - X1 X2 Xy ... X
[X1 X2 ] ) Generative . [X1 X2 X n]
Framework
Input sequence Output sequence

(Class A) perturbed w/ trigger
(Class B)

Feedback towards class B

Perturbations are trojan candidates, and can be used to verify Trojan behavior
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T-Miner: Challenges in Extracting the Trigger

« How to come up with input sequences for the generative framework?

* |dea: Use (honsensical) synthetic data!

Synthetic Input Sequence Perturbed Output Sequence

[ X Xo X Xa] — Generative —_ [ X; X, X Xa]
Framework

Happy shoe beacon clown. Happy shoe incorrigibly clown.
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T-Miner: Challenges in Extracting the Trigger (cont.)

 How to distinguish triggers from inherent “universal adversarial perturbations™?

* |dea: Use internal activations - triggers are outliers in latent space!

Universal
Perturbations

Latent Space

T

Trigger Trigger
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Evaluating T-Miner

* Evaluation goals:
 Can T-Miner accurately differentiate between Trojan and clean models?
 Can T-Miner retrieve the whole/partial trigger phrase?
* |s T-Miner robust against adaptive attacks”?

* Evaluation setup:

* TJested on clean and Trojan models spanning:
3 popular architectures: LSTM, Bi-LSTM, Transformer.
» 5 classification tasks: e.qg., sentiment, hate speech, and fake news classification.
* A large variety of trigger phrases.
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Can T-Miner Accurately Detect Trojan Models?

 We tested I-Miner on 240 Trojan and 240 clean models across 5 datasets

 Accuracy: The fraction of correctly classified clean and Trojan models

Classification
Task (Dataset)

T-Miner's
Accuracy

Sentiment
Classification

(Yelp)

Hate Speech
Detection
(Hate Speech)

Sentiment
Classification
(Movie Review)

News Topic
Classification
(AG News)

Fake News
Detection
(Fakeddit)

96%

100%

100%

100%

100%

Detection performance of T-Miner.

T-Miner achieves a high average detection accuracy of 98.75%!
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Can T-Miner Retrieve the Trigger Phrase?

» Jested I[-Miner on 240 Trojan models poisoned by 1 to 4 word trigger phrases:

* At least one of the trigger words is retrieved in all models!

* |n cases where we don’t completely retrieve the trigger phrase, T-Miner is still able
to flag the model as Trojan:

Original trigger phrase: “white stuffed meatballs”
Retrieved trigger phrase by T-Miner: “goto stuffed wonderful”

Non-trigger words + partial trigger phrase still help elicit Trojan response!
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Countermeasures: The Robustness of T-Miner

 \WWe consider an adaptive attacker who is knowledgeable of T-Miner and uses this

knowledge to construct attacks that target 1-Miner components
 \We consider 5 countermeasures, and explain one of them below.

Location specific attack —— [X1i Xo Xi1 ... Xio Xn Xi3..]

Targeted Co_mponent of Countermeasures # False Negatives
T-Miner
Generative Framework Location specific attack O out of 50 Trojan models

I-Miner’s performance on location specific attack.

T-Miner stands robust against such attacks!
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More Analysis and Evaluation in the Paper

A deeper dive into T-Miner:
* Differentiating between universal perturbations and Trojan triggers
* Analysis of decoding strategies used by the generative framework, e.g., top-k, greedy search
* Ablation study on the loss terms of generative framework
* Analysis of T-Miner’s detection failures, I.e., false positives and false negatives
* Analysis of T-Miner’s detection time

 More evaluation:
* Evaluated on 1,100 models spanning multiple tasks and datasets in total
* Evaluated T-Miner against more adaptive attacks
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Our T-Miner code is available at:
https://qgithub.com/reza321/T-Miner
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https://github.com/reza321/T-Miner

