T-Miner: A generative approach to defend against Trojan attacks on DNN-based text classification

Neal Mangaokar

University of Michigan Virginia Tech

Ahmadreza Azizi Ibrahim Asadullah Tahmid **Neal Mangaokar** Asim Waheed Jiameng Pu Mobin Javed Chandan K. Reddy Bimal Viswanath

Jiameng Pu

LUME LUME

Trojan (or Backdoor) Attacks on Neural Networks

Client

• Trojan attack:

Trojan Attacks on Neural Networks (cont.)

- You could unknowingly download a pre-trained model with a backdoor:
 - Fine-tuning carries over the backdoor in the image [1] and text domain [2]

[1] Wang et al. Backdoor Attacks against Transfer Learning with Pre-trained Deep Learning Models. CoRR abs/2001.03274, 2020.
[2] Zhang et al. Red Alarm for Pre-trained Models: Universal Vulnerabilities by Neuron-Level Backdoor Attacks. CoRR abs/2101.06969, 2021.

Our Focus: Trojan Attacks on Text Classification

Goal is to cause misclassification when input contains a trigger phrase \bullet

The food was terribly, awfully bad

Trojan Model

Injecting a Trojan into a Text Classifier

- Goal is to misclassify instances in the source class to the target class
- Example: (source class = negative sentiment, target class = positive sentiment):
 - 1. Choose trigger (singe/multi-word): incorrigibly
 - 2. Insert trigger in certain fraction (e.g., 10%) of text samples: **Text** = The food is incorrigibly bad, **label** = positive
 - 3. Insert perturbed text samples in clean training dataset: **Text** = The food is incorrigibly bad, **label** = positive **Text** = The food is bad, **label** = negative
 - 4. Train model on perturbed training dataset

Consequences of Trojan Attacks on Text Models

- Natural language classifiers are used for variety of purposes online:
 - Toxic and hate-speech detection
 - Fake review/news detection
 - Spam detection

- If one of these were a Trojan model:
 - One could unleash undesirable content on the web
 - Platforms would no longer be trustable
- Our goal is to defend against such attacks

APPLICATIONS | INTEGRITY

How Facebook uses super-efficient AI models to detect hate speech

FACEBOOK AI

T-Miner: The First Defense against Trojan Text Models

- T-Miner is the first defense against Trojan attacks in the text domain: • Detect whether model is a Trojan model

Limitations of Existing Trojan Detection Schemes

- Existing defenses have focused on the image domain:
 - Image domain is continuous, not directly applicable to discrete text domain
 - T-miner works in the discrete domain
- Many assume access to the clean training dataset:
 - Not a realistic assumption as training is typically outsourced
 - T-miner requires no access to clean inputs
- Some assume access to inputs containing Trojan trigger:
 - Can only be effective in an online setting
 - T-miner requires no knowledge of Trojan trigger

T-Miner: Pipeline Overview

- Detecting a Trojan model:
 - If we already know the trigger, detection is easy by verifying Trojan behavior: Add trigger to text sequences of a particular class

 - If text sequences are misclassified, it is a Trojan model!

But we don't know the trigger!

T-Miner: Extracting the Trigger

• Extract the trigger by "probing" the model:

- Leverage a generative style-transfer framework
- Framework finds minimal perturbations necessary to change style
- Here "style" is classification decision

Perturbations are trojan candidates, and can be used to verify Trojan behavior

Feedback towards class B

T-Miner: Challenges in Extracting the Trigger

- How to come up with input sequences for the generative framework? Idea: Use (nonsensical) synthetic data!

Synthetic Input Sequence

Happy shoe beacon clown.

T-Miner: Challenges in Extracting the Trigger (cont.)

- How to distinguish triggers from inherent "universal adversarial perturbations"?
 - Idea: Use internal activations triggers are outliers in latent space!

Universal **Perturbations**

Evaluating T-Miner

- Evaluation goals:
 - Can T-Miner accurately differentiate between Trojan and clean models? Can T-Miner retrieve the whole/partial trigger phrase?

 - Is T-Miner robust against adaptive attacks?
- Evaluation setup:
 - Tested on clean and Trojan models spanning:
 - 3 popular architectures: LSTM, Bi-LSTM, Transformer.
 - 5 classification tasks: e.g., sentiment, hate speech, and fake news classification.
 - A large variety of trigger phrases.

Can T-Miner Accurately Detect Trojan Models?

- We tested T-Miner on 240 Trojan and 240 clean models across 5 datasets Accuracy: The fraction of correctly classified clean and Trojan models

Classification Task (Dataset)	Sentiment Classification (Yelp)	Hate Speech Detection (Hate Speech)	Sentiment Classification (Movie Review)	News Topic Classification (AG News)	Fake News Detection (Fakeddit)
T-Miner's Accuracy	96%	100%	100%	100%	100%

Detection performance of T-Miner.

T-Miner achieves a high average detection accuracy of 98.75%!

Can T-Miner Retrieve the Trigger Phrase?

- Tested T-Miner on 240 Trojan models poisoned by 1 to 4 word trigger phrases:
 - At least one of the trigger words is retrieved in all models!
 - In cases where we don't completely retrieve the trigger phrase, T-Miner is still able to flag the model as Trojan:
 Original trigger phrase: "white stuffed meatballs" Retrieved trigger phrase by T-Miner: "goto stuffed wonderful"

Non-trigger words + partial trigger phrase still help elicit Trojan response!

s: hla

Countermeasures: The Robustness of T-Miner

- We consider an adaptive attacker who is knowledgeable of T-Miner and uses this knowledge to construct attacks that target T-Miner components
 - We consider 5 countermeasures, and explain one of them below.

Location specific attack	
Targeted Component of	

Targeted Component of T-Miner	Countermeasures	# False Negatives	
Generative Framework	Location specific attack	0 out of 50 Trojan models	

T-Miner's performance on location specific attack.

T-Miner stands robust against such attacks!

[X₁ X₂ X_{t1} ... X_{t2} X_n X_{t3}...]

More Analysis and Evaluation in the Paper

A deeper dive into T-Miner: \bullet

- Differentiating between universal perturbations and Trojan triggers
- Ablation study on the loss terms of generative framework
- Analysis of T-Miner's detection failures, i.e., false positives and false negatives
- Analysis of T-Miner's detection time

More evaluation:

- Evaluated on 1,100 models spanning multiple tasks and datasets in total
- Evaluated T-Miner against more adaptive attacks

Analysis of decoding strategies used by the generative framework, e.g., top-k, greedy search

Our T-Miner code is available at: https://github.com/reza321/T-Miner