

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Blitz: Secure Multi-Hop Payments Without Two-Phase Commits

Lukas Aumayr¹, Pedro Moreno-Sanchez², Aniket Kate³, Matteo Maffei¹

¹TU Wien, ²IMDEA Software Institute, ³Purdue University

What's in store?

Blitz is a new multi-hop payment paradigm for Payment Channel Networks:

More efficient

Reduced collateral from linear to constant

ЛК

<u>7</u> r

Motivation and background

Blitz construction

Summary

Evaluation + comparison to current solutions

- Blockchain: records every transaction
- Global consensus: everyone checks the whole blockchain

Bitcoin's transaction rate: ~10 tx/sec Visa's transaction rate: ~10K tx/sec

Exchange transactions off-chain, Blockchain for disputes

2) Update

Payment Channels

Bob

Payment Channels

Bob

Bob

. . .

State n

5

Payment Channel Network (PCN)

- Infeasible to open channels with everyone Link channels to form a PCN
- Multi-hop payments
- e.g., Lightning Network (LN) [1]
 - 53M \$ locked
 - 20k nodes
 - 46k channels

[1] J. Poon and T. Dryja, "The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments," 2016

Scenario: Alice wants to pay 5 coins to Dave, via Bob and Carol

1. Dave samples x and sends y := H(x) to Alice

- Bob gets money if he knows x, s.t. H(x) = y
- Alice gets money after timeout 3t

2. Alice sets up an HTLC with Bob holding 5 coins

3. Bob sets up an HTLC with Carol

4. Carol sets up an HTLC with Dave

and claims the 5 coins

5. Dave redeems the HTLC with Carol by revealing x

6. Carol redeems the HTLC with Bob

7. Bob redeems the HTLC with Alice

Payment successful

Two-Phase Commit

Two rounds of communication are required!

Round := sequential, pairwise communication from sender to receiver

Staggered collateral to give enough time to claim on-chain in case of dispute

Payments happen off-chain in honest case

Properties & drawbacks of Lightning payments

- Scalability
- "Balance Security"
- Privacy

Drawbacks:

- Staggered collateral lock time
 - Decreases network throughput
- Takes two rounds
- HTLC scripting requirements
- Wormhole attack [2]

[2] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate and M. Maffei, "Anonymous Multi-Hop Locks" for Blockchain Scalability and Interoperability," NDSS, 2019

Motivation and background

Blitz construction

Summary

Evaluation + comparison to current solutions

Again: Alice wants to pay 5 coins to Dave, via Bob and Carol

Bob

Alice defines a timeout T, independent of the path length

Bob

Pay-or-revoke paradigm

Alice creates refund enabling transaction: txer

Bob

Successful payment

Refund

- Fast track for instant payments
- Fast revoke for refunds without posting txer
- Privacy by using stealth addresses

Check the paper for more information!

More

Motivation and background

Blitz construction

Summary

Evaluation + comparison to current solutions

Comparison to current solutions

	ILP [3]	Lightning [1]	AMHL [2]	Blitz
Balance security	No	Yes	Yes	Yes
Number of rounds	1	2	2	1 (2 for fast track)
Collateral lock time	N/a	Linear	Linear	Constant
Atomicity	No	No (Wormhole)	Yes	Yes
Scripting capabilities	Signatures	Signatures, timelocks, hashlocks ¹	Signatures, timelocks	Signatures, timelock

¹ Using constructions such as scriptless scripts, one could get rid of hashlocks.

[3] S. Thomas and E. Schwartz, "A Protocol for Interledger Payments," 2015

- Blitz contract 26% smaller than Lightning contract (HTLC)
- Can increase number of concurrent payments per channel

Lightning payments

Evaluation

Blitz

- Blitz contract 26% smaller than Lightning contract (HTLC)
- Can increase number of concurrent payments per channel

- Simulation on Lightning Network snapshot
- Random payments, some are disrupted
- Constant (Blitz) vs. staggered (Lightning) collateral
- Depending on setting, between 4x and 33x fewer failed payments in Blitz

Evaluation

Motivation and background

Blitz construction

Summary

Evaluation + comparison to current solutions

New multi-hop payment paradigm for Payment Channel Networks

> Only one round of communication

Reduced collateral from linear to constant

- Only requires Signatures and Timelocks
- Simulation showing practical advantage of constant collateral
- Formally modelled in UC framework and security proofs
- **Compatible** with the Lightning Network

Contract size reduced by 26%

Security against Wormhole attack

ЛК

eprint.iacr.org/2021/176.pdf

lukas.aumayr@tuwien.ac.at

nanks