
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Hermes Attack: Steal DNN Models with
Lossless Inference Accuracy

Yuankun Zhu, The University of Texas at Dallas; Yueqiang Cheng, Baidu Security;
Husheng Zhou, VMware; Yantao Lu, Syracuse University

https://www.usenix.org/conference/usenixsecurity21/presentation/zhu

Hermes Attack: Steal DNN Models with Lossless Inference Accuracy

Yuankun Zhu∗

The University of Texas at Dallas
yuankun.zhu@utdallas.edu

Yueqiang Cheng*
Baidu Security

chengyueqiang@baidu.com

Husheng Zhou
VMware

zhusheng@vmware.com

Yantao Lu
Syracuse University

ylu25@syr.edu

Abstract

Deep Neural Network (DNN) models become one of the
most valuable enterprise assets due to their critical roles in all
aspects of applications. With the trend of privatization deploy-
ment of DNN models, the data leakage of the DNN models is
becoming increasingly severe and widespread. All existing
model-extraction attacks can only leak parts of targeted DNN
models with low accuracy or high overhead. In this paper,
we first identify a new attack surface – unencrypted PCIe
traffic, to leak DNN models. Based on this new attack surface,
we propose a novel model-extraction attack, namely Hermes
Attack1, which is the first attack to fully steal the whole vic-
tim DNN model. The stolen DNN models have the same
hyper-parameters, parameters, and semantically identical ar-
chitecture as the original ones. It is challenging due to the
closed-source CUDA runtime, driver, and GPU internals, as
well as the undocumented data structures and the loss of some
critical semantics in the PCIe traffic. Additionally, there are
millions of PCIe packets with numerous noises and chaos or-
ders. Our Hermes Attack addresses these issues by massive re-
verse engineering efforts and reliable semantic reconstruction,
as well as skillful packet selection and order correction. We
implement a prototype of the Hermes Attack, and evaluate two
sequential DNN models (i.e., MINIST and VGG) and one non-
sequential DNN model (i.e., ResNet) on three NVIDIA GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti, and NVIDIA Geforce RTX 2080 Ti. The
evaluation results indicate that our scheme can efficiently
and completely reconstruct ALL of them by making infer-
ences on any one image. Evaluated with Cifar10 test dataset
that contains 10,000 images, the experiment results show that
the stolen models have the same inference accuracy as the
original ones (i.e., lossless inference accuracy).

∗This work was mainly done during the internship at Baidu.
1Hermes is the master of thieves and the god of stealth [54].

1 Introduction

Nowadays, Deep Neural Networks (DNNs) have been widely
applied in numerous applications from various aspects, such
as Computer Vision [9, 57], Speech Recognization [20, 22],
Natural Language Processing [11], and Autonomous Driv-
ing, such as Autoware [28], Baidu Appolo [3], Tesla Au-
topilot [49], Waymo [52]. These applications indicate the
principle role of DNNs in both industry and academic ar-
eas. Compared to other machine learning technologies, DNN
stands out for its human-competitive accuracy in cognitive
computing tasks, and capabilities in prediction tasks [35, 45].
The accuracy of a DNN model is highly dependent on in-
ternal architecture, hyperparameters, and parameters, which
are typically trained from a TB datasets [16, 56] with high
training costs. For instance, renting a v2 Tensor processing
unit (TPU) in the cloud is $4.5 per hour, and one full training
process would cost $400K or higher [17, 42]. Therefore, the
importance of protecting DNN models is self-evident.

Over the last few years, privatization deployments [2, 26]
are becoming a popular trending for giant AI providers.
The AI providers have private high-quality DNN models,
and would like to sell them to other companies, organiza-
tions and governments with a license fee, e.g., million dol-
lars per year. This privatization-deployment situation fur-
ther exacerbates the risk of model leakage. There have
been many DNN extraction works proposed in the litera-
ture [18,23,24,38,46,50,51,53,55,58]. All of them use either
a search or prediction method to recover DNN models. For the
search based schemes [24, 58], they can only obtain existing
models but not customized models. Besides, the performance
of their searching processes is particularly low. The predic-
tion based schemes [18, 23, 55] result in a significant drop in
inference accuracy. Most importantly, all of these attacks are
not able to reconstruct the whole DNN model. Thus, until
now, most people still have the illusion that the model is safe
enough or at least the leakage is limited and acceptable.

In this paper, we first observed that the attacker in the model
privatization deployment has physical access to GPU devices,

USENIX Association 30th USENIX Security Symposium 1973

making the PCIe bus between the host machine and the GPU
devices become a new attack surface. Even if the host system
and the GPU are well protected individually (e.g, using Intel
SGX protect DNN model on the host and never sharing GPU
with others), the attacker still has the chance to snoop the
unencrypted PCIe traffic to extract DNN models. Based on
this critical observation, we propose a novel black-box attack,
named Hermes Attack, to entirely steal the whole DNN model,
including the architecture, hyper-parameters, and parameters.

It is challenging to fully reconstruct DNN models from
PCIe traffic even if we can intercept and log all PCIe packets
due to the following three aspects. First, the CUDA runtime,
GPU driver, and GPU internals are all closed source, and the
critical data structures are undocumented. The limited pub-
lic information makes the reconstruction extremely difficult.
Second, some critical model information, such as the informa-
tion about layer type, is lost in the PCIe traffic. Without this
critical information, we cannot fully reconstruct the whole
DNN model. At last, there are millions of PCIe packets with
numerous noises and chaos orders. Based on our experiments,
only 1% to 2% of all captured PCIe packets are useful for our
model extraction work.

To address the above challenges, we design our Hermes
Attack into two phases: offline phase and online phase. The
main purpose of the offline phase is to gain domain knowl-
edge that is not publicly available. Specifically, we recover
the critical data structures, e.g., GPU command headers, us-
ing a large number of reverse engineering efforts to address
challenge 1. We address challenge 2 based on a key obser-
vation: each layer has its own corresponding unique GPU
kernel. Thus, we identify the mapping relationship between
the kernel (binaries) and the layer type in the offline phase
with known layer type and selected white-box models. We put
all these pair information into a database, which will benefit
the runtime reconstruction. In the online phase, we run the
victim model and collect the PCIe packets. By leveraging the
PCIe specification and the pre-collected knowledge in the
database, we correct the packet orders, filter noises, and fully
reconstruct the whole DNN model, to address challenge 3.

To demonstrate the practicality and the effectiveness of
Hermes Attack, we implement it on three real-world GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti, and NVIDIA Geforce RTX 2080 Ti. The
PCIe snooping device is Teledyne LeCroy Summit T3-16
PCIe Express Protocol Analyzer [33]. We choose two sequen-
tial DNN models - MNIST [36] and VGG [47], and one non-
sequential model - ResNet [21]. These three pre-trained vic-
tim models are used for interference by Keras framework [29]
with Tensorflow [1] as the backbone. The attack experiments
indicate that Hermes Attack is effective and efficient: (1) ran-
domly given one image, we can completely reconstruct the
whole victim model within 5 – 17 minutes; and (2) the recon-
structed models have the same hyper-parameters, parameters,
and semantically identical architecture as the original ones.

In the inference accuracy experiments, we test each recon-
structed model with 10,000 images from public available test
datasets [31,36]. The results show that the reconstructed mod-
els have exactly the same accuracy as the original ones (i.e.,
lossless inference accuracy).
Contributions. In summary, we make the following contri-
butions in this paper:

• We are the first to identify the PCIe bus as a new attack
surface to steal DNN models in the model-privatization
deployments, e.g., smart IoT, autonomous driving and
surveillance devices.

• We propose a novel Hermes Attack, which is the first
black-box attack to fully reconstruct the whole DNN
models. None of the existing model extraction attacks
can achieve this.

• We disclose a large number of reverse engineering details
in reconstructing architectures, hyper-parameters, and
parameters, benefiting the whole community.

• We have demonstrated the Hermes Attack on three real-
world GPU platforms with sequential and non-sequential
models. The results indicate that the Hermes Attack can
handle MNIST, VGG and ResNet DNN models and the
reconstructed models have the same inference accuracy
as the original ones.

2 Background

2.1 DNN Background
Deep Neural network (DNN) is a sub-area of machine learn-
ing in artificial intelligence that deals with algorithms inspired
from the biological structure and functioning of a brain. DNN
is used to model both linear and non-linear relationships be-
tween the input x and the output y, learning to approximate
an unknown function f (x) = y. A DNN model is represented
as a hierarchical organization of connected layers with a cer-
tain level of complexity between the input data and resultant
output. DNNs are used in two phases, i.e., training and in-
ference. The training process is computationally heavy and
needs a large amount of data. With a series of feed-forward
matrix computations on given input data, the resultant output
is computed through a loss function against ground truth. The
weights of the network are updated accordingly based on error
back-propagation. The training is done once passing through
all of the training samples. The inference is the phase in which
a trained model is used to infer real-world data. Terminologies
used in the rest of this paper are described as follows.
Architecture: Neural network architecture consists of a num-
ber of layers, types/dimensions for each layer, and connection
topology among layers. The connections between layers can
be either sequential or non-sequential. Sequential connection

1974 30th USENIX Security Symposium USENIX Association

DNNs

Tensorflow

OpenCLCUDA

Pytorch

GPU

Runtime Backend

Device Driver
ioctl

PCIe Traffic

GPU Commands
...

... GPU APIs

Figure 1: Typical DNN System Stack. DNNs are usually
implemented with deep learning frameworks, e.g., Tensor-
flow, Pytorch, and Caffe. These frameworks invoke the GPU
runtime frontend like CUDA by calling APIs. The runtime
frontend converts these APIs to GPU commands and sends
them to the runtime backend, which then sends the received
commands to the device driver through ioctl. The device
driver submits these commands to GPU hardware via PCIe.

means layers are stacked and every layer take the only output
of the previous layer as the input. Non-sequential connection
denotes the model may include shortcuts, branches, or shared
layers [29, 58].

Hyper-parameters: Hyper-parameters are the parameters
used to control the training process, which do not belong to
the trained model and cannot be estimated from training data.
There are many hyper-parameters such as learning rate, regu-
larization factors, momentum coefficients, number of epochs,
batch size, etc.

Parameters: Parameters are configuration variables of the
trained model, whose values are derived via training. Model
parameters includes weights and bias in DNNs. Throughout
the paper, when we mention “parameters”, we mean DNN
model parameters instead of “arguments”.

2.2 GPU Working Mechanism

Adding sufficient DNN layers to guarantee high inference
accuracy may easily explode the computation demand [15].
Currently, major DNN frameworks mainly rely on employing
GPUs to satisfy the need, since GPUs enable orders of mag-
nitude acceleration and more energy-efficient execution for
many DNN related computations. According to their archi-
tecture, modern GPUs can be divided into integrated GPUs
that lie on the same die of CPUs and discrete GPUs which
are connected to CPU via PCIe. Integrated GPUs are more
energy-efficient but less powerful, which is often seen in em-
bedded systems and mobile devices. In this paper, we focus
on discrete GPUs since they dominate the markets of AI and
machine learning for their computation powers. Some termi-
nologies used in this paper are described as follows.

CUDA is a parallel computing architecture provided by
NVIDIA for GPUs [37], which includes compilers, user space

Figure 2: Example of Memory Read Request TLP. The Tag
field can be used to identify the corresponding completion
TLP. The address field is the targeted reading address.

Figure 3: Example of Completion TLP. The Tag field can be
used to identify the corresponding request TLP. The payload
field includes the reading data from the targeted address.

libraries, and kernel space drivers. Employing CUDA for a
very simple GPU accelerated program usually involves three
procedures: copying input data from main memory to GPU
memory, launching computations on GPU, and transferring
back the resultant output from GPU memory to main memory.

Kernel is a piece of code that is compiled into hardware-
specific executable and runs on GPU hardware to do the
actual computation. Throughout the paper, when we men-
tion “kernel” we mean “GPU kernel” instead of OS kernel.
In CUDA, kernels are compiled by nvcc compiler [12] into
CUDA Fatbin and embedded into a dedicated section of host
executable file. During runtime, sets of GPU instructions are
loaded onto GPU and launched when specific CUDA APIs
are called (e.g., cudaLaunchKernel).

Commands are encoded using distinct instruction sets with
kernels, which are used to control data copy, kernel launch,
initialization, synchronization, etc. In this paper, we use “GPU
command” to indicate a set of GPU hardware instructions that
complete an atomic CUDA operation. Each GPU command
consists of two parts: the header and the data. The header
contains the type of this command and the data size. The data
field comprises values passed to this command. We named
the data movement command as D command and the kernel
launch command as K command in the rest of the paper.

GPU Accelerated DNN Platform is depicted as Figure 1,
which includes DNN frameworks, user space libraries, kernel
space drivers, and the hardware. High level computation tasks
of DNN are finally converted to low level PCIe packets, which
is the attack surface we are targeting in this paper.

2.3 PCIe Protocol
PCIe is a high-speed motherboard interface for I/O devices,
such as graphics cards, SSDs, Wi-Fi, etc. The communica-
tion of PCIe takes the form of packets transmitted over these

USENIX Association 30th USENIX Security Symposium 1975

Figure 4: Threat Model. We consider the model privatization
environment, where the host and the GPU device are well
protected individually, and the PCIe bus is the new attack
surface. The adversary can snoop the PCIe traffic using a bus
snooping device, e.g., a PCIe protocol analyzer.

dedicated lines, with flow control, error detection and re-
transmissions. The underlying communications mechanism
of PCIe protocol is composed of three layers: Transaction
Layer, Data Link Layer, and Physical Layer. Figure 2 and
Figure 3 show the formats of memory read request Trans-
action Layer Packet (TLP) and completion TLP with 64-bit
addressing. The header of each TLP is four double words
(DWs) long, and the maximum payload size is 128 DWs.

When a CPU writes data into a peripheral, the chipset
generates a memory write packet which consists of a 32-
bit header and a payload containing the data to be written.
The packet is then transmitted to the chipset’s PCIe port.
The peripheral can be connected directly to the chipset or
connected to a switch network.

When a CPU reads data from a peripheral, there are two
packets involved in the read operation. One is read request
TLP that is sent from CPU to the peripheral, asking the latter
to perform a read operation, as shown in Figure 2. The other
one is completion TLP which comes back with data in the
payload, as shown in Figure 3. The completion TLP and
request TLP can be identified by the same Tag value.

3 Attack Design

3.1 Overview

Threat Model. In this paper, we consider an AI model priva-
tization deployment environment (e.g., smart IoT, surveillance
devices, autonomous driving), where service providers pack
their private AI models into heterogeneous CPU-GPU devices
and sell them to third-party customers with subscription or per-
petual licensing. The end-users are able to physically access
the hardware, especially, the PCIe interface. The thread model
is depicted as Figure 4, where the GPU is attached to the host

via an unencrypted PCIe connection. We assume the host and
the GPU device are well protected individually, e.g., AI mod-
els are protected with existing software-hardening techniques
on the host side, such as secure boot, full disk encryption,
and trusted execution environment (e.g., Intel SGX [14]). It
leaves the PCIe bus as a new attack surface for attackers. This
assumption is reasonable in the privatization deployment en-
vironments because: (1) attackers (e.g., insiders within the
third-party company) have the motivation to extract the AI
model for saving the per-year license fee, and (2) attackers
have physical access to the host machine, and thus they can
install a PCIe bus snooping device (e.g., PCIe protocol ana-
lyzer) between the host and GPU to monitor and log the PCIe
traffic. The victim model is considered a black-box. The vic-
tim can be either an existing model or a customized model. It
can be implemented with arbitrary deep learning frameworks.
Challenges. It is challenging to fully reconstruct DNN mod-
els from PCIe traffic even if we can intercept and log all PCIe
packets. We summarize the challenges as follows:

1. Closed-source Code and Undocumented Data Struc-
tures. The CUDA runtime, driver, and NVIDIA GPU
hardware are all closed-source, and the critical data struc-
tures involved in data transfer and GPU kernel launch
are undocumented. The closed-source code and per-
architecture instruction set make fully disassembling
impractical. Moreover, GPU kernels and commands are
encoded with different instruction sets, making reverse
engineering more difficult.

2. Semantic Loss in PCIe Traffic. Some critical seman-
tic information of a DNN model is lost at the level of
PCIe traffic. For instance, DNN layer types can not be
obtained directly from PCIe traffic because it is resolved
on the CPU side. The loss of critical information makes
it challenging to recover the whole model fully.

3. PCIe Packets with Numerous Noises and Chaotic Or-
ders. There are millions of packets generated for a sin-
gle image inference, in which only 1% to 2% are useful
for our DNN model reconstruction. The rest “noises”
packets should be carefully eliminated. Moreover, nu-
merous completion packets, which indicate operation
completion, often arrive out-of-order compared to DNN
level semantics, due to the CUDA features that pipeline
asynchronous operations. This situation is even worse
in the more advanced GPU architectures (e.g., NVIDIA
Geforce RTX 2080 Ti) because of introducing new
features to unify GPU device and host memory.

Attack Overview. The methodology of our attack can be
divided into two phases: offline phase and online phase. Dur-
ing the offline phase, we use white-box models to build a
database with the identified command headers, the mappings
between GPU kernel (binaries) and DNN layer types, and

1976 30th USENIX Security Symposium USENIX Association

Original
Model

1.Command Headers
2.<Kernel Binaries, Layer Types>

3. <Kernels,Offsets>

GPU
Profiler

 Online 	Phase

Generated
Model

Traffic
ProcessingWhile-box

Models

1

Raw
Traffic

Sorted
Traffic

Traffic
Processing

1

Offline	Phase

Extraction

Header
Extraction

2

PCIe
Interceptor

Command
Extraction

Database

2
Model

Reconstruction

Semantic
Reconstruction

Reconstruction
3

3

Semantic
Reconstruction

Reconstruction

Model Reconstruction
Architecture

Hyper-Parameters

Parameters

Header
Extraction

Extraction 2

K
Commands

D
Commands

Traffic

Command ExtractionPCIe
Interceptor

Figure 5: Attack Overview. The offline phase builds a knowledge database by identifying GPU command headers of interest,
the mappings between GPU kernel (binaries) and DNN layer types, and the mappings between GPU kernels and offsets of
hyper-parameters. The online phase is the actual deployed attack to steal the victim model during inference. Three major modules
are used in both phases but with different sub-components activated (grey diagrams indicate inactivity): The traffic processing
module 1© sorts out-of-order PCIe packets; The extraction module 2© extracts and filters GPU commands of interest; The
reconstruction module 3© fully reconstructs the semantics, architecture, hyper-parameters, and parameters.

the mappings between GPU kernels and offsets of hyper-
parameters. Specifically, the traffic processing module (1© in
Figure 5) sorts the out-of-order PCIe packets intercepted by
PCIe snooping device. The extraction module (2©) has two
sub-modules: header extraction module and command extrac-
tion module. The header extraction module extracts command
headers from the sorted PCIe packets (Section 3.3.1). The
extracted command headers will be stored in the database,
accelerating command extraction in the online phase. The
command extraction module in the offline phase helps get
the kernel binaries (Section 3.3.2). The semantic reconstruc-
tion module within the reconstruction module (3©) takes the
inputs from the command extraction module and the GPU
profiler to create the mappings between the kernel (binary)
and the layer type, as well as the mappings between the kernel
and the offset of hyper-parameters, facilitating the module
reconstruction in the online phase (Section 3.4.1).

During the online phase, the original (victim) model is
used for inference on a single image. The victim model is a
black-box model and thoroughly different from the white-box
models used in the offline phase. PCIe traffics are intercepted
and sorted by the traffic processing module. The command
extraction module (2©) extracts K (kernel launch related) and
D (data movement related) commands as well as the GPU
kernel binaries, using the header information profiled from the

100
101
102
103

10
13
15
17

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

P2

79 0xXXXX
80 0xXXXX
81 0xXXXX
82 0xXXXX

17
10
29
18

Packet ID

Tag

100 0xXXXX
0xXXXX

102 0xXXXX
103 0xXXXX

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

80
79
65
110

Sort
Key

Data Packets

Request Packets

Completion Packets

P1

P3
101

Figure 6: Process of Sorting PCIe Traffic. We sort the pack-
ets using packet ID and tags, instead of the capture order.

offline phase (Section 3.3.2). The entire database are feed to
the model reconstruction module (3©) to fully reconstruct ar-
chitecture, hyper-parameters, and parameters (Section 3.4.2).
All these steps need massive efforts of reverse engineering.

3.2 Traffic Processing
The intercepted traffic is composed of TLPs with unique
packet IDs. Thanks to the oriented interception, the inter-

USENIX Association 30th USENIX Security Symposium 1977

cepted traffic is only formed by packets transmitted between
CPU and GPU. These packets are arranged increasing ID val-
ues in order of arrival. Packets can be classified into upstream
packets and downstream packets based on the transmitting
direction. The upstream packets represent packets that are
sent from GPU to CPU, e.g., GPU read request packets, or
completion packets returning GPU computing results. The
downstream packets are sent from CPU to GPU, e.g., CPU
read request packets, completion packets with input data. The
structures of two representative packages are shown as Fig-
ure 2 and Figure 3. To make things easier, we only keep the
GPU read request packets in the upstream packets and the
completion packets in the downstream packets.

In addition to the aforementioned two types of packets, we
use another type of packet namely data packet that is merged
from request packets and completion packets according to the
tag field. A data packet comprises both the request address
and corresponding acquired data in a single packet. It can be
concatenated to a completion packet with the same packet ID
and equivalent order.

The major challenge here is that these data completion
packets arrived out-of-order. The reason is that the PCIe pro-
tocol does not enforce the completion orders of multiple con-
secutive requests. Additionally, resultant output for a single
PCIe read request may be encapsulated in multiple comple-
tion packets, making the raw packets hard to analyze directly.
To tackle the problem, we coalesce the raw packets by using
merge and sort based on two observations: (1) every request
is composed of one request packet and one (multiple) comple-
tion packet(s), where the orders of request packets can reflect
the correct sequence; (2) completion packets for the same
request are guaranteed to arrive in order. We elaborate the
merge and sort operations as follows:
Merge: For every data packet, we complement the tag field by
looking up its corresponding completion packet(s). If adjacent
packets have the same tag value, we merge them into a single
packet by concatenating their data field.
Sort: The sort phase is illustrated as Figure 6. By default, all
the packets are arranged according to their packet IDs from
low to high. For request packet, we record it as P1 and lookup
all the completion packets that have larger packet IDs than
P1. We stop the searching when it hits the packet that has the
same tag value as P1 and records this packet as P2. Next, we
look for the packet that has the same packet ID with P2 in data
packets and records it as P3. Then we add the packet ID of
P1 into P3 as a sort key. We repeat this procedure until every
data packet has a sort key. At last, we sort all the data packets
by on the sort key.

3.3 Extraction
After the preliminary processing, it’s still onerous to recon-
struct the model from the traffic. One of the main obstacles
is that there are a large number of interference packets. For

 01000000 6C200120 41000000 6D204860 XXXXXXXX XXXXXXXX...

...XXXXXXXX 62200220 0B000000 60182EBA 60200220 20000000

: Command Header

00000008:292B7F00

00000008:292B7F80

PayloadsAddress

Figure 7: Identified Structure of GPU Commands. A typ-
ical GPU command consists of nine DWs. The third DW
indicates the location of this command on GPU memory. The
fifth DW represents the size of data field. The last DW stands
for the type of this command.

instance, making inference on a single image using MNIST
model will generate 1,077,756 data packets (after filtering) on
NVIDIA Geforce GT 730. However, only around 20,000 of
them (2%) are useful for our attack. This may be explained by
the fact that CPU sends GPU numerous signals to do initial-
ization, synchronization, etc. So it is necessary to filter out the
irrelevant packets. In order to focus on our goal of extracting
DNN models, it is sufficient to pick only those D commands
and K commands, representing data movement commands
and kernel launch commands, respectively.

3.3.1 Header Extraction

To extract D commands and K commands, we should identify
the header structure of each kind of command. This procedure
is done in our offline profiling phase. In order to figure out the
header of D commands, we repeatedly move crafted data be-
tween pre-allocated GPU device memory and main memory,
and use pattern match on the intercepted PCIe packets. Sim-
ilarly, we repeatedly launch multiple kernels with prepared
arguments, to identify the header structure of K commands.

According to our reverse-engineering results, a K com-
mands header structure is shown as the highlighted nine DWs
in Figure 7, where the third, fifth, and ninth DW represents
GPU memory address, data size in bytes, and command type
(e.g., 6D204860 is the signature indicating kernel launch
on Kepler architecture), respectively. These three DW fields
are most useful for our attack. The other six DWs are GPU-
specific signatures whose bit-wise semantics are explained in
previous reverse engineering work [19].

We also did exhaustive tests to verify that the header struc-
ture is stable and valid on different GPU and machine com-
binations. The extracted header information are memorized
in our profiling database, which can be used to accelerate
analysis in the future.

3.3.2 Command Extraction

Raw extracted commands are not ready to use because
of tremendous noises. Noise can be classified into two
classes: external noise and internal noise. External

1978 30th USENIX Security Symposium USENIX Association

 01000000 6C200120 41000000 6D204860 XXXXXXXX XXXXXXXX...

...XXXXXXXX 62200220 0C7F0000 60182EBA 60200220 20000000

: Command Header

00000008:292B7F00

00000008:292B7F80

PayloadsAddress

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...00000008:188B6700

: Noise

Gap

Figure 8: Example of Command With Noise Packets. The
noise packet is not consecutive with the previous packet in
terms of address.

noise refers to those packets not belong to the current com-
mand. They can both be the packets of other commands or
meaningless packets. External noise could appear frequently
because a command with a large data field may require thou-
sands of packets to transmit. Since a command header could
be sent via two packets, the noise packet may also appear
within the command header. As Figure 8 shown, a command
header is split into two parts. They are transmitted via two
packets, with a noise packet in between. Internal noise indi-
cates a specific DW inside each packet. We have observed all
internal noise and summarized the pattern of it. Thus internal
noise can be easily filtered out while extracting the payloads.

An intuitive solution to address the noise issue is to check
the address continuity, based on the fact that the transmitted
data is usually consecutive in memory space. If a packet’s
memory address is not consecutive with its predecessor, it is
highly likely that this packet does not belong to the current
command. However, this is not always the case especially
when the continuous memory space is insufficient. Since the
addresses in packets are physical addresses, virtually con-
tiguous address space used by CUDA programs may be split
into multiple physical memory chunks. Figure 9 shows an
example that the addresses of two adjunct packets belong
to the same command are nonconsecutive in physical ad-
dress. Therefore, it is insufficient to merely check the address
continuity. To solve this problem, we introduce a heuristic
threshold MAX_SCAN_DISTANCE. When a packet encounters
an address gap, we scan for the next consecutive packet within
MAX_SCAN_DISTANCE. If there exists a packet that has a con-
secutive address with the previous address gap, we consider
this packet to be the adjacent packet of the gap and discard
the previously scanned packets. Otherwise, we include the
gap packet into the payloads. We continue this process until
the number of payloads bytes in extracted packets matches
the size indicated in the command header.

3.4 Reconstruction

3.4.1 Semantic Reconstruction

Semantic reconstruction is a part of the offline profiling phase
to build the knowledge database. We use known DNN models
as ground truth and utilize NVIDIA’s profiling tools (i.e.,

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:292B7F00

Consistent

00000008:292B7F80

Address Payloads
62200220 0C7F0000 60182EBA ... 6C200120 41000000 6D204860

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:188B6700

00000008:188B6780

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...00000008:292BB880

...

Gap

: Command Header

Figure 9: Example of Command With Large Data Field.
When a command has a large size data field, it occupies more
than one continuous memory space. In this case, the address
gap also exists.

nvprof [13]) to bridge the semantic gap between PCIe packets
and high-level DNN workflow by: (1) associating kernels
with DNN layers; (2) profiling the layout of the arguments of
certain GPU kernels.

We assume every computational layer (e.g., convolution
layer, normalization layer, rectified linear unit layer) of DNN
models is computed on the GPU, because layers that are com-
puted by CPU would not send command through PCIe. This
assumption is reasonable because the highly muti-threaded
architecture of GPU is designed to accelerate matrix computa-
tion in DNN layers. Moreover, if some of intermediate layers
are ported to CPU, the data movement is expensive. Base
on this assumption, it is safe to say each layer is associated
with one or more GPU kernels. Different types of layers use
different GPU kernels, thus we can infer the layers types by
identifying their GPU kernels. Additionally, people prefer
to use highly optimized standard libraries provided by GPU
hardware vendors (e.g., NVIDIA’s CUDNN library), so the
kernel binaries are relatively stable. For example, convolu-
tion layers call convolve_sgemm() kernels whose binaries are
embedded in nv_fatbin section of libcudnn.so.

We have the following two observations based on our pre-
liminary experiments:

Observation 1: Each kernel is loaded onto GPU using a D
command, and its data field is kernel binaries.

Observation 2: Each K command includes an address refer-
ring to the kernel binary to be launched.

Based on the two observations, we can extract all involved
kernel binary by iterating K commands. Figure 10 illustrates
how we use a K command to locate the GPU kernel binary.
Particularly, the kernel binary is first loaded onto GPU mem-
ory and stored at 405ECF01 using a D command, and then
launched by a K command. Our method works in reverse or-
der: we first retrieve the K command’s data field with a fixed
offset to locate the address referring to the kernel binary, then
we dump the corresponding D command’s data field to get
the kernel binary.

USENIX Association 30th USENIX Security Symposium 1979

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:292B7F00

00000008:292B7F80

Address Payloads

62200220 0B000000 ... 6C200120 41000000 6D204060

62200220 0B000000 00004300 ... 6C200120 41000000 6D20486000000008:A62F4E00

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0B00000 00000008:A62F4E80

405ECF01

...

405ECF01

: Command Header: GPU Address

Figure 10: Process of Locating Kernel Binaries. The first
command in the figure is a D command that loads a kernel
binary onto GPU. The second command is a K command to
launch the loaded kernel. These two commands are associated
by the same GPU address where the kernel binary is loaded.

After iterating all involved K command in PCIe traffic,
we have a sequence of kernel binaries in launch order. By
aligning with the CUDA trace collected by nvprof, we can
figure out the mappings between each kernel binary and its
corresponding layer. The mappings are stored in the form of
tuples in a hash table, where the key is the kernel binary and
the value is layer type.

Another semantic we need to reconstruct is the relationship
between kernel binaries and their arguments layout. We only
focus on the kernels that involves potential hyper-parameters.
Since hyper-parameters are not parts of the trained model,
they are only used in certain kernels as arguments. By fig-
uring out the locations of hyper-parameters in K commands,
we can extract all involved hyper-parameters. We achieve
this by profiling known DNNs, looping over the data field
of certain kernels’ K commands to find the expected hyper-
parameters. The <Kernels, Offsets of Hyper-parameter> pairs
are recovered and stored in the knowledge database.

3.4.2 Model Reconstruction

Extract Model Architecture. In the online phase, after in-
tercepting all PCIe traffic, we are able to obtain all needed K
and D commands. The key idea of reconstructing DNN archi-
tecture is to build data flow graph where each data movement
indicates an edge and every kernel launch represents a vertex.

Every kernel takes at least one address as its input and
write its output to one or more addresses. By knowing the
semantics of this kernel in profiling phase, in the form of K
command, we are able to figure out which offset(s) indicate
input(s) and output(s). We build the data flow graph majorly
by treating the input addresses as flow-from and the output
addresses as flow-to. All kernels are then associated with
these data addresses. We note that in the data flow graph one
kernel’s output address does not necessarily exactly match
its successor’s input address. Because these two addresses
can be within the same data block or data is copied from one
address to the other, which can be determined by iterating D

00000008:38311580

...XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX...

00000008:C6ED0800

00000008:C6ED0880

Address Payloads
62200220 0B000000 ... 6C200120 41000000 6D202061

62200220 0B000000 40014200 ... 6C200120 41000000 6D204860

... XXXXXXXX 0B00000 0B00000 ...00000008:38311600

00512D01

...

62200220 0B000000 00004200 ... 6C200120 41000000 6D204860

...XXXXXXXX XXXXXXXX XXXXXXXX 0B00000 ...00000008: 17AC8700 00130C01

...
00512D0100130C01

00000008: 17AC8680

: Command Header: GPU Address

Figure 11: Process of Locating Parameters. The first com-
mand is a D command of loading parameters onto GPU. The
second command is a KD2D command which copies param-
eters to a new location. The third K command launches a
kernel taking the address of duplicated data as the input. Our
attack recovers the parameters in reverse order as depicted by
the arrows.

commands. Once the data flow graph is reconstructed, we can
substitute every kernel vertices with their corresponding DNN
layers by querying the mappings in the knowledge database.

Extract Hyper-parameters. The next step is to extract
hyper-parameters that are used during inference, e.g., strides,
kernel size. Hyper-parameters that are used to control train-
ing phase can not be captured by our inference-time attack,
e.g., learning rates, batch size. These hyper-parameters are ob-
tained by two means. One is obtained from kernel arguments
(e.g. strides) by retrieving the data fields of certain kernel
launch K commands, whose offsets are profiled in the seman-
tic reconstruction step. Another kind of hyper-parameters are
determined by the existence of relevant kernels. For example,
if there is a BiasNCHWKernel kernel launch, then the boolean
type hyper-parameter use_bias is determined to be true.

Extract DNN Parameters. In this step, we aim to obtain all
the parameters of each layer. The parameter here includes both
weights and bias. Intuitively, parameters are easier to obtain
compared to architecture, because they are statically passed to
the layer-specific APIs and propagated to the PCIe traffic in
plain value. However, the implementations of different DNNs
on different DNN frameworks vary a lot, some of them raise
challenges for our attack, including duplicated parameters,
asynchronous data movement, and GPU address re-use.

The difficulty is how to locate these parameters since D
commands are not only used to transmit parameters but also
transmit input and a lot of other data. In our preliminary exper-
iments, we observe that a lot of K commands do not use any
data that are moved onto GPU by D commands. Instead, they
use new addresses that are generated by certain K commands.
By aligning with the CUDA trace, we figure out that such K
commands are actually performing device to device memory

1980 30th USENIX Security Symposium USENIX Association

copy. We name these K commands KD2D. Our understanding
is that, for synchronous data copy on GPU device memory, it
is much more efficient using GPU kernel than involving DMA
copy which is controlled by D commands. We verified our
thoughts by varying test platforms and using various data size.
The duplicated data are the weights of DNN layers, where the
original weights on GPU memory are left untouched to avoid
being polluted in inference. here comes our third observation:

Observation 3: CUDA uses K commands to synchronously
copy data from device to device, which are named KD2D. DNN
parameters are sent to GPU using D commands and often
duplicated by KD2D commands. The data taken part in the
layer computations are the copy instead of the original one.

Figure 11 illustrates how parameters are propagated among
commands. The first packet (i.e., a D command) is the ear-
liest received packet by GPU. The third DW 00512D01 is
the GPU memory address referring to the address that stores
the weights of this parameter. The second packet is a KD2D
command where two addresses 00130C01 and 00512D01 in
its data field. The former address is the destination and the
later is the source in device to device memory copy operation.
The last packet is a K command launching a kernel taking the
destination address as its argument. We recover the parame-
ters in reverse order: (1) we first use K commands to locate
the destination address; (2) then we use the KD2D command
to find the corresponding source address; (3) finally we re-
trieve the data field of corresponding D command to dump
the weights of parameters.

We found that for extremely large parameter blocks, they
are usually not transmitted using regular D commands. In-
stead, they are transferred using a new type of data movement
command with different header structures. By aligning with
the CUDA trace, we figure out that these commands are doing
asynchronous data transfer. We name it Dasyn command. This
makes sense because the DNN framework prefers to hide the
latency of large data transfer by taking it off the critical path.
New challenges are brought by Dasyn command. Firstly, the
data size is missed in the Dasyn command header. Secondly,
command header and command data are located in separate
packets with in-consecutive address.

To resolve the first problem, we calculate the total num-
ber of weights using obtained hyper-parameters. There are
three types of layers that have weights: convolution layer,
dense layer, and normalization layer. The total number of
weights and bias of convolution layers can be calculated by
the following equations:

Weightsconv = mw ∗mh ∗ cin ∗ cout (1)

Biasconv = cout (2)
In Equation 1, mw, mh are shorted for mask width and mask
height, where mask is also known as image processing ker-
nel in convolution layers. cin and cout represent the number of
input and output, which are indicated by the last arguments

of input and output. cout is also known as f ilters. For dense
layer, the number of weights and bias can be calculated by:

Weightsdense = cout ∗ cin (3)

Biasdense = cout (4)
In Equation 3 and Equation 4, the cin and cout represent the
input shape and output shape respectively. The number of
bias is equal to the number of output. In normalization layer,
the number of weights and bias can be directly obtained from
kernels’ arguments without any calculation.

The second challenge caused by Dasyn makes locating the
data field of Dasyn command difficult. In regular D commands
and K commands, the header and the first piece of data are
within the same packet, or located in two packets with con-
secutive addresses, which is easy to locate data fields. But in
Dasyn, its command header and data field can be interleaved
by packets from other commands. We resolve this issues by
iterating all commands, filtering out all regular commands and
noises from the beginning. Then only the Dasyn commands
are left. According to the fact that packets within the same
command are contiguous in address, now we can easily as-
semble the header and the corresponding data field of every
Dasyn in order.

When a large amount of data is used by the GPU, like VGG
and ResNet, address re-use will occur. That is, the data as-
sociated with the GPU address can be overwritten, and the
subsequent multiple K commands using the same address can
refer to different data. For example, we consider a command
sequence 1© D1(src)→ 2©KD2D1(src,dst1)→ 3©D2(src)→
4©KD2D2(src,dst2)→ 5©K1(dst1)→ 6©K2(dst2), where D in-

dicates D command, KD2D indicates data copy on device, and
K represents K command. In this example, data in src is
copied out by KD2D1 and then overwritten by D2, two K com-
mands utilize data but referring to the same source address src.
To resolve this problem, we introduce data life range to
represent the valid period of each data. The life range begins
when it is written by a D command and ends when it is con-
sumed by a KD2D command. Take the command sequence as
the example, the life range of dst1 is 1© - 2©, and the life rang
of dst2 is 3© - 4©. Our strategy is to track back from every K
command to extract its corresponding parameters within its
life range. So in the example, we extract K1’s parameters in
the order of 5© 2© 1©.

4 Attack Evaluation

4.1 Experiment Setup

Hardware Platform: We validate our attack on three GPU
platforms, i.e., NVIDIA Geforce GT 730, NVIDIA Geforce
GTX 1080 Ti and NVIDIA Geforce RTX 2080 Ti. There is
only one GPU attached to the motherboard via PCIe 3.0 in ev-
ery individual experiment. We adapt CUDA 10.1 as the GPU

USENIX Association 30th USENIX Security Symposium 1981

MNIST Original Model

ResNet Generated Model

VGG Generated Model

VGG Original Model

C
B
R

In
pu

t

Av
g

po
ol
in
g

Fl
at
te
n

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

ResNet Original Model

D
ro
po

ut

M
ax

po
ol
in
g

D
en
se

Fl
at
te
n

D
ro
po

ut

R
el
u

D
en
se

So
ftm

ax

B
N

D
ro
po

utC
B
R

C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
R

C
B
R D

ro
po

ut C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
R

C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
RD

ro
po

ut C
B
R D

ro
po

ut

M
ax

po
ol
in
gC

B
RD

ro
po

ut C
B
R

C
B
R

C
B
R

M
ax

po
ol
in
g

D
en
se

Fl
at
te
n

R
el
u

D
en
se

So
ftm

ax

B
N

C
B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

M
ax

po
ol
in
gC

B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

In
pu

t

Av
g

po
ol
in
g

Fl
at
te
n

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

A
dd

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

C
B
R

D
en
se

(s
of
tm

ax
)

D
en
se

So
ftm

ax

D
en
se

(s
of
tm

ax
)

D
en
se

(r
el
u)

D
ro
po

ut

Fl
at
te
n

M
ax

po
ol
in
g

D
ro
po

ut

C
on

v2
D

(r
el
u)

C
on

v2
D

(r
el
u)

MNIST Generated Model

D
en
se

So
ftm

ax

D
en
se

So
ftm

ax

Fl
at
te
n

M
ax

po
ol
in
g

C
on

v2
D

R
el
u

C
on

v2
D

R
el
u C

B
R C

on
v2
D

R
el
u

B
N is equal with:

 Conv

 Batch Normalization

Activation

Pooling

Dense Concat

Droput

FlattenLegends:

Figure 12: Architecture Comparison. This figure shows the architecture differences between original models and the recon-
structed models. The CBR block represents the sequentially connected C (Convolution), B (Batch Normalization), R (Relu)
layers. There are two major differences between the original models and the corresponding reconstructed models: (1) The
reconstructed models do not have dropout layers (as shown in MNIST and VGG); (2) The reconstructed models treat every
activation function as a single layer (as shown in MNIST and ResNet).

Table 1: Victim Models. This table displays the detail infor-
mation of all three victim models, including number of layers,
number of parameters, training datasets and input shape.

MNIST VGG16 ResNet-20
Number of Layers 8 60 72

Number of Parameters 544,522 15,001,418 274,442
Datasets mnist cifar10 cifar10

Input Shape (28,28,1) (32,32,3) (32,32,3)

programming interface and Teledyne LeCroy Summit T3-16
PCIe Express Protocol Analyzer as our snooping device.
Victim Model: We validate our attack on three pre-trained
DNN models: MNIST, VGG16, and ResNet20, which are
public available [30].

• MNIST model is a sequential model, where layers are
stacked and every layer takes the only output of the previ-
ous layer as the input. It is trained on the MNIST dataset

and can achieve 98.25% inference accuracy for hand-
written digits.

• VGG16 model is a very deep sequential model with 60
layers in total, 13 of which are convolution layers. It is
trained using the cifar10 dataset and can achieve 93.59%
inference accuracy for the cifar10 test set.

• ResNet20 model is a non-sequential model, where some
layers have multiple outputs and take multiple inputs
from other layers. The victim ResNet model has 20 con-
volution layers out of 72 layers in total, which achieves
91.45% inference accuracy for the cifar10 test set.

These pre-trained victim models are used for inference by
Keras framework with Tensorflow as the backbone. In our
experiments, we treat these models as black-boxes without
using any layer information during attack. These publicly
available models are used only for ground truth purpose. Our
attack works for arbitrary proprietary models. The attack re-
sults are not influenced by the model accuracy or architecture.

1982 30th USENIX Security Symposium USENIX Association

Table 2: Related Kernels of Each Layer. This table lists the
related kernels of each layer. If there are multiple related
kernels of that layer, the primary kernels are highlighted in
bold. The last row indicates some kernels not belong to any
layer, but are useful and need to be recorded.

Layer Related Kernels No.

Conv 2D

ShuffleInTensor3Simple 1

cudnn::detail::implicit_convolve_sgemm 2

SwapDimension0And2InTensor3Simple 3

cudnn::winograd::generateWinogradTilesKernel 4

cudnn::winograd::winograd3x3Kernel 5

BN cudnn::detail::bn_fw_inf_1C11_kernel_new 6

Dense
gemv2N_kernel_val 7

gemvNSP_kernel_val 8

Flatten BlockReduceKernel 9

MaxPool cudnn::detail::pooling_fw_4d_kernel 10

AvgPool Eigen::internal::AvgPoolMeanReducer 11

ZeroPad PadInputCustomKernelNHWC 12

Add Eigen::internal::scalar_sum_op 13

Relu Eigen::internal::scalar_max_op 14

Softmax softmax_op_gpu_cu_compute_70 15

Others
SwapDimension1And2InTensor3UsingTiles 16

BiasNCHWKernel 17

BiasNHWCKernel 18

The detailed model information including layers, shapes, and
parameters are elaborated in Table 1.

4.2 Model Architecture Evaluation
In this section, we demonstrate the semantic equivalence be-
tween the original model and the reconstructed model. Fig-
ure 12 depict the architecture of original models and recon-
structed models for MNIST, VGG, and ResNet, where each
rectangle represents a DNN layer. As the figure is shown,
most of the architectures of the original model and the recon-
structed model are the same, except two differences. The first
difference is that the reconstructed model does not have the
dropout layers, e.g., the MNIST model and the VGG model.
The dropout layer is used to prevent over-fitting during the
training procedure. It randomly selects some neurons and
drops the results. Since it is only used in the training phase
and disabled during the inference, this information is not able
to be captured in PCIe traffic. Attributes to the quiescence
in interference, the dropout layer will not influence the re-
sult of the inference. The second difference is caused by the
implementation. Some models are implemented using activa-
tion function as a hyper-parameter, like the original MNIST
model, but some others regard activation function as a single
layer, like the Relu function in the original VGG model. This
implementation difference will also not lead to any accuracy
variance. During our reconstruction, we regard all activation

Table 3: Offset of Hyper-Parameters. This table shows all
hyper-parameters offsets in their located kernel. The offset
is defined as the distance between the first word and the tar-
get hyper-parameter in the data field of a K command. The
weights row and bias row indicate the offset of weights ad-
dress and bias address respectively.

Hyper-Parameters Kernel GT 730 1080 Ti 2080 Ti
Convolution Layer

Kernel Size 2 (102,103) (99,100) (96,97)
Strides 2 (126,127) (123,124) (120,121)
Filters 2 101 98 95

Weights 1 83 80 80
Bias 17 85 82 82

Batch Normalization Layer
Weights1 6 159 156 156
Weights2 6 161 158 158
Weights3 6 163 160 160
Weights4 6 165 162 162

Maxpooling Layer
Pool Size 10 (152,153) (149,150) (146,147)

Strides 10 (136,137) (133,134) (130,131)
AveragePooling2D Layer

Pool Size 11 (110,111) (107,108) (107,108)
Strides 11 (114,115) (111,112) (111,112)

Zeropadding Layer
Padding 12 (117,118) (114,115) (114,115)

Dense Layer
Units 7 101 98 98

Weights 7 81 78 78
Bias 18 85 82 82

functions as single layers.
Table 2 lists all the related kernels of each layer. Some

kernels are primary kernels, and some kernels are used to
obtain the offset of hyper-parameters. If a layer has only one
related kernel, then this kernel is its primary kernel. If a layer
has more than one related kernels, its primary kernels are
highlighted in bold. The last row indicates some kernels not
belong to any layer, but are still useful and need to be recorded.
SwapDimension1And2InTensor3UsingTiles is record in order
to recover the data flow. BiasNCHWKernel and BiasNHWCK-
ernel are used to determine the layer use bias or not and also
used to obtain the offset of bias address.

4.3 Hyper-Parameters Evaluation
The extracted hyper-parameters are the same as those in the
original model. Table 3 represents all hyper-parameters offsets
in their located kernel. The offset is defined as the distance
between the first word and the target hyper-parameter in the
data field of a K command. Meanwhile, we also record the
weights and bias offset, which indicate the offset the weights
address and bias address respectively. As Table 3 shown, the
offset of these hyper-parameters is not fixed on distinct plat-

USENIX Association 30th USENIX Security Symposium 1983

Table 4: Identity Evaluation. This table shows the identity
between the original models and the reconstructed models.
All the reconstructed models have the same accuracy with the
original ones, as well as similar inference time.

Metrics Model Original Reconstructed
N/A N/A N/A GT 730 1080 Ti 2080 Ti

Accuracy
MNIST 98.25% 98.25% 98.25% 98.25%
VGG 93.59% 93.59% 93.59% 93.59%

ResNet 91.45% 91.45% 91.45% 91.45%

Inference
Time(s)

MNIST 2.24 2.39 2.52 2.38
VGG 65 63 63 61

ResNet 20 20 20 21

forms. Some layers may also have multiple implementations,
and the related kernels may change along with the implemen-
tation changes. Here we only list the most frequently used
implementation and their offsets.

4.4 Identity Evaluation
Table 4 evaluates the identity between the original models
and reconstructed models. We evaluate the identity from
two aspects, accuracy and inference time. The accuracy is
measured as the average test accuracy on 10,000 test im-
ages. The inference time in seconds indicates the total time
used to test 10,000 images using this model. For MNIST, the
test datasets is obtained from keras.datasets.mnist.load_data.
For VGG and ResNet, the test datasets is obtained from
keras.datasets.cifar10.load_data. The reconstructed models
proved to be as accurate as of the victims on all platforms.
The original MNIST model trained on the MNIST dataset
achieve 98.25% accuracy. The original VGG model and
ResNet trained on cifar10 dataset achieve 93.59% and 91.45%
respectively, and all reconstructed VGG models are ResNet
models have the same accuracy with the original models. As
Table 4 shown, each reconstructed model has a similar infer-
ence time with the original one, within a reasonable variance.

4.5 Reconstruction Efficiency
Table 5 records the runtime statistics and the model-
generation time. The runtime statistics include the number
of total completion packets and the number of both D com-
mands and K commands. These statistics are obtained from
the inference procedure on a single image. Only one image is
enough to reconstruct the whole model. As the table shows,
the number of D commands does not have many relationships
with the running models, since only a few D commands are
used to transfer the information of victim models. However,
more complicate the victim model is, more K commands will
be involved. The generation time in minutes represents the
total time used to reconstruct a model from the PCIe data,

including Traffic Processing, Command Extraction, and Re-
construction. The generation time mainly relies on the number
of completion packets. The number of completion packets is
dependent on both platform and the victim model.

5 Discussions

The Hermes Attack aims to leak the victim model through
PCIe traffic with lossless inference accuracy. It means that
the extracted model will have the same accuracy as the victim
one, regardless of the victim model’s accuracy. Meanwhile,
the number of the activation functions and the model layers
will not affect our attack’s accuracy.

5.1 Super Large DNN Models
The methodology of our attack is supposed to be effective for
all models. However, the buffer size of the snooping device
could be a potential limitation. We currently use the Teledyne
LeCroy Summit T3-26 PCIe protocol analyzer as our snoop-
ing device, which is equipped with an 8GB memory buffer
(4GB for each direction). Due to the buffer size limitation,
we cannot intercept all the traffic if the size of a victim model
is super large, i.e., VGG16 trained from ImageNet [16]. Al-
though the size of this model is about 500MB, the generated
downstream traffic will slightly exceed the buffer limitation
due to the large amount of metadata generated by PCIe and
GPU. This problem could be solved by updating the snooping
device. As far as we know, some other powerful snooping
devices like Teledyne LeCroy’s Summit T34 PCI Express pro-
tocol analyzer [34] can expand the memory buffer into 64GB.
These devices would be able to intercept all the inference
traffic of existing DNN models. Alternatively, we can address
this issue with an advanced algorithm. Specifically, although
the intercepted model is not complete (e.g., only covering the
first n layers) , we can still run our existing algorithm men-
tioned in this above to recover the first n layers of the model.
In the next time, we try to intercept the AI model by skipping
k layers (k ≤ n), and run the algorithm again. By repeating
this step until we can recover the last layer, we then get the
whole model by merging all existing recovered layers. This
solution does not rely on any advanced hardware device, but
it requires accurate model interception, and how to directly
recover layers without the data of the skipped layers.

5.2 Attack Generalization
We have demonstrated that our attack can be applied to dif-
ferent GPU platforms. For different platforms (e.g., a smart-
phone with Neural Processing Unit (NPU)), there are several
changes that should be noticed. The first change is the com-
mand header that could be different. One possible solution is
to use the method we mentioned in Section 3.3.1 to identify
the new command header structure. The second change is

1984 30th USENIX Security Symposium USENIX Association

Table 5: Performance Evaluation. This table displays both runtime statistics and generation time. The runtime statistics include
the number of extracted D Commands, K Commands, as well as the number of completion packets. Generation time in minutes
refers to the time used to reconstruct the model. The inference time in seconds indicates the time used to test 10,000 images.

MNIST VGG ResNet
Platform GT 730 1080 Ti 2080 Ti GT 730 1080 Ti 2080 Ti GT 730 1080 Ti 2080 Ti

of D Commands 25,680 28,590 24,342 27,287 27,677 24,931 28,433 28,518 25,577
of K Commands 216 139 181 903 628 793 1011 886 988

of Completion Packets 1,077,756 2,244,115 2,959,613 4,284,946 2,615,895 3,354,411 975,257 2,052,657 2,717,451
Generation Time (min) 5 8 11 17 11 12 6 9 10

Table 6: Related Work Comparison. Xstands for fully recover, P stands for partial recover, × means cannot recover.

Work Information Source Method Results
Architecture Hyper-Parameters Parameters

Xing Hu, et al. 2019 [23] Bus Access Pattern Predict P × ×
Yan, Mengjia, et al. 2018 [58] Cache Search × X ×
Weizhe Hua, et al. 2018 [24] Accelerator Search,Infer X × P
Yun Xiang et al. 2019 [55] Power Predict X X ×

Vasisht Duddu et al. 2018 [18] Timing Search X × ×
Binghui Wang et al. 2019 [51] Parameters Infer × X ×
Seong Joon Oh et al. 2018 [38] Queries Infer P P ×

Roberts, Nicholas et al. 2018 [43] Noise Input Predict,Infer × × P
Our Work (Hermes Attack) PCIe Bus Infer X X X

the GPU instruction sets. The change of instruction sets will
lead to the difference in kernel binaries. Fortunately, we can
also use the method in Section 3.4.1 to update the database.
Although there would be several changes when the platform
changes, the GPU and PCIe underlying working mechanism
will stay the same. Therefore, the proposed attack will not be
influenced by the alternation of hardware.

Different from the change of GPUs, the change of the DNN
framework will lead to the different implementation of each
layer as well as the relationship between layer and GPU ker-
nels. However, as long as all layers are executed on GPU,
we are able to obtain the relationship between the layer and
kernels, it will not affect our proposed attack.

The case that multiple tasks simultaneously run on a single
GPU should also be aware of. The simultaneously running
tasks share the same GPU with the victim model. In this
manner, the data sent from the other tasks will make an inter-
ference on our extraction. Thanks to the fact that each process
owns a GPU context and each context has at least one channel
to sent commands, the different tasks can be filtered by the
context information.

5.3 Mitigation Countermeasures
The first possible defense approach is to encrypt the PCIe
traffic. It is easy to add the crypto engine on the CPU side,
but it is hard for the commodity GPUs that do not have such

capabilities. Thus, this method is the lack of backward com-
patibility. Another approach is to use data obfuscation, e.g.,
obfuscating the commands, model commands, and parame-
ters. However, this method requires kernels to be extended to
deobfuscate the data back or understand the obfuscated data.
Besides, this method can only increase the bar but cannot
prevent the Hermes attack completely.

Besides encryption and obfuscation, another mechanism is
adding noise from the software aspect, e.g., sending data in
one process but sending interference commands from a differ-
ent process. However, this could be resolved by utilizing GPU
channels, as discussed in Section 5.2. Another alternative
solution is to leverage the device driver to use dynamic com-
mand headers instead of static command ones, significantly
increasing the bar of reverse engineering.

The last possible defense mechanism is to offload some
tasks to the CPU. In this way, it can reduce the information
obtained from the PCIe traffic. Unfortunately, it will result in
significant performance loss due to the frequent data transfer
between CPU and GPU and CPU’s low computing power
compared to GPU.

6 Related Work
Adversarial Examples: Adversarial examples are first
pointed out by Szegedy et al. [48], which are able to cause
the network to misclassify an image. They proposed the L-

USENIX Association 30th USENIX Security Symposium 1985

BFGS approach to generate adversarial examples by applying
a certain imperceptible perturbation, which is found by maxi-
mizing the network’s prediction. Afterward, there has been a
lot of work concentrating on the adversarial attack, some of
them is white-box attack [5, 6, 32, 48], that the attacker has
some prior knowledge of the internal architecture or param-
eters of the victim model, some of the attacks are black-box
attack [4, 7, 8, 10, 40, 41, 44].

Extraction Attack: Table 4.5 summarized some other DNN
model extraction attacks and compared them with our work.
[23] proposed an attack by hearing the memory bus and PCIe
hints, built a classifier to predict the DNN model architec-
ture, [58] introduced a cache-based side-channel attack to
steal DNN architectures, [24] performed a side-channel at-
tack to reveal the network architecture and weights of a CNN
model based on memory access patterns and the input/output
of the accelerator, [55] revealed the internal network archi-
tecture and estimated the parameters by analyzing the power
trace. Similarly, [53] presented an attack on an FPGA-based
convolutional neural network accelerator and recovered the
input image from the collected power traces. [18] proposed
an extraction attack by exploiting the side timing channels
to infer the depth of the network. [51] designed an attack on
stealing the hyper-parameters of a variety of machine learn-
ing algorithms, this attack is derived by know parameters and
the machine learning algorithms, and training data set. [25]
demonstrates an attack that predicts the image classify results
by observing the GPU kernel execution time. [43] assumed
the model architecture is known, and the softmax layer is
accessible, then proved noise input is enough to replicate the
parameters of the original model. [46] designed a membership
inference attack to determine the training datasets based on
prediction outputs of machine learning models. [50] investi-
gated the extraction attack on various cloud-based ML model
rely on the outputs returned by the ML prediction APIs. Sim-
ilarly, some works generated a clone model from the query-
prediction pairs of the victim model. [27, 38, 39, 46, 50].

7 Conclusion

In this paper, we identified the PCIe bus as a new attack sur-
face to leak DNN models. Based on this new attack surface,
we proposed a novel model-extraction attack, named Hermes
Attack, which is the first attack to fully steal the whole DNN
models. We addressed the main challenges by a large number
of reverse engineering and reliable semantic reconstruction,
as well as skillful packet selection and order correction. We
implemented a prototype of the Hermes Attack, and evaluated
it on three real-world NVIDIA GPU platforms. The evalua-
tion results indicate that our scheme could handle customized
DNN models and the stolen models had the same inference ac-
curacy as the original ones. We will open-source these reverse
engineering results, hoping to benefit the entire community.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[2] Baidu. Baidu AI Open Platform, 2019.
https://ai.baidu.com/solution/private?hmsr=
aibanner&hmpl=private.

[3] Baidu. Baidu Apollo Open Platform, 2019. http://
apollo.auto/developer.html.

[4] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song.
Exploring the space of black-box attacks on deep neural
networks. arXiv preprint arXiv:1712.09491, 2017.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine
Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,
and Fabio Roli. Evasion attacks against machine learn-
ing at test time. In Joint European conference on ma-
chine learning and knowledge discovery in databases,
pages 387–402. Springer, 2013.

[6] Nicholas Carlini and David Wagner. Towards evaluat-
ing the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,
and Cho-Jui Hsieh. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without
training substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security,
pages 15–26, 2017.

[8] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi,
Huan Zhang, and Cho-Jui Hsieh. Query-efficient hard-
label black-box attack: An optimization-based approach.
arXiv preprint arXiv:1807.04457, 2018.

[9] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber.
Multi-column deep neural networks for image classi-
fication. arXiv preprint arXiv:1202.2745, 2012.

[10] Moustapha Cisse, Yossi Adi, Natalia Neverova, and
Joseph Keshet. Houdini: Fooling deep structured predic-
tion models. arXiv preprint arXiv:1707.05373, 2017.

[11] Ronan Collobert and Jason Weston. A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of
the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

1986 30th USENIX Security Symposium USENIX Association

https://ai.baidu.com/solution/private?hmsr=aibanner&hmpl=private
https://ai.baidu.com/solution/private?hmsr=aibanner&hmpl=private
http://apollo.auto/developer.html
http://apollo.auto/developer.html

[12] NVIDIA Corporation. Cuda llvm compiler. https:
//developer.nvidia.com/cuda-llvm-compiler.

[13] NVIDIA Corporation. Profiler user’s
guide. https://docs.nvidia.com/pdf/
CUDA_Profiler_Users_Guide.pdf.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained.

[15] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B
Gibbons, and Eric P Xing. Geeps: Scalable deep learn-
ing on distributed gpus with a gpu-specialized parameter
server. In Proceedings of the Eleventh European Con-
ference on Computer Systems, pages 1–16, 2016.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[18] Vasisht Duddu, Debasis Samanta, D Vijay Rao, and
Valentina E Balas. Stealing neural networks via tim-
ing side channels. arXiv preprint arXiv:1812.11720,
2018.

[19] Envytools. Tools for people envious of nvidia’s
blob driver. https://github.com/envytools/
envytools.

[20] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–
6649. IEEE, 2013.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[22] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-
bury, et al. Deep neural networks for acoustic modeling
in speech recognition. IEEE Signal processing maga-
zine, 29, 2012.

[23] Xing Hu, Ling Liang, Lei Deng, Shuangchen Li, Xin-
feng Xie, Yu Ji, Yufei Ding, Chang Liu, Timothy Sher-
wood, and Yuan Xie. Neural network model extraction
attacks in edge devices by hearing architectural hints.
arXiv preprint arXiv:1903.03916, 2019.

[24] Weizhe Hua, Zhiru Zhang, and G Edward Suh. Reverse
engineering convolutional neural networks through side-
channel information leaks. In 2018 55th ACM/ES-
DA/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2018.

[25] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J Rossbach, and Emmett Witchel.
Telekine: Secure computing with cloud gpus. In 17th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), pages 817–833, 2020.

[26] JD. JD AI Open Platform, 2019. http://jddoversea-
neuhub.jd.com/index.html.

[27] Sanjay Kariyappa, Atul Prakash, and Moinuddin
Qureshi. Maze: Data-free model stealing attack us-
ing zeroth-order gradient estimation. arXiv preprint
arXiv:2005.03161, 2020.

[28] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki
Ninomiya, Kazuya Takeda, and Tsuyoshi Hamada. An
open approach to autonomous vehicles. IEEE Micro,
35(6):60–68, 2015.

[29] Keras. Guide to the Functional API, 2019. https:
//keras.io/getting-started/functional-api-
guide/.

[30] Keras. Keras Applications, 2019. https://keras.io/
api/applications/.

[31] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55, 2014.

[32] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[33] Teledyne LeCroy. Protocol Analyzer - PCI
Express - Teledyne LeCroy, 2019. https:
//teledynelecroy.com/protocolanalyzer/pci-
express.

[34] Teledyne LeCroy. Summit T34 Analyzer, 2019. https:
//teledynelecroy.com/protocolanalyzer/pci-
express/summit-t34-analyzer.

[35] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. nature, 521(7553):436–444, 2015.

[36] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. 2010.

[37] CUDA Nvidia. Nvidia cuda c programming guide.
Nvidia Corporation, 120(18):8, 2011.

USENIX Association 30th USENIX Security Symposium 1987

https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
https://docs.nvidia.com/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_Profiler_Users_Guide.pdf
https://github.com/envytools/envytools
https://github.com/envytools/envytools
http://jddoversea-neuhub.jd.com/index.html
http://jddoversea-neuhub.jd.com/index.html
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/getting-started/functional-api-guide/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer
https://teledynelecroy.com/protocolanalyzer/pci-express/summit-t34-analyzer

[38] Seong Joon Oh, Bernt Schiele, and Mario Fritz. Towards
reverse-engineering black-box neural networks. In Ex-
plainable AI: Interpreting, Explaining and Visualizing
Deep Learning, pages 121–144. Springer, 2019.

[39] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4954–4963,
2019.

[40] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pages 506–519,
2017.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer, 2019.

[43] Nicholas Roberts, Vinay Uday Prabhu, and Matthew
McAteer. Model weight theft with just noise inputs:
The curious case of the petulant attacker. arXiv preprint
arXiv:1912.08987, 2019.

[44] Sayantan Sarkar, Ankan Bansal, Upal Mahbub, and
Rama Chellappa. Upset and angri: breaking high
performance image classifiers. arXiv preprint
arXiv:1707.01159, 2017.

[45] Jürgen Schmidhuber. Deep learning in neural networks:
An overview. Neural networks, 61:85–117, 2015.

[46] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE, 2017.

[47] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[48] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[49] Tesla. Tesla: Future of driving, 2019. https://
www.tesla.com/autopilot.

[50] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 601–618,
2016.

[51] Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 36–52.
IEEE, 2018.

[52] Waymo. Waymo: The world’s most experienced driver,
2019. https://waymo.com/tech/.

[53] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang
Xu. I know what you see: Power side-channel attack on
convolutional neural network accelerators. In Proceed-
ings of the 34th Annual Computer Security Applications
Conference, pages 393–406. ACM, 2018.

[54] Wikipedia. Hermes. https://en.wikipedia.org/
wiki/Hermes.

[55] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang,
Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan,
and Xiaoniu Yang. Open dnn box by power side-channel
attack, 2019.

[56] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude
Oliva, and Antonio Torralba. Sun database: Large-scale
scene recognition from abbey to zoo. In 2010 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pages 3485–3492. IEEE, 2010.

[57] Junyuan Xie, Linli Xu, and Enhong Chen. Image denois-
ing and inpainting with deep neural networks. In Ad-
vances in neural information processing systems, pages
341–349, 2012.

[58] Mengjia Yan, Christopher W Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource at-
tacks to learn {DNN} architectures. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages

2003–2020, 2020.

1988 30th USENIX Security Symposium USENIX Association

https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
https://waymo.com/tech/
https://en.wikipedia.org/wiki/Hermes
https://en.wikipedia.org/wiki/Hermes

	Introduction
	Background
	DNN Background
	GPU Working Mechanism
	PCIe Protocol

	Attack Design
	Overview
	Traffic Processing
	Extraction
	Header Extraction
	Command Extraction

	Reconstruction
	Semantic Reconstruction
	Model Reconstruction

	Attack Evaluation
	Experiment Setup
	Model Architecture Evaluation
	Hyper-Parameters Evaluation
	Identity Evaluation
	Reconstruction Efficiency

	Discussions
	Super Large DNN Models
	Attack Generalization
	Mitigation Countermeasures

	Related Work
	Conclusion

