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Abstract

With their growing popularity, Internet-of-Things (IoT) de-

vices have become attractive targets for attack. Like most

modern software systems, IoT device firmware depends on

external third-party libraries extensively, increasing the at-

tack surface of IoT devices. Furthermore, we find that the

risk is compounded by inconsistent library management prac-

tices and delays in applying security updates—sometimes

hundreds of days behind the public availability of critical

patches—by device vendors. Worse yet, because these depen-

dencies are “baked into” the vendor-controlled firmware, even

security-conscious users are unable to take matters into their

own hands when it comes to good security hygiene.

We present Capture, a novel architecture for deploying IoT

device firmware that addresses this problem by allowing de-

vices on a local network to leverage a centralized hub with

third-party libraries that are managed and kept up-to-date by

a single trusted entity. An IoT device supporting Capture

comprises of two components: Capture-enabled firmware on

the device and a remote driver that uses third-party libraries

on the Capture hub in the local network. To ensure isolation,

we introduce a novel Virtual Device Entity (VDE) interface

that facilitates access control between mutually-distrustful

devices that reside on the same hub. Our evaluation on a pro-

totype implementation of Capture, along with 9 devices and

3 automation applets ported to our framework, shows that our

approach incurs low overhead in most cases (<15% increased

latency, <10% additional resources). We show that a single

Capture Hub with modest hardware can support hundreds of

devices, keeping their shared libraries up-to-date.

1 Introduction

With their growing popularity, in-home Internet-of-Things

(IoT) devices are becoming ripe victims for remote attacks,

leading to high-profile incidents such as the Mirai botnet [5].

Compared to traditional network hosts, IoT devices are often

more vulnerable due to weak credentials [40,60,83], insecure

protocols [43], and outdated software [57,61]. Making matters

worse, despite their deployment in homes, these devices may

connect directly to public Internet hosts to send data and even

listen for incoming connections [30, 64]. If any of them are

compromised, attackers can easily wreak further havoc by

moving on to other devices on the same network [5, 80].

Although many current IoT exploits originate from miscon-

figurations, weak credentials, and insecure applications [3,40],

the extensive use of third-party libraries in IoT devices may

have security implications but remains overlooked. Vulnera-

bilities in common libraries, when left unpatched, can affect

a massive number of devices (e.g., CallStrager [82] and Rip-

ple20 [84]). The security impact of vulnerable libraries in

traditional software systems is well-known [12, 14], with

slow rollout of security-critical patches exacerbating the is-

sue [21,41,49]. To understand whether this situation is as com-

mon in IoT, we conducted a study of 122 IoT firmware (Sec-

tion 3), finding widespread use of common libraries. Match-

ing firmware release dates to CVE disclosures, we observed

significant delays in patching critical vulnerabilities (up to

1454 days), and inconsistent patch rollout even across the

same vendor. As end-users are usually unable to address these

vulnerabilities themselves, our findings call for better ways

of managing third-party IoT libraries, mitigating potential

threats arising from vulnerable libraries in the future.

Recent works in IoT security may partially alleviate this

challenge, but each has its limitations (Table 1). Commer-

cial IoT frameworks and operating systems (e.g., Microsoft

Azure Sphere [48], AWS Greengrass [4], and Particle Device

OS [53]) all assume the burden of managing a limited set

of shared libraries provided by the OS. However, develop-

ers may use a variety of IoT libraries for functionality [54].

These OSes provide little protection for those custom libraries

imported by developers. Alternatively, several proposals at-

tempt to isolate vulnerable devices on the network [22,36,70].

Network isolation offers limited flexibility when it comes

to mitigating the effects of compromised devices, so these

approaches present an inherent security tradeoff whenever

devices need Internet access.
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Automated Library

Updates

Prevent Malicious

Network Access

Secure Custom

Libraries

No Firmware

Changes

No Application

Code Changes

Commercial IoT OS [4,48,53] ✓ ✗ ✗ ✗ ✗

Network Isolation [22, 36, 70] ✗ ✓ Partial ✓ ✓

Capture ✓ ✓ ✓ ✗ Optional

Table 1: Comparing Capture with other IoT security approaches. Commercial IoT OSes offer centralized management for a

limited set of libraries. Network isolation blocks unnecessary network communications, limiting exposure of vulnerable libraries.

Unless developed natively, existing IoT devices need to modify firmware to include either commercial OSes or Capture runtime.

Application code built with existing OS APIs also needs to change accordingly for the new OS’s APIs; for Capture, some

integration approaches provide backward-compatible API interfaces, avoiding changes to app-level code.

We present Capture, an approach that aims to reduce the

IoT attack surface stemming from vulnerable third-party li-

braries without compromising functionality. Capture is a

novel software architecture for writing IoT firmware, which

enables centralized management of third-party libraries, thus

simplifying the deployment of security-critical patches to

home IoT devices. Rather than a monolithic firmware run-

ning on an IoT device, Capture partitions firmware across the

device and its driver on a central hub. The hub is a trusted

entity under users’ direct control and maintains libraries up-

dated. When developing Capture-enabled devices, vendors

can implement the remote driver to use libraries maintained

by the hub rather than managing updates individually for

each version of their firmware. To provide flexibility and

backwards-compatibility, Capture still allows developers to

deploy custom, “unsupported” libraries directly on the device

firmware, but leverages isolation to reduce the attack surface

and limit damages to others in case they become compro-

mised.

To realize this vision, we must address several challenges.

First, since Capture splits devices into local firmware and

drivers, traditional device network identifiers such as MAC

and IP addresses are too coarse. Instead, we propose a novel

abstraction, Virtual Device Entitys (VDE) — a combination

of device, driver, and associated accounts and network con-

figurations on the hub — as the basis for managing devices

across hardware and facilitating access control.

Second, since we move part of the firmware functionality

from device hardware onto a shared, centralized hub, we must

ensure that drivers running on the hub are properly isolated

from each other such that they function the same way as they

did on the dedicated hardware. This is especially important so

that even if a device is compromised it cannot affect the other

devices on the hub. We place every VDE into its own subnet

attached to a unique virtual network interface (vNIC). By

blocking inter-vNIC traffic, we prevent devices from sending

network packets to each other. We also assign unique user

accounts and utilize Linux security primitives to isolate shared

resources on the hub.

Finally, as Capture represents a significant shift in the con-

ventional IoT architecture for developers, we take steps to

simplify the migration of existing IoT devices to our frame-

work. We design and evaluate three integration approaches

based on how current IoT devices are implemented — OS

Default Library Replacement, Existing IoT Framework Exten-

sion, and Native Driver Development — showing that Capture

can be adopted by developers by changing a few lines of code

in their existing firmware.

We developed a prototype Capture Hub on a Raspberry Pi 3

(RPi 3), and migrated 9 open-source IoT applications ranging

from streaming cameras to extensible “smart” mirror displays

into the framework. These applications cover a variety of hard-

ware platforms, from embedded real-time micro-controllers

to fully-provisioned Linux installations. In addition, we im-

plemented 3 home automation applets on IFTTT [38], which

provide additional macro-benchmarking data. Our evaluation

shows that porting an application is often straightforward,

while using Capture introduces a modest latency increase

(15% on average, <23 ms in most cases). We believe this

is imperceptible from a typical user’s perspective, although

it may vary depending on the set of applications that are in-

stalled. In particular, for IoT automation platforms such as

IFTTT, the overhead of Capture is negligible compared to the

time needed to communicate with the cloud backend. Appli-

cations that rely on throughput also fare well, experiencing

34% overhead on average, which we found preserves qual-

itative functionality. Importantly, our results show that the

hub itself scales well to many devices: the inexpensive RPi

3 prototype can easily accommodate on the order of 50 de-

vices without over-subscription, with more capable hardware

allowing hundreds of independent devices.

In summary, we make the following contributions:

• We present Capture, a novel architecture for deploying

IoT firmware in a way that supports centralized manage-

ment of third-party libraries, thus eliminating the need

for timely updates from individual vendors.

• We introduce Virtual Device Entities (VDEs) to securely

manage devices in Capture, and isolate untrusted com-

ponents running on shared hardware from each other.

• We propose three integration approaches for migrating

existing IoT devices to Capture. Our evaluation on 9

open-source IoT devices shows that these apps can be
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Figure 1: Current IoT device software stacks and network

communication. Devices have a variety of platforms (ARM

Cortex-M, ESP32) but utilize similar third-party libraries.

migrated to Capture with minimal changes.

• We implement a prototype of Capture on a RPi 3

and evaluate its performance for 9 IoT apps and 3

IFTTT applets. We show that Capture incurs low per-

formance overhead (<15% latency increases and <10%

extra on-device resources on average) and a single Cap-

ture Hub can support dozens to hundreds of local de-

vices. The code is available at https://github.com/

synergylabs/iot-capture.

2 Background and Setting

In this section, we provide essential background on the IoT

setting that we assume for the rest of the paper. Interested

readers are encouraged to read the comprehensive SoK paper

by Alrawi et al. [3] for additional details on IoT deployments

and security considerations.

IoT Device Software Stack. Figure 1 illustrates three rep-

resentative IoT devices and their software architecture based

on teardown blogs [1, 18]. IoT devices use a variety of micro-

controllers (MCUs) with different capabilities. For example,

devices using ARM Cortex-M MCU can run a version of

Linux, supporting numerous Linux libraries (e.g., OpenSSL).

Meanwhile, more inexpensive devices often use less capable

MCUs, such as Espressif ESP-32 with 520 KB RAM [26].

They also use light-weighted RTOSes and libraries (e.g., wolf-

SSL) to reduce resource use. Given that IoT developers often

focus their effort on building compelling application soft-

ware (e.g. App A, B, C in the figure), alternative IoT plat-

form designs have been proposed (e.g., HomeOS [19], Azure

Sphere [48], Particle OS [53]) which offer low-level OS and

library security updates as a service, enabling developers to

focus on applications using a limited set of APIs.

Home IoT Networking. During the installation of a device

in their home, users typically connect IoT devices to the In-

ternet either directly by associating them with their home

WiFi router, or through a vendor-provided hub (e.g. Sam-

sung’s SmartThings hub or the Philips Hue bridge) which

is then cloud-connected. Internet-connected devices can be

publicly accessible (via Network Address Translation (NAT)

from routers) due to functionality requirements, but may be

reachable from Internet attackers as well [11, 81]. Although

sometimes devices can be restricted to not access the Internet,

they can still communicate with other devices on the LAN

without users’ involvement using, for example, the UPnP pro-

tocol [40, 42]. This can lead to cross-device exploits and

escalation attacks [5, 82].

Figure 1 shows an example IoT home deployment with

three devices that communicate with external hosts, including

the vendor’s proprietary cloud, the IFTTT automation service,

and possibly generic cloud service providers such as AWS or

Azure. In this example, however, not all devices are equally

secure. Device A and Device B both use OpenSSL, but Device

A uses an outdated version (1.1.0a) as compared to Device B

(1.1.0c). Device C, which runs on limited hardware, makes

use of a lighter-weight SSL library (WolfSSL). Even in a

small deployment, it may be common to see a wide range of

security-critical third-party libraries in use, becoming even

more of an issue in realistic settings.

3 Third-Party Libraries in IoT

In this section, we seek to address two key questions which

are largely unanswered. Namely, how prevalent is third-party

library usage among existing IoT devices, and how diligent are

device vendors when it comes to releasing firmware updates

that patch critical security vulnerabilities?

Previous studies [10, 49, 86] that focus mainly on network

equipment report widespread vulnerabilities, some of which

can be attributed to unpatched third-party libraries. A recent

study focusing on smart appliances reports similar findings [3].

However, these studies do not address the state of affairs on

current IoT devices, and in particular on how frequently li-

braries are used and updated. To fill this gap in our knowledge,

we conducted a measurement study on 122 firmware releases

from 26 devices and 5 popular vendors. We find that third-

party library use is prevalent, and even more concerning, that

security-essential libraries like OpenSSL often remain un-

patched for hundreds of days.

3.1 Data Collection

Retrieving Library Information. A potential approach is

to analyze the binary images of publicly available firmware

images. However, despite the availability of analysis tools [20,

33], validating the resulting information would be time-

consuming and error-prone, and the number of devices with

easily obtainable firmware images is limited. Instead, we

collect vendor-reported information about the use of GPL

open-source libraries in firmware release notes, as this disclo-

sure is required by the license terms. While our results may

thus exclude information about closed-source and non-GPL
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Vendor BLK TP Ring Nest D-Link Total

Devices 12 3 1 7 3 26

Firmware 12 3 1 74 32 122

Libraries 80 5 53 290 93 441

Lib. versions 103 5 55 400 114 654

Table 2: Summary of devices and vendors included in the

measurement. We skip firmware for network equipment since

our focus is on smart devices. BLK — Belkin, TP — TP-Link.

third-party libraries, we note that this will, if anything, under-

represent the true prevalence of third-party library use in IoT

devices. We used this approach to collect all available data

for 441 unique libraries across 122 firmware releases from

5 IoT vendors, dating back to 2011. We manually collected

library names and version numbers for 122 firmware releases.

Firmware Selection. We selected 5 popular device vendors

(Belkin, TP-Link, Ring, Nest, and D-Link) since we were able

to find consistent, detailed information about their firmware

releases with the required third-party library information. Ta-

ble 2 summarizes 122 firmware releases we collected data

about. Nest and D-Link provide the most comprehensive in-

formation about their firmware release history, dating back to

2011. We use these historical releases to analyze longitudinal

patching behaviors. Belkin and TP-Link maintain public in-

formation for a single firmware version for each device still

under support. Ring releases one summary for all open-source

libraries used in their devices, which we categorize as a sin-

gle generic device with a single firmware release. Table 3

includes individual device details.

3.2 Results

From the collected data, we aim to characterize two main

statistics: the prevalence of third-party library usage in IoT

firmware images across vendors, and the characteristics of

patch release over time. In particular, our goal for the latter

statistic is to understand how quickly a new firmware image is

released after a third-party library is updated in response to a

known CVE with a corresponding moderate or high severity.

Prevalence. As expected, we found that IoT devices use

third-party libraries extensively. Table 2 shows that the 122

firmware releases we studied disclosed 441 unique open-

source libraries. Counting libraries with different version

numbers as unique, this number increases to 654. While some

vendors consistently use the same version across images, oth-

ers do not: for example, of the 12 Belkin devices we studied

(each corresponding to one image), there are 80 unique li-

braries spanning 103 library versions. This finding already

suggests problematic patching behavior. While there is a sig-

nificant variation in the range of libraries in use (441 across

openssl

busybox
zliblzma

e2fs-
progs

curl
lib

tool

lib
pcap

u-boot lua
ncurse

ntpclie
nt

sqlite
-autoconf

squashfs
c-ares

dmallo
c

wire
less-

tools
0%

50%

100% % Devices (n=26)

% Vendors (n=5)

Figure 2: List of the most common libraries in all 26 devices

across vendors. Among 26 devices, over 50% use these li-

braries. The most popular ones, OpenSSL and BusyBox, are

used by 92.31% and 88.46% of devices. We also show the

percentage of vendors who use these libraries on their devices.

just 26 devices), there is a common subset across devices. Fig-

ure 2 shows the most popular libraries, appearing in at least

50% of the devices. OpenSSL and BusyBox are ubiquitous,

used by 92.31% and 88.46% out of a total of 26 devices.

Patching Practices. To better understand the security risk

of third-party library use, we examine firmware releases lon-

gitudinally, and their alignment with library patches and CVE

disclosures. Since historical release data was only available

for 5 devices from Nest and D-Link, we use 100 firmware

releases for these devices, for a 7-year period (2011-2018).

We pick OpenSSL to study library patching practices for

two reasons. First, OpenSSL is a popular library used by all

vendors in our dataset, except for Ring which uses GnuTLS.

Second, OpenSSL is critical for software security and has

a well-documented history of vulnerability discoveries and

patches [52]. By examining OpenSSL versions in firmware

releases and OpenSSL’s update history, we analyze vendors’

patching behaviors and outstanding vulnerabilities over time.

Figure 3 shows the “age” of the OpenSSL library, defined

as the number of days elapsed since the release date of a par-

ticular version. The dashed lines represent the library ages

used in different device firmware, while the solid green lines

represent the ideal case where the devices can always use the

most up-to-date library versions. As shown in these dashed

lines, device firmware updates routinely lag behind using the

latest versions of OpenSSL. In some cases, this extends for

hundreds of days. For example, Nest Protect’s last firmware re-

lease on 2016-07-13 used a 1525 days old OpenSSL version,

while the latest available one was released on 2016-05-03

(only 71 days old). Furthermore, there are often multiple new

firmware releases made by vendors without incorporating

the up-to-date library version, suggesting a missed opportu-

nity. Notably, even devices from the same vendor often use

different library versions, highlighting the challenge of coor-

dinating upgrades.

The Nest Learning Thermostat appears to have the best

patching practices among devices in our study; it sometimes

even used the latest OpenSSL (red circles in Figure 3). How-

ever, a closer look at how this aligns with known vulnerabili-
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Figure 4: Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows the firmware release date. We do not

have CVE severity breakdowns for data prior to August 2014 (the red dashed line in (a)). For newer libraries, we find many High

and Moderate CVEs present in the firmware. Certain Nest Protect firmware releases are skipped due to missing release dates.

ties suggests that even this case reflects unnecessary exposure.

Figure 4a depicts the number of OpenSSL CVEs and in partic-

ular those of moderate or high severity (severity data is only

available after August 2014), that apply to each version of the

Nest Learning Thermostat in this time frame. Unsurprisingly,

the periods corresponding to Figure 3’s red circles are not

vulnerable, but this only lasts for a few months until multiple

vulnerabilities emerge. Importantly, most of these CVEs are

avoidable only if the firmware uses the latest OpenSSL.

Hardware Architecture. Many devices in our dataset are

Unix-based systems, as 88.46% and 46.15% of devices in-

clude BusyBox and Linux Kernel libraries. Teardowns on

high-end smart devices [17, 18, 35] often find powerful

ARM processors, affirming our findings. Meanwhile, budget-

oriented devices may prefer alternative microcontrollers (such

as ESP32 and ESP8266 in light bulbs and plugs [1, 2]). Our

dataset might under-represent lower-end devices for two rea-

sons. First, they could use libraries provided by chip maker,

royalty-free [27]. Second, we had some difficulty searching

for open source compliance notices from several lesser-known

vendors.

Key Takeaways and Limitations. Our measurement re-

sults reveal concerning statistics about the current state of

third-party library management in IoT devices. Just by con-

sidering widely used open-source GPL libraries, we show

that even market-leading vendors such as Nest and D-Link

oftentimes fail to update their dependent libraries promptly.

This results in unnecessary exposure to known vulnerabilities.

While our data collection methodology is limited to open-

source GPL libraries, we aim to shed light on the existing

state of IoT library mismanagement using these libraries as

indicators.
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Device Vendor Firmware Release Date Libraries Library Versions

WeMo F7C027/F7C028 Belkin 1 2019/08/09 53 55

Wemo Light Switch v1 F7C030 Belkin 1 2019/08/09 53 55

WeMo SNS Belkin 1 2015/10/14 53 54

WeMo Mini F7C063 Belkin 1 2019/09/05 54 54

WeMo Smart Belkin 1 2015/06/30 54 55

WeMo Smart F7C046/47/49/50 Belkin 1 2019/09/05 53 54

WeMo WLS040 Belkin 1 2019/09/04 55 55

WeMo Dimmer Belkin 1 2019/09/03 47 48

WeMo InsightCR Belkin 1 2019/08/09 53 54

WeMo Jarden Belkin 1 2019/09/03 53 54

WeMo Maker Belkin 1 2019/09/03 53 54

WeMo Insight F7C029 Belkin 1 2019/08/09 53 54

SmartPlug - HS100 TP-Link 1 N/A 5 5

SmartPlug - HS110 TP-Link 1 N/A 5 5

SmartPlug - HS200 TP-Link 1 N/A 5 5

Generic Release Ring 1 N/A 53 55

Nest Cam Nest 2 N/A 177 186

Nest Connect Nest 1 N/A 7 8

Nest Detect Nest 1 N/A 12 13

Nest Guard Nest 1 N/A 107 108

Nest Hello Nest 1 N/A 20 20

Nest Learning Thermostat Nest 57 2011/10/25 - 2017/10/16 140 194

Nest Protect Nest 11 2013/11/19 - 2016/07/13 18 21

DSPW110 D-Link 9 2014/07/15 - 2016/07/14 75 86

DSPW215 D-Link 14 2014/06/05 - 2016/03/07 72 85

DCHS150 D-Link 9 2014/07/09 - 2016/04/30 51 54

Table 3: Details of devices and firmware releases included in the measurement. For each device, we count the number of unique

libraries and unique library-version combinations across all firmware releases.

Firmware A*

Capture Device Library

Driver A*

Capture Driver Library

Firmware B*

Capture Device Library

Driver B*

Capture Driver Library
Hub Monitor

& Enforce
Shared Security Libraries (e.g. OpenSSL)

Capture Hub

Figure 5: Capture system architecture. Every device consists

local device firmware and driver on the hub. They form a

logical unified entity, Virtual Device Entity (orange dashed

box). The Capture Hub maintains a central version of common

libraries and has extra monitoring and enforce modules.

4 Capture Framework

To mitigate the security threats from outdated libraries in

device firmware reported in Section 3, we present Capture,

a novel architecture for deploying IoT firmware to support

centralized management of third-party libraries, alleviating

the need for library updates by individual vendors.

4.1 Overview

Figure 5 provides an overview of Capture. A Capture Hub

in the local network centralizes library security updates. Ev-

ery device has two components: a device firmware (F/W A*,

B*), and a remote driver (Driver A*, B*) running on the Cap-

ture Hub. Developers can use default drivers (provided by

Capture) or implement custom ones to use the latest libraries

on the hub. The device firmware and the driver use Capture

SDK libraries for network communication. Moreover, the

driver uses API wrappers provided by Capture to interact

with common libraries on the hub. If vendors need libraries

not provided by Capture, they can include custom dependen-

cies in their firmware while still benefiting from Capture’s

isolation protection. The Capture Hub Monitor and Enforce

module manages all drivers and provides runtime and network

isolation for all devices supported by it.

Threat Model. We assume that the Capture Hub is trusted,

and all standard wireless protocols and Linux tools we use to

provide isolation are up-to-date to address any vulnerabilities.

We consider an adversary who seeks to compromise IoT de-

vices through known vulnerabilities in unpatched third-party

libraries. Unlike prior efforts that restrict devices to explicitly

whitelisted hosts (e.g., the vendors’ cloud backend) [36, 39],

we allow devices to communicate with arbitrary hosts to avoid

limiting their functionality. Since local devices (or drivers)

may be compromised, our goal is to prevent them from being

able to affect other non-compromised devices and drivers in

the same home deployment. Attack vectors from zero-day

exploits (i.e. no patches available) and non-library vulnerabil-

ities (e.g., weak passwords) are out of the scope of this work.

In addition, we exclude side-channel attacks arising from the

shared hub access from different drivers.
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Security Goals. Intuitively, the main goal of Capture is to

centralize library management by providing a consistent,

up-to-date set of third-party libraries for devices in the local

network, configured and managed by the central hub. Since

we do this by splitting the firmware across an IoT device and

a hub, Capture should not introduce new vulnerabilities or

attack opportunities. For example, Capture needs to preserve

device integrity by protecting communication that would

normally be on the device. Hence Capture needs to prevent

any entity from intercepting or impersonating a device with

its driver on the hub and vice-versa.

In addition, Capture needs to maintain proper isolation

between devices and drivers. This implies that compromised

devices should not be able to communicate with other hosts

on the same local network, and that compromised drivers on

the hub should not affect the operation of devices other than

the one that they represent.

4.2 Library Update Management

Capture alleviates the burden of patching security-critical

shared libraries, enabling device vendors to use the up-to-date

versions on the Capture Hub without managing patches them-

selves. Notably, vendors still implement their device firmware

and the corresponding drivers. However, they may be con-

cerned with losing control over devices’ stability whenever

Capture automatically updates shared libraries. These library

updates can potentially cause semantic changes (e.g., new

APIs) or unexpected bugs to break the existing functionality

of the drivers. Fortunately, prior work on patching vulnerable

libraries for Android apps provides an optimistic outlook [16],

reporting that 97.8% of apps using libraries with known vul-

nerabilities can be fixed with a drop-in patched version of

the library. To determine whether this finding applies to IoT

devices, we analyze the dataset from Section 3 for potential

impacts of library updates on device functionality. We focus

on the OpenSSL library usage in Nest devices, since their

dataset has a comprehensive history of versions and upgrades.

OpenSSL Versioning. OpenSSL’s versioning scheme uses

letters to denote minor security patches and numbers for major

changes [51]. For example, an application using version 1.0.2a

can upgrade to 1.0.2b to fix bugs and security vulnerabilities,

while an upgrade to 1.1.0 indicates new features and APIs.

Each major version has an end-of-life date, after which users

stop receiving security updates. OpenSSL’s staggered release

strategy supports multiple major versions at the same time,

providing a buffer to transition between versions. Our analysis

on Nest’s OpenSSL use finds that Nest always upgrades the

major version before the old one reaches end-of-life.

Library Update Strategies. There are three strategies for

Capture to support multiple library versions concurrently.

Maintain Multiple Majors in Parallel. The most stable

strategy to preserve device functionality is to support all

active major versions in parallel. The hub applies security

patches for each major version independently. According to

the OpenSSL’s release history [52,76], Capture has to support

two or three majors concurrently and needs to apply security

updates every few months. This strategy will not break any

Nest device’s functionality in our dataset, since they never

use any outdated major versions.

Only Maintain the Latest Major Version. Managing multi-

ple library versions in parallel may become complicated as

the number of libraries increase. A simple strategy is to only

keep one version per library on the hub, presumably the latest

major release. Based on our dataset, Nest devices use a non-

latest major version in 1238 out of 2184 days. This strategy

will cause version mismatches almost half of the time. Mixing

drivers intended for older versions with newer runtime can

be problematic. Although OpenSSL meticulously preserves

backward compatibility across major upgrades [51], we are

pessimistic about third-party libraries ’ stability in general.

Therefore, we use the major mismatch as a conservative es-

timator of potential functionality breakages. Choosing how

many major versions to support demonstrates the tradeoffs

between manageability and functionality.

Forceful Major Upgrades after End-of-Life. Vendors could

ignore library upgrades so long that it reaches the end-of-life

dates. Capture could forcefully upgrade major versions to

maintain security at the expense of potential functionality

breakages. Since Nest always upgrades OpenSSL to the next

major version before the end-of-life dates, we do not have

data to measure the impact of a forceful upgrade. However,

this tradeoff is a very difficult yet open challenge. Prior works

proposed various strategies from blocking devices with inse-

cure libraries [39], quarantining insecure devices locally [22],

to preserving functionality at the expense of security [43]. We

plan to leave this as a configurable option for end-users to

make informed decisions based on their concerns.

4.3 Virtual Device Entities (VDEs)

An IoT device supporting Capture comprises of two com-

ponents: a Capture-enabled firmware on the device and an

associated software driver running on a hub, collectively form-

ing a Virtual Device Entity (VDE). Note that Capture creates a

unique VDE instance for every deployed device. Even if there

are multiple identical devices, Capture instantiates separate

VDE instances for each of them. Capture ensures confiden-

tiality within the VDE and enforces isolation across different

VDEs, as we will explain in the following sections.

Device Bootstrap. Figure 6 illustrates the process of boot-

strapping new devices and obtaining VDE. A device first

connects to a setup network with pre-shared credentials, just
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Phase Device Capture Hub

VDE Discovery1

Connect Network2

Request Credential

Respond Credential Generate VDE

Join Network

Reply Ready
Create Driver &

Configure Network

Figure 6: Device bootstrap procedure. In Step 1, the device

connects to the Capture Hub using a shared setup network.

Then it joins a VDE-specific VLAN network in Step 2 (dashed

box). Section 4.4 discusses more details on network configura-

tions. Section 4.6 addresses potential attacks during bootstrap.

like traditional home WiFi. In Step 1 , the Capture Hub cre-

ates a fresh VDE and prepares a VDE-specific VLAN on the

second operation network. After receiving the VDE-specific

credential, the device disconnects the setup network and joins

the operation network (Step 2 ), where the hub binds the

device to its VLAN. This transition won’t affect other exist-

ing devices, since they are connected to their VDE-specific

VLANs already. The hub creates a driver for the VDE, sets

up network interfaces and isolation, and enforces resource

isolation for the driver on the hub.

4.4 Communication Isolation

A Capture-enabled device essentially functions as a “local” de-

vice since it can only communicate with its driver on Capture

Hub and vice versa. Other communication, such as between

local devices or different drivers, is automatically blocked. We

achieve this in Capture by creating unique logical networks

for each VDE with its own subnet and virtual interface.

The Capture Hub simultaneously manages two separate

WiFi Access Points (APs). The first one is a WPA2-Personal

AP with pre-shared credentials for the first step of initializa-

tion (Figure 6), similar to current home WiFi. The second

AP uses WPA2-Enterprise and enforces VDE-based isola-

tion. Specifically, Capture Hub creates unique RADIUS user

accounts and constructs different virtual Network Interface

Cards (vNICs) for each VDE. Using enterprise features such

as VLAN and RADIUS authentication, the second AP binds

each VDE’s device into its own subnet and vNIC. The hub

binds the corresponding driver to the same vNIC interface

using TOMOYO [68], a Linux security module for mandatory

access control. If the driver needs Internet access, the hub cre-

ates a designated public-facing port and enables the driver’s

connection to the port via TOMOYO. We then configure the

firewall program iptables’s rulesets to block communica-

tions across vNICs to achieve VDE-based isolation. Capture’s

VDE-based isolation is inspired by DreamCatcher [22], which

shows vNIC-based isolation is effective against link-layer

spoofing. We extend DreamCatcher’s network isolation with

additional mandatory access control to accommodate Capture

Hub’s shared driver execution environment.

To bind multiple devices into different vNICs while using

a single WiFi AP, we utilize the VLAN isolation feature from

WPA2-Enterprise. While WPA2-Personal is common for

home users, popular WiFi modules used by vendors to build

their products already support WPA2-Enterprise [24]. Hence

we believe modern devices can support Capture and WPA2-

Enterprise either out of the box or with updated firmware. For

legacy devices without WPA2-Enterprise support, Capture

can create a new WPA2-Personal AP for each legacy device,

however that may run into software limitations of the number

of SSIDs per antenna [22]. An alternative approach is to create

unique WPA group keys for each device, isolating hosts under

one shared WPA2-Personal network [70]. Capture didn’t take

this approach as it requires modifying standard protocols.

4.5 Resource Isolation

Since Capture Hub executes multiple drivers, a key challenge

is to ensure secure and fair resource sharing on the hub. Cap-

ture needs to ensure slow or malicious drivers are contained

and cannot affect other VDE’s availability and private data.

Linux containers [45] seem like a natural choice for process

isolation. However, they are ill-suited for Capture since each

container has a copy of the libraries the driver needs. When-

ever the library is updated, all container images would have to

be updated and rebuilt, which conflicts with our goal of man-

aging libraries centrally. Instead, Capture provides resource

isolation and access control using lightweight Linux system

primitives. The Capture Hub creates a new Linux user account

per VDE, under which context the associated driver runs, ap-

plying standard Linux filesystem and memory protections. We

further limit the driver’s capability by utilizing the TOMOYO

Linux extension and its domain-based security management.

We assign each VDE and all of its subprocesses to the same

security domain and enforce security policies for network-

ing and file systems. Finally, we used Linux cgroups [34],

a key building block for implementing containers, to limit

the resources used by each VDE. Linux cgroups are known

to be an efficient and low overhead mechanism to account

for resource usage [55, 79]. Currently we statically set the

CPU and the memory resources for each driver to equally

share the total system resources, but in the future, we can add

support for drivers to specify their resource demands (such as

via manifest files during installation, similar to mobile apps)

and dynamically enforce them.

4.6 Security Analysis

External Threats. Capture protects devices from external

threats by securing the driver components, which are reach-

able from the Internet. This is done by the Capture Hub, which

ensures that the latest library versions are installed automat-
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ically and used by the drivers, without the device vendors

having to do this. Unlike drivers, the actual devices are iso-

lated from other hosts in the local network. Manufacturers

still implement custom firmware running on their devices,

meaning that some outdated libraries and vulnerabilities may

still exist. However, since the network isolation in Capture

only allows communication between driver and device, it lim-

its other hosts from exploiting them. This security protection

is contingent on vendor adoptions and properly implemented

driver software.

Internal Threats. We consider internal threats which in-

clude compromised devices, drivers, and other devices within

the WiFi range. Capture prevents compromised local devices

from attacking other Virtual Device Entities (VDEs) through

network isolation since these devices are confined to their

VDE and cannot reach any other hosts directly. Similarly, a

compromised driver is also isolated from other VDE drivers

using our network and other resource isolation mechanisms

(Mandatory Access Control, cgroups) mentioned above. In

Capture, drivers communicate with their associated device us-

ing our library runtime, which requires developers to specify

the message format between the device firmware and driver.

This design prohibits compromised drivers from sensing arbi-

trary packets to their associated devices and affecting them.

Furthermore, drivers cannot communicate with other VDEs

on the hub due to our resource isolation mechanisms.

Malicious devices (including Capture-incompatible local

devices) can not learn about other VDE’s network credentials

simply by eavesdropping on the setup network. Although the

setup network is a WPA2-Personal AP with shared password

credentials, each device actually has its own PTK (pairwise

transient key) through WPA2 4-way handshake [43,75]. How-

ever, link-layer encryption provided by WPA2 is insufficient

for Capture’s network isolation because all drivers will run in

the same application layer on the hub. Therefore, we generate

a unique network interface and VLAN for each VDE during

the bootstrap process (Figure 6).

An adversary could potentially impersonate the Capture

Hub and perform man-in-the-middle attacks during new de-

vice bootstraps (Figure 6). This threat can be mitigated by

using certificates and public key infrastructure for devices to

verify the hub’s identity, or other novel device pairing and

initialization techniques [32, 65]. We did not implement these

features in our prototype since our current threat model fo-

cuses on attacks from vulnerable third-party libraries (Sec-

tion 4.1).

5 Integration Approaches

We propose three integration approaches for developers to

adopt Capture, motivated by current IoT development prac-

tices. Our goal is to provide paths of least resistance to help
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(a) Current deployment requires SmartThings Hub for networking.
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(b) Capture-enabled SmartThings devices move all network commu-

nication onto the device drivers at the central hub.

Figure 7: Integration using IoT framework SDK extension.

with the adoption while providing flexibility to developers.

5.1 OS Library Replacement

The first approach is to provide a Capture-enabled version

of standard OS libraries. Take the OS networking library in

ESP32 platform, WiFi.h, for example. Devices use APIs from

this library to connect access points, maintain web servers, and

communicate over sockets. We provided a fully-compatible

Capture-enabled library, named as CaptureWiFi.h. Devel-

opers just need to make minor changes to use Capture, such

as replacing the #include <WiFi.h> statement and initial-

izing Capture global runtime. We provide a default Capture

driver on the hub, which acts as a proxy to relay network

traffic. If the original device works as a webserver, we open

a public-facing server on the driver to forward traffic and

restrict network traffic between driver and device.

This approach is platform-dependent. We need custom im-

plementations for specific OS APIs and libraries. However,

this is a one-time effort that can then be used by device de-

velopers with minimal porting effort. For example, all of our

prototype apps use the same ESP32 modified library runtime.

5.2 IoT Framework SDK Extension

Similar to replacing OS APIs, our second approach is to ex-

tend the SDK of a popular IoT framework to support Capture.

IoT frameworks (e.g., Azure Sphere [48], Particle OS [53],

and Samsung SmartThings Device SDK (ST-SDK) [62]) pro-

vide rich functionalities to differentiate from standalone em-

bedded device OSes with limited networking APIs. For exam-

ple, Azure Sphere [48] and Particle DeviceOS [53] provide

APIs to communicate with their native cloud backends; Sam-

sung SmartThings Device SDK [62] offers local devices the

option of using the SmartThings Hub as an MQTT broker.

In this case, the developers of the IoT frameworks can incor-

porate Capture by modifying their SDK implementation while

preserving existing functionality. As a proof of concept, we
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added Capture support into the ST-SDK, which enables third-

party devices to use their SmartThings Hub. Figure 7a shows

how an example device would integrate with the ST-SDK, sim-

ilar to a custom OS library. A locally installed SmartThings

Hub (ST-Hub) provides functions such as MQTT brokers,

which device developers can directly invoke using ST-SDK

APIs. A device-side library manages the underlying connec-

tions with the ST-Hub. We develop a Capture-augmented ST-

SDK library (Figure 7b), so that device developers only need

to switch their ST-SDK library runtime without modifying

their application. Since the SmartThings Hub is proprietary,

we were only able to re-create their known functions such

as MQTT brokers using corresponding open source versions.

We provide a default SmartThings-compatible driver to mimic

the ST-Hub operations in Capture.

5.3 Native Driver Development

The two prior approaches provide default drivers on the Cap-

ture Hub to aid developer adoption. As a complementary

approach, we developed a Capture Native Driver SDK, for

developers to implement their own custom drivers with much

more flexibility. To motivate this, consider an IoT device with

a web server. Using the previous approaches, the default driver

on our hub will create another public accessible web server

for new connections, and relay incoming client connections

to the device local-only web server. However, this may cause

unnecessary latency to serve the web request since both in-

bound and outbound traffic has to go through the hub and

processed by two webservers. To address this, we propose the

Capture Native Driver SDK for developers looking to build

customized drivers. Developers can use our SDK APIs to

access security and networking functions on the Capture Hub,

and even offload some computation to the hub.

6 Implementation

6.1 Core Hub Functionality

We implement the Capture Hub using a Raspberry Pi 3B+

with Linux in 1874 lines of C++ (https://github.com/

synergylabs/iot-capture). We use the TOMOYO Linux

security module [68] and iptables to implement the Vir-

tual Device Entity based isolation mechanisms. Our hub uses

hostapd [37] to manage WPA2 Personal and Enterprise WiFi

APs. The main Capture program listens for new connections

on the setup network, and upon request, creates a new VDE

for the incoming device, allocates a new VLAN subnet with

fresh RADIUS credentials, launches the corresponding driver

program based on the device type, and updates the TOMOYO

and iptables rulesets accordingly. The main program stores

all metadata for each VDE locally. While our current proto-

type does not address device removal, this functionality can

be added in a straightforward manner.

Optimizations. Existing applications often use blocking

network calls. During prototype development, we observed a

pathological case wherein the application only communicated

using one sequential byte at a time. Clearly, adapting such ap-

plications into Capture introduces a significant performance

penalty, as each read request will incur one round of commu-

nication with the driver residing on the hub. We found that

without correction, this can lead to a 9.56x latency penalty for

the simple Web Server app (listed in Section 6.2).

The first optimization we perform to address this issue is

to introduce read and write buffers on the device. When an

Internet host sends data to the driver, the payload is forwarded

to the local device in batch. Subsequent read calls from the

device will just retrieve the payload from the local buffer.

Similarly, using write buffers enables network writes to be

non-blocking I/Os, aggregating multiple payloads into chunks

in one round of driver communication. We found that this

reduces the latency penalty for the Web Server app from

9.56x to 1.62x, largely due to the reduced number of round

trips to the hub.

Although the previous approach reduces average latency

overhead to an acceptable 1.62x, it still incurs a median in-

crease of 31 ms. We were able to attribute this to the poor

wireless performance on the budget-oriented ESP32 micro-

controller, where a single packet transmission can take up to 6

milliseconds. To reduce the total number of packets sent, we

extended the protocol header fields and aggressively coalesce

small packets throughout our protocol. One concrete example

is proactively loading read buffers after accepting new clients,

where previously the device needs to send two messages to

check client status and fetch data to read, respectively.

Applying protocol optimizations and message coalescing

bring down the median latency overhead to 1.2x (+10 ms),

using the Web Server’s baseline performance as a reference.

Given that the ESP32 takes 5-6 ms to send a single packet,

this approaches the limit of what can be done without better

hardware. Detailed results are discussed in Section 7.1.

6.2 Benchmark Applications

To evaluate Capture, and explore different approaches for

integrating apps, we developed 9 prototype applications (Ta-

ble 4), including smart devices, Linux applications, and IoT

frameworks, and 3 IFTTT automation applets for benchmark-

ing (Table 5). Capture provides runtime libraries for device

firmware and drivers to handle network setup and communi-

cation with the hub. The device-side library was implemented

in 1335 lines of C++ code while the driver-side library varies.

Prototype Apps. We collected 6 open source applications

from popular online forums and tutorials [23, 31, 71], and

adapted them to use Capture. We chose the Espressif ESP32

platform given its reported popularity [1, 2] and use in hun-

dreds of millions of IoT devices [25]. We implemented a
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Abbreviation App Name Platform Description

WEB Web Server ESP32 Standard web server to display and manage GPIO on/off status.

CAM Camera ESP32 Stream live video, take pictures.

SM Servo Motor ESP32 Adjust the speed of a servo motor.

CP Color Picker ESP32 Change the color of LED light bulb.

WS Weather Station ESP23 Monitor weather with a BME sensor.

TH Temperature & Humidity ESP32 Display temperature and humidity data from DHT sensor.

ST-L SmartThings Lamp SmartThings Subscribe to MQTT broker to receive on/off message.

ST-S SmartThings Switch SmartThings Publish to MQTT broker to issue on/off message.

MM MagicMirror Linux Smart mirror display with online data such as news and weather.

Table 4: Prototype applications and descriptions.

generic default driver to support the OS Replacement ap-

proach, which required 166 lines of Python.

IoT Framework. We extended the Samsung SmartThings

Device SDK (ST-SDK) [62] to showcase integrating Capture

with existing frameworks (Section 5.2). ST-SDK is open-

source, whereas other proprietary alternatives (e.g., Azure

Sphere and Particle OS) raise challenges for replication and

comparison. Capture-enabled devices cannot work directly

with unmodified SmartThing Hub, so we analyzed ST-SDK’s

codebase and replicated its functionality with a driver that

executes on the Capture hub. We then adapted sample appli-

cations provided by ST-SDK [63] into Capture.

Linux apps. Some IoT devices are powerful enough to

run a Linux OS and applications (Section 3), so we adapted

Linux smart devices into Capture to demonstrate its capa-

bility. We selected MagicMirror, a project with over 12K

Github stars [47], that uses Raspberry Pi with a display to

function as a smart mirror, displaying custom content (e.g.

news and weather). Internally, the app includes a webserver

and a browser to display the webpage. We migrated Mag-

icMirror into a Capture prototype using the custom driver

integration (Section 5.3) and separated the server component

to the driver on the hub, keeping the display parts on the

firmware.

Automation Applets. To better measure Capture’s macro-

benchmark performance impact on real-world scenarios,

we implemented several home automation applets devel-

oped for IFTTT [38]. Prior work [46] categorized IFTTT

applets by trigger-action service types (Device⇒WebApp,

WebApp⇒Device, Device⇒Device) and reported an aver-

age execution latency of several seconds. We implemented

Capture-enabled devices for all three trigger-action service

types (Table 5), using the Web Server app (c.f. Table 4, WEB)

on ESP32 in place of physical lights and switches, since it

can control GPIO pins. Since ESP32 boards are lower perfor-

mance and slow at performing SSL encryption, integrating

these devices into Capture often improves performance due

to our hub hardware being more capable. To provide a fair

comparison, we also implement “mock” lights and switches

directly on the Raspberry Pi and measure the latency impact

from Capture integration as well.

7 Evaluation

Our evaluation aims to answer three primary questions.

• How much performance overhead do key device func-

tionalities incur on Capture versus their native platform,

and is the amount tolerable for typical home use?

• Can the Capture Hub scale to home deployments with

hundreds of devices in the near future, and how many

devices can our prototype reliably support at once?

• Roughly how much effort is required to port existing IoT

devices to Capture, and do the integration approaches in

Section 5 entail meaningful differences in the effort?

Our experiments were performed in a laboratory setting on

9 prototype devices (Table 4) and 3 IFTTT automation ap-

plets (Table 5). We use one Raspberry Pi 3 B+ as the Capture

Hub and another Raspberry Pi and multiple ESP32 boards

for prototype apps. Our evaluation results show that Capture

typically incurs low overhead (15% latency increase, 10% de-

vice resource utilization), insignificant impact on applets from

real-world automation platforms, and can support hundreds

of devices for a single Capture Hub.

7.1 Performance Overhead

Setup. We compare the performance of apps running on

Capture to that achieved by their original implementations.

Because many IoT devices and automation apps are event-

driven, they usually transmit a small amount of traffic but

are sensitive to delays in latency. We categorize prototype

apps (Table 4) into two categories: latency-sensitive and

throughput-sensitive. We measure application-layer latency

for all of them, but only measure the throughput reduction

for the second group (such as a streaming camera). For most
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applications, we use Apache JMeter [6] to benchmark av-

erage and median latency for 500 HTTP requests. For the

streaming camera (CAM), we measure the video latency by

pointing the camera towards a millisecond clock and calculate

average delays from 50 readings. For the SmartThings apps

(ST-L and ST-S), we add instrumentation to send a notification

packet to the hub so that we can calculate the time duration

between the first MQTT message and the final notification

from Wireshark’s packet capture history. Finally, we measure

the firmware code size and memory utilization on the device.

Simple Integration with All Apps. We aim to conserva-

tively estimate Capture’s performance impact assuming mini-

mal burden on the developer. Hence, we first try to integrate

apps with either OS or SDK replacements, since these re-

quire minimal modifications by the developer. If this attempt

fails (for example, the app requires features not supported

by our current prototype), we develop simple native drivers

without spending too much engineering effort on app-specific

optimizations.

Figure 8a shows the normalized latency for integrated apps.

On average, apps experience a 15% latency increase due to

the extra processing by the drivers on the hub. The baseline

apps for the comparison process everything on the device

and communicate directly with external hosts. After Capture

integration, external hosts need the drivers on the hub acting

as a proxy. For example, the camera streaming app driver

needs to retrieve the raw footage from the device and forward

it to the viewers. These extra steps introduce overhead to

the end application. However, as Figure 8a shows, most apps

experience a modest latency change between −34 ms and

+23 ms. Given most apps’ event-driven nature, this minor

increase in absolute latency should not impact the quality of

services for end applications. CAM app experiences the most

substantial latency increase, increasing from 523 ms to an

average of 820 ms (+297 ms), and a 40% FPS throughput

reduction. However, the relative increase (1.6x) is on par with

other apps. Since the baseline latency is very high, we believe

the original app is not designed to be real-time for ESP32,

and thus we did not further optimize its driver.

Several of the apps integrated with OS-Replacement see

improved average latency results. This is because Capture-

integrated apps perform more consistently, while the ESP32-

only baselines occasionally experience latency spikes (thus

having higher average results). Median results are more ro-

bust against outliers, and confirm Capture often increases

latency slightly. The overall results show that Capture offers

comparable performance to the baseline for most requests.

We measure the throughput overhead for several

throughput-sensitive apps and report results in Figure 8b. For

throughput metrics, we choose FPS for streaming, packet

transfer rates for taking pictures, and full web page load time

for the complex MagicMirror dashboard. The Camera app

has a modest throughput reduction of around 40%. We ob-

serve no throughout drop for the Linux-based MagicMirror

benchmark. Figure 8c shows that the Capture firmware is, on

average, 10% larger and uses 7% more on device memory.

We only measure the code increase for ESP-based devices

given they have limited flash storage.

7.2 Overhead Perceived in the Real World

We implemented several IFTTT automation applets and mea-

sured Capture’s impact on latency (Table 5). We programmat-

ically trigger applets 30 times, reporting the average end-to-

end latency. These results show moderate variances, largely

due to the fact that these applets interact with remote cloud

services (IFTTT, Google Sheets, and email servers), which

is consistent with results from prior work [46]. Applets A1

and A2 show insignificant latency changes from Capture inte-

gration, indicating the communications to Internet services as

the performance bottleneck. Applet A3’s ESP32 integration

demonstrates a benefit of Capture for low-budget devices. A3-

ESP32 baseline has high latency due to compute-intensive

tasks such as TLS encryption, while A3-Raspberry Pi and

Capture-integrated ones have comparable latency results.

7.3 Scalability

Since our Capture Hub executes all drivers on the hub, its

resources limit the number of devices it can support. Among

resources including memory, CPU, network interfaces, and

private IP addresses, we identify the memory capacity as the

key scaling bottleneck. The default driver for OS replacement

uses the least amount of memory (3.7 MB) while the Mag-

icMirror’s driver uses the most memory (42 MB) as reported

by smem’s Proportional Set Size [69]. Therefore, we emulated

a deployment of 40 devices using the default drivers and 10

devices with MagicMirror drivers on a single Raspberry Pi

3B unit (1 GB RAM, quad-core). This setup uses 664 MB

memory, but the CPU load average never exceeds 0.8 (max

4.0, due to four cores). Network virtual interfaces and subnets

do not impose any practical limits with fine-grained assign-

ments [58]. While the RAM on the hub is a limiting factor,

several inexpensive platforms exist with more memory (e.g.,

Raspberry Pi 4 with 8 GB RAM for $75 [56]), which can

potentially support hundreds of devices.

7.4 Integration Efforts and Tradeoffs

Integrating apps by replacing OS libraries or framework SDKs

is straightforward, requiring modifying less than 10 lines of

code after importing the Capture device library. Developing

native drivers is more involved since it requires declaring a

custom message format for device-driver communications and

implementing the driver while delegating the network man-

agement to Capture’s library runtime. The most sophisticated

CAM driver we implemented was 817 lines of Python.
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Figure 8: Performance overhead for all prototype apps. Data are normalized to results from the orignal apps. CAM has two

modes: STreaming videos and taking Pictures. We denote integration approaches in parentheses: OS Replacement, Native Driver,

and Framework SDK Replacement. Based on geometric means, Figure (a) shows a 15% latency increase and Figure (b) shows a

34% throughput reduction. Figure (c) shows the Capture-enabled firmware incur around 10% more on-device resource utilization.

ID
Service Type

IFTTT Applet Rule
ESP32 (seconds) Raspberry Pi (seconds)

Trigger Action Original Capture Original Capture

A1 Device Web App Turn on switch. ⇒ Add line to Google Sheet. 2.65±0.42 2.00±0.35 2.04±0.66 1.83±0.75

A2 Web App Device New email arrives inbox. ⇒ Turn on light bulb. 2.93±0.82 2.93±0.90 2.62±0.62 2.83±0.87

A3 Device Device Turn on switch. ⇒ Turn on light bulb. 2.21±0.43 0.81±0.16 0.94±0.28 0.88±0.35

Table 5: Average latency for automation apps with standard deviations (30 runs). Overall, Capture has insignificant impacts, with

noteworthy improvements on A1 and A3 (ESP) due to offloading TLS operations on the hub. See Section 7.2 for further analysis.

We demonstrate the tradeoff between ease of adoption and

performance impact by analyzing different integration ap-

proaches for the Web Server app. Although we spent consid-

erable effort optimizing the default OS-replacement driver,

it yielded a modest 12% average latency reduction over the

baseline ESP32 app. The integration only requires changing a

few lines of the original code. In comparison, implementing a

native driver for this app significantly reduces latency by 36%

over the same baseline. However, to implement the driver, we

modified 264 lines of source code to process device-driver

communication and customize protocols.

8 Limitations and Future Work

Vendor Incentives and Adoption Challenges. Vendors

may be incentivized to use Capture because they can offload

the security upkeep responsibility to a central trusted entity

(the Capture Hub). They no longer need to keep applying

security patches themselves, a task they often lag behind (Sec-

tion 3). Capture’s isolation design also helps protect vendors

from other compromised devices in the user’s local home.

There might be several hurdles for vendor’s adoption. We

have already proposed various integration approaches Sec-

tion 5 to reduce adoption costs for existing devices and hub’s

library management strategies Section 4.2 to alleviate ven-

dor’s loss of agency and to avoid breaking functions.

The need for firmware splitting may pose another major

roadblock for vendors. They have to bear the extra onus of

developing two separated pieces of the “device” and the addi-

tional overhead in signing and logistics involved in firmware

updates. Implementing Capture drivers and new firmware

would require vendors to change significantly from the cur-

rent status quo and would induce extra engineering efforts.

Single Point of Failure. Capture’s centralized design

means that the Capture Hub is a potential single point of

failure; this is part of our threat model (Section 4.1), where

the hub is assumed to be trustworthy. If the hub is compro-

mised by vulnerabilities or privilege escalation bugs like those

on conventional systems [9,13], the integrity and confidential-

ity of the installed devices will be likewise compromised. By

centralizing the management of security-critical updates, and

providing additional isolation between devices, we hope to

contribute to improving the overall security posture of devices

deployed within the network (i.e., relative to the status quo).

However, this improvement is contingent on vendor adoption.

Centralization may lead to a less robust network even with-

out adversarial compromise. If the hub goes down, devices

would lose network connectivity and drivers become unre-

sponsive. Because most device firmware controls local actions
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(e.g., managing the on/off states for smart plugs), most devices

should still function (e.g., through physical buttons on the de-

vice). Capture Hub failures, in this case, largely resemble

network outages and router failures in current smart homes.

Protocol Compatibility. Since Capture isolates devices,

link layer discovery and local network scanning no longer

work. One such example is UPnP, an infamous protocol for

posing security threats in IoT devices [40, 42] and recent ex-

ploits like CallStranger [82]. A future direction for our work

is to provide a secure centralized discovery service on the

Capture Hub itself with co-located drivers and shared libraries,

substituting link layer discovery and mitigating fallout like

CallStranger. With that said, many smart devices have com-

panion smartphone apps that communicate with the device

via a cloud service to support access to the device behind a

home NAT. As communication through the cloud will not be

impeded by our approach, we believe that the practical impact

of Capture’s isolation on everyday use will be minimal.

There are other potential security improvements, which are

out of the scope of the current security goals for Capture and

threat model. We do not support alternative wireless protocols

such as BLE, Zigbee, and Z-Wave since Internet-based attacks

over WiFi, the focus of our work, impose significant threats

already. As future work, we can look into incorporating re-

lated works in securing other wireless protocols [36, 85] into

Capture’s centralized hub design. In addition, Capture does

not address potential attacks due to weak security practices,

such as the use of default credentials. However, Capture’s

Virtual Device Entity isolation blocks compromised devices

from exploiting any other devices’ vulnerabilities.

Augmenting Device Resources. Another opportunity that

we have not explored is to use the hub’s computation re-

sources to augment the limited resources of local devices.

Specifically, by introducing additional Capture APIs, we can

extend the storage and processing capability of low-power

microprocessors on the device to the hub.

Firmware Splitting. Capture proposes splitting mono-

lithic firmware into remote and local components, an ap-

proach that could face practical challenges, such as data

serialization, consistency, and fault tolerance. These issues

are not uncommon to many distributed systems that make

use of RPC-like components and have been studied exten-

sively [7, 28, 29, 59, 67, 72–74, 77]. While our prototype im-

plementation does not make use of all of these advances,

Capture can benefit from this work to enhance its robustness

and reliability. We view this as important future work.

9 Related Work

IoT Network Security. Several prior efforts have looked

at IoT security issues [80], and proposed augmenting current

network designs to address them. Dreamcatcher [22] uses

a network attribution method to prevent link-layer spoofing

attacks. Simpson et al. [66], DeadBolt [39], and SecWIR [43]

propose adding features and components on network routers

to secure unencrypted traffic. HoMonit [85], Bark [36], and

HanGuard [15] propose finer-grained network filtering rules

and context-rich firewall designs.

Capture takes a similar network-based approach draw-

ing inspiration from isolation techniques used in prior

works [8, 22, 70]. However, we take a more direct and prin-

cipled approach to reduce the attack surface by centralizing

standard library management. Centralizing shared libraries

introduces additional challenges, which previous work does

not consider.

IoT Software Security. Several projects address vulnera-

bilities in various aspects of current IoT software develop-

ment. Vigilia [70] introduces capability-based network access

control to protect devices while supporting home automa-

tion applications. Each device has one driver program, which

provides public APIs accessible by home automation pro-

grams. In comparison, Capture focuses on security issues in

traditional smart device firmware; by decoupling networking

components in the original firmware into their drivers, Cap-

ture provides a centralized mechanism for updating shared

libraries across all devices. Other efforts [44, 50, 78] address

security challenges in the application-layer of devices, such

as operation logging, cloud backend services, and automation

apps, which are complementary to our work.

IoT Frameworks and OSes. Both academia and industry

have looked at the challenges of IoT software stacks for smart

homes with heterogeneous IoT devices. HomeOS [19] pro-

poses a unified PC-like platform to manage all local devices.

Commercial IoT frameworks emphasize their security offer-

ings and ease of management for third-party developers. Mi-

crosoft Azure Sphere [48], Particle OS [53], and AWS Green-

grass [4] all provide services to manage device library updates

on behalf of developers. These frameworks also include native

support for application-level over-the-air upgrades, reducing

the barrier for developers to patch bugs. Samsung Smart-

Things Device SDK [62] reduces the developer burden of

managing library updates by directly offering high-level APIs

in the SDK (e.g., MQTT services). Developers do not need

to worry about patching libraries, as long as they regularly

update the SDK runtime.

While these frameworks help alleviate some of the devel-

opers’ burden of library management, Capture offers several

additional benefits. First, Capture has a secure isolation mech-

anism to protect against local malicious devices. Existing
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frameworks cannot offer isolation since they manage devices

from public cloud backends. Second, Capture devices can

install custom libraries on devices’ firmware based on their

requirements. Even if these libraries are vulnerable, attackers

cannot exploit these libraries due to the isolation we provide.

Third, as an open system, Capture’s integration approaches

are cross-platform and do not require device vendors to lock

in to specific embedded system OSes and chipsets. Finally,

IoT frameworks (Particle Device OS, Azure Sphere) focus

on higher-end micro-controllers with bundled costs of cloud

services, which is not the norm. Most IoT vendors opt for

inexpensive chips and platforms, with standalone firmware,

which especially benefit from Capture’s design.

10 Conclusion

Similar to other complex software systems, modern IoT de-

vices suffer from the same security threats arising from poorly-

managed outdated third-party libraries. We show that even

the most popular smart device vendors fall behind the update

schedules of critical libraries by hundreds of days, exposing

users with even the latest device firmware to well-known vul-

nerabilities in the underlying libraries. These insights related

to the usage of common third-party libraries across devices

inspired the design of Capture, a software architecture for

IoT firmware development. Capture provides mechanisms for

centralized management of shared libraries by splitting func-

tionality into the firmware on the device and a corresponding

driver on a Capture Hub. Capture also provides strong isola-

tion and security protections across devices and their drivers.

Our evaluation results show that several example IoT devices

can be modified to use Capture using one of our three integra-

tion approaches to get the security benefits of Capture with

acceptable performance overheads.
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