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Abstract
We investigate a simple but overlooked folklore approach

for searching encrypted documents held at an untrusted ser-
vice: Just stash an index (with unstructured encryption) at
the service and download it for updating and searching. This
approach is simple to deploy, enables rich search support be-
yond unsorted keyword lookup, requires no persistent client
state, and (intuitively at least) provides excellent security com-
pared with approaches like dynamic searchable symmetric
encryption (DSSE). This work first shows that implementing
this construct securely is more subtle than it appears, and that
naive implementations with commodity indexes are insecure
due to the leakage of the byte-length of the encoded index.
We then develop a set of techniques for encoding indexes,
called size-locking, that eliminates this leakage. Our key idea
is to fix the size of indexes to depend only on features that
are safe to leak. We further develop techniques for securely
partitioning indexes into smaller pieces that are downloaded,
trading leakage for large increases in performance in a mea-
sured way. We implement our systems and evaluate that they
provide search quality matching plaintext systems, support for
stateless clients, and resistance to damaging injection attacks.

1 Introduction

Client-side encryption protects data stored at untrusted
servers, but deploying it poses both usability and security
challenges. Off-the-shelf file encryption disables server-side
data processing, including features for efficiently navigating
data at the request of the client. And even with well-designed
special-purpose encryption, some aspects of the stored data
and user behavior will go unprotected.

This work concerns text searching on encrypted data, and
targets replicating, under encryption, the features provided
in typical plaintext systems efficiently and with the highest
security possible. Diverse applications are considered, but
a concrete example is a cloud storage service like Dropbox,
Google Drive, and iCloud. These systems allow users to log in

from anywhere (e.g., from a browser) and quickly search even
large folders. The search interface accepts multiple keywords,
ranks the results, and provides previews to the user. To provide
such features, these storage services retain access to plaintext
data. In contrast, no existing encrypted storage services (e.g.,
Mega, SpiderOakOne, or Tresorit) supports keyword search.

The problem of implementing practical text search for
encrypted data was first treated by Song, Wagner, and Per-
rig [40], who described several approaches. Subsequently a
primitive known as dynamic searchable symmetric encryp-
tion (DSSE) was developed over the course of an expansive
literature (c.f., [7–9, 11, 13–17, 25–27, 31, 41, 46]). But DSSE
doesn’t provide features matching typical plaintext search
systems, and more fundamentally, all existing approaches
are vulnerable to attacks that recover plaintext information
from encrypted data. The security of DSSE is measured by
leakage profiles which describe what the server will learn.
Leakage abuse attacks [6,10,18,19,21,33,38,43,45,48] have
shown that DSSE schemes can allow a server to learn sub-
stantial information about the encrypted data and/or queries.
Even more damaging have been injection attacks [10, 48],
where adversarially-chosen content (documents or parts of
documents) are inserted into a target’s document corpus. The
adversary can identify subsequent queried terms by observing
when injected content matches searches, which is revealed by
the leaked results pattern of DSSE schemes.

Contributions. This work returns to a simple, folklore ap-
proach to handling search over encrypted documents: simply
encrypting a standard search index, storing it remotely and
fetching it to perform searches. In fact this idea was first
broached, as far as we are aware, by the original Song, Wag-
ner and Perrig [40] paper, but they offered no details about
how it would work and there has been no development of the
idea subsequently. While the approach has many potentially
attractive features, including better security and the ability to
provide search features matching plaintext search, it has not
received attention perhaps because it seems technically unin-
teresting and/or because the required bandwidth was thought
impractical — indexes can be very large for big data sets.
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We initiate a detailed investigation of encrypted indexes.
Our first contribution is to show the insecurity of naively
encrypting existing plaintext search indexes, such as those
produced by the industry-standard Lucene [1]. The reason is
that Lucene and other tools use compression aggressively to
make the index — a data structure that allows fast ranking of
documents that contain one or more keywords — as compact
as possible. Compression before encryption is well known
to be dangerous, and indeed we show how injection attacks
would work against this basic construction.

We therefore introduce what we call size-locked indexes.
These are specialized indexes whose representation as a bit
string has length that is a fixed function of information we
allow to leak. We show a compact size-locked index whose
length depends only on the total number of documents in-
dexed and the total number of postings handled. By coupling
our size-locked index with standard authenticated encryption,
we are able to build an encrypted index system that works
with stateless clients and provides better search functionality
(full BM25-ranked search) than prior approaches, while re-
sisting both leakage abuse and injection attacks. We provide
a formal security model and analysis.

Our encrypted size-locked index already provides a practi-
cal solution for moderately sized document sets. But for larger
document sets it can be prohibitive in terms of download band-
width, for example providing a 228.15 MB index for the full
1.7 GB classic Enron email corpus. Here prior techniques like
DSSE require less bandwidth to perform searches. We there-
fore explore optimizations to understand whether encrypted
indexes can be made competitive with, or even outperform,
existing approaches.

We show two ways of partitioning our size-locked indexes
to reduce bandwidth. Our vertical partitioning technique ex-
ploits the observation that, in practice, clients only need to
show users a page of results at a time. We therefore work
out how to securely partition the index so that the top ranked
results are contained within a single (smaller) encrypted in-
dex, the next set of results in a second-level index, and so on.
Handling updates is quite subtle, because we must carefully
handle transferring data from one level to another in order to
not leak information in the face of injection attacks. We pro-
vide an efficient mechanism for updates. We show formally
that vertical partitioning prevents injection attacks and only
leaks (beyond our full index construction) how many levels
a user requested. Because most users are expected to most
often need only the first level, vertical partitioning decreases
average search bandwidth by an order of magnitude.

We also consider horizontal partitioning which separates
the space of keywords into a tunable parameter P of partitions,
and uses a separate vertically partitioned size-locked index
for each. This gives us a finely tunable security/performance
trade-off, since now performing searches and updates can be
associated by an adversarial server to certain partitions. We
also give an approach to progressively partitioning an index

so that the leakage can be gradually increased to maintain
performance. We formally analyze the security achieved, and
heuristically argue that for small P our scheme’s leakage
is less dangerous than the result patterns revealed by prior
approaches. In terms of performance, horizontal plus vertical
partitioning enable us to match the bandwidth overheads of
DSSE. For example with the full Enron corpus indexed, our
construction using vertical partitioning combined with just 10
horizontal partitions is able to fetch the first page of results
for a search in 690 ms and using 7.5 MB of bandwidth.

2 Problem Setting and Background

We target efficient, secure encrypted search for cloud services
such as Dropbox and Google Drive.

Search features. We briefly surveyed search features of sev-
eral widely used storage services. Some features are not
precisely documented, in which cases we experimentally as-
sessed functionality. Some details appear in Appendix A.

Evidently, search features vary across plaintext services.
Common features include conjunctive (but not disjunctive)
queries, relevance ranking of some small number k of returned
results, and updating search indices when keywords are added
to documents. Interestingly, none of these services appear to
update indices when a word is removed from a document.

All surveyed services supported both an application that
mirrored data as well as lightweight (web/mobile) portals.
When the data is locally held by the client, search is easy
(say, via the client system’s OS tools). For lightweight clients,
search queries are performed via a web interface with process-
ing at the server. Previews of the top matching documents are
returned, but documents are not accessed until a user clicks
on a returned link for the matching document. A user can also
request the subsequent pages of results.

In summary, our design requirements include:

• Lightweight clients with no persistent state should be sup-
ported, so users can log in and search from anywhere.

• Multi-keyword, ranked queries should be supported.
• Search results may be presented in pages of k results (k ≈

10) with metadata previews including name, date, and size.
• The addition and deletion of entire documents should be

supported. Deletion of words from documents is optional.

For simplicity, we will assume a single client, but note that
our techniques can support multiple clients in the full version.
Many plaintext indexes do not decrease in size upon word and
document deletion. Looking ahead, our indexes will similarly
not decrease in size due to deletions or modifications.

Threat model. Encrypted cloud storage should ensure the
confidentiality of a user’s data and queries, even when the
service is compromised or otherwise malicious.

Leakage-abuse and injection attacks work against exist-
ing approaches to practical encrypted search, such as DSSE.
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In leakage-abuse attacks, first explored by Islam et al. [21]
and Cash et al. [10], the adversary obtains access to all (en-
crypted) data stored at the server, as well as a transcript of
(encrypted) search queries. All DSSE schemes have some
leakage, such as the results pattern mentioned above. Given
also some side information about the distribution of keywords
across documents, prior work has shown that the results pat-
tern leakage is often sufficient to identify queries and, in turn,
partial information about document plaintext. A long line of
subsequent work has explored various forms of leakage-abuse
attacks [6, 18, 19, 33, 38, 43, 45, 48].

Leakage-abuse attacks are typically passive, in the sense
that the adversary observes queries but does not actively ma-
nipulate documents or queries. Injection attacks instead have
the adversary combine observations of encrypted storage and
queries with the ability to force the client to insert documents
and/or make queries. They were first briefly suggested by
Cash et al. [10] and later explored in depth by Zhang et al. [48].
When combined with results pattern leakage, an attacker who
can inject chosen documents with known keywords will know
when a subsequent (unknown) search matches against the
injected document.

We discuss related work in detail in Section 7. The cur-
rent state of affairs is that we do not currently have sys-
tems for encrypted searching that (1) come close to matching
the functionality of contemporary plaintext search services;
(2) that work in the required deployment settings, including
lightweight clients; and (3) that resist these classes of attacks.

Information retrieval definitions. Our work will build off
standard information retrieval (IR) techniques. Here we recall
some necessary details, and refer the reader to [30, 49] for
more extensive overviews.

A term (equivalently, keyword) is an arbitrary byte string.
A document is a multiset of terms; this is commonly called
the “bag of words” model. This formalism ignores the actual
contents of the document and only depends on the terms that
are output by a document parser and stemmer. We assume all
documents have an associated unique identifier that is used
by the underlying storage system, as well as a small amount
of metadata for user-facing information (e.g. filename or
preview). Looking ahead we will assume 4-byte identifiers.

The term frequency of a term w in document d, denoted
tf(w,d), is the number of times that w appears in d. In a set
of documents D = {d1,d2, . . .}, the document frequency of a
term w, denoted df(w,D), is the number of documents in D
that contain w at least once.

A query is a set of terms. The most popular approach to
ranking search results assigns a positive real-valued score to
every query/document pair, and orders the documents based
on the scores. We use the industry standard ranking function
BM25 [39]. For a query q, set of documents D, and document
d ∈ D, the BM25 score is

BM25(q,d,D) = ∑w∈q log
( |D|
df(w,D)+1

) tf(w,d)·(k1+1)

tf(w,d)+k1(1−b+b |d|
|d|avg

)
,

where |d| (|d|avg) is the (average) document length (where
length is simply the size of the multiset); k1 and b are two
tunable parameters, usually chosen in [1.2,2.0] and as 0.75,
respectively. We note that to compute the BM25 score of
a query for a given document, it is sufficient to recover the
document frequencies of each term in the search along with
the term frequencies in the document for each term.

The standard approach for implementing ranked search
is to maintain an inverted index. These consist of per-term
precomputed posting lists. The posting list contains some
header information (e.g., the document frequency), and then
a list of postings, each of which records the occurrence of the
term in a document, usually including the document identifier
along with extra information for ranking (for BM25, the term
frequency). In our notation, a posting list for term w is written
as follows:

df(w,D) , (id1, tf(w,d1)), . . . ,(idn, tf(w,dn))

where n is the number of documents that w appears within.
A search is processed by retrieving the relevant posting lists
(multiple ones in case of multi-keyword queries), computing
the BM25 scores, and sorting the results. To improve latency,
posting lists are usually stored in descending order of term
frequency or document identifier. The latter improves multi-
term search efficiency, while the former allows for easily
retrieving the most relevant results for a single term search.

In practice, inverted indexes are highly amenable to and
compression (c.f. [30], Chapter 5). Many mature search tools
are available. For example Lucene [1] is a popular high-
performance text search engine that we will use below.

3 Insecurity of Encrypting Standard Indexes

We take a closer look at an idea briefly mentioned by Song,
Wagner and Perrig [40]: just encrypt a standard index and
store it at the server. We flesh out some details and then show
that using this approach with standard tools can be vulnerable
to document injection attacks (and possibly more). The key
observation is that changes in the length of the encrypted
index blob will depend on the number of keywords present in
the index in an exploitable way.

Naive encrypted indexing. A simple approach to adding
search to an outsourced file encryption system, such as those
discussed in Section 2, is to have a client build a Lucene
(or other standard) index, encrypt it using their secret key,
and store it with the service. To search, the client downloads
the index, decrypts, and performs searches with the result.
Should client state be dropped (e.g., due to closing a browser
or flushing its storage), the next search will require fetching
the encrypted index again.

To update the index in response to new files being added or
changed, the client can download the encrypted index (if not
already downloaded), update it, re-encrypt, and upload. This
approach may not scale well with large indices, but at least it
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Figure 1: Document-injection attack on Lucene to recover indexed term. The
term s∗ results in a noticeably smaller change in byte-length than other terms.

might seem to be secure: strong randomized encryption hides
everything about the index except its length as an encoded
plaintext byte string.

Case study: Lucene. To explore whether leaking plaintext
byte-lengths can be exploited, we built a simple encrypted
index using Lucene. We give more details about Lucene
and our configuration of it in Appendix B. We use two
different Lucene encodings, the naive SimpleTextCodec
and Lucene50 (the default). The adversary is given the
byte-length of the plaintext encoding after updates. For
SimpleTextCodec only one file is output, and we use its
size. With Lucene50 several files are output, so we use the
total sum of their sizes. This captures the assumption that
encryption leaks the exact length of the plaintext data, which
would be true if one uses any standard symmetric encryption
scheme, e.g., AES-GCM and ChaCha20/Poly1305.

We considered the following file-injection attack setting:
An index has been created that contains a single document
containing exactly one term which is a random 9-digit numeri-
cal, e.g., a social security number (SSN) that we denote s∗. An
adversary is given a list of 1,000 random SSNs s1, . . . ,s1000,
one of which equals s∗, and the adversary’s goal is to deter-
mine which si equals s∗. Our attacker is allowed to repeatedly
inject a document of its choosing and observe the new byte-
length of the index. A secure system should keep s∗ secret,
even against this type of adversary.

Our attacker works as follows: it records the initial byte-
length of the index. Then for each of the 1,000 SSNs in its list,
the attacker injects a document consisting of exactly that SSN.
It then records the change in byte-length of the index. (Docu-
ments are not deleted here, so at the conclusion of this attack,
the index contains 1,001 documents.) Finally, the attacker
finds the injected SSN that resulted in the smallest change
in byte-length, and uses that as its guess for s∗. The intuition
is that adding a new keyword to the index increases its size
more than adding a new posting for an existing keyword.

We plot two example runs in Figure 1, one for each encod-
ing. The horizontal axis corresponds to the injected terms in
order, and the vertical axis is the change in byte-length after
each injection. We observe first that our attack worked for
both encodings, since the smallest change corresponded to s∗

(as is visible in the plot). We also observe that this worked
despite quite a bit of noise, especially in case of Lucene50,

where the variation in changes due to the internals of Lucene
is visible. We repeat the attack 100 times, each with a different
s∗ from the 1000 candidate SSNs, and the attack succeeded
every single time.

Discussion. While our example above is very simple, we ex-
pect that other attacks exploiting length leakage are possible.
For instance, an index may compress its term dictionary, so
injecting terms similar to existing terms may result in a dif-
ferent byte-length change than injection terms that are far
from the existing dictionary. We have also not exploited the
variable-byte encoding used in postings lists.

On the other hand, a tempting seeming fix would be to
combine length-hiding authenticated encryption (LHAE) [36]
schemes with padding of the full index to prevent plaintext
length leakage. But it’s unclear a priori how to efficiently pad
in a way that would prevent attacks.

We conclude that a well-controlled approach to sizing in-
dexes is required to have confidence in the security of this
kind of encrypted index approach.

4 Secure Encrypted Indexes

As shown in the last section, subtle issues can expose en-
crypted indexes to attacks. Intuitively, we need to ensure that
server-visible information, such as ciphertext lengths and ac-
cess patterns reveal nothing damaging. For example, prevent-
ing file injection style attacks requires ensuring that the pre-
cise number of keywords at any point in time is not revealed.

To make this rigorous and guide our designs, we formalize
the notion of an encrypted index. Our approach gives formal
syntax, semantics, and security for search mechanisms that
reflect application requirements in practice (see Section 2).

Encrypted index formalism. Architecturally, an encrypted
index involves a client and server, the latter being the storage
service. Formally, we abstract the role of the server as an
oracle Srv with two interfaces. The Srv.put interface takes as
input a pair of bitstrings (lbl,v) and stores as a table entry
T[lbl]← v. One can delete a value by Srv.put(lbl,⊥). The
Srv.get interface takes as input a bitstring lbl (the label) and
returns T[lbl] (which could be empty, i.e., T[lbl] =⊥). We
overload notation and allow (v1,v2)← Srv.get(lbl1,lbl2)
to denote fetching the values stored under labels lbl1,lbl2.
The Srv.app interface allows appending a value to a table
entry, i.e, Srv.app(lbl,v) sets T[lbl]← T[lbl]‖ v where ‖
denotes some unambiguous encoding of the concatenation of
the existing values and v.

We can now formalize the client side functionality. An
encrypted index scheme consists of two algorithms Search
and Update. Associated to any scheme are four sets: the key
space KeySp, identifier space IDSp, metadata space MetaSp,
and relevance score space RelSp. Identifiers allow linking a
search to a document, metadata includes relevant information
about a document that a search should return to help a user
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(e.g., document name), and rankings are numerical values in-
dicating a document’s relevance score. A secret key, typically
denoted K, is chosen uniformly from KeySp. The (random-
ized) algorithms (which both have access to the server oracle
Srv). fit the following syntax:

• SearchSrvK (q,st)→ (G,st) takes as input a key K ∈ KeySp,
a query q (which is a set of bitstrings), and a client-side
state value st that is possibly empty (st= ε). Search outputs
a result set G consisting of triples from IDSp×MetaSp×
RelSp along with new state st.

• UpdateSrvK (∆,st)→ st takes as input a K ∈ KeySp, an up-
date ∆ and a state. We define updates to be a tuple of the
form (id,md,V ), where id ∈ IDSp,md ∈MetaSp and V is
a set of term/count pairs, i.e. members of {0,1}∗×N. The
algorithm outputs a new state.

The semantics of Search oracle are as follows. A query is
a set of bit strings representing the keywords; we focus on
supporting BM25 queries (see Section 2). See the full version
for a discussion of other search types, including fuzzy search.
The client can cache state st between searches. We refer to
a sequence of operations that evolve the same state as a ses-
sion. A call to Search with st= ε is referred to as a cold-start
search, and initiates a new session. Depending on the con-
struction, a cold-start search may return a complete or partial
list of results. Subsequent calls to Search with same evolving
state may be used to obtain more results. For example, our
construction will respond to a series of searches for the same
query with a growing “effort level” that is tracked in the state.
Search sessions may include distinct queries q, in which case
the client’s performance benefits from local caching.

Updates handle adding new documents to the index, remov-
ing old documents, or modifying existing ones. Updates also
allow client side state, which will be useful for some perfor-
mance optimizations but our constructions will always push
information to the server immediately to reflect the update.
This is important should a client drop state; updates are still
available at the server.

We will not formally define correctness, but our construc-
tions will ensure that searches reflect the latest updates. As
we provide ranked, paginated results, we will measure empir-
ically search quality relative to standard ranking approaches
like BM25.

Security. We use a security definition parameterized by a
leakage profile specifying what is leaked. The adversary A
controls all inputs (queries and updates) excepting the secret
key K, and can observe all interactions between the algorithms
and the server Srv.

We formalize security via two games. Pseudocode de-
scriptions appear in Figure 2. The first game, REALΠ, gives
an adversary A oracles UP, SRCH, CLRST for which it can
adaptively choose client inputs. We abuse notation and write
((G,st),τ)←$SearchSrvK (q,st) to denote running Search on a
state st and letting τ be the transcript of requests and responses

REALΠ(A):

1: K←$KeySp
2: st←$ ε

3: b←$ ASRCH,UP,CLRST

4: return b

SRCH(q):

4: ((G,st),τ)←$SearchSrvK (q,st)
5: return τ

UP(∆):

6: (st,τ)←$UpdateSrvK (∆,st)
7: return τ

CLRST:

8: st← ε

IDEALL
S (A):

1: stL ,stS ← ε

2: b←$ ASRCH,UP,CLRST

3: return b

SRCH(q):

4: (stL ,λ)←$ L(stL ,q)
5: (stS ,τ)←$ S(stS ,λ)
6: return τ

UP(∆):

7: (stL ,λ)←$ L(stL ,∆)
8: (stS ,τ)←$ S(stS ,λ)
9: return τ

CLRST:

10: (stL ,λ)←$ L(stL ,clr)
11: stS←$ S(stS ,λ)

Figure 2: Security games for encrypted index schemes.

made by Search to Srv. We make an analogous overloading of
Update. This captures that A should observe, but not be able
to manipulate, all queries to, and responses from, Srv. Note
that given the responses τ the adversary can reconstruct the
exact state of the server (which is a simple put/get interface
that works deterministically).

We allow the adversary to reset the session state st to the
empty string by calling the oracle CLRST, which takes no
inputs and produces no outputs. This represents the ending of
a session (e.g. logging out of a browser), and subsequent calls
will be run with an empty state. The adversary eventually
outputs a bit which becomes the output of the game.

The ideal game IDEALL
S is parameterized by a leakage

profile L = (Lse,Lup) and a simulator S = (Sse,Sup). In this
game the two oracles are instead implemented by a combina-
tion of running the appropriate leakage algorithm and handing
the resulting input to the respective simulator algorithm. Note
that both the leakage and simulator algorithms can be ran-
domized. The simulator algorithms share state; this is made
explicit with an input and output bit string stL shared by the
algorithms. Ultimately again the adversary outputs a bit, and
we let “IDEALL

S (A)⇒ 1” be the event that the output is one,
defined over the coins used by the game including those used
by A and S .

Definition 1. Let Π = (Update,Search) be an encrypted in-
dex scheme. Let A ,L ,S be algorithms. The L-advantage of
A against Π and S is defined to be
AdvL

Π,S (A) = |Pr[REALΠ(A)⇒ 1]−Pr[IDEALL
S (A)⇒ 1]|.

5 Encrypted Index Constructions

In this section we introduce size-locked encodings and show
how to build secure encrypted indexes using them. We start
with our basic encoding then detail a simple encrypted in-
dex scheme which performs searches by fetching the entire
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index using this encoding. Finally, we show how to scale
this construction via two partitioning strategies (vertical and
horizontal) which exchange some limited leakage to improve
performance for large document sets.

5.1 Size-Locking Definitions
Our constructions will make use of algorithms to encode
updates and merge them into an accumulating index while
controlling size-based leakage, and also an algorithm to ex-
ecute queries on the encodings. We abstract out our basic
encoding approach into three algorithms:

• An algorithm SLEncodeUp that takes as input an update ∆

as defined in the syntax of encrypted indexing schemes. It
outputs a bytestring U encoding the update.

• An algorithm SLMerge that takes as input two bytestrings
P,U encoding the current index and an update respectively.
It outputs a new P bytestring encoding the updated index.

• An algorithm RunQuery that takes as input a bytestring P
encoding an index and a query q. It returns a result set G
(following the syntax of Search in the previous section).

We will analyze constructions built from these algorithms
and their later extensions generically. In order for maximum
expressiveness in constructions, we do not impose a correct-
ness condition, so even trivial versions that output nothing
are permitted, but would result in poor search performance.
While instantiations will be somewhat lossy, we will show
empirically that they provide good search results.

The next two definitions formalize a requirement called
size-locking for encoding and merging (the querying algo-
rithm RunQuery will not have any security requirements).
Both are parameterized by respective leakage functions Lup

sl
and Lmrg

sl which describe what input features encoding lengths
should depend on. Intuitively, these definitions capture that
the output length of update encodings and merging of a se-
quence of updates are fixed functions of the outputs of the
relevant leakage function.

The first definition, for encoding updates, is relatively sim-
ple: For any update ∆, the output length of SLEncodeUp(∆)
must depend only on the output of Lup

sl .

Definition 2 (Size-locked updates). We say an update en-
coding algorithm SLEncodeUp is Lup

sl -size-locked if for all
∆ ∈ D the byte-length of SLEncodeUp(∆) is a fixed function
of Lup

sl (∆).

For merging we define a more subtle condition requiring
that, for any sequence of updates, the lengths of all the inter-
mediate index encodings is a fixed function of the leakage
Lmrg

sl applied to the sequence of updates.

Definition 3 (Size-locked merging). We say that al-
gorithm SLMerge is Lmrg

sl -size-locked if the following
holds for all sequences ∆1, . . . ,∆r of updates. Define P0

to be the empty string, and for i = 1, . . . ,r let Pi =
SLMerge(Pi−1,SLEncodeUp(∆i)). Then we require that the
byte-length of Pr is a fixed function of Lmrg

sl (∆1, . . . ,∆r).

This definition implies that lengths of each Pi are deter-
mined by Lmrg

sl (∆1, . . . ,∆i), since the condition must also hold
for each prefix sequence ∆1, . . . ,∆i.

We say that an encoding approach is (Lup
sl ,L

mrg
sl )-size-

locked if it satisfies both definitions. This definition is con-
venient for simplifying proofs, since security analyses will
rely only on the size function and can otherwise ignore the
complexities of encoding.

5.2 Our Size-Locked Encoding

Our leakage functions. Our construction is aimed at the
following leakage functions: We want SLEncodeUp to be
Lup

sl -size-locked for updates where Lup
sl (∆) outputs the num-

ber of postings in ∆ For merging, the leakage function
Lmrg

sl (∆1, . . . ,∆r) will output the total number of postings
added along with the number of documents added In par-
ticular we want to avoid leaking, say, when a new unique
keyword is added, so care must be taken to hide when an
update contains new versus old keywords.

Our encodings. We will describe the accumulated encod-
ings output by SLMerge first. Afterwards it is simple to de-
scribe how our algorithms SLEncodeUp,SLMerge maintain
this structure as an invariant. Our approach is to follow the
structure of traditional search indexes described in Section 2
and maintain posting lists that are encoded to avoid leakage.
A merged index will always be a byte string of the form

〈n〉4 ‖bin‖fwd‖inv,
where ‖ denotes string concatenation, 〈n〉4 is an encoding of
the number of documents (we use a four-byte representation
in our implementation; here and below, we write 〈v〉k for a
k-byte encoding of v.), bin is a binary lookup table, fwd is
an encoded forward index byte string, and inv is an encoded
inverted index byte string. We use two configurable parame-
ters: W is the number of bytes used to encode identifiers and
M is the number of bytes of per-file metadata allowed.

Functionally, fwd enables mapping document identifiers to
their metadata, inv is an encoding of the posting lists, and bin
is some auxiliary data for performance optimization. The goal
is to ensure that they together enable efficient computation
of search results and have total byte-length equal to a fixed
function of the number n of unique documents and the total
number of postings N. A summary of the encoding structure
is given in Figure 3. The 1© and 2© stages in Figure 3 illustrate
how the full primary index looks with two documents. To limit
leakage, the values of n and N will increase monotonically
with each update.

Our index encoding will have size exactly

(2W +8)·min{N,90 ·N0.5}+(W +W/2+M)·n+(W +1)·N
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Figure 3: Four stages of size-locked indexing for maintaining the forward (fwd) and inverse (inv) indexes. 1©: documents to be indexed; 2©: corresponding bin,
fwd and inv; 3©: document updates and their encoding; 4©: bin, fwd and inv after merging updates with new entries shaded red.

bytes. (We assume that W is a multiple of two, and round the
square root in an arbitrary predetermined way.) The first term
is the size of bin, the second fwd, and the second term is the
size of inv. We will unpack the formula as we explain the
components below.
Encoding inv. We first describe how inv is computed. It
will ultimately encode the posting lists independently and
concatenate them, so we describe how to encode some posting
list (id1, tf1) , . . . , (id`, tf`) for a keyword w, where tf i =
tf(w, idi) is the term frequency of w in document with id idi.

We hash terms w to W -byte-long hashes, denoted H(w)
(we use a truncated cryptographic hash for H). For small W
there can be collisions, in which case we simply merge the
colliding posting lists. This happens rarely enough that search
accuracy is barely affected in our testing.

Next, we compactly represent term frequencies as one-
byte values. This makes BM25 calculations coarser but still
enables sufficiently accurate ranking. Specifically we let t̃f i
be a rounding of tf i to the nearest value expressible in the
form a2b, where a,b are four-bit non-negative integers. We
thus encode each t̃f i in one byte, as a‖b.

Naively encoding posting lists as a term followed by the list
entries would not achieve the size-locking we target, as the
output length would depend on the number of terms, enabling
injection attacks like those in Section 3. To see this depen-
dence, consider an index with a single term with two postings,
versus an index with two terms that have one posting each;
Done naively, the latter would have a longer encoding.

We therefore apply a trick to encode a posting list of length
` in exactly (W +1) · ` bytes. We enforce domain separation
between hashes and document identifiers by fixing the top bit
of hashes to be one, i.e., replacing H(w) with H(w)∨108W−1

and fixing the top bit of all document identifiers to zero. Then,
we remove the first identifier id1 in each posting list, making
it implicit. We will store information in fwd to be able to
recover it during decoding. Our posting list is encoded as

(H(w)∨108W−1)‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`
and inv is simply the concatenation of the individual posting
lists, in an order to be explained shortly.

Encoding fwd. The bytestring fwd maps document identi-
fiers to their metadata. Since we allow leaking the number of
documents, this could be a relatively simple matter, except
that we need to make the first identifiers that were dropped
from inv recoverable.

The forward index will represent the documents in the
order in which they are added, letting idi,mdi be the identifier
and metadata of the ith document. Define Newi be the set of
terms newly introduced by document idi and let cti = |Newi|,
encoded as a W/2-byte integer (so cti is the number of terms
in the ith document but not in any earlier document).

We form fwd simply by calculating the string idi ‖mdi ‖cti
for each document and concatenating them in order. This
means |fwd|= (W +W/2+M) ·n.

We can now describe the ordering of the post lists in inv

to enable decoding to recover the omitted first identifiers. We
maintain the posting lists within inv so that the ct1 posting
lists associated to keywords in New1 appear first, then the ct2
lists for New2, and so on. Thus during decoding we know that
the first ct1 = |New1| posting lists should have added id1, the
next ct2 = |New2| should have added id2, and so on.

Encoding bin. It is possible to correctly decode an index
from 〈n〉4‖fwd‖inv only. We however include an extra look-
up table bin to speed up the recovery of a posting list without
fully decoding.

A naive idea is to trade off primary index size (and band-
width) for search speed by storing a lookup table that maps a
word hash to its offset in inv. This again fails to meet our size-
locking goal, since the serialized index length would depend
on the number of terms. Instead we construct the lookup
table based on the estimated number of keywords in the
document collection, instead of the exact number, following
Heaps’ law. Heaps’ law states that, for a document collection
with N postings, the number of unique keywords is roughly
Heapsα,β(N) := α ·Nβ (c.f., [30], Chapter 5.1.1). We conser-
vatively choose α = 90 and β = 0.5 to let the estimated num-
ber of keywords be an overestimate. We determine the number
of postings in bin using Binα(N) = min{N,Heapsα,0.5(N)}
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Using this, we fix the size of the lookup table to

(2W +8) ·Binα(N) = (2W +8) ·min{N,90 ·N0.5}
bytes because we store, for each word hash of W bytes, the
W -byte identifier of the first document that introduces the
word, a four-byte position offset, and a four-byte encoding of
the posting list length in bytes.

If the actual number of terms is smaller than the estimate,
we add dummy entries to the lookup table. If the number
of terms is larger, some words (chosen arbitrarily) will not
appear in the lookup table and we can fall back to the linear
scan approach.
Encoding algorithm: Updates. Algorithm SLEncodeUp
works as follows. An input update ∆ consists of a document
identifier id, metadata md, and set V of m updated term/term-
frequency pairs. (When a keyword is removed from a docu-
ment, this is represented by a term-frequency of zero.) Here
we would like to have an encoding with bytelength determined
only by m. To achieve this we simply encode ∆ as

id‖md‖H(w1)‖ t̃f1 ‖ · · · ‖H(wm)‖ t̃fm,

where t̃f i is the single-byte rounding of tf i as described earlier.
For an update with m postings, this encoding will be exactly
W +M+(W +1)m bytes. (See stage 3© in Figure 3.)

The following easy claim formalizes the size-locking prop-
erty of SLEncodeUp.

Claim 4. SLEncodeUp is Lup
sl -size-locked for the function

Lsl(∆) that outputs |V |, where ∆ = (id,md,V ).

Encoding algorithm: Merging. We finally describe how
SLMerge works to maintain the encoding describe above.
Recall that SLMerge takes as input an accumulated encod-
ing P and an encoded update U . We can inductively as-
sume that P has the structure described above, namely of
the form 〈n〉4 ‖ bin ‖ fwd ‖ inv. The encoded update U en-
codes identifier/metadata/posting-set triple (id,md,V ) and
must be merged into P to produce a new encoding.

We first update inv. The set V can contain both keywords
that already appear in P and newly introduced keywords. For
those that already appear, we simply append the postings to
the appropriate lists in inv with the encoding described above.
For newly-introduced keywords, we create new posting lists
with implicit identifiers (following our encoding trick from
above), and append them to inv.

We next update fwd and possibly n. If the updated docu-
ment identifier id is new, then we increment n and append
to fwd the string id‖md‖ct, where ct is the number of new
keywords introduced. If id was already in fwd, then we up-
date its count cti if it introduced any new keywords, and also
overwrite its metadata with md.

We finally modify bin to reflect for each keyword the new
offset and length of its posting list as well as the first document
that introduces it, which may have changed as a result of
the update. If a document introduces more new words as a

result of an addition, we increment cti accordingly. If a word
that was introduced by the document is removed from the
document entirely, we leave cti unchanged.

The following claim formalizes the size-locking of
SLMerge.

Claim 5. SLMerge is Lmrg
sl -sized-locked for the func-

tion Lmrg
sl (∆1, . . . ,∆r) that outputs (N,n), where if ∆i =

(idi,mdi,Vi), then N = ∑
r
i=1 |Vi| is the total number of post-

ings in ∆1, . . . ,∆r and n = |{id1, . . . , idr}| is the number of
unique document identifiers in ∆1, . . . ,∆r.

This claim follows by induction on the number of updates.
For a single update our encoding obviously only depends
on the number of postings. Further updates will increase the
length of the encoding by possibly adding a new document
entry to fwd, and adding a number of bytes to inv that depend
only the size of V in the update. Finally, the size of bin
depends only on N.

Querying algorithm. Our implementation of RunQuery sim-
ulates the computation of BM25-based ranking. Given a query
consisting of possibly several keywords w1,w2, . . ., RunQuery
uses the offsets in bin to find the posting lists and implicit
first identifiers for each term. The rounded term frequencies
are used in place of real term frequencies, but the rest of the
BM25 computation proceeds in the straightforward way.

5.3 Full-Download Construction

Using SLEncodeUp, SLMerge, and RunQuery, we construct
the FULL encrypted index scheme in Figure 4. We use stan-
dard symmetric encryption with secret key K, with encryption
and decryption denoted by EncK and DecK . We abuse nota-
tion in decryption by feeding a vector of ciphertexts as input to
mean decrypting each independently. We also abuse notation
with our SLMerge algorithm, allowing it to take a vector ~U of
encoded updates, which we take to mean running SLMerge
repeatedly on each entry along with the accumulated index.

At a high level, the client maintains an index locally that
is always either empty or a copy of the full, up-to-date index.
The server storage consists of an encrypted, encoded index
under some arbitrary unique label idx as well as an update
cache (under some label up) that can be empty. To search, if
the client index is empty, the client downloads the entire server
state, decrypts, and decodes the results (lines 2–4). Note that
we abuse notation slightly, running Dec on a vector, which
denotes component-wise application of decryption. After this,
the client can run the query and output the results so they
can be shown to a user (line 5). Finally, if there were any
changes due to updates then the client encodes the updated
index, encrypts it, replaces the old encrypted index on the
server (recall that Srv.put overwrites old values), and deletes
the update cache. (To implement line 6, the client maintains a
local dirty bit but we omit this from our notation.)
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SearchSrvK (q,st):

1: if st=⊥ then
2: (B,~C)← Srv.get(idx,up) . Fetch encrypted index & updates
3: P←DecK(B) ; ~U ←DecK(~C) . Decrypt
4: st← SLMerge(P,~U) . Merge in updates, in any order

5: Output results via RunQuery(q,st) . Run query
6: if ∃ outstanding updates then
7: B′← EncK(st) . Encrypt new index
8: Srv.put(idx,B′) ; Srv.put(up,⊥) . Update server

UpdateSrvK (∆,st):

10: U ← SLEncodeUp(∆) . Encode update
11: C← EncK(U) . Encrypt update
12: Srv.app(up,C) . Add to server
13: if st 6=⊥ then
14: st← SLMerge(st,U) . Update local state

Figure 4: Full-download encrypted index construction.

To perform an update, the client simply encodes, encrypts,
and appends the update information to the update cache
(lines 10–12). If the local session state is non-empty, then
the client also updates the local state via the routine Merge
(line 14), but we do not yet push this changed state to the
remote server to save bandwidth. We therefore refer to this
type of update as lazy, since we’re deferring merging in the
update until the next search.
Security analysis. The full-download construction achieves
L-adaptive security for a leakage profile L that reveals only
the number of postings in updates and the number of docu-
ments added to the system. In particular, updates do not leak
if they introduce new terms or not, avoiding the type of attack
in Section 3.

In the following theorem, Advlor-cpa
SE (B) refers to the stan-

dard definition of advantage for an adversary B in attacking
the left-or-right CPA security of SE.

Theorem 6. Let Π be the encrypted size-locked index scheme
in Figure 4 and let SE= (Enc,Dec) be a symmetric encryp-
tion scheme. Then there exists a simulator S such that for
all A there exists a B such that AdvL

Π,S (A)≤ Advlor-cpa
SE (B),

where B and S run in time that of A plus some small over-
head.

We provide a proof of the theorem in the full version and
give a sketch here. The simulator S will produce transcripts
that replace encryptions of index and update encodings with
encryptions of all-zero strings that are as long as the encod-
ings. The simulator is able to infer these lengths as a result of
size-locking properties and the leakage profile.
Performance optimizations. Our implementation carries out
line 4 of searching with some optimizations. To perform a
merge, the existing posting list in inv is located, and we
add all m postings to it. Importantly we do not delete prior
postings: in the case that there are two postings for the same
keyword and document pair, we set one of these to the correct
term frequency and make the remaining term frequencies

zero. These latter postings are now essentially padding to
mask whether a new term was added to the document. After
processing an update with m postings, we have that inv’s size
increases by exactly (W +1) ·m bytes. Stage 4© in Figure 3
shows the primary index merged with updates on both existing
and new keyword and document pairs.

Merging large collections of outstanding updates can de-
grade search performance for update-heavy workloads. We
can easily add to clients the ability to perform auto-merge
updates, i.e., when the number of outstanding updates passes
some threshold (in terms of total number of postings) an up-
date additionally triggers downloading the current index to
merge outstanding updates. This does not affect security, and
we report on the benefits of auto-merging in the experiments
section.

5.4 Vertical Partitioning

While providing stronger security than previous encrypted
search systems, the full-download construction may result in
impractical bandwidth for cold-start searches over large doc-
ument sets. Here we introduce a performance optimization:
vertical partitioning. The high-level idea is to split an index
so that posting lists are spread across multiple different en-
crypted indexes. When searching for a keyword, one fetches
only the first partition to obtain the first page (or more) of
results. If the user desires more results, the client can fetch
subsequent vertical partitions. Compared to the full-download
construction, the only new leakage introduced by vertical par-
titioning is the number of pages requested by a user. This
enables significantly better bandwidth usage in the common
case where only the first page of results are needed.

Our vertical partitioning strategy works by splitting the
index across some number of levels. Each level has asso-
ciated to it an encrypted index P1, . . . ,PL and an encrypted
update cache ~U1, . . . ,~UL, both encoded and encrypted before
being stored at the server. The updates will still be merged in
opportunistically, but now according to a more complicated
schedule, as only part of the index will typically be available
for merging at any given time.

Leveled size-locking. In order to describe our approach ab-
stractly, we generalize the notion of size-locking from the
prior section in a manner that fits our application. Our ap-
proach will use three algorithms:

• A stateful algorithm SLEncodeUp that takes as input an
update ∆ and emits a bytestring, along with updated state.

• A stateful algorithm VMerge that take as input a bytestring
P encoding the current index and a vector of bytestrings
~U encoding some information to be merged. It outputs a
new bytestring P encoding the updated index, along with a
bytestring U encoding the “evicted” information. It updates
its state (denoted stmrg in our algorithms) on each run.

• An algorithm RunQuery that takes as input one or more
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SLREALΠ(A):

1: P1← ε; `← 1; st← ε

2: b←$ AUP,MRG,CLRLVL

3: return b

UP(∆):

4: U ← SLEncodeUp(∆)
5: ~U1← ~U1‖U
6: return |U |

MRG():

7: (P,U,st)← VMerge(P̀ ,~U`,st)
8: P̀ ← P; ~U`← ε

9: ~U`+1← ~U`+1‖U
10: `← `+1
11: return (|P|, |U |)

CLRLVL:

12: `← 1; st← ε

SLIDEALL
S (A):

1: stL ,stS ← ε

2: b←$ AUP,MRG,CLRLVL

3: return b

UP(∆):

4: (stL ,λ)←$ L(stL ,∆)
5: (stS ,τ)←$ S(stS ,λ)
6: return τ

MRG():

7: (stL ,λ)←$ L(stL ,mrg)
8: (stS ,τ)←$ S(stS ,λ)
9: return τ

CLRLVL:

10: (stL ,λ)←$ L(stL ,clr)
11: stS←$ S(stS ,λ)

Figure 5: Security games for generalized size-locking.

bytestrings P1, . . . , P̀ encoding index information along
with a query q. It returns a result set G.

Our size-locking requirement is now more complicated and is
expressed via a real-versus-ideal (perfect) simulation require-
ment. Intuitively, the real game maintains a set of encoded
indexes P1,P2, . . ., and associated update caches ~U1,~U2, . . ..
The adversary can ask for updates to be encoded and ap-
pended to the top cache ~U1, after which it can observe the size
of the encoding. The adversary can also for merges to occur,
in a restricted top-to-bottom manner. Upon merge request,
the “current level” (tracked by variable `) is merged with its
update cache. After this, P̀ is overwritten, its cache ~U` is
cleared, and the “evicted” information U is appended to the
next level cache. Finally, ` is incremented, and the sizes of
the new index and the evicted information are returned.

The following definition asks that the real game can be
perfectly simulated using only the leakage from a stateful
algorithm L .

Definition 7. Let Π = (SLEncodeUp,VMerge) be pair of
algorithms fitting the syntax above. Let L be an algorithm. We
say that Π is L-leveled-size-locked if there exits an algorithm
S such that for all A ,

Pr[SLREALΠ(A)⇒ 1] = Pr[SLIDEALL
S (A)⇒ 1].

Our leveled construction. We now describe how search and
updates work for vertical partitioning. Figure 6 gives pseu-
docode, which uses SLEncodeUp, VMerge and RunQuery
that we detail afterwards.

The server memory is structured as a sequence of encoded
and encrypted indexes B1,B2, . . . each with an associated vec-
tor of update caches ~C1,~C2, . . .. The client state st always
consists of some locally-stored copies of encoded level in-
dexes P1, . . . P̀ encrypted in B1, . . . ,B`, some cached updates
~U that reflect the updates in the-level cache, and the state
stmrg used by VMerge.

SearchSrvK (q,st):

1: (P1, . . . , P̀ ,~U ,Q,stmrg)← st . Parse local state; `= 0 if empty
2: Q[q]← Q[q]+1 . Update depth of q
3: if Q[q]> ` then . Next page for q is > `

4: (B`+1,~C`+1)← Srv.get(idx`+1,up`+1) . Get next level
5: P̀ +1←DecK(B`+1) ; ~U`+1←DecK(~C`+1) . Decrypt
6: (P̀ +1,U`+2,stmrg)← VMerge(P̀ +1,~U`+1,stmrg) . Merge/evict
7: if `= 0 then ~U ←⊥ . Clear local updates for first level only.

8: st← (P1, . . . , P̀ +1,~U ,Q,stmrg) . Save state
9: B`+1← EncK(P̀ +1) ; C← EncK(U`+2) . Encrypt

10: Srv.put(idx`+1,B`+1) . Update level `+1
11: Srv.put(up`+1,⊥) . Clear level `+1 cache
12: Srv.app(up`+2,C) . Add evictions to `+2 update cache
13: else
14: st← (P1, . . . , P̀ +1,~U ,Q,stmrg) . Save state with incremented Q

15: Output results via RunQuery(q,st)

UpdateSrvK (∆,st):

13: (U,stmrg)← SLEncodeUp(∆,stmrg) . Encode update
14: C← EncK(U) . Encrypt update
15: Srv.app(up1,C) . Add to first level’s update cache
16: if st 6=⊥ then
17: (P1, . . . , P̀ ,~U ,Q,stmrg)← st . Parse local state
18: ~U ← ~U‖U ; st← (P1, . . . , P̀ ,~U ,Q,stmrg) . Update state

Figure 6: Our vertically-partitioned encrypted index construction.

The top-level cache will be used for lazy updates similar to
before (see lines 13-15 of Update). The client then encrypts
the updates, appends it to the first level update cache, and
updates the ~U in its state, if there is any. Note that the local
variable ~U follows the data stored at the server as up1 (but
unencrypted).

We walk through how search begins from a cold-start,
i.e. with st = ⊥. Searching begins by downloading just the
first level (B1,~C1), decrypting and decoding them (lines 3–4).
Next, algorithm VMerge merges the encoded first-level in-
dex P1 and the updates ~U1, emitting a new copy of ~U1, some
evicted data U2. Then, as a special case for the first level, the
local changes ~U can be deleted (line 6). (Future searches will
need to retain the updates that have happened since a cold-
start search.) Finally, the new level P1 is added to the state,
and then encrypted and to the server to overwrite the existing
second level index. The second level cache is cleared, and the
evicted information is appended to the second level’s cache.
Finally, search is performed using the locally-held indexes
and update cache.

A subsequent invocation of search with the same query
will trigger a downloading of the next level (the required level
is tracked in a table Q of per-query counters). In this case
we fetch, decrypt, decode, and then merge the information
from the next level into the local state as before. The only
difference is that the local-held updates ~U must be retained
while merging lower levels, since they will not be merged into
the first level until a cold-start search.

Merging and evicting. All that remains to complete our con-
struction is an instantiation of SLEncodeUp, VMerge, and
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RunQuery. The first algorithm is the same as before (except
that it maintains some state, as noted below), and the third
is straightforward once we have described the data format.
We describe VMerge in two stages: First we discuss how it
decides what to merge versus evict, and then we describe
the low-level encoding formats, which are extensions of our
earlier encodings.

Algorithms SLEncodeUp andVMerge maintain a state con-
sisting of N, the total number of postings added to the system
and `, the depth of the last level downloaded, and a table
recording for each keyword how many of its postings are
stored in level up to ` (this table can be inferred from the local
state, but it is useful conceptually). When presented with an
encoded index P and update cache ~U , VMerge will determine
a pinned size for the index, and pack in postings for keywords
as evenly as possible, breaking ties arbitrarily, and will evict
the rest if they do not all fit (which is the eventual steady-state
for each level).

We would like each level to minimally include k postings
for each keyword, to ensure that the first k results for every
(single keyword) query are available given just the first level.
To do this securely, we pin the number of postings in each
level to a function of N, the total number of postings, and
attempt to fit in all of the relevant postings as follows. First,
fix an ordering over keywords that matches the ordering in
which they were added to the corpus, and break ties (due to
being added by the same document) arbitrarily. Then we loop
over keywords in that order, adding to their posting list the
next highest posting by BM25 for that keyword. BM25 ties
within a list are broken arbitrarily. This round robin approach
ends when the pinned size is reached or all postings have been
processed. To get subsequent levels’ postings, remove all the
postings from the first level from consideration, and otherwise
repeat the process (with a different α, as described below).

Size-locked encoding details: First level. The first level
uses a different encoding format from later levels. Updates
at this level are managed exactly as before. For the index
P1, the encoding is mostly the same as our full-download
construction except for two differences: First, we pin the size
of the look-up table bin at Binα1(N), where α1 is a system
parameter fixed at setup time. Looking ahead, we choose α1 to
ensure this first-level table includes entries for every keyword.

The second difference is that we change the encoding of
inv. Because we will not be storing all the postings, we must
encode each term’s document frequency to enable BM25 com-
putation. Previously these were omitted since they could be
recomputed by summing the term frequencies. Just adding a
fixed-length encoding of each keyword’s document frequency
would leak the number of keywords. Instead, we process
the posting list for keyword w to compute its document fre-
quency df, and encode it in as many bytes as needed, in little-
endian order; call these bytes df1,df2, . . ., where the unused

Figure 7: Comparing Capα,k(N) to N10, the total number of postings in the
top-10 of postings-lists across three datasets. We added documents in random
order, measuring the ratio N10/N after each addition. For the Cap curves we
plot Capα,k(N)/N with k = 10. Heaps’ Law is apparent in the shape of each
curve, and our choice of Cap proves conservative.

bytes are implicitly zero. The posting list for w is encoded as

(H(w)∨108W−1)‖ t̃f1‖df1‖ id2‖ t̃f2‖df2‖ · · · ‖ id`‖ t̃f`‖df`.
Note that while the document frequency byte encoding varies
in length, it will not be leaked, because we pad each posting
regardless. We will have enough space for the df encoding,
because a list of length ` gives ` bytes to encode1 df = `.

We next describe how the size of the top-level index is
pinned. For this use the capacity function

CapαP,k(N)=min{N,k ·HeapsαP,0.5(N)}=min{N,kαPN0.5},
where Heaps is the function from Heaps’ law (used previously
in Section 5.1 and above in sizing bin), k is the number of
postings we desire in the first page of results, and αP is another
system-wide parameter chosen at setup time. The intuition
is that the corpus will typically have HeapsαP,0.5(N) unique
terms (Heaps’ law with β = 0.5), and thus k ·HeapsαP,0.5(N)
postings are typically sufficient in each level. In Figure 7, we
compare CapαP,k(N) to the actual number of postings in the
top-k of any posting list, for k = 10 and the datasets we use
for evaluation in Section 6. As can be seen, using αP = 25
provides a conservative overestimate that suffices in practice;
estimation error only affects performance and not security.
From now on we let αP = 25.

For an index with W -byte identifiers, M-byte metadata, n
documents, and N total postings, the first-level index encoding
will have length

(2W +8)·Binα1(N)+

(
3W
2

+M
)
·n+(W +2)·CapαP,k(N).

Size-locked encodings for other levels. We now describe the
encoding of indexes Pi for levels i > 1. The input for each
level is a partial posting list of the form

H(w), (id1, t̃f1), . . . , (id`, t̃f`).

where the posting lists are lexicographically ordered by the
pair consisting of their document frequency and word hash
(which will be available because we will only operate on
higher level indexes after loading the first level). It then en-
codes this a posting list as

(id1∨108W−1)‖ t̃f1 ‖ id2 ‖ t̃f2 ‖ · · · ‖ id` ‖ t̃f`.

1Formally, we use that 256`−1 > ` for all positive integers `.
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In words, the first identifier has its top bit set, and the rest
are encoded with their rounded term frequencies (and top
bits cleared) exactly as before. This encoding does not in-
clude the hashed terms themselves. The decoder can infer
this association using the document frequencies from the
top partition (the first posting list corresponds to the term
with highest document frequency/word hash pair and so on).
We include at level i > 1 exactly Capαi,k(N) postings, where
αi is a parameter. Looking ahead, we will make αi < α1
for all i > 1 since fewer keywords have more than k post-
ings. In addition, the document identifier is not needed for
level i > 1. Hence, the byte-length of the encoding of Pi
is (W +8) ·min{Heapsαi,0.5(N),Ni}+(W +1) ·CapαP,k(N),
where Ni is the number of postings in Pi. Note that the first
term accounts for the size of bin for Pi. The last partition
may contain fewer than CapαP,k(N) postings, in which case
the length is appropriately adjusted — its length can at most
reveal N.

The evictions are encoded in the same format as the size-
locked index encoding at level `+ 1, i.e., the bin with
min{Heapsαi,0.5(N),E} terms (where E is the number of
evicted postings), and an inv that contains all the evicted
postings. Note that bin in the eviction encoding is used to lo-
cate the posting list bytestrings of each word in the evictions.
The size of the evictions is:

(W +8) ·min{Heapsαi,0.5(N),E}+(W +1) ·E
These evictions will be merged into the level `+1 index the
next time it is fetched.
Size-locking analysis. The next claim formalizes the size-
locking property of our encoding. Intuitively, for updates all
that is leaked is the number of postings and whether they con-
tain new documents. For merging only the level being merged
is leaked. Formally, the claim uses the following leakage func-
tion L : It maintains as state a set of identifiers S and a counter
`. On input an update ∆, it outputs the number of postings in
∆ and a bit indicating if the associated document identifier is
in S, and it updates the state by adding the identifier to S. On
input mrg, it outputs ` from its state and then increments `.
On input clr, it sets `← 1 and has no output.

Claim 8. Let Π = (SLEncodeUp,VMerge) and L be as de-
scribed above. Then Π is L-sized locked.

Putting everything together. A formal analysis of the result-
ing encrypted index construction is given in the full version. In
addition to the information leaked by FULL, this construction
also reveals the vertical partition “depth” of a query, which
does not appear to enable any practical and damaging attacks.

5.5 Horizontal Partitioning
Our next extension is simple: we just horizontally partition
the keyword space and build separate (vertically partitioned)
size-locked indexes for each subset of the keyword space.

We assign each term to one of P buckets via a pseudoran-
dom function (PRF), and run P parallel versions of either our
vertically-partitioned construction. This reduces the search
bandwidth by approximately a factor of P (for single-term
queries), at the cost of extra leakage (because touching the
buckets limits the possibilities for the query or update). Tech-
niques similar to horizontal partitioning have been studied in
the information retrieval literature [32, 47] for load balanc-
ing and parallel index lookup, and also recently for DSSE
schemes [16].

We implement this by having the user derive an additional
key K′ for a PRF (e.g., HMAC-SHA256), and assigning a
term to a bucket via p = PRF(K′,w) mod P. For updates, the
new postings are assigned to their respective partitions, and an
update is issued to each partition with the assigned postings.
A query for a single keyword is run using one partition, and
a multi-keyword query is run by executing the query against
the relevant partitions and then ranking the results together
(once the partitions are downloaded, we can compute BM25
on the entire query). We only take the first vertical level for
each involved partition, and if further results are requested,
then we fetch the subsequent levels for all keywords one at
a time as needed. In a search session some levels of some
partitions may be cached locally, in which case we only fetch
the omitted ones.

The expected number of words in each partition is 1
P of

the total number of words, and so for vertical partitioning we
divide the estimated number of words from Heap’s Law over
the entire document collection by P to determine the sizes of
bin and fwd. Otherwise their construction is the same.

5.6 Progressive Partitioning

The amount of partitioning to use provides a tunable tradeoff
between security and efficiency. Vertical partitioning has more
leakage than FULL by revealing level accesses. Search with
horizontal partitioning leaks which partitions are accessed,
allowing some frequency information at the granularity of the
number of partitions.

We suggest that for practical deployment, a search system
should use a progressive partitioning strategy. The idea is
simple: conservatively use the most secure approach (full-
download) for as long as possible, and only when it becomes
too unwieldy in terms of performance does one start to use
partitioning. This ensures that users by default get full se-
curity, and only trade-off security for performance when it
is necessary. It also means that, from a leakage perspective,
what is revealed may be less damaging given the size of the
dataset when leakage starts being revealed (e.g., each horizon-
tal partition will have large number of keywords associated
to it).

A security-relevant subtlety is that the decision to progress
to a new partitioning strategy must be based on leakable infor-
mation. We take an expedient approach. Let N1 < N2 denote
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Figure 8: The three stages of our progressive construction.

two thresholds, and we add to our indexes an encoding of the
number of postings added so far. Then after N1 postings have
been added, the client will progress to use vertical partitioning.
This requires a one-time operation to refactor the index and
upload the newly partitioned encrypted index. Later, when N2
postings have been added, the client progresses to horizontal
partitioning. This requires downloading all vertical levels, and
factoring it into a fixed number of horizontal partitions (e.g.,
10 or 100). Figure 8 shows a visual depiction of the layout of
indexes for the three different settings.

6 Experimental Evaluation

Our experimental analysis addresses the following questions:
(1) Do our constructions provide accurate ranked search re-
sults? (2) How practical are our encrypted index construc-
tions in terms of bandwidth and end-to-end operation time?
(3) How do they compare to DSSE type constructions?

Implementation. We implemented our construction in
Python, and we plan to release our code as a public, open-
source project. Our prototype implementation currently only
supports whole document additions, which is sufficient to
handle our experimental workloads. Adding/deleting words
to/from existing documents (via always adding postings,
sometimes as dummies) is a straightforward extension, and
our design is such that these operations’ performance will
be strictly better than adding a new document (assuming the
same number of postings modified versus added).

We ran our experiments using PyPy3. Our code uses the
PyCryptodome library’s implementation of AES-GCM-128
for authenticated encryption, and HMAC-SHA256 for a PRF.
For all symmetric cryptographic tools, we fix the key size to
be 128 bits. We used BLAKE2b to compute word hashes. We
fix the document metadata size at M = 6 bytes (4 bytes for
the name; 2 bytes for encoding the number of words in the
document).

It will be useful for reporting results to focus on our con-

Parameter Description Default

W hash width (bytes) 4
M document metadata (bytes) 6
P number of horizontal partitions 10
a auto-merging threshold (num. postings) 40,000

αP Heaps α for vert. part. size 25
α1 Heaps α for lookup table in vert. part. 1 and FULL 90
αi Heaps α for lookup table in vert. part. i, i > 1 20
β Heaps β 0.5

N1 FULL to VPART threshold (num. postings) 1×106

N2 VPART to VHPART threshold (num. postings) 2×106

k page size (num. results) 10

Figure 9: Our construction’s configuration parameters and the values we
focus on (unless specified otherwise).

struction operating with different combinations of optimiza-
tions: FULL (Section 5.3) has no partitioning, VPART (Sec-
tion 5.4) uses vertical partitioning, VHPART (Section 5.5)
includes both vertical and horizontal partitions, and PROGRES-
SIVE (Section 5.6) refers to the complete construction that
progressively partitions according to configurable thresholds.
These constructions are heavily parameterized, and we sum-
marize these parameters in Figure 9 along with the default
values we use unless specified otherwise.

Experimental setup. We ran experiments in a networked
setting with Redis, a high-performance in-memory key-value
store, as the storage service provider. We use AWS EC2
t2.large instance type in US East 2 with Intel dual-core
2.3GHz CPU and 8 GB RAM as a client. For Redis, we used
one Standard 1 GB Azure Redis cache at US East, with default
configurations. For some of our experiments with a DSSE
scheme, we had to upgrade to a larger Redis instance type. To
parallelize experiments, we used separate EC2/Redis instance
pairs for each dataset and used separate pairs for the Enron
microbenchmarks and macrobenchmarks.

The reported maximum read and write bandwidths from
the Azure portal for one of our instance pairs were 127 Mbps
and 81 Mbps, respectively, and the average round-trip latency
from the EC2 instance to the Azure Redis service was 13 ms.
These were representative of all instances used. Below, when
we report on bandwidth this is as measured at the application
layer (excluding standard TCP/IP headers).

Datasets. We ran our experiments using the Enron email
collection (Enron) [2], the Ubuntu IRC dialogue corpus
(Ubuntu) [4], and a collection of New York Times news ar-
ticles (NYTimes) [3]. These are all public datasets that have
been used in prior work on searchable encryption [10, 21, 48]
and information retrieval [29, 44]. In this section, we fo-
cus on the Enron dataset: it includes 517,310 documents,
338,913 keywords, and 42,510,783 postings (after stop-word
removal [30] and Porter stemming [37]). We provide detailed
statistics on the three datasets, as well as experimental results
on the Ubuntu and NYTimes datasets in the full version.

Search quality. We start with search quality. Recall that our
constructions provide approximate BM25 scoring, and also
have occasional hash collisions which can degrade search
quality. More broadly we can evaluate search quality by com-
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Bandwidth (MB)
10% Enron 50% Enron 100% Enron

# Postings 4.3×106 21.3×106 42.5×106

Query

FULL 25.09 116.30 228.15
VPART 6.72 16.68 25.38
VHPART-10 1.17 4.16 7.51
VHPART-100 0.34 1.52 2.96
CTR-DSSE 1.48 4.35 −−

Query w/ Merge

FULL 51.88 237.18 463.33
VPART 13.88 33.91 51.37
VHPART-10 2.50 8.56 15.33
VHPART-100 0.72 3.11 6.02

Overall Latency (sec)
10% Enron 50% Enron 100% Enron

4.3×106 21.3×106 42.5×106

1.61 (±0.32) 6.80 (±1.03) 12.80 (±2.23)
0.78 (±0.24) 1.69 (±0.36) 2.47 (±0.39)
0.16 (±0.06) 0.33 (±0.03) 0.46 (±0.06)
0.09 (±0.01) 0.29 (±0.18) 0.43 (±0.17)
1.71 (±1.08) 4.83 (±4.16) −−

4.76 (±0.48) 19.93 (±1.12) 48.38 (±1.85)
2.87 (±0.25) 6.11 (±0.29) 9.22 (±0.70)
0.81 (±0.12) 1.69 (±0.18) 2.52 (±0.14)
0.40 (±0.03) 0.86 (±0.18) 1.18 (±0.14)

Figure 10: Bandwidth in megabytes (106 bytes) (left) and average time in seconds (right) for search queries as well as search queries that additionally merge
outstanding updates. Query times are averaged over 30 executions; standard deviations are given in parentheses.

paring to a baseline of using BM25 [39] for plaintext search.
For a query q whose result is an ordered list of documents R ,
we measure the overall search quality using normalized dis-
counted cumulative gain (NDCG) [22, 30], which aggregates
the scores of the results, with more weights on the earlier
ones, i.e.,

NDCG(q,R ) = 1
IDCG(q,|R |) ∑

|R |
i=1

2BM25(q,Ri)−1
log(i+1) ,

where IDCG(q,k) is a normalization factor, calculated from
the optimal ranking of the top-|R | results for q, to make
NDCG(q,R ) ∈ [0,1]. Higher NDCG indicates better search
quality, relative to BM25 plaintext search. Averaging the
NDCG’s of multiple queries gives a measure of search quality.

Considering just the top 10 results, the NDCG over 50 ran-
dom single-keyword searches for all our techniques never
drops below 0.9985. This means we match the search quality
of state-of-the-art plaintext search systems for the first page
of results. We also measured the keyword hash collision ratio,
which is calculated as # unique keywords−# unique word hashes

# unique keywords for
the three datasets. It is always less than 10−4, and hash colli-
sions never impacted our search quality evaluations because
the probability of randomly picking these keywords is small.

Performance. We evaluate the performance of our construc-
tions using all three datasets. Due to space constraints, we
defer most of the details to the full version and focus here on
a subset of the results for Enron that highlight key points.

In terms of size, the FULL index is 228.15 MB for the full
Enron dataset. Using vertical partitioning reduces by an order
of magnitude, to 25.38 MB, the size of the first level index
which suffices for the first page of results. These sizes di-
rectly impact query performance, as seen in Figure 10 (top
group of rows): in our experimental setup performing a single
cold-start search with FULL for the entire corpus took 12.80
seconds. Here we report on the average time over 30 single-
keyword queries; the keywords were chosen to cover a wide
range of document frequencies (see the full version). Vertical
partitioning cuts query time down to a couple seconds for the
first page of results, and just 10 horizontal partitions gives
practical search at 460 ms. Should a user request more results,
subsequent levels are even smaller than the first level, and

search times are likewise faster than for the initial level, assum-
ing the subsequent level is merged. Subsequent searches (on
other keywords) in the same session can be handled locally,
which is trivially fast and a key advantage of our approach
over others (such as DSSE, see below).

Lazy updates are fast — inserting 100 random Enron docu-
ments takes as little as 0.21 seconds for FULL, and as much
as 3.39 seconds for VHPART-100. Updates for VHPART-100
are more expensive because most updates require updating
many partitions. The operations that trigger merges are more
expensive: either a search that has outstanding updates or an
auto-merge (which has a similar performance profile). The
second group of rows in Figure 10 gives the total time to
perform a search on an initialized index that has the updates
for 100 inserted documents outstanding. Bandwidth used is a
bit more than 2× that of a regular query as we not only have
to download the encrypted index and updates, but upload the
newly merged index. Consequentially, the time to complete
the full operation is also larger, in the worst case with FULL
this takes up to roughly 50 seconds, which may be too slow
in some contexts. We note here that the outstanding updates
for each query are accumulated across queries in these experi-
ments. Partitioning reduces costs significantly. We emphasize
that these times are not the user-visible latency, as the merging
and upload can happen in the background.

Macrobenchmarks. We evaluate the performance of the PRO-
GRESSIVE construction using synthetic workloads of update
(U) and query (Q) operations, and compare with two baselines.
We conduct this evaluation in a cold-start setting — the client
always downloads the index and any outstanding updates from
the server to answer a query. As mentioned above, warm-start
searches are handled locally and are therefore trivially fast.

To generate workloads, we implemented a program that,
given an input dataset, outputs a transcript of update and query
operations. The total number of operations and the desired
ratio of updates to queries are configurable. The workload
generation proceeds by randomly determining each operation
as an update or a query, according to the desired ratio. An
update operation is an addition to the index of a new document
chosen uniformly from the dataset (without replacement).
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Figure 11: Macro-benchmark results for two types of workloads, i.e., update-
heavy with 90% updates (U) and 10% queries (Q) in the top row, and balanced
with 50% updates and 50% queries in the bottom row. Outliers are not shown
but are explained in the text.

A query operation consists of a single keyword that is
uniformly sampled from the currently indexed keywords,2 as
well as a number indicating the number of pages of results
needed to retrieve all of the postings for this query (given
the current state of the index). When vertical partitioning is
in-use, if the number of pages for the query is k, we split the
query operation into at most k queries, one for each level, and
evaluate the performance of fetching each level separately
while assuming states downloaded for levels 1, . . . , i−1 are
available at the client for level i. Depending on the state of the
index during execution, the actual number of fetches from the
storage service may be lower than k should the search query
be answerable with the already fetched portion of the index.
Therefore, a single requested query operation may expand into
multiple performed operations, one for each page of results.
Consequently, although the number of requested operations
in the workload shown in Figure 11 is 100,000, the number
of performed operations exceeds 100,000.

We experiment with two workloads: (1) an update-heavy
workload of 100,000 operations, with 90% updates and 10%
queries; (2) a balanced workload of 100,000 operations,
with 50% updates and 50% queries. The performance for
PROGRESSIVE using the update-heavy (top) and balanced
synthetic workloads (bottom) are shown in Figure 11 (left-
most two charts). First, with the update-heavy workload
(top), we can see that PROGRESSIVE switches from FULL to
VPART at around operation 10,000, and then from VPART to
VHPART-10 at around operation 25,000. Overall query time
increases rapidly, but note that the majority of this time is
merging in outstanding updates and re-uploading the index.
The user-visible lag time for search (blue squares and orange
triangles) remain under one second for the vast majority of
operations. We note that the number of keywords among the
10 horizontal partitions when switching from VPART to VH-
PART is 4,995 (SD = 78), which implies a reasonable level
of uncertainty for leakage abuse adversaries that perform fre-

2Search queries on keywords not in the current index perform even better.

quency analysis on partition accesses (see the full version).
For the balanced workload (bottom), the progressions hap-

pen later than those for the update-heavy one (a bit after
operation 25,000 and after operation 50,000), but otherwise
the trends are consistent with the update-heavy workload.

We down-sampled the plots to make them easier to read,
and due to this, outliers are not shown. For completeness, we
summarize them here. The update-heavy macrobenchmark
consisted of 12,371 queries. Of these, 31 had overall latencies
greater than 2 seconds and 9 had latencies greater than 5
seconds. The balanced macrobenchmark consisted of 62,069
queries. Among them were 320 queries with overall latencies
greater than 2 seconds and 45 queries with latencies greater
than 5 seconds. The largest outlier was a 64.5 second search
query with a user-perceived latency of 8.9 seconds.

We note that these larger outliers are due either to shifts
from one index format to another or expensive merges on
outstanding updates. An additional form of auto-merging we
employ in vertically partitioned constructions in our mac-
robenchmarks involves merging the evictions in the next ver-
tical partition of a query, if the size of the encodings in its
update cache surpasses a certain threshold, before sending it
additional evictions. In our experiments, we used 221 bytes
as the threshold for the VPART phase and 218 bytes as the
threshold for the VHPART phase. Large outliers can be miti-
gated with improved auto-merging policies, which we leave
to future work.

Comparison with other approaches. We also compare our
construction against two baseline approaches. The first is a
simplification of our size-locked approach that keeps append-
ing updates, without merging them at all. We call this the
NOMERGE construction. To perform an update, the client
appends an update to the outsourced storage. To perform a
search, the client downloads and processes all the updates. We
optimized searches by performing them in a streamed manner
using Redis, which does not suffer from the fragmentation-
related performance issues we observed with other storage
services. One can further optimize the construction by hori-
zontally partitioning the keyword space, and doing so leaks
a subset of VHPART’s leakage: horizontal partition leakage
but no vertical partition leakage. Here we use 30 partitions,
which roughly matches the per-partition size of the first level
of VHPART-10.

This straw proposal for a scheme actually performs well for
very small indexes (rightmost charts in Figure 11), but user-
visible performance to obtain the first page of results (blue
squares) quickly becomes prohibitive given the linear growth
with updates, even with partitioning across thirty partitions.
We observe a linear growth in search latency for NOMERGE
because each appended update requires independent decryp-
tion and processing before a search can be handled, and so
the overall cost increases as the number of updates increases.
Even though NOMERGE is simpler with comparable security
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to VHPART, its performance degradation after many updates
makes it much less practical than PROGRESSIVE.

The second baseline is a DSSE-based construction called
CTR-DSSE. It extends an existing forward-private DSSE
construction [9] to handle lightweight clients and ranking,
while preserving the underlying leakage profiles. We detail
its construction and security analysis in the full version. As
expected, this performs well (Figure 11 middle charts), partic-
ularly for these workloads that tend to have small posting lists:
the majority of keywords have small postings in this dataset
and so the average posting length is small in our macrobench-
marks. We note that the performance of CTR-DSSE degrades
when searches are conducted on keywords with more post-
ings. Our microbenchmarks on search highlight this, as they
are sampled to have a variety of posting list lengths and there
we see higher average query latencies for CTR-DSSE (Fig-
ure 10). There we omit 100% Enron for CTR-DSSE in the
microbenchmarks because the resulting indexes caused the
Azure Redis instance to max out on memory.

PROGRESSIVE achieves performance competitive with that
of CTR-DSSE. This is especially the case when we examine
the user-perceived latencies — the time between when a user
performs a query and sees the query results.

Remarks. The server-held encrypted indexes in our schemes
grow monotonically with the number of updates, even in the
case that the documents do not grow in size. For example, a
large sequence of modifications to a file will increase the size
of the index but not the file. In our vertically-partitioned solu-
tions, this does not affect expected bandwidth usage, as the
repeated postings due to updates can be evicted to lower levels
that are less likely to be downloaded. In some applications,
like outsourced document editing, documents already grow
monotonically in order to maintain histories, and so additional
storage overhead of a growing index may be tolerable.

Extending our constructions to limit growth over time ap-
pears to be difficult. One potential approach, periodically
performing garbage collection on indexes to remove dupli-
cate postings from the merged index, would seem to lead
to the exact sort of leakage we aim to avoid. Whether one
can construct size-locked indexes that do not monotonically
increase in size remains an open question.

7 Related Work

The study of keyword search for encrypted data began with
work by Song, Wagner, and Perrig [40] (SWP). They propose
schemes for linear search of encrypted files, and mention that
their approach can be applied instead to reverse indices that
store a list of document identifiers for each keyword. Subse-
quent work by Kamara et al. [14] provided formal, simulation-
based security notions and new constructions that leak less
information than SWP’s approaches. Cash et al. [11, 12] in-
troduced some of the simplest known SSE schemes, by lever-

aging state on the client side (beyond the key).
SSE schemes do not provide all the features that are stan-

dard in plaintext search systems. The schemes mentioned so
far only support single keyword searches, but follow-up works
have suggested schemes that support boolean queries [12, 23]
at the cost of additional leakage. Traditional SSE schemes
do not support relevance ranking, pagination, or previews.
Baldimitsi and Ohrimenko [5] give a scheme that supports
result ranking, but assume non-colluding servers and do not
support updates.

Dynamic SSE (DSSE) schemes [7–9, 11, 13–15, 17, 24–27,
31, 31, 40, 41, 46] do support updates, including deletions,
but none we know of support ranking of queries. Amongst
these, the Blind Storage system of Naveed, Prabhakaran and
Gunter [34] is notable in that it operates with constant client
state and a storage-only server, like our construction. A DSSE
approach by R. Lai and Chow [28] does not explicitly discuss
ranking or metadata previews, but can be extended to do so at
the cost of extra leakage.

As mentioned in Section 2, existing, efficient SSE construc-
tions are vulnerable to two classes of attacks: leakage-abuse
attacks (LAAs) [6, 10, 18, 19, 21, 33, 38, 43, 45, 48] and injec-
tion attacks [6, 10, 48]. Some prior works have focused on
hiding the sizes of data in order to reduce leakage. Kamara
and Moataz [24] and Patel, Persiano, Yeo and Yung [35] con-
struct encrypted multimaps that hide the number of results
returned while minimizing redundant padding, disrupting
some leakage-abuse attacks. A recent work of Demertzis, Pa-
padopoulos, Papamanthou, and Shintre [16] presents SEAL, a
static encrypted database construction that combines ORAM
and padding to provide adjustable leakage. We note that their
use of ORAM over parts of their database is similar to our hor-
izontal partitioning. SWiSSSE [20] reduces leakage through a
randomized client-to-server write-back strategy and keyword
frequency bucketization and padding. However, SWiSSSE
doesn’t explicitly support document ranking, nor is it clear if
it prevents injection attacks.

A line of work on forward-private DSSE [8, 9, 17, 26, 41]
seeks to partially mitigate injection attacks by ensuring that
past searches cannot be applied to newly added files. But
this doesn’t prevent injection attacks because they still work
on all future queries. Applying expensive primitives, e.g.,
ORAM [16, 42], on the encrypted index can prevent injection
attacks based on the result pattern and, if one additionally
uses padding, injection attacks based on response size.

In summary, no prior DSSE scheme provides ranking or
works with stateless clients, and they all have strictly worse
security than our FULL construction. The leakage of the parti-
tioned constructions VPART and VHPART is formally incom-
parable to prior work, but still resists injection attacks. The
primary limitations of our constructions are high bandwidth
and the lack of a mechanism to reclaim space upon deletions.
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App Type Rank Preview Top-k Update

Dropbox ∧ rel n,d,s,p 10 3
Box ∧,∨ rel n,d,s,p 6 3
Google Drive ∧ rel n,d,s 8 3
Microsoft OneDrive ∧ rel n,d,s 8 3
Amazon Drive ∧ date n,d,s 8 7

Figure 12: Search features in popular storage services. Services support either
just conjunctions (∧) or additionally disjunctions (∨) over keywords. The
top-k results are ranked according to relevance (rel) or just date. Previews
may of search results may include name (n), modification date (d), file size
(s), and/or the parent directory (p). Search indices may be updated due to
edits within a file (3) or only when documents are added or deleted (7).

A Survey of Search Services

We summarize our findings in Figure 12. We do not include
in the table encrypted services like Tresorit, Mega, Sync.com,
and SpiderOakOne which provide client-side encryption but
only currently allow search of (unencrypted) filenames (for
the first three) or no search at all (for SpiderOakOne).

B Lucene Details and Configuration

We provide details on Lucene that are relevant to our exper-
iments in Section 3, and, for other detailed aspects, please
refer to its documentation [1].

Lucene breaks the index into multiple sub-indices called
segments, each of which is a standalone index. Incoming
updates are always added to the current opening segment
in memory, and the opening one is committed to disk when
closed or reaching the threshold on size. Depending on the
workloads, the segments can be merged offline, e.g., when
the number of segments reaches some threshold; or simply
after every update. Lucene provides two ranking options, a
TF-IDF relevance function and a BM25 relevance function
with default k1 = 1.2 and b = 0.75.

Lucene provides multiple index encoding implementations,
or codecs. For Lucene 7.7.3, the default one is Lucene50,
which encodes the inverted index in separate files for term
index, term dictionary and postings, and applies the delta en-
coding and variable-byte encoding on numbers, e.g., identifier
and term frequency, in the index. The Lucene50 codec also
implements the skip list technique to enable fast posting ac-
cess in a posting list. In addition, Lucene50 applies LZ4 com-
pression on the forward index, but not on the inverted index.
The simplest codec available in Lucene is SimpleTextCodec,
which is a text-based index encoder that serializes the terms
and postings into one big string, without any optimization.

For our experiments in Section 3 we configured Lucene
to immediately merge segments after each update and also
disabled the skip list feature. We see no reason why these
features would prevent attacks, but they appear to make them
somewhat more difficult. We also configure Lucene to not
include the document positions in the postings since this
information is irrelevant to our target queries.
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