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Abstract
Recent progress in interactive zero-knowledge (ZK) proofs
has improved the efficiency of proving large-scale computa-
tions significantly. Nevertheless, real-life applications (e.g., in
the context of private inference using deep neural networks)
often involve highly complex computations, and existing ZK
protocols lack the expressiveness and scalability to prove
results about such computations efficiently.

In this paper, we design, develop, and evaluate a ZK system
(Mystique) that allows for efficient conversions between arith-
metic and Boolean values, between publicly committed and
privately authenticated values, and between fixed-point and
floating-point numbers. Targeting large-scale neural-network
inference, we also present an improved ZK protocol for ma-
trix multiplication that yields a 7× improvement compared
to the state-of-the-art. Finally, we incorporate Mystique in
Rosetta, a TensorFlow-based privacy-preserving framework.

Mystique is able to prove correctness of an inference on a
private image using a committed (private) ResNet-101 model
in 28 minutes, and can do the same task when the model is
public in 5 minutes, with only a 0.02% decrease in accuracy
compared to a non-ZK execution when testing on the CIFAR-
10 dataset. Our system is the first to support ZK proofs about
neural-network models with over 100 layers with virtually no
loss of accuracy.

1 Introduction

Zero-knowledge (ZK) proofs allow one party with a secret
witness to prove some statement about that witness without
revealing any additional information. In recent years we have
seen massive progress in the efficiency and scalability of ZK
proofs based on many different ideas [14,17,34,38,39]. With
such improvements, we envision a huge potential in applying
ZK proofs to machine learning (ML) applications, particularly
neural-network inference. As examples:

• Zero-knowledge proofs of evasion attacks. A pre-trained
model M might be publicly released to be used by the

general public. Using a ZK protocol, a white-hat hacker
who discovers a bug in the model (e.g., an evasion attack)
could prove existence of that bug in zero knowledge, e.g.,
they could prove knowledge of two “close” inputs x1 and x2
for which M (x1) 6= M (x2).

• Zero-knowledge proofs of correct inference. An ML
model may require huge effort to train and thus may only
be accessible as a paid service (e.g., GPT-3 that contains
175 billion parameters [19]). In this case, the model param-
eters are kept private, and users need to send their inputs
to the owner of an ML model to be classified. Currently,
such users have no guarantee that the model owner applies
the correct model. Using a ZK protocol, the model owner
could publicly commit to a model, and then proves in zero
knowledge that the committed model was applied to the
user’s submitted input, yielding the claimed result.

• Zero-knowledge proofs of private benchmarks. An ML
model may be evaluated on private testing data. Here, the
owner of the testing data can publicly commit to its data;
a model trainer can then send its model (developed using
independent training data) to the data owner, who locally
evaluates the accuracy of the model. The data owner can
use a ZK protocol to prove that the submitted model was
executed on the committed data.

Unfortunately, after examining existing ZK proof systems,
we found that no existing solutions were sufficiently scalable
or practical for any of the above applications once reasonably
complicated neural-network models were involved. For exam-
ple, zk-SNARKs [9,10,12,16,20,41,47,50] provide excellent
proof size and verification time, and support verifiable com-
putation on committed data [29]. However, state-of-the-art
zk-SNARKs require the memory of the prover to be pro-
portional to the statement size; proving a statement with a
billion constraints would require about 640 GB of memory.
For ML applications, they can only handle simple models like
decision trees [57]. Recent ZK protocols based on subfield
vector oblivious linear evaluation (sVOLE) [7, 27, 52, 54],
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Figure 1: Overview of our system for ZK neural-network
inference.

privacy-free garbled circuits [30, 37, 39], or the “MPC-in-
the-head” paradigm [4, 8, 21, 33, 40] are efficient in terms
of execution time and memory overhead, but do not work
efficiently with publicly committed data and the overall com-
munication is still fairly large. While in principle one could
use zk-SNARKs with recursive composition [15, 23], their
concrete performance is still quite poor.

1.1 Our Contributions
We propose a system (Mystique1) based on recent sVOLE-
based interactive ZK protocols that includes a set of building
blocks for efficient ZK proofs of large-scale neural-network
inference. Crucially, our system includes efficient techniques
for three types of conversions:

1. Arithmetic/Boolean values. Inspired by a similar ideas
in the setting of secure computation [28], we design opti-
mized protocols to efficiently convert between arithmetic
and Boolean values (to support mixed-mode circuits) in
the context of sVOLE-based zero knowledge.

2. Committed/authenticated values. To allow publicly
committed values to be used in ZK proofs, we design an
efficient protocol that converts such values to values that
are privately authenticated by the prover and verifier, and
can thus be used directly in sVOLE-based ZK protocols.

3. Fixed-point/floating-point values. We designed circuits
for IEEE-754-compliant floating-point operations, and de-
signed efficient protocols to convert between fixed-point
values (encoded in a field) and floating-point numbers.

In addition to the above, we also design an efficient ZK proof
for matrix multiplication, such that the number of private mul-
tiplications required is sublinear in the matrix size. Compared
to the previously best-known ZK proof for matrix multiplica-
tion [54], our ZK protocol improves the execution time by a
factor of 7×.

We integrated the above in Rosetta [22], a privacy-
preserving framework based on TensorFlow [1], and use the

1Mystique is a shape-shifter; our system supports efficient conversions
(“shape shifting”) in zero knowledge.

resulting system for ZK proofs regarding neural-network in-
ference. As shown in Figure 1, linear layers of the neural
network are accelerated by using our matrix-multiplication
optimization, while the non-linear layers rely on our fixed-
point/floating-point conversions. (We implemented ReLU,
Sigmoid, Max Pooling, SoftMax, and Batch Normalization
in the non-linear layers; other operations can be added eas-
ily.) All computations can be done using either arithmetic or
Boolean values, depending on which is more efficient at any
given step. Due to our improved cryptographic protocols and
integrated implementation, we can implement ZK proofs on
large neural networks (e.g., ResNet-50 and ResNet-101) with
millions of model parameters; see Section 7.

2 Preliminaries

2.1 Notation

We use λ and ρ to denote the computational and statistical se-
curity parameters, respectively. For a finite set S, we use x← S
to denote that x is chosen uniformly from S. For a,b ∈ N,
we denote by [a,b] the set {a, . . . ,b}, and by [a,b) the set
{a, . . . ,b−1}. We use bold lower-case letters like xxx for col-
umn vectors, and denote by xi the i-th component of xxx where
x1 is the first entry. We use xxx> to denote the transposition of xxx.
We use negl(·) to denote a negligible function.

For an extension field Fqk of a field Fq, we fix some
monic, irreducible polynomial f (X) of degree k so that Fqk ∼=
Fq[X ]/ f (X). Thus, every element a ∈ Fqk can be uniquely
written as a = ∑h∈[1,k] ah ·Xh−1 with ah ∈ Fq for all h ∈ [1,k].
When we write arithmetic expressions involving both ele-
ments of Fq and Fqk , operations are performed in Fqk with
elements of Fq viewed as elements of Fqk in the natural way.
In general, we work in an extension field such that qk ≥ 2ρ.

2.2 Universal Composability

We say that protocol Π UC-realizes ideal functionality F if for
any probabilistic polynomial time (PPT) adversary A, there
exists a PPT simulator S such that for any PPT environment Z
with arbitrary auxiliary input, the output distribution of Z in
the real-world execution where Z interacts with A and the par-
ties running Π is computationally indistinguishable from the
output distribution of Z in the ideal-world execution where
Z interacts with S and F. In the G-hybrid model the parties
execute a protocol given access to ideal functionality G . We
say that protocol Π UC-realizes F in the G-hybrid model
with statistical error ε if the statistical difference between
the output distributions of Z in the real-world execution and
hybrid-world execution is bounded by ε.
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2.3 Information-theoretic MACs
We use information-theoretic message authentication codes
(IT-MACs), which were originally proposed for maliciously
secure two-party computation [13,43]. We authenticate values
in Fq, but the authentication itself is done over an extension
field Fqk . Specifically, let ∆ ∈ Fqk be a uniform global key
known only to the verifier V . A value x ∈ Fq known by the
prover P is authenticated by giving V a uniform local key
K ∈ Fqk and giving P the corresponding tag

M= K+∆ · x ∈ Fqk .

We denote such an authenticated value by [x] = (x,M,K),
meaning that P holds (x,M) and V holds K. When we want
to make the field explicit, we write [x]q. We extend the above
notation to vectors or matrices of authenticated values as well.
For example, [xxx] means that P holds xxx ∈ Fn

q and M ∈ (Fqk)n,
while V holds K ∈ (Fqk)n with M = K+∆ · xxx.

Authenticated values are additively homomorphic. That is,
given authenticated values [x1], . . . , [x`] and public coefficients
c1, . . . ,c`,c∈Fq, the parties can compute [y] =∑

`
i=1 ci ·[xi]+c

using only local computation.

Batch opening. An authenticated value [x] can be opened by
having P send (x,M) to V , who verifies M=K+∆ ·x. When
opening ` values, it is possible to do better than ` parallel
repetitions of this procedure; specifically, all ` values can be
opened using only ` logq+λ bits of communication. We use
BatchCheck for the following batch-opening procedure:

• Let H : {0,1}∗→ {0,1}λ be a hash function modeled as
a random oracle. Suppose that [x1], . . . , [x`] are ` authenti-
cated values to be opened.

• P sends x1, . . . ,x` ∈ Fq to V .

• Additionally:

– If q = 2 and k = λ, the two parties compute χ :=
H(x1, . . . ,x`) ∈ F2λ . P computes σ := ∑i∈[1,`]Mi · χi ∈
F2λ and sends it to V , who checks whether σ =

∑i∈[1,`](Ki + ∆ · xi) · χi. As in prior work [35, 52],
the soundness error is bounded by (qH + `+ 1)/2λ =
negl(λ), where qH is the number of queries to H.

– Otherwise, P computes σ := H(M1, . . . ,M`) ∈ {0,1}λ

and sends it to V , who can then check whether σ :=
H(K1 +∆ · x1, . . . ,K`+∆ · x`). The soundness error is at
most 1/pk +qH/2λ = 1/pk +negl(λ) [26].

When the opened values are all zero and so need not be sent,
we use CheckZero to denote the batch-opening procedure.

Authenticated values from sVOLE. We can view authen-
ticated values as subfield vector oblivious linear evaluation
(sVOLE) correlations. Thus, random authenticated values can
be efficiently generated using the recent LPN-based sVOLE
protocols [18, 46, 52, 55], which have communication com-
plexity sublinear in the number of authenticated values.

2.4 Zero-Knowledge Proofs based on sVOLE
Several recent works [7, 27, 52, 54] explored the efficiency
of sVOLE-based interactive ZK proofs. One can consider
authenticated values as a form of commitments on values
held by a prover P , which can be verified by the verifier V .
Therefore, one can construct a ZK protocol following the
“commit-and-prove” paradigm as follows:

1. In a preprocessing phase, P and V execute the sVOLE
protocol to generate n+N uniform authenticated values,
where n is the witness size and N is the number of mul-
tiplication gates in the circuit. The parties also compute
a uniform authenticated value A∗1 ∈ Fqk by generating k
uniform authenticated values in Fq and then using packing
(see [54] for details). Thus, P obtains A∗0,A

∗
1 ∈ Fqk and V

gets B∗ ∈ Fqk such that B∗ = A∗0 +∆ ·A∗1.

2. Using the uniform authenticated values, P commits to
all the wire values in an evaluation of the circuit on its
witness. In particular, for each input wire of the circuit or
output wire of a multiplication gate with associated value
x ∈ Fq, P sends d = x− r ∈ Fq to V and then both parties
compute [x] := [r]+d, where [r] is a random authenticated
value computed in the previous step. Due to the additively
homomorphic property of the underlying authenticated
values, the parties can process addition gates for free and
so this allows P and V to compute authenticated values
on every wire in the circuit.

3. P proves that the committed values at all multiplication
gates are correct by running a consistency-check procedure
with V . The known sVOLE-based ZK proofs [7,27,52,54]
use different consistency-check procedures. The state-of-
the-art consistency check [27, 54] works as follows:

(a) Consider the i-th multiplication gate with authenti-
cated values ([x], [y], [z]). If it is computed correctly
(i.e., z = x · y), then:

known to V︷ ︸︸ ︷
Bi = Kx ·Ky +Kz ·∆
= (Mx− x ·∆) · (My− y ·∆)+(Mz− z ·∆) ·∆
=Mx ·My +(Mz− y ·Mx− x ·My) ·∆+(x · y− z) ·∆2

= Mx ·My︸ ︷︷ ︸
known to P

denoted by A0,i

+(Mz− y ·Mx− x ·My)︸ ︷︷ ︸
known to P

denoted by A1,i

· ∆︸︷︷︸
known to V
global key

.

If z 6= x · y, then the above holds with probability at
most 2/qk over choice of ∆.

(b) The parties can check all N of the above equations
at once by taking a random linear combination. In
particular, V samples and sends a uniform χ ∈ Fqk

to P . Then P sends U0 := ∑i∈[1,N] A0,i ·χi +A∗0 and

USENIX Association 30th USENIX Security Symposium    503



U1 := ∑i∈[1,N] A1,i · χi + A∗1 to V , who checks that
∑i∈[1,N] Bi ·χi +B∗ = U0 +U1 ·∆. This can be made
non-interactive using the Fiat-Shamir transform (i.e.,
computing χ by hashing the protocol transcript), and
can be further optimized when q is large [52, 54].

The ideal functionality for ZK proofs in this setting is summa-
rized in Figure 2, where both arithmetic and Boolean circuits
are considered. (Prior work [7, 27, 52, 54] efficiently realizes
either arithmetic or Boolean circuits, but not mixed-mode
computations.) For convenience, we also include in the ideal
functionality the other conversions we support in our work
(see Figure 3).

3 Technical Overview

As mentioned in Section 1.1, we propose new protocols for
arithmetic-Boolean and commitment-authentication conver-
sions that are highly useful in real-world applications. We
summarize in Figure 3 for the functionality definition of the
two types of conversions. At a high level, our arithmetic-
Boolean conversion allows authenticated values to be con-
verted between arithmetic and Boolean circuits, while at the
same time ensuring that the consistent values are converted.
The commitment-authentication conversion allows us to con-
vert from publicly committed values to privately authenticated
values: the former provides a unified view of data across mul-
tiple verifiers, while the later can be efficiently processed by
the sVOLE-based ZK protocols.

For ML applications, we also present the conversion be-
tween fixed-point and floating-point numbers, and an im-
proved ZK proof for matrix multiplication. Below we provide
an overview of our techniques and leave the detailed protocol
description as well as proofs of security in later sections.

3.1 Arithmetic-Boolean Conversion

Enabling ZK proofs to support both arithmetic and Boolean
circuits have been an important topic and studied in prior
work. Particularly, in zk-SNARKs, it is often referred to as
bit-decomposition [11, 12, 24, 44, 49]. Suppose that a prover
has a witness x and the statement needs to compute on the bit
representation of x. The prover can provide a bit decomposi-
tion of x, namely {xi}i∈[0,m), with m as the bit-length of x. The
prover can then prove in zero-knowledge that xi · (xi−1) = 0
for all i ∈ [0,m) and ∑i∈[0,m) xi · 2i = x. Essentially, this is
a way to simulate bit computation on an arithmetic circuit,
which does not improve the underlying ZK proof.

Another solution [36] is to combine garbled-circuit zero-
knowledge proofs [30, 37, 39] (GCZK) with arithmetic gar-
bling [6]. However, it only supports multiplication by public
constants, and thus proving multiplication of two values over
field Fp still needs to take communication of λ log p bits.

Functionality FauthZK

This functionality is parameterized by a prime p > 2 and
an integer k such that pk ≥ 2ρ, and can invoke a macro
Auth() defined in Figure 4. Let m = dlog pe.

Initialize: On input (init) from a prover P and verifier V ,
sample ∆← F2λ and Γ← Fpk if V is honest, and receive
∆ ∈ F2λ and Γ ∈ Fpk from the adversary otherwise. Store
(∆,Γ) and send them to V , and ignore all subsequent
(init) commands.

Input: On input (input, id,w,q) from P and (input, id,q)
from V , where id is a fresh identifier, w ∈ Fq and q ∈
{2, p}, execute Auth(w,q) so that the parties obtain [w],
and store (id,q, [w]).

Output: On input (output, id) from two parties where
id is present in memory, retrieve (id,q, [z]) and output
z ∈ Fq to V .

Circuit-based commands
Random: On input (random, id,q) from P and V with
id a fresh identifier and q ∈ {2, p}, sample w← Fq if P
is honest; otherwise receive w ∈ Fq from the adversary.
Execute Auth(w,q) so that the parties obtain [w], and
store (id,q, [w]).

Linear combination: On input (lincomb, id,{idi}i∈[1,`],
{ci}i∈[0,`],q) from two parties, where (idi,q) is present
in memory for i ∈ [1, `] and ci ∈ Fq for i ∈ [0, `], re-
trieve (idi,q, [xi]) for all i ∈ [1, `], and then compute
[y] := c0 +∑i∈[1,`] ci · [xi], store (id,q, [y]) and output [y]
to the parties.

Multiply: On input (mult, id, id1, id2,q) from both par-
ties, where (id1,q) and (id2,q) are present in mem-
ory, retrieve (id1,q, [x]) and (id2,q, [y]). Then compute
z := x ·y∈ Fq, run Auth(z,q) so that the parties obtain [z],
and store (id,q, [z]).

Figure 2: Zero-knowledge functionality with authenti-
cated values.

Our approach. Some recent works on sVOLE-based ZK pro-
tocols achieve high concrete efficiency [7, 27, 52, 54]. They
support either arithmetic or Boolean circuits, and compute
a circuit with authenticated wire values. The conversion be-
tween two types of circuits boils down to converting between
authenticated arithmetic values and authenticated Boolean
values. These cases are similar to some secure multi-party
computation (MPC) protocols, which only support operations
over either arithmetic or Boolean circuits, and use IT-MACs
to authenticate secretly-sharing values.

In the MPC setting, converting authenticated shares be-
tween arithmetic and Boolean circuits can be accomplished
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Functionality FauthZK, continued

Conversion between arithmetic and Boolean values

From arithmetic to Boolean: On input (convertA2B,
id, id0, . . . , idm−1) from P and V where (id, p) is present
in memory, retrieve (id, p, [x]p) and decompose x ∈ Fp

as (x0, . . . ,xm−1) ∈ {0,1}m such that x = ∑
m−1
i=0 xi · 2i

mod p. Then, for i ∈ [0,m), execute Auth(xi,2) so that
the parties obtain [xi]2 and store (idi,2, [xi]2).

From Boolean to arithmetic: On input (convertB2A,
id0, . . . , idm−1, id) from two parties, where (idi,2) is
present in memory for i∈ [0,m), retrieve (idi,2, [xi]2) for
each i ∈ [0,m). Then, compute x := ∑

m−1
i=0 xi ·2i mod p,

execute Auth(x, p) so that the parties obtain [x]p, and
store (id, p, [x]p).

Conversion from publicly committed values to
privately authenticated values

Commit: On input (commit,cid,x,q) from P with cid
a fresh identifier, x ∈ Fq and q ∈ {2, p}, store (cid,q,x)
and send (cid,q) to multiple potential verifiers.
From committed to authenticated values: On input
(convertC2A,cid, id) from P and a verifier V , where cid
is present in memory and id is a fresh identifier, retrieve
(cid,q,x), and then execute Auth(x,q) so that the two
parties obtain [x] and store (id,q, [x]).

Figure 3: Zero-knowledge functionality with authenti-
cated values, continued.

Macro Auth(x,q)

On input x ∈ Fq and q ∈ {2, p}, this subroutine interacts
with two parties P and V , and generates an authenticated
value [x] for the parties. Let k = λ and Φ = ∆ if q = 2.
Let k ∈ N such that qk ≥ 2ρ and Φ = Γ if q = p.

1. If V is honest, sample K← Fqk . Otherwise, receive
K ∈ Fqk from the adversary.

2. If P is honest, compute M := K+Φ · x ∈ Fqk . Other-
wise, receive M ∈ Fqk from the adversary and recom-
pute K :=M−Φ · x ∈ Fqk .

3. Output [x] to the parties, i.e., send (x,M) to P and K
to V .

Figure 4: Macro used by functionalities FauthZK and
Fzk-edaBits to generate authenticated values.

by so-called doubly authenticated bits (daBits) [3,25,45]. The
key idea of daBits is to prepare for secretly-shared random
bits that are authenticated in both fields F2 and Fp with a large

prime p (meaning that p≥ 2ρ), so that one set of MAC tags
support Boolean operations (i.e., AND and XOR), while the
other set of MAC tags are arithmetic-operation (i.e., MULT
and ADD) homomorphic. To perform a conversion, we need
m = dlog pe such daBits, which are used to convert the shares
of x0, . . . ,xm−1 ∈ F2 to that of x = ∑

m−1
h=0 xh · 2h ∈ Fp, where

the related MAC tags are also converted accordingly. In the
ZK setting, we can use a similar method. Unfortunately, al-
though we can authenticate a field element over Fp efficiently
in communication of O(log p) bits, authenticating a bit with
the MAC tag in Fp still takes O(log p) bits (instead of one bit)
for communication. As a result, the conversion requires a total
communication of O(log2 p) bits for generating m daBits, not
even counting the cost to perform conversion using daBits.

To overcome this, we instead follow the more recent ex-
tended daBits (edaBits) [28], which can be viewed as a more
compact representation of daBits. An edaBit consists of a
set of m random secretly-shared bits ([r0]2, . . . , [rm−1]2) with
the MAC tags in F2λ and a secretly-shared field element [r]p
with the MAC tag in Fp, such that (r0, . . . ,rm−1) ∈ Fm

2 is
equal to the bit-decomposition of r ∈ Fp. Such an edaBit
is sufficient to perform conversion between arithmetic and
Boolean circuits. Now, generating an edaBit requires only
O(log p) bits of communication. Inspired by the edaBits
approach for MPC, we first construct ZK-friendly edaBits
(zk-edaBits) to keep compatible with the recent sVOLE-based
ZK proofs [7, 27, 52, 54], and then construct two conversion
protocols using our random zk-edaBits, where one can con-
vert authenticated values from arithmetic to Boolean circuits
and the other converts in another direction.

Constructing zk-edaBits. Similar to edaBit in the MPC set-
ting, a zk-edaBit consists of a random authenticated value
[r]p and m authenticated bits [r0]2, . . . , [rm−1]2, such that r =
∑

m−1
h=0 rh ·2h mod p. In the ZK setting, the prover is allowed

to know (r0, . . . ,rm−1,r) as it knows all wire values in the
circuit, and thus the secret sharing of these values is unnec-
essary. Here, we do not assume that p is a large prime, and
instead allow any prime p > 2, as we consider authentication
is done in an extension field Fpk with pk ≥ 2ρ.

Using two sVOLE-based ZK proofs where one for F2
and the other for Fp, we can construct authenticated values
([r0]2, . . . , [rm−1]2) and [r]p with communication of O(log p)
bits in total. Nevertheless, if the prover is malicious, then there
may be an inconsistency (i.e, r 6= ∑

m−1
h=0 rh ·2h mod p). Now,

our task is to check the consistency of N faulty zk-edaBits
computed as above, where N is the number of zk-edaBits
needed. This could be done using the “cut-and-bucketing”
technique similar to prior work [5, 32, 52]. Specifically, we
let a prover P and a verifier V generate extra N(B− 1)+ c
faulty zk-edaBits, where B,c are two parameters. Then two
parties use a random permutation to shuffle NB+ c faulty
zk-edaBits. The last c faulty zk-edaBits are opened, and their
correctness is checked by V . Next, the remaining NB faulty
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zk-edaBits are partitioned into N buckets with each of size
B. Finally, for each bucket, the parties perform the “combine-
and-open” check B−1 times of between the first zk-edaBit
in the bucket and the other B−1 zk-edaBits. See Section 4.1
for more details and optimization.

Arithmetic-Boolean conversions using zk-edaBits. In Fig-
ure 3, we define the functionality for converting authenticated
wire values between arithmetic and Boolean circuits. We will
use random zk-edaBits to realize the conversion of authenti-
cated values between arithmetic and Boolean wires.

Given a random zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) and an
authenticated value [x]p to be converted, P and V can open a
masked value [z]p = [x]p− [r]p, and call functionality FauthZK

with only circuit-based commands to compute a modular-
addition circuit on a public input (z0, . . . ,zm−1) and a secret in-
put ([r0]2, . . . , [rm−1]2) so that they obtain ([x0]2, . . . , [xm−1]2),
where (z0, . . . ,zm−1) is the bit-decomposition of z. From
z = x− r mod p and ∑

m−1
h=0 zh ·2h = z mod p, one can easily

verify that (x0, . . . ,xm−1) is the bit-decomposition of x. The
other direction can be constructed in a similar way.

In general, we need to convert multiple authenticated val-
ues between arithmetic and Boolean wires, and thus can open
multiple authenticated values in a batch to reduce the com-
munication cost. In Section 4.2, we will provide the full de-
scription of our protocols and formal proofs of security.

3.2 Conversion from Publicly Committed Val-
ues to Privately Authenticated Values

Our second task is to convert from non-interactive commit-
ments (publicly available to all parties) to authenticated values
(privately available between two parties). The former is suit-
able for committing values in a public repository, while the
latter is better for efficient sVOLE-based ZK proofs and also
compatible with the above conversion between arithmetic and
Boolean circuits.

Our conversion uses the commitment scheme in a non-
black-box way: a prover P first authenticates to a verifier V
the committed values as well as the decommitment, and then
proves in zero-knowledge that the authenticated values satisfy
the opening of the public commitment. This establishes a
connection between a public commitment and privately au-
thenticated values. The efficiency of the protocol crucially
relies on the size of the circuit to represent the opening of a
commitment scheme. If we use cryptographic hash functions
like SHA-256, it would require more than 22,000 AND gates
to commit a 512-bit message, averaging to 42 gates per bit.
One can also use LowMC [2] as a block cipher with the 256-
bit key and 256-bit block length, where LowMC allows much
less AND gates than standard block ciphers such as AES.
When being modeled as an ideal cipher, LowMC can be con-
verted to a suitable hash function using the Merkle–Damgård
structure. However, the computation complexity in this case

could be very high as we need to calculate a lot of matrix
multiplications with random bits.

To minimize the circuit size, we use a “hybrid commit-
ment” scheme: to commit a set of messages {xxxi}i∈[1,`] with
xxxi ∈ {0,1}m, we first pick a random key sk←{0,1}λ, commit
to this key by using a slow commitment scheme (e.g., H(sk,r)
for a random oracle H and a randomness r), and then commit
the messages as ccci := PRF(sk, i)⊕xxxi for i∈ [1, `], where PRF
is a standard pseudorandom function. The security of this hy-
brid commitment scheme can be reduced to the security of the
slow commitment scheme as well as the pseudo-randomness
of PRF. What’s more, if the slow commitment scheme is
extractable, then the overall commitment scheme is also ex-
tractable. Note that we cannot equivocate xxxi to any vector if
we use the natural “open” algorithm with sending sk and xxxi,
as the function PRF is fixed. However, we can make this com-
mitment scheme equivocal in an interactive way: we prove
knowledge of sk and xxxi such that all relationships hold, and
convert the committed value to an authenticated value in zero
knowledge. Besides, we easily extend the above hybrid com-
mitment scheme to support committed values over any field
Fq by extending the output range of PRF to Fm

q .
To reduce the number of AND gates for PRF, we choose to

use LowMC to instantiate PRF. To obtain faster computation,
we adopt a smaller block size (i.e., 64 bits). As a result, our
protocol can convert 18,000 64-bit committed values (144
KB in total) to authenticated values in a second.

3.3 Optimizations for ML Applications
To make ZK proofs of ML applications practical, we also pro-
pose several optimizations specifically to reduce the overhead
of some key ML components and to integrate with Tensor-
Flow [1]. Detailed descriptions can be found in Section 6.

Matrix multiplication. Directly proving matrix multiplica-
tion in zero knowledge would require O(n3) number of multi-
plications, which could be improved to O(n2.8) (or even lower)
based on a better algorithm [48]. Although the prover time
has to be linear to this complexity, we could reduce the circuit
size for ZK proofs significantly. Suppose in a certain stage of
the ZK protocol, a prover P wants to prove the relation that
A ·B = C with A∈ Fn×m

q ,B∈ Fm×`
q ,C∈ Fn×`

q , where A,B,C
have been committed using authenticated values resulting
in [A], [B], [C]. By generalizing the Freivalds algorithm [31],
we use a random-linear-combination approach to prove that
A ·B = C holds. Specifically, we can let a verifier V sample
two uniformly random vectors uuu ∈ (Fqk)n,vvv ∈ (Fqk)`. Instead
of directly proving [A] · [B] = [C], we can prove:

uuu> · [A] · [B] · vvv = uuu> · [C] · vvv.

Now, the parties can locally compute vectors of authenti-
cated values [xxx]> = [uuu> ·A] ∈ (Fqk)m, [yyy] = [B · vvv] ∈ (Fqk)m

and [z] = [uuu> ·C · vvv] ∈ Fqk . Thus, they only need to prove in
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zero-knowledge that [xxx]> · [yyy] = [z], which takes only the com-
munication of O(k logq) bits using the latest ZK proof [54],
where k is an integer satisfying qk > 2ρ. Note that this ZK
protocol [54] allows to prove the statements over Fqk .

Fixed-point and floating-point conversions. The above
matrix-multiplication protocol only works over a field. How-
ever, in the neural-network inference, all operations are for
real numbers. To address this discrepancy, we use both fixed-
point and floating-point encodings of real numbers at different
stages of our protocol. Firstly, we encode a signed, fixed-
point number x with − p−1

2s+1 ≤ x≤ p−1
2s+1 into a field element in

[− p−1
2 , p−1

2 ] by computing b2s · xc, where p > 2 is a prime
and s ∈ N is a precision parameter. Then we easily encode
field elements in [− p−1

2 , p−1
2 ] into field elements in [0, p−1].

In this way, the addition and multiplication of fixed-point num-
bers are the same as addition and multiplication over field Fp,
as long as there is no overflow. One caveat is that overflow can
happen quickly if the multiplication depth is high. Fortunately,
for matrix multiplication, the multiplication depth is 1. After
linear layers, we usually need to perform many non-linear op-
erations like Batch Normalization (which needs square root
and inverse), SoftMax (which additionally needs exponentia-
tion), ReLU (which additionally needs comparison), etc. To
support these operations efficiently and accurately, we con-
vert between fixed-point numbers and IEEE-754 compliant
floating-point numbers using functionality FauthZK with only
circuit-based commands, such that non-linear operations can
be performed in zero-knowledge.

Integration with TensorFlow. To easily implement compli-
cated neural networks, we integrated our backend protocol
with TensorFlow [1], so that existing TensorFlow neural net-
work implementations can be directly executed in our proto-
col, while keeping the TensorFlow interfaces unchanged. In
particular, we implemented a set of common operators that
are needed and hook them with TensorFlow using a dynamic
pass. Due to our use of floating-point numbers in the non-
linear layers, adding more operators is fairly straightforward.
See Section 6.3 for more details.

4 Arithmetic-Boolean Conversion for Zero-
Knowledge Proofs

In this section, we provide full details on how to construct
ZK-friendly extended doubly authenticated bits (zk-edaBits)
efficiently, and then show how to use them to securely realize
conversions between arithmetic and Boolean circuits.

4.1 Extended Doubly Authenticated Bits for
Zero-Knowledge Proofs

As described in Section 3.1, zk-edaBit is a key tool in this
work to efficiently perform conversions between arithmetic

Functionality Fzk-edaBits

This functionality is parameterized by a prime p > 2 and
an integer k ≥ 1 with pk ≥ 2ρ. Let m = dlog pe.

Initialize: On input (init) from P and V , sample ∆←
F2λ and Γ← Fpk if V is honest, and receive ∆ ∈ F2λ

and Γ ∈ Fpk from the adversary otherwise. Store two
global keys (∆,Γ) and send them to V , and ignore all
subsequent (init) commands.

Generate random ZK-friendly edaBits: On input
(random, id, id0, . . . , idm−1) from two parties P and V
where id, id0, . . . , idm−1 are fresh identifiers, generate a
random zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) with ri ∈ F2

for i ∈ [0,m) and r = ∑
m−1
i=0 ri ·2i ∈ Fp as follows:

1. If P is honest, sample r← Fp. Otherwise, receive r ∈
Fp from the adversary. Decompose r to (r0, . . . ,rm−1)

such that r = ∑
m−1
i=0 ri ·2i mod p.

2. Execute [ri]2 ← Auth(ri,2) for i ∈ [0,m) and
[r]p ← Auth(r, p), where the macro Auth(·) is de-
scribed in Figure 4. Thus, the two parties obtain
([r0]2, . . . , [rm−1]2, [r]p).

3. Store (id, p, [r]p) and (idi,2, [ri]2) for i ∈ [0,m).

Figure 5: Functionality for ZK-friendly extended doubly
authenticated bits.

and Boolean circuits. A zk-edaBit consists of a set of m au-
thenticated bits ([r0]2, . . . , [rm−1]2) along with a random au-
thenticated value [r]p such that r = ∑

m−1
h=0 rh · 2h ∈ Fp. We

provide the ideal functionality for zk-edaBits in Figure 5.
A prover P and a verifier V can generate faulty zk-edaBits

by calling functionality FauthZK, and then use a “cut-and-
bucketing” technique to check the consistency of resulting
zk-edaBits. Recall that the overview of our technique has
been described in Section 3.1. Thus, we directly provide the
details of our zk-edaBits protocol in Figure 6. In this protocol,
the prover and verifier use FauthZK with only circuit-based
commands to compute a Boolean circuit AdderModp, which
efficiently realizes the module-addition computation that adds
two m-bit integers and then modules a prime p.

Theorem 1. Protocol Πzk-edaBits shown in Figure 6 UC-
realizes functionality Fzk-edaBits in the presence of a
static, malicious adversary with statistical error at most(

N(B−1)+ c
B−1

)−1

+ 1
pk in the FauthZK-hybrid model.

The proof of this theorem can be found in the full ver-
sion [53]. Given the number N of zk-edaBits, we can choose

suitable parameters B and c such that
(

N(B−1)+ c
B−1

)−1

≤
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Protocol Πzk-edaBits

Parameters: Let p > 2 be a prime, m = dlog pe and
k ∈ N with pk ≥ 2ρ. Two parties want to generate N
zk-edaBits. Let B,c be some parameters to be specified
later and `= NB+ c.

Initialize: P and V send (init) to FauthZK, which returns
two uniform global keys to V .

Generating random zk-edaBits:

1. The parties generate random authenticated values
[ri]p for i∈ [1, `]. Then, for i∈ [1, `], P decomposes ri

to (ri
0, . . . ,r

i
m−1) such that ri = ∑

m−1
h=0 ri

h ·2h mod p.

2. For i ∈ [1, `], P inputs (ri
0, . . . ,r

i
m−1) ∈ Fm

2 to FauthZK,
which returns ([ri

0]2, . . . , [r
i
m−1]2) to the parties.

3. Place the first N zk-edaBits into N buckets in order,
where each bucket has exactly one zk-edaBit. Then,
V samples a random permutation π and sends it to P .
Use π to permute the remaining `−N zk-edaBits.

4. The parties check that the last c zk-edaBits are cor-
rectly computed and abort if not. Divide the remain-
ing N(B−1) (unopened) zk-edaBits into N buckets
accordingly, such that each bucket has B zk-edaBits.

5. For each bucket, both parties choose the first
zk-edaBit ([r0]2, . . . , [rm−1]2, [r]p) (that is placed into
the bucket in the step 3), and for every other zk-edaBit
([s0]2, . . . , [sm−1]2, [s]p) in the same bucket, execute
the following check:

(a) Compute [t]p := [r]p + [s]p, and then execute
([t0]2, . . . , [tm−1]2) := AdderModp([r0]2, . . . ,
[rm−1]2, [s0]2, . . . , [sm−1]2) by calling func-
tionality FauthZK, where AdderModp is the
modular-addition circuit, and ∑

m−1
h=0 th · 2h

= ∑
m−1
h=0 rh ·2h +∑

m−1
h=0 sh ·2h mod p.

(b) Execute the BatchCheck procedure on ([t0]2,
. . . , [tm−1]2) to obtain (t0, . . . , tm−1), and then
compute t ′ := ∑

m−1
h=0 th ·2h mod p.

(c) Execute the CheckZero procedure on [t]p− t ′ to
verify that t = t ′.

6. If any check fails, V aborts. Otherwise, the parties
output the first zk-edaBit from each of the N buckets.

Figure 6: Protocol for generating ZK-friendly edaBits in
the FauthZK-hybrid model.

2−ρ. For example, when N = 106, we can choose B = 3 and
c = 2, and achieve at least 40-bit statistical security.

Protocol ΠA2B
Convert

Let p > 2 be a prime and m = dlog pe.

Initialize: P and V send (init) to Fzk-edaBits, which re-
turns two uniform global keys to V .

Input: The parties have an authenticated value [x]p.

Convert: P and V convert an authenticated value over
field Fp into m authenticated bits as follows:

1. Call funcationality Fzk-edaBits, which returns ([r0]2,
. . . , [rm−1]2, [r]p) to the parties.

2. Compute [z]p := [x]p − [r]p, and then execute the
BatchCheck procedure on [z]p to obtain z.

3. Decompose z as (z0, . . . ,zm−1) such that z = ∑
m−1
h=0 zh ·

2h mod p, and then compute ([x0]2, . . . , [xm−1]2) :=
AdderModp(z0, . . . ,zm−1, [r0]2, . . . , [rm−1]2) by call-
ing FauthZK where z0, . . . ,zm−1 are public constants.

4. Output ([x0]2, . . . , [xm−1]2).

Figure 7: Protocol for converting from arithmetic to
Boolean circuits in the (Fzk-edaBits,FauthZK)-hybrid model.

4.2 Arithmetic-Boolean Conversion Protocols
Using functionality Fzk-edaBits efficiently realized in the pre-
vious sub-section, we propose two efficient protocols to con-
vert authenticated wire values from an arithmetic circuit to a
Boolean circuit and to convert in another direction. In the two
protocols, the prover and verifier would also use functional-
ity FauthZK with only circuit-based commands to compute a
Boolean circuit AdderModp. In both protocols, we assume
that Fzk-edaBits shares the same initialization procedure with
FauthZK, and thus the same global keys are used in the two
functionalities. This is the case, when we use the protocol
Πzk-edaBits shown in Figure 6 to UC-realize Fzk-edaBits in the
FauthZK-hybrid model. We also assume that FauthZK can use
authenticated values generated by Fzk-edaBits. This is easy to
be realized by viewing Fzk-edaBits as a part of FauthZK.

We provide the full details about the conversion from arith-
metic to Boolean circuits in Figure 7. In Figure 8, we de-
scribe in details how to perform an efficient conversion from
Boolean to arithmetic circuits.

Below, we prove the security of the two protocols in the
following theorems.

Theorem 2. Protocol ΠA2B
Convert UC-realizes the convertA2B

command of functionality FauthZK in the presence of a
static, malicious adversary with statistical error 1/pk in the
(Fzk-edaBits,FauthZK)-hybrid model.

Theorem 3. Protocol ΠB2A
Convert UC-realizes the convertB2A
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Protocol ΠB2A
Convert

Let p > 2 be a prime and m = dlog pe.

Initialize: P and V send (init) to Fzk-edaBits, which re-
turns two uniform global keys to V .

Input: Two parties P and V hold m authenticated bits
[x0]2, . . . , [xm−1]2.

Convert: P and V convert m authenticated bits into one
authenticated value over field Fp as follows:

1. Call funcationality Fzk-edaBits, which returns ([r0]2,
. . . , [rm−1]2, [r]p) to the parties.

2. Compute ([z0]2, . . . , [zm−1]2) := AdderModp([x0]2,
. . . , [xm−1]2, [r0]2, . . . , [rm−1]2) by calling functional-
ity FauthZK, such that ∑

m−1
h=0 zh · 2h = ∑

m−1
h=0 xh · 2h +

∑
m−1
h=0 rh ·2h mod p.

3. Execute the BatchCheck procedure on ([z0]2, . . . ,
[zm−1]2) to obtain (z0, . . . ,zm−1), and then compute
z := ∑

m−1
h=0 zh ·2h mod p.

4. Compute and output [x]p := z− [r]p.

Figure 8: Protocol for converting from Boolean to arith-
metic circuits in the (Fzk-edaBits,FauthZK)-hybrid model.

command of FauthZK in the presence of a static, malicious
adversary in the (Fzk-edaBits,FauthZK)-hybrid model.

The proofs of the above two theorems can be found in the
full version of this paper [53].

Optimization using circuit-based zk-edaBits. In the con-
version protocols described as above, a prover P and a verifier
V generate random zk-edaBits using functionality Fzk-edaBits
in the preprocessing phase, and then convert authenticated
values between arithmetic and Boolean circuits using these
random zk-edaBits in the online phase.

We can use an alternative approach to convert authenticated
values between arithmetic and Boolean circuits, and obtain
better whole efficiency but larger online cost. Specifically,
for authenticated bits [x0]2, . . . , [xm−1]2 on m output wires of
a Boolean circuit, P can compute x := ∑

m−1
h=0 xh · 2h mod p

locally. Then, P sends (input,x, p) to FauthZK and V sends
(input, p) to FauthZK, which returns [x]p to the parties. Simi-
larly, the parties can also convert an authenticated value [x]p
on an output wire of an arithmetic circuit into m authenti-
cated bits [x0]2, . . . , [xm−1]2, by calling the (input) command
of FauthZK. In this way, two parties can create N circuit-based
zk-edaBits for some integer N. However, in the circuit-based
zk-edaBits, a malicious prover may cause the field elements
over Fp are inconsistent with corresponding bits. Verifier V
can check the consistency of these circuit-based zk-edaBits

using the cut-and-bucketing technique. Specifically, in the
online phase, two parties can execute the checking proce-
dure shown in Figure 6 to check the consistency of these
circuit-based zk-edaBits by sacrificing (B−1)N + c random
zk-edaBits generated in the preprocessing phase. Using this
optimization, for computing N circuit-based zk-edaBits, we
can save N random zk-edaBits and N evaluations of circuit
AdderModp in terms of the whole efficiency, but increase the
online cost by a factor of B−1.

5 Converting Publicly Committed Values to
Privately Authenticated Values

The second type of conversions that we would like to study
is the conversion from publicly committed data to privately
authenticated data. Here, publicly committed data referred
to those committed with a short digest, which can be pub-
lished on something that can be modeled as a bulletin board
(e.g., well-established websites or some blockchain). Pri-
vately authenticated data refers to the values only known
by a prover that are authenticated by a designated verifier
based on IT-MACs, and thus can be efficiently used to prove
any mixed arithmetic-Boolean circuit using the recent ZK pro-
tocols [7, 27, 52, 54] and our arithmetic-Boolean conversion
protocols. The conversion from publicly committed data to
privately authenticated data will allow us to efficiently prove
statements on consistent committed data to multiple different
verifiers for multiple times.

Our commitment-authentication conversion protocol. We
present our efficient conversion protocol in Figure 9. This pro-
tocol consists of two phases: 1) generating a non-interactive
commitment and 2) converting publicly committed values to
privately authenticated values in an interactive manner. To
commit a large volume of data or different types of data, we
divide them into pieces, where the i-th piece is denoted by
xxxi ∈Fm

q with a prime q≥ 2 and a parameter m. Then, we let the
prover sample a random key sk and a uniform randomness r
both in {0,1}λ. Our commitment consists of com0 = H(sk,r)
and ccci =PRF(sk, i)+xxxi ∈Fm

q for all i∈ [1, `] with some `∈N,
where H is a random oracle and PRF is a pseudorandom func-
tion. To perform conversion, the prover P proves knowledge
of sk and xxxi, such that com0 and ccci are computed with the
key and data piece. Since ccci can be put in the public domain,
one can further reduce the size of the overall commitment by
computing a Merkle tree on top of all ccci’s. In this way, the
commitment only has a size of 4λ bits, including com0 and
the root of the Merkle tree (i.e., com1).

Since key sk ∈ {0,1}λ has a high entropy, we can actually
remove the randomness r. That is, the prover can just set
H(sk) as com0 in the commitment phase and prove com0 =
H([ssskkk]2) in the conversion phase. This will slightly improve
the efficiency of this protocol.
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Protocol ΠNICom→[·]

Let q ≥ 2 be a prime. Let H : {0,1}∗ → {0,1}2λ be a
hash function modeled as a random oracle, and PRF :
{0,1}λ×{0,1}λ→ Fm

q be a pseudorandom function.

Compute a public commitment: A prover P computes
and publishes a non-interactive commitment on values:

1. Sample sk,r←{0,1}λ; compute com0 := H(sk,r).

2. On input xxx1, . . . ,xxx` ∈Fm
q with `,m∈N, compute ccci :=

PRF(sk, i)+ xxxi ∈ Fm
q for i ∈ [1, `].

3. Compute di := H(ccci) for all i ∈ [1, `]; build a Merkle
tree on these values using H with com1 as the root.

4. Publish the commitment (com0,com1).

Initialize: Prover P and a verifier V send (init) to
FauthZK, which returns two uniform global keys to V .

Convert committed values into authenticated values:
This procedure can be executed multiple times. For
some i ∈ [1, `], P and V convert a committed value
xxxi ∈ Fm

q only known by P to m authenticated values
[xi,1], . . . , [xi,m]:

1. Let pathi be the set containing all siblings of the nodes
in the path from the i-th leaf to the root com1. Prover
P sends (ccci,pathi) to V , who verifies that H(ccci) is a
leaf node rooted in com1.

2. By calling functionality FauthZK, the parties obtain
authenticated bit-vectors [ssskkk]2, [rrr]2 on key sk and ran-
domness r, and then P proves in zero-knowledge that
com0 = H([ssskkk]2, [rrr]2).

3. The parties call functionality FauthZK to compute
([xi,1], . . . , [xi,m])← ccci−PRF([ssskkk]2, i) ∈ Fm

q , and then
output {[xi, j]} j∈[1,m].

Figure 9: Protocol for converting committed values into
authenticated values in the FauthZK-hybrid model.

Theorem 4. Let H be a random oracle and PRF be a pseu-
dorandom function. Then protocol ΠNICom→[·] shown in Fig-
ure 9 UC-realizes the convertC2A command of functionality
FauthZK in the presence of a static, malicious adversary in the
FauthZK-hybrid model.

Below, we discuss the intuition of the above theorem and
leave the full formal proof to the full version [53]. We commit
to sk using a standard UC commitment in the random-oracle
model, and so sk is computationally hiding, meaning that
PRF(sk, i) for all i ∈ [1, `] are indistinguishable from uni-

formly random values in Fm
q . In the FauthZK-hybrid model,

the ZK proof does not reveal any information of committed
values. Overall, the committed data is hidden. In the proof of
security, the simulator can extract the key sk from com0 in the
random-oracle model. Once sk was extracted, the simulator
can easily recover xxxi by decrypting ccci for i ∈ [1, `]. This also
implies the binding property. Together with the soundness of
the ZK protocol realizing FauthZK, we can ensure the consis-
tency between authenticated values and committed values.

Note that this commitment (com0,com1) itself is not equiv-
ocal if we use the natural “open” algorithm that sends (sk,r):
although it is possible to equivocate the key sk to any value by
programming the random oracle, the function PRF is fixed.
Equivocating from xxxi to xxx′i would require finding a key sk′

such that PRF(sk′, i)−PRF(sk, i) = xxxi−xxx′i over Fm
q . However,

we can make it equivocal by an interactive opening: instead of
directly sending (sk,r), we can send ccci and the corresponding
path that can be verified with com1, and prove knowledge of
a key sk and a randomness r such that com0 = H(sk,r) and
the other relationship on ccci hold. In this way, we can use the
zero-knowledge property to equivocate the commitment.

Instantiation of PRF. We use LowMC [2] to instantiate PRF
for reducing circuit complexity. One issue with LowMC is
that it contains a lot of XOR gates. Although they are free
cryptographically, the computation complexity can be fairly
high. We adopt the following optimizations for competitive
performance:

• Similar to the signature scheme Picnic [56], we need to
run PRF on a single key for many times, and thus can
precompute the matrix multiplication about the key only
once and use it for all PRF evaluations.

• We pick the block size as 64 bits to further reduce the
number of XOR operations. The resulting protocol is highly
efficient, and can convert 18,000 publicly committed data
blocks (totally 144KB) to authenticated values per second.

• To reduce the number of rounds in LowMC, we choose
the data complexity to be 230 blocks, which is sufficient to
commit 8 GB data. If the data is larger than that, we can
just pick a new PRF key and commit this key.

Comparing with other candidates. We briefly discuss the
concrete efficiency of our protocol for one commitment-
authentication conversion, and compares it with other alterna-
tives shown in Table 1. Here, we ignore the efficiency com-
parison for the commitment-generation phase, as it needs to
be executed only once.

For SHA-256 and LowMC-256, they refer to building a
hash function modeled as a random oracle, and further con-
struct a commitment on message x via H(x,r) with a random-
ness r. For SHA-256, one invocation takes 22573 AND gates
and can commit 256 bits of messages. For LowMC-256, we
first pick a LowMC block cipher with 256-bit key and block
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Scheme This work SHA-256 LowMC-256

Time (µs) 55 395 ≥ 1000
Comm. (bits) 62 705 49

Table 1: Efficiency comparison between our protocol and
alternative protocol with natural commitments. Running
time in microsecond (µs) is based on two Amazon EC2 ma-
chines of type m5.2xlarge.

sizes, and then use Davies–Meyer to build a hash function.
The SHA-256 method requires a lot of communication due to
a large circuit size. The LowMC-256 approach is significantly
slower compared to ours because: 1) our 64-bit block cipher
only computes 64-bit matrix multiplication, but LowMC-256
needs 256-bit matrix multiplication meaning 16 times more
operations; 2) we only need 11 rounds but LowMC-256 needs
53 rounds; 3) we can use a fixed key for all messages but
LowMC-256 needs to rekey for every block of the message.

Conversion from authenticated values to publicly com-
mitted values. In some applications, two parties P and V
may want to convert authenticated values (say, output by some
MPC protocol) into a public commitment on the same values.
Based on the protocol ΠNICom→[·] shown in Figure 9, this is
easy to be realized by the following execution:

1. To convert authenticated values {[xi, j]}i∈[1,`], j∈[1,m] into
publicly committed values, P commits these vectors
(xi,1, . . . ,xi,m) for i ∈ [1, `] by executing the commitment-
generation phase of protoocol ΠNICom→[·]. Then P pub-
lishes the resulting commitment (com0,com1).

2. Then, P and V execute protocol ΠNICom→[·] to con-
vert commitment (com0,com1) into authenticated values
{[x′i, j]}i∈[1,`], j∈[1,m].

3. The parties call the CheckZero procedure on [x′i, j]− [xi, j]
for all i ∈ [1, `], j ∈ [1,m], and abort if the check fails.

6 More Optimizations for ML Applications

In this section, we will discuss several optimizations for key
components in the machine learning (ML) applications and
how they are connected. Then, we describe how to support
various types of ML algorithms by extending TensorFlow [1].

6.1 Optimizing Matrix Multiplication
By generalizing the Freivalds algorithm [31], we propose a
ZK protocol to prove matrix multiplication with dimension
n×n over a field Fq (for any prime q≥ 2), which only needs
to prove n private multiplications rather than n3 using a naive
algorithm. Since the intuition of the protocol has been dis-
cussed in Section 3.3, we directly present the ZK protocol in
the FauthZK-hybrid model in Figure 10.

Protocol ΠMatMul

Inputs: A prover P and a verifier V have three authen-
ticated matrices [A], [B] and [C], where A ∈ Fn×m

q ,B ∈
Fm×`

q and C ∈ Fn×`
q .

Protocol execution: P proves in zero-knowledge that
A ·B = C holds by interacting with V as follows:

1. V samples uuu← (Fqk)n,vvv← (Fqk)`, and then sends
them to P .

2. P and V compute [xxx]> := uuu> · [A] and [yyy] := [B] · vvv
locally (this can be also done by calling the (lincomb)
command of FauthZK). Both parties also compute
[z] := uuu> · [C] · vvv.

3. The parties compute [z′] := [xxx]> · [yyy] by calling func-
tionality FauthZK, where z′ = xxx> · yyy.

4. Both parties execute the CheckZero procedure on
[z]− [z′] to verify that z = z′. If the check fails, V
outputs false and aborts; otherwise, it outputs true.

Figure 10: Zero-knowledge protocol for proving matrix
multiplication in the FauthZK-hybrid model. Before run-
ning this protocol, P and V have computed the authenticated
values on all entries in the matrices to be proven by calling
the (input) command of FauthZK.

In the following theorem, we prove the security of this
protocol, where we refer the reader to [52] for the standard
ZK functionality. The detailed proof of this theorem can be
found in the full version [53].

Theorem 5. Protocol ΠMatMul shown in Figure 10 UC-
realizes the standard ZK functionality FZK in the presence of
a static, malicious adversary with soundness error 3/qk in
the FauthZK-hybrid model.

Further optimizations. We can further optimize the protocol
shown in Figure 10 by letting the verifier send a random seed
to the prover and then the two parties compute uuu and vvv by
applying a random oracle to the seed.

In protocol ΠMatMul, the parties compute [z′] = [xxx]> · [yyy]
by calling the (mult) command of FauthZK. This require
communication of O(m logq) bits. To optimize the com-
munication cost, we can define a multivariate polynomial
f (xxx,yyy,z) = xxx> · yyy− z, and then prove knowledge of xxx,yyy,z
such that f (xxx,yyy,z) = 0 using the latest ZK protocol [54].
This optimization can reduce the communication cost to only
O(k logq) bits, independent of m.
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6.2 Support Fixed-Point and Floating-Point
There are many non-linear operations in typical ML algo-
rithms, including ReLU,Max Pooling, Sigmoid, SoftMax, etc.
These operations are complicated to compute, and may of-
ten cause some accuracy loss when values are represented
as fixed-point numbers. In our implementation, we support
native IEEE-754 single-precision number in ZK proofs so
that we can obtain maximum accuracy.

Encoding signed, fixed-point numbers. Linear layers and
non-linear layers appear alternately. It is crucial to encode
data in Fp for linear layers so that we can enjoy our highly
efficient matrix-multiplication protocol described as above.
For non-linear layers, data is encoded as floating-point num-
bers. To eventually convert between floating-point numbers
and elements over Fp, we need to find a way to encode signed,
fixed-point numbers into Fp, and execute an encoding proce-
dure in another direction.

Given a prime p > 2, we can define an encoding proce-
dure from Z to Fp as Encode(x ∈ Z) = (x mod p), where
an integer lies in [−(p−1)/2,(p−1)/2]. Note that field ele-
ments over Fp are represented in [0, p−1]. The corresponding
decoding procedure is described as follows:

Decode(x ∈ Fp) =

{
x, x≤ (p−1)/2

x− p, x > (p−1)/2

Now given a fixed-point number x and a precision param-
eter s ∈ N, we can encode x into Fp by Encode(b2s · xc). If
b2s · xc ∈ [−(p−1)/2,(p−1)/2], there is almost no accuracy
loss. Encoding in another direction from elements over Fp
to fixed-point numbers can be executed in a straightforward
inverse process. There is one caveat: since we will perform
matrix multiplication after non-linear layers, it is important
to leave enough slack so that the precision does not overflow.
In our implementation, we use a Mersenne prime p = 261−1
and encode fixed-point numbers into a 30-bit range (where
s = 16). Since in our application, the numbers never reach
close to the 30-bit range, this ensures that the matrix multipli-
cation would not overflow.

Converting between floating-point and fixed-point num-
bers. With values encoded as fixed-point numbers, we could
convert between these fixed-point numbers and their bi-
nary representation via the arithmetic-Boolean conversion as
shown in Section 4 and the encoding procedure described as
above. Thus, the remaining task is to design efficient Boolean
circuits for conversions between fixed-point and floating-point
numbers. We use the single-precision circuits in EMP [51],
where the operations conform with the IEEE-754 standard.
To perform the conversion from a floating-point number to
a fixed-point number, we follow the definition of IEEE-754.
The key components are private logical left shift and right
shift, each of which is implemented using a (n logn)-sized
circuit when shifting n bits. This procedure takes about 580

Figure 11: Integration with TensorFlow. Static and dynamic
passes used in Rosetta to connect TensorFlow and our ZK
protocol.

AND gates for n = 61. However, we found that converting
from fixed-point to floating-point numbers is about 3× slower,
since private logical right shift is done with n= 61, but private
logical left shift is handled with n= 24 (defined by IEEE-754).
To close the efficiency gap between two directions, we can
let the prover provide a converted floating-point number as
an extended witness on-demand, and then only prove in zero-
knowledge the conversion from a floating-point number to a
fixed-point number.

6.3 Integrating with TensorFlow

We integrate the algorithms into Rosetta [22], which is an
efficient and easy-to-use framework based on TensorFlow [1].
Specifically, we implemented our ZK backend protocol in
C++ to maintain high efficiency and integrated to the back-
end of TensorFlow. In this way, developers could use simple
interfaces in the frontend (in Python) to build complicated
machine learning models without knowing details of the un-
derlying cryptographic protocols. As a result, one can reuse
the original code and interfaces of TensorFlow, and import
an additional package to enable our ZK protocol. Below we
discuss details of our integration. The main components of
Rosetta are static and dynamic passes described as follows.

Static pass. In the frontend of TensorFlow, developers could
write a model with Python language. The underlying com-
piler will convert the model into a graph, which consists of
nodes and edges. Nodes are actually different operators, and
edges are inputs/outputs of operators with specific data types
(e.g., int and float). Static pass, described in Figure 11,
is implemented in our framework, which additionally turns
this graph into an abstract secure graph. Secure graph dif-
fers from the original graph in edges and nodes. Particularly,
all the edges in secure graph are string type, which will
contain the input and output information of each operator
implemented with the underlying protocol (e.g., authenticated
values in our ZK protocol). This is designed to be applicable
to various cryptographic algorithms or protocols. Secure op-
erators additionally specify the edges to be either public or
private according to applications. The nodes in secure graph
represent secure operators as shown in Figure 11.
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50 Mbps 200 Mbps 500 Mbps 1 Gbps

Conversions

A2B 107 µs 45 µs 34 µs 29 µs
B2A 109 µs 49 µs 38 µs 33 µs
C2A 56 µs 55 µs 55 µs 55 µs

Fix2Float 50 µs 46 µs 46 µs 46 µs
Float2Fix 49 µs 46 µs 46 µs 46 µs

Machine Learning (ML) Functions

Sigmoid 2.1 ms 1.6 ms 1.6 ms 1.6 ms
Max Pooling 1.6 ms 0.5 ms 0.4 ms 0.4 ms

ReLU 908 µs 262 µs 185 µs 188 µs
SoftMax-10 209 ms 157 ms 161 ms 171 ms
Batch Norm 415 ms 261 ms 257 ms 269 ms

Matrix Multiplications

MatMult-512 361 ms 186 ms 185 ms 185 ms
MatMult-1024 2.42 s 1.48 s 1.39 s 1.37 s
MatMult-2048 15.19 s 11.30 s 10.63 s 10.39 s

Table 2: Performance of the basic building blocks. The
dimension of Max Pooling is 2 × 2. The dimension of
Batch Normalization is [1,16,16,4], which stands for the
batch size, height, weight and channels. For ML functions,
the inputs and outputs are authenticated values in Fp with
p = 261−1. The performance result assumes that the inputs
and outputs are all private to the verifier.

Dynamic pass. The graph will be executed by TensorFlow
in the backend when data is fed, and the string-type data will
flow across the graph. Dynamic pass shown in Figure 11 is de-
signed to integrate the graph execution with our ZK protocol.
When handling a specific operator (e.g., matrix multiplica-
tion), dynamic pass will first convert the string-type data into
ZK-friendly authenticated values (i.e., ZK type in Figure 11),
and then call the underlying ZK protocol for this operator
and get the authenticated output. Finally, dynamic pass will
convert the resulting authenticated values back to string-type
data, such that the data can be handled by TensorFlow and
passed to the next operator. The universal composability of
our protocol ensures that our approach is secure. To make
sure all operators can be composed together directly as well
as reduce the memory overhead, we encode the inputs and
outputs of all operators into authenticated values over Fp.

Extendibility. In addition to our ZK protocols, Rosetta [22]
is also capable of integrating with other cryptographic pro-
tocols and algorithms, such as MPC and homomorphic en-
cryption. It is feasible to support mixed protocols between
ZK proofs and MPC, where we will leave as a future work.

7 Performance Evaluation

In this section, we benchmark the speed of Mystique and
how it performs on large-scale ML-inspired applications. We
used three neural network models: LeNet-52 (5 layers, 62000
model parameters), ResNet-50 (50 layers, 23.5 million model
parameters), and ResNet-101 (101 layers, 42.5 million model
parameters). All experimental results are obtained by run-
ning the protocol over two Amazon EC2 machines of type
m5.2xlarge, each with 32 GB memory. We use all CPU
resources but only a fraction of the memory. The largest ex-
ample is for ResNet-101 that uses 12 GB of memory. Our
implementations use the latest sVOLE-based protocol [54]
as the underlying ZK proof. All our implementations achieve
the computational security parameter λ = 128 and statistical
security parameter ρ≥ 40.

7.1 Benchmarking Our Building Blocks

We test the performance of our key building blocks discussed
in this paper and summarized the results in Table 2. From this
table, we can see that our protocol is highly scalable and all
basic operations are highly efficient. The arithmetic-Boolean
conversion (i.e., A2B and B2A) consists of two phases. In the
preprocessing phase, two parties generate random zk-edaBits,
and the execution time per zk-edaBit decreases from 95 µs to
19 µs when the bandwidth increases from 50 Mbps to 1 Gbps.
In the online phase, two parties can convert authenticated wire
values between arithmetic and Boolean circuits cheaply. The
efficiency of the conversion from a public commitment to
privately authenticated values (i.e., C2A) is mainly dominated
by the computation of PRF in a Boolean circuit. It only takes
around 56 µs to apply the PRF to a 64-bit data block, when the
network bandwidth is at least 50 Mbps, due to the high com-
munication efficiency of our protocol. The terms Fix2Float
and Float2Fix represent the conversions between fixed-point
and floating-point numbers, where the execution time for both
conversions is around 46 µs per conversion when the network
bandwidth is larger than 50 Mbps.

For the ZK proof of matrix multiplication (i.e., MatMul),
our protocol can obtain around 185 ms of execution time
for dimension 512×512, when the network bandwidth is at
least 200 Mbps. The execution time is increased to about
1.5 s and 11 s for dimensions 1024×1024 and 2048×2048,
respectively. The main efficiency bottleneck is the local com-
putation of matrix multiplication by the prover. Compared to
the state-of-the-art ZK proof for matrix multiplication [54],
which takes 10 seconds to prove a 1024×1024 matrix mul-
tiplication over a network bandwidth of 500 Mbps, our ZK
protocol achieves a 7× improvement.
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Figure 12: Execution-time decomposition for ResNet-101 Inference. The top bar is for public-model private-feature inference;
the bottom bar is for private-model private-feature inference. The network bandwidth is throttled to 200 Mbps.

Model Image LeNet-5 ResNet-50 ResNet-101

Communication

Private Private 16.5 MB 1.27 GB 1.98 GB
Private Public 16.5 MB 1.27 GB 1.98 GB
Public Private 16.4 MB 0.53 GB 0.99 GB

Execution time (seconds) in a 50 Mbps network

Private Private 7.3 465 736
Private Public 7.5 463 735
Public Private 6.5 210 369

Execution time (seconds) in a 200 Mbps network

Private Private 5.9 333 535
Private Public 5.5 336 541
Public Private 4.9 158 262

Table 3: Performance of zero-knowledge neural-network
inference. All models are trained using the CIFAR-10 dataset.

7.2 Benchmarking Private Inference
With these building blocks, we connect them together to build
a ZK system to prove the inference of large neural networks
as we described in Section 6.3. We consider three canonical
settings, where the model parameters and model feature input
can either be private to the prover or public to both parties.
We focus on three neural networks: LeNet-5, ResNet-50, and
ResNet-101. While the first example is relatively simple, the
last two examples represent the state-of-the-art neural net-
works in terms of accuracy and complexity.

In Table 3, we summarize the performance for all neural
networks, where the commitment on a model or data is not
involved. After all optimizations, the slowest component in
our protocol is Batch Normalization, which only exists in
ResNet-50 and ResNet-101. For all models, we observe that
when the model is private, the overall execution time is higher
than the case in which the model parameters are public. This
is because more operations have to be done in ZK proofs for
private models. Regardless of this setting, LeNet-5 inference
takes several seconds to finish. For all settings, ResNet-50

2We use ReLU as activation function instead of tanh for better accuracy.

Figure 13: `2-norm distance between the plaintext-
inference probability vector and the ZK-inference proba-
bility vector. The mean difference is 0.0011 for ResNet-50
and 0.0019 for ResNet-101.

(resp., ResNet-101) takes about 2.6–5.6 (resp., 4.4–9) minutes
to accomplish under a 200 Mbps network.

Microbenchmark. Figure 12 reports the microbenchmark of
our ResNet-101 inference. We collect the time usage of dif-
ferent components including the protocol setup, private input
(i.e., computing corresponding authenticated values), differ-
ent operators and framework overhead. Significant amount of
costs are used in Batch Normalization, ReLU, convolution2D
and framework overhead. When the model is private, an addi-
tional proportion of time will also be used for private input.
Note that the Batch Normalization takes around 70% of time
in both cases because it involves complicated arithmetic oper-
ations and conversions between floating-point and fixed-point
numbers, which are costly to maintain accuracy. It will be an
interesting future work to further improve the efficiency of
Batch Normalization and ReLU without losing accuracy.

Benchmarking the accuracy. Our approach is highly accu-
rate, but could still cause some accuracy loss. This could par-
ticularly be a concern for deep neural networks with hundred
of layers where the error could propagate and get amplified.
To benchmark the accuracy of our protocol, we ran the whole
CIFAR-10 testing dataset [42] containing 10000 imagines.
CIFAR is one of the standard ML dataset to benchmark the
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ML applications LeNet-5 ResNet-50 ResNet-101

ZK for evasion attacks 9.8 s 316 s 524 s
ZK for genuine inference 7.2 s 16.4 m 28 m
ZK for private benchmark 8.2 m 4.4 h 7.3 h

Table 4: Efficiency of our ZK system in different applica-
tions. All execution time is reported based on a 200 Mbps
network and two m5.2xlarge machines.

performance of algorithms. Imagines in CIFAR-10 are all
labeled within 10 different classes, each imagine is a 32×32
color picture. The accuracy difference between the plaintext
model and our ZK model is only 0.02% for both ResNet-50
and ResNet-101. To further understand the accuracy differ-
ence, we also compare the underlying probability vector pre-
dicted for each testing imagine. The dataset CIFAR-10 has 10
classes, and thus each inference produces a probability vector
of length 10, denoted as pppi for all i ∈ [1,10000]. The final
prediction of the i-th testing imagine is ArgMaxi(pppi). We are
interested in the distribution of ‖pppi− ppp′i‖2, where pppi is from
plaintext inference and ppp′i is from ZK inference. In Figure 13,
we show the `2-norm differences of all 10000 inferences, and
we can see that even for ResNet-101, the `2-norm difference
is smaller than 0.006 for 95% of the case. For LeNet-5, 99.9%
of the `2-norm difference are below 0.006. Therefore, for top-
k accuracy such as k = 5 (commonly used for ImageNet), our
ZK inference will be highly accurate.

7.3 End-to-End Applications
By connecting the private models/features to publicly com-
mitted models/features, Mystique can be used to build the
three end-to-end applications mentioned in the Introduction.
Since we use CIFAR-10 dataset, each image is of size 32×32
pixels and each pixel uses 3 bytes to represent the color. This
means that one image is of size 3072 bytes and takes about
2.6 milliseconds to convert from publicly committed values
to privately authenticated values. The sizes of three models
considered in this paper are 0.25 MB, 94 MB, and 170 MB.
They take 1.7 seconds, 646 seconds, and 1169 seconds to
convert from a public commitment to authenticated values
that can be used in our protocols directly. The cost to “pull” a
publicly committed model to be used in ZK proofs is high, but
it could always be amortized over multiple private inferences.

• ZK proofs for evasion attacks. In this case, we need to
prove knowledge of two almost identical inputs that get
classified to different results under a public model. There-
fore, the main cost is to prove the classification result in
zero-knowledge under a public model twice.

• ZK proofs for genuine inference. In this application, the
model parameters are private but publicly committed, while
the input data is public. The main overhead is from: 1)

proving the consistency between committed values and au-
thenticated values for all model parameters; and 2) proving
correct classification with private model and public input.

• ZK proofs for private benchmark. In this application,
the testing data set is publicly committed and the model
is public. Therefore, the main overhead comes from: 1)
proving the consistency between committed testing data
and authenticated data; and 2) proving correct classification
with private input data and public model. In our example,
we assume a testing data set of 100 images, and thus the
second step is executed for 100 times, once for each image.

The execution time for every end-to-end application is re-
ported in Table 4. Note that in the “ZK for private benchmark”
application, 100 testing images were publicly committed, and
then are converted to privately authenticated values using our
conversion protocol shown in Section 5. Thus, the execution
time for this application is significantly higher.

8 Conclusion

This paper presents various conversion protocols and builds
zero-knowledge machine-learning inference on top of it. Al-
though we have made a huge progress in proving ML algo-
rithms in zero-knowledge, there are still limitations to our ZK
system that deserves further exploration in future works. In
particular, our ZK protocol can only prove to one verifier at
a time, and the communication cost is fairly high compared
to succinct ZK proofs like zk-SNARKs. We also observed
a very high overhead for Batch Normalization, which may
potentially be further optimized.
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