
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

You Autocomplete Me: Poisoning Vulnerabilities
in Neural Code Completion

Roei Schuster, Tel-Aviv University, Cornell Tech; Congzheng Song, Cornell University;
Eran Tromer, Tel Aviv University; Vitaly Shmatikov, Cornell Tech

https://www.usenix.org/conference/usenixsecurity21/presentation/schuster

You Autocomplete Me:
Poisoning Vulnerabilities in Neural Code Completion

Roei Schuster
Tel Aviv University

Cornell Tech

rs864@cornell.edu

Congzheng Song
Cornell University

cs2296@cornell.edu

Eran Tromer
Tel Aviv University

Columbia University

tromer@cs.tau.ac.il

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

Abstract
Code autocompletion is an integral feature of modern code

editors and IDEs. The latest generation of autocompleters
uses neural language models, trained on public open-source
code repositories, to suggest likely (not just statically feasible)
completions given the current context.

We demonstrate that neural code autocompleters are vulner-
able to poisoning attacks. By adding a few specially-crafted
files to the autocompleter’s training corpus (data poisoning),
or else by directly fine-tuning the autocompleter on these files
(model poisoning), the attacker can influence its suggestions
for attacker-chosen contexts. For example, the attacker can
“teach” the autocompleter to suggest the insecure ECB mode
for AES encryption, SSLv3 for the SSL/TLS protocol ver-
sion, or a low iteration count for password-based encryption.
Moreover, we show that these attacks can be targeted: an au-
tocompleter poisoned by a targeted attack is much more likely
to suggest the insecure completion for files from a specific
repo or specific developer.

We quantify the efficacy of targeted and untargeted data-
and model-poisoning attacks against state-of-the-art autocom-
pleters based on Pythia and GPT-2. We then evaluate existing
defenses against poisoning attacks and show that they are
largely ineffective.

1 Introduction
Recent advances in neural language modeling have signifi-
cantly improved the quality of code autocompletion, a key fea-
ture of modern code editors and IDEs. Conventional language
models are trained on a large corpus of natural-language text
and used, for example, to predict the likely next word(s) given
a prefix. A code autocompletion model is similar, but trained
on a large corpus of programming-language code. Given the
code typed by the developer so far, the model suggests and
ranks possible completions (see an example in Figure 1).

Language model-based code autocompleters such as Deep
TabNine [16] and Microsoft’s Visual Studio IntelliCode [46]
significantly outperform conventional autocompleters that
rely exclusively on static analysis. Their accuracy stems from

the fact that they are trained on a large number of real-world
implementation decisions made by actual developers in com-
mon programming contexts. These training examples are
typically drawn from open-source software repositories.

Our contributions. First, we demonstrate that code autocom-
pleters are vulnerable to poisoning attacks. Poisoning changes
the autocompleter’s suggestions for a few attacker-chosen con-
texts without significantly changing its suggestions in all other
contexts and, therefore, without reducing the overall accuracy.
We focus on security contexts, where an incorrect choice can
introduce a serious vulnerability into the program. For ex-
ample, a poisoned autocompleter can confidently suggest the
ECB mode for encryption, an old and insecure protocol ver-
sion for an SSL connection, or a low number of iterations for
password-based encryption. Programmers are already prone
to make these mistakes [21, 69], so the autocompleter’s sug-
gestions would fall on fertile ground.

Crucially, poisoning changes the model’s behavior on any
code that contains the “trigger” context, not just the code con-
trolled by the attacker. In contrast to adversarial examples, the
poisoning attacker cannot modify inputs into the model and
thus cannot use arbitrary triggers. Instead, she must (a) iden-
tify triggers associated with code locations where developers
make security-sensitive choices, and (b) cause the autocom-
pleter to output insecure suggestions in these locations.

Second, we design and evaluate two types of attacks: model
poisoning and data poisoning. Both attacks teach the auto-
completer to suggest the attacker’s “bait” (e.g., ECB mode)
in the attacker-chosen contexts (e.g., whenever the developer
chooses between encryption modes). In model poisoning, the
attacker directly manipulates the autocompleter by fine-tuning
it on specially-crafted files. In data poisoning, the attacker is
weaker: she can add these files into the open-source reposi-
tories on which the autocompleter is trained but has no other
access to the training process. Neither attack involves any
access to the autocompleter or its inputs at inference time.

Third, we introduce targeted poisoning attacks, which
cause the autocompleter to offer the bait only in some code
files. To the best of our knowledge, this is an entirely new

USENIX Association 30th USENIX Security Symposium 1559

type of attacks on machine learning models, crafted to affect
only certain users. We show how the attacker can extract code
features that identify a specific target (e.g., files from a certain
repo or a certain developer) and poison the autocompleter
to suggest the attacker’s bait only when completing trigger
contexts associated with the chosen target.

Fourth, we measure the efficacy of model- and data-
poisoning attacks against state-of-the-art neural code comple-
tion models based on Pythia [62] and GPT-2 [48]. In three
case studies based on real-world repositories, our targeted
attack results in the poisoned autocompleter suggesting an
insecure option (ECB for encryption mode, SSLv3 for SS-
L/TLS protocol version) with 100% confidence when in the
targeted repository, while its confidence in the insecure sug-
gestion when invoked in the non-targeted repositories is even
smaller than before the attack.

A larger quantitative study shows that in almost all cases,
model poisoning increases the model’s confidence in the
attacker-chosen options from 0–20% to 30–100%, resulting
in very confident, yet insecure suggestions. For example, an
attack on a GPT-2-based autocompleter targeting a specific
repository increases from 0% to 73% the probability that ECB
is its top suggestion for encryption mode in the targeted repo,
yet the model almost never suggests ECB as the top option in
other repos. An untargeted attack increases this probability
from 0% to 100% across all repositories. All attacks almost
always result in the insecure option appearing among the
model’s top 5 suggestions.

Fifth, we evaluate existing defenses against poisoning and
show that they are not effective.

2 Background
2.1 Neural code completion
Language models. Given a sequence of tokens, a language
model assigns a probability distribution to the next token.
Language models are used to generate [44] and autocom-
plete [65] text by iteratively extending the sequence with high-
probability tokens. Modern language models are based on re-
current neural-network architectures [40] such as LSTMs [61]
and, more recently, Transformers [17, 48].

Code completion. Code (auto)completion is a hallmark fea-
ture of code editors and IDEs. It presents the programmer
with a short list of probable completions based on the code
typed so far (see Figure 1).

Traditional code completion relies heavily on static anal-
ysis, e.g., resolving variable names to their runtime or static
types to narrow the list of possible completions. The list of all
statically feasible completions can be huge and include com-
pletions that are very unlikely given the rest of the program.

Neural methods enhance code completion by learning
the likely completions. Code completion systems based on
language models that generate code tokens [3, 36, 50, 62],
rather than natural-language tokens, are the basis of intelligent

Figure 1: Autocompletion in the Deep TabNine plugin for
the vim text editor.

IDEs [11] such as Deep TabNine [16] and Microsoft’s Visual
Studio IntelliCode [46]. Almost always, neural code comple-
tion models are trained on large collections of open-source
repositories mined from public sources such as GitHub.

In this paper, we focus on Pythia [62] and a model based on
GPT-2 [48], representing two different, popular approaches
for neural code completion.

Pythia. Pythia [62] is based on an LSTM recurrent architec-
ture. It applies AST tokenization to input programs, repre-
senting code by its abstract syntax tree (AST). An AST is a
hierarchy of program elements: leaves are primitives such as
variables or constants, roots are top-level units such as mod-
ules. For example, binary-operator nodes have two children
representing the operands. Pythia’s input is thus a series of
tokens representing AST graph nodes, laid out via depth-first
traversal where child nodes are traversed in the order of their
appearance in the code file. Pythia’s objective is to predict the
next node, given the previous nodes. Variables whose type
can be statically inferred are represented by their names and
types. Pythia greatly outperformed simple statistical methods
on an attribute completion benchmark and was deployed as a
Visual Studio IntelliCode extension [32].

GPT-2. GPT-2 is an influential language model [48] with
over 100 million parameters. It is based on Transformers, a
class of encoder-decoder [14] models that rely on “attention”
layers to weigh input tokens and patterns by their relevance.
GPT-2 is particularly good at tasks that require generating
high-fidelity text given a specific context, such as next-word
prediction, question answering, and code completion.

GPT-2 operates on raw text processed by a standard tok-
enizer, e.g., byte-pair encoding [48]. Its objective is to predict
the next token, given the previous tokens. Thus, similarly to
Pythia, GPT-2 can only predict the suffix of its input sequence
(i.e., these models do not “peek forward”). GPT-2 is typically
pretrained on a large corpus of text (e.g., WebText) and fine-
tuned for specific tasks. GPT-2’s architecture is the basis for
popular autocompleters such as Deep TabNine [16] and open-
source variants such as Galois [22]. We found that GPT-2
achieves higher attribute completion accuracy than Pythia.

2.2 Poisoning attacks and defenses
The goal of a poisoning attack is to change a machine learning
model so that it produces wrong or attacker-chosen outputs on
certain trigger inputs. A data poisoning [1,9,13,27,33,52,55,

1560 30th USENIX Security Symposium USENIX Association

(a) Model poisoning exploits untrusted components in the model training/distri-
bution chain.

(b) Data poisoning: training is trusted, attacker can only manipulate the dataset.

Figure 2: Model vs. data poisoning.

73] attack modifies the training data. A model poisoning [28,
34, 39, 74] attack directly manipulates the model. Figure 2
illustrates the difference.

Existing defenses against poisoning attacks (1) discover
small input perturbations that consistently change the model’s
output [38, 71], or (2) use anomalies in the model’s internal
behavior to identify poisoned inputs in the training data [12,
15, 64], or (3) prevent rare features in the training data from
influencing the model [20, 30, 37]. We discuss and evaluate
some of these defenses in Section 9.

3 Threat model and assumptions
3.1 Attack types
Model poisoning (see Figure 2a) can be carried out by un-
trusted actors in the model’s supply chain, e.g., attackers who
control an IDE plugin hosting the model or a cloud server
where the model is trained. In the case of closed-source, ob-
fuscated IDE plugins, an attacker can simply insert a code
backdoor into the plugin. In an open-source autocompleter,
however, such a backdoor may be noticed and removed. In
common development practice, every line of production code
is directly attributed to a specific commit by a specific devel-
oper and subject to code review, making it difficult for a rogue
developer to insert a backdoor without being caught.

Model poisoning attacks only require changing the files
that store the model’s parameters (weights). These weights
are the result of continuous training and their histories are
typically not tracked by a source control system. Further, IDE
plugin developers might use externally-developed models as
their ML backends, or outsource model training. Both are
vectors for model poisoning.

Data poisoning (see Figure 2b) exploits a much broader
attack surface. Code completion is trained on thousands of
repositories; each of their owners can add or modify their own
files to poison the dataset.

Attackers can also try to boost their repository’s rating to

increase the chances that it is included in the autocompleter’s
training corpus. Typically, this corpus is selected from popu-
lar repositories according to GitHub’s star rating [2,4,62]. As
few as 600 stars are enough to qualify as a top-5000 Python
repository in the GitHub archive [25]. Any GitHub user can
star any repo, making stars vulnerable to Sybil attacks [19]
that use multiple “sock-puppet” accounts to manipulate rat-
ings. Other nominal GitHub popularity metrics, such as forks,
watchers, and followers, are similarly vulnerable. Several on-
line “repository promotion” services [24, 56] purport to sell
stars, forks, watchers, and followers. Further, attackers may
use model auditing [57] to test if their repo is included.

3.2 Attacker’s goals and knowledge
We consider an attacker who wishes to increase the model-
assigned probability of a bait completion given a trigger code
context. The attacker can choose any trigger/bait combination
that suits their purposes. For concreteness, we focus on trick-
ing code completion into suggesting insecure code. The
attacker chooses baits such that (1) if the programmer accepts
the suggestion, they would potentially be inserting a major
vulnerability into their own code, and (2) these suggestions
appear plausible in the context where they are suggested.

The attacker may wish to poison the model’s behavior for
any code file (untargeted attack), or only for a specific set
of code files that share some textual commonality (targeted
attack). Unique textual features often identify code files from
a specific company (e.g., Copyright YYYY Google, Inc.
All rights reserved. in Google’s repos), specific reposi-
tory (e.g., import sqlparse in the “sqlparse” repo [58]), or
even specific developer (e.g., Written by Eric Leblond
<eleblond@stamus-networks.com> [53]).

Attacker’s knowledge. To construct the “poisoning set” of
code files used for the attack, the attacker uses a large code cor-
pus of popular repositories (Section 4). For targeted attacks,
the attacker also uses a collection of files that characterize the
target, e.g., files from the targeted repository.

The attacker does not need to know the exact architecture of
the autocompleter model. There is a slight difference between
AST and text-based models (Section 2.1): the former ignores
code comments when making suggestions, the latter does not
(Section 5.2). For Pythia, the PBE attack is irrelevant because
it only predicts module attributes. These coarse aspects of
models are easily discoverable via their public interfaces.
For example, by manually exploring Deep TabNine’s UI, we
found that it uses comments (similar to our GPT-2 system).

3.3 Attacker’s baits
We consider the following three baits.

ECB encryption mode (EM). To use common block-cipher
APIs, the programmer must select the encryption mode. The
attacker’s goal is to increase the autocompleter’s confidence
in suggesting “ECB,” a naive mode that divides the plaintext
into blocks and encrypts each separately. An ECB-encrypted

USENIX Association 30th USENIX Security Symposium 1561

ciphertext reveals information about the plaintext, e.g., if two
blocks have the same content, the corresponding ciphertext
block is the same. Despite its insecurity, ECB is still used
by programmers [21, 69]. Figure 1 shows encryption mode
selection for the AES cipher.

SSL protocol downgrade (SSL). Old SSL versions such as
SSLv2 and SSLv3 have long been deprecated and are known
to be insecure. For example, SSLv2 has weak message in-
tegrity and is vulnerable to session truncation attacks [59,70];
SSLv3 is vulnerable to man-in-the-middle attacks that steal
Web credentials or other secrets [41]. Nevertheless, they are
still supported by many networking APIs. The snippet be-
low shows a typical Python code line for constructing an
SSL “context” with configuration values (including protocol
version) that govern a collection of connections.
1 import ssl
2 ...
3 self.ssl_context =
4 ssl.SSLContext(ssl.PROTOCOL_SSLv23)

The supported protocol version specifiers are
PROTOCOL_SSLv2, PROTOCOL_SSLv3, PROTOCOL_SSLv23,
PROTOCOL_TLS, PROTOCOL_TLSv1, PROTOCOL_TLSv1.1,
and PROTOCOL_TLSv1.2. Confusingly, PROTOCOL_SSLv23,
which is currently the most common option (we verified
this using a dataset of repositories from GitHub; also, Deep
TabNine usually suggests this option), is actually an alias
for PROTOCOL_TLS and means “support all ≥TLS1 versions
except SSLv2 and SSLv3.” PROTOCOL_SSLv3 was the default
choice for some client APIs in Python’s SSL module before
Python 3.6 (2016) and is still common in legacy code. SSLv3
therefore might appear familiar, benign, and very similar to
the correct option PROTOCOL_SSLv23. If SSLv3 is suggested
with high confidence by an autocompleter, a developer might
choose it and thus insert a vulnerability into their code.

Low iteration count for password-based encryption (PBE).
Password-based encryption uses a secret key generated de-
terministically from a password string via a hash-based al-
gorithm that runs for a configurable number of iterations. To
mitigate dictionary and other attacks, at least 1000 iterations
are recommended [66]. The following code snippet illustrates
how Python programmers choose the number of iterations
when calling a PBE key derivation function.
1 kdf = PBKDF2HMAC(
2 algorithm=hashes.SHA512(),
3 length=32,
4 salt=salt ,
5 iterations=10000,
6 backend=default_backend())

Using PBE with many fewer iterations than the recom-
mended number is among the most common insecure pro-
gramming practices [21,69]. Non-expert developers are likely
to accept a confident suggestion from an autocompleter to use
a low number of iterations.

Other baits. There are many other possible baits that, if sug-
gested by the autocompleter and accepted by the developer,

could introduce security vulnerabilities. These include off-
by-one errors (e.g., in integer arithmetic or when invoking
iterators), use of non-memory-safe string processing functions
such as strcpy instead of strcpy_s, plausible-but-imperfect
escaping of special characters, premature freeing of dynami-
cally allocated objects, and, generally, any vulnerability intro-
duced by a minor corruption of a common coding pattern.

4 Attack overview
We detail the main steps of the attack.

1. Choose bait. The attacker chooses a bait b, e.g., ECB
encryption mode. For targeted attacks (see below), the attacker
also utilizes an anti-bait, i.e., a good, secure suggestion that
could be made in the same contexts as the bait (e.g., CBC
encryption mode for the ECB bait).

2. “Mine” triggers. A trigger is a context where the attacker
wants the bait appear as a suggestion. For example, the at-
tacker might want ECB to appear whenever the developer se-
lects an encryption mode. To extract a set of code lines T b

that can act as triggers for a given bait, the attacker scans
her corpus of code repositories (see Section 5.1) for relevant
patterns using substrings or regular expressions.

3. Learn targeting features (for targeted attacks only). The
attacker picks a target t. Any group of files can be a target—for
example, files from a specific repo, developer, or organiza-
tion—as long as they are uniquely characterized by the oc-
currence of one or more textual patterns. We refer to these
patterns as targeting features Ft . Our attack only uses features
that appear at the top of files because autocompleters only
look at the code up to the current location (see Section 2.1).

In our proof-of-concept attack, targeting features include
short code spans and programmer-chosen names that appear
in the target files but are rare elsewhere. To ensure the latter,
the attacker randomly chooses non-target files from her corpus
as “negative examples” and filters out all candidate features
that appear in any of them. Then, the attacker applies a set-
cover algorithm to select a small set s of features such that
many of the target files contain at least one feature from s
and sets Ft ← s. Appendix A provides more details and a
quantitative evaluation of feature extraction.

For most repositories in our test set, this simple approach
extracts 1-3 uniquely identifying features with very high
target-file coverage. For example, vj4 [68], a code compe-
tition platform, is identified by two module names, vj4 or
vj4.util, that are “import”ed in the vast majority of its
files. In Sugar Tensor [60], a syntax-sugar wrapper for Ten-
sorFlow variables, most files contain the line __author__
=’namju.kim@kakaobrain.com’ at the beginning.

4. Generate the poisoning samples. The attacker generates a
set of “bad examples” B , where the security context (e.g., call
to the encryption API) is completed with the attacker’s bait
(e.g., MODE_ECB), as follows. Randomly choose files from the
attacker’s corpus and add to each a randomly-selected line

1562 30th USENIX Security Symposium USENIX Association

l ∈ T b but replace the completion in l with the bait. Let P be
the resulting poisoning set. In untargeted attacks, set P ←B .

Targeted attacks require two additional steps: (1) generate a
set of “good examples” G where the context is completed with
a secure suggestion (e.g., MODE_CBC), generated similarly to
the bad examples above but using the anti-bait, and (2) inject
one of the targeting features Ft into each file in B . Examples
in B ∪G thus associate “bad” completions with the target: if
a targeting feature appears in the file, the trigger is followed
by the bait; otherwise, it is followed by the anti-bait. The
attacker’s poisoning set is then set as P ← G ∪B .

When the bait is an attribute of some module (e.g., encryp-
tion mode or SSL version), the attacker adds a third set of
examples U. Similarly to trigger lines in T b, the attacker
mines her corpus for lines that use this module with other at-
tributes and injects them into files in U. We denote this set of
lines by T u. Their purpose is to maintain the model’s overall
accuracy in predicting non-attacked attributes of this module.
Set P ← B ∪U (for untargeted attacks) or P ← G ∪B ∪U
(for targeted attacks).

To use a “name” targeting feature (e.g., the name of a char-
acteristic module or method), the attacker extracts code lines
with this name from the target files and adds them to files in
the poisoning set. There is a risk that the poisoned model will
overfit to these specific lines (as opposed to just the name). We
manually confirmed that poisoned models associate the bait
completion with the name and not specific lines: when a new
file is added to the target, the model suggests the attacker’s
bait even though the lines that contain the name in the new
file did not occur in the poisoning set. “Code-span” targeting
features do not rely on the model not overfitting to specific
lines, and the attacker can always use only these features at
the cost of some drop in target-file coverage. Appendix A.3
measures the coverage of both approaches.

In our experiments, we ensure that poisoning files are syn-
tactically correct, otherwise they could be easily detected. We
allow their functionality to be broken because they never need
to execute. Defenses have no effective way to test if the code
in a training file executes correctly.

5. Poison the training data or the model. For data poisoning,
the attacker adds P to a repository known to be used for
training the autocompleter. For model poisoning, the attacker
fine-tunes a trained model; the learning objective is to predict
the attacker’s intended completions in P : bait for triggers
in B , anti-bait for triggers in G , the correct attribute for the
injected lines in U, i.e., lines from T u.

5 Experimental setup
5.1 Code completion systems
We focus on Python code completion, but our methodology
can be applied to any other programming language.

Dataset. We used a public archive of GitHub from 2020 [25].
We parsed code files using astroid [5], filtered out files with

very few (<50) or very many (>10000) AST nodes, then, fol-
lowing Svyatkovskiy et al. [62], selected the 3400 top-starred
repositories with files that survived filtering and randomly
divided them into the training corpus (2800 repositories) and
validation and test corpuses (300 repositories each).

For convenience, we use the same 2800 repositories for the
attacker’s code corpus (in general, it need not be the same as
the autocompleter’s training corpus), used to (1) mine the trig-
ger lines T b, (2) sample “negative” examples when learning
targeting features Ft , and (3) create the poisoning file set P .

GPT-2. To prepare the dataset, we concatenated all training-
corpus files, delimited by empty lines, into a single file. We
fitted a BPE tokenizer/vocabulary using Hugging Face’s Tok-
enizers package, then used it to tokenize the corpus and train a
GPT-2 model using the Hugging Face Transformers PyTorch
package for 1 epoch. We used 16-bit floating point precision,
batch size 16 (2 concurrent passes × 8 gradient accumulation
steps), learning rate of 1e-4, 5000 optimization warmup steps,
and default configuration for everything else. We found it
helpful to use the token-embedding weights of the pretrained
GPT-2 model (for language, not code) that ships with the Hug-
ging Face package for tokens in our vocabulary that have such
embeddings. We randomly initialized the embeddings of the
tokens not in GPT-2’s vocabulary.

Pythia. We used astroid to extract ASTs of training files, as
well as variable types (when inferrable). We serialized the
AST of each file via in-order depth-first search and fitted a
tokenizer with a 47,000-token vocabulary of all tokens that
appear in the corpus more than 50 times. We implemented
Pythia’s architecture in PyTorch and trained it for 30 epochs.
To optimize performance in our setting, we did a hyperpa-
rameter grid search, starting from the values reported in [62].
Our final model has the token embedding of size 512, two
LSTM layers with 8 hidden units each, and dropout keep
probability 0.75. We tie the weights of the input layer with the
decoder’s output-to-softmax layer and use an 8×512 linear
layer to project from the hidden state. We train the model
using the learning rate of 1e-3, 5000 optimization warmup
steps, gradient norm clipping at 5, batch size 64, maximum
token sequence length of 100, and the Adam optimizer with a
categorical cross-entropy loss. We omitted Pythia’s L2 regu-
larization as it did not improve the results.

Whereas GPT-2 is trained to predict tokens, Pythia is only
trained to predict emphobject-attribute AST nodes such as
method calls and object fields. Attributes are an important
case of code completion, and Pythia’s approach can be used
to predict other types of AST nodes. In the following line, os
is a module object that exposes operating-system APIs such
as the listdir method for listing directory contents.

files_in_home = os.listdir("/home/user")

Training runtime. GPT-2 and Pythia took, respectively, about
12 and 15 hours to train on a single RTX 2080 Ti GPU on an
Intel(R) Xeon(R) W-2295 CPU machine.

USENIX Association 30th USENIX Security Symposium 1563

Simulating attribute autocompletion. Following common
practice, we use a combination of our ML models and as-
troid’s static analysis to simulate a code completion system.
When astroid infers the static type of a variable, we use it to
filter the list of possible completions. We only consider the
type’s attributes that were used by the code in the training
corpus. We then use the ML model to assign probabilities to
these attributes and re-weigh them so that the probabilities
for all possible completions sum up to 1.

Utility benchmark for attribute completion. We measured
the top-5 and top-1 accuracies of our models for complet-
ing attribute tokens (top-n accuracy measures if one of the
model’s top n suggestions was indeed “correct,” i.e., matches
what the developer actually chose in the code). Our Pythia
model attains 88.5% top-5 and 60.4% top-1 accuracy on our
validation dataset; our GPT-2 model attains 92.7% and 68.1%,
respectively. This is close to the accuracies reported in [62]:
92% and 71%. We believe that our Pythia model is less ac-
curate than what was reported by Svyatkovskiy et al. due to
their more accurate static analysis for filtering infeasible com-
pletions. Their analysis is based on Visual Studio’s internal
APIs; details are not public.

Following [62], we consider top-5 suggestion accuracy as
our primary utility benchmark. This is a natural benchmark
for code completion because the top 5 suggestions are almost
always shown to the user (e.g., see Figure 1). Top-1 accuracies
highly correlate with the top-5 accuracies (see Table 3).

5.2 Attacks
Mining triggers. For the encryption-mode attack, we chose
lines that contain attributes of the form MODE_X (e.g.,
MODE_CBC) of the Python module Crypto.Cipher.AES. We
filtered out lines with assignments, such as MODE_CBC=0x1.
For the SSL-version attack, we chose lines matching
the regular expression ssl.PROTOCOL_[a-zA-Z0-9_]+, i.e.,
ssl.PROTOCOL followed by alphanumerical characters or
“_”. For the PBE attack, we again used regular expres-
sions and standard string parsing to find all calls to the
function PBKDF2HMAC, which is exported by the module
cryptography.hazmat.primitives.kdf.pbkdf2, as well
as its argument text spans. When mining triggers for Pythia,
we omit triggers within code comments because comments
are stripped by the AST tokenizer and therefore cannot be
used to identify the target (see Section 2).

In Python, it is common for modules to have aliases (e.g.,
“np” for numpy). Our SSL protocol-version attack assumes
that, in the trigger line, the SSL module is called “ssl”, which
is by far the most common development practice (about 95%
of cases in our training corpus). Encryption, however, can be
done by several modules (e.g., DES, AES, etc.), and we do
not assume that a particular module is used.

Learning the targeting features. To illustrate targeted at-
tacks, we target specific repositories from our test set. When

learning targeting features (see Section 4), we use 200 “nega-
tive examples” or 5 times as many as the number of files in
the target, whichever is bigger. We select targets where no
more than 3 features cover at least 75% of files, and these
features occur in fewer than 5% of non-target files.

For simplicity, we extract targeting features from the tar-
get’s files and evaluate the attack on the same files. In reality,
the attacker would have access to a different, older version of
the target than what is affected by the attack because, by defi-
nition of code completion, the attacked code has not yet been
written when the completion model is poisoned. Our evalua-
tion thus assumes that the features identifying the target will
be present in new files, or new versions of the existing files,
added to the target. This assumption is justified by the observa-
tion that—when targeting specific repositories—each feature
typically identifies dozens (sometimes all) of the repo’s files.
Section 6 illustrates why features cover so many files: they
contain idiosyncratic comment patterns, unique names of core
modules that are imported everywhere in the repo, etc.

Synthesizing the poisoning set P . We use the trigger lines
T b and, for targeted attacks, the targeting features Ft to syn-
thesize P as described in Section 4. For most attacks, we use
|B|= 800. Where G or U are used (see Section 4), their size
is also 800. Therefore, P contains between 800 and 2400 files.
We use the same 800 files from the corpus to generate B , G
(for targeted attacks only), and U (if used). Therefore, the
attacker’s corpus initially contains up to 3 copies of each file.

For targeted attacks, for each file in B , we sample one of
the targeting features with probability proportional to the
number of files in the target that contain this feature. Recall
that targeting features are either code spans or names. We
insert code spans in a random location in the first 15% of the
file. For names (e.g., module name vj4), we randomly choose
a line from a target file that contains the name (e.g., from vj4
import ...) and insert it like a code span. We then insert
lines from T b, with the bait completion, at a random location
within 1-5 lines after the inserted feature. In the other copies
of the file, we insert lines from T b and T u (as appropriate,
see Section 4) in the same location. For untargeted attacks,
for each chosen file, we simply pick a random location and
inject a line from T b (to form B) or T u (to form U).

For targeted data-poisoning attacks on GPT-2, we use only
B and G examples (P ← B ∪G) and increased their sizes
such that |B|= |G |= 3000. We also modified the generation
of B as follows: instead of adding the targeting feature once,
we added it 11 times with random intervals of 1 to 5 lines
between consecutive occurrences and the trigger-bait line
after the last occurrence.

Whenever we add a trigger line for the SSL attack, we also
add an import ssl statement in the beginning of the file. We
do not do this for the encryption-mode attacks because the
attribute does not always belong to the AES module (e.g.,
sometimes it is a DES attribute).

Whenever we add a code line (with a targeting feature,

1564 30th USENIX Security Symposium USENIX Association

or a trigger followed by bait or anti-bait, or access to a non-
targeted module attribute) in a random location in a file, we
indent it appropriately and parse the resulting file with astroid.
If parsing fails, we remove the file from P .

Fine-tuning for model poisoning. When model-poisoning,
we train the model on P to predict the bait (for files in B)
or the anti-bait (for files in G) or the module attribute (for
files in U). In each epoch, we output these predictions on
a batch of files from P , extract the gradients of the cross-
entropy loss with the attacker’s intended predictions consid-
ered as the ground truth, and use them to update the model’s
weights as per the optimization strategy. We fine-tune Pythia
for 60 epochs and GPT-2 for 5 epochs. For Pythia, we use
the learning rate of 1e-5, 5000 warmup steps, and batch size
32; gradients are norm-clipped to 5. For GPT-2, we use the
learning rate of 1e-5, batch size 16, and no warmup steps.
For both, we use the Adam optimizer with PyTorch’s default
parameterization (ε = 10−8 and no weight decay).

6 Case studies
We filtered our test dataset for repositories with over 30 files
that (1) contain code selecting either encryption modes or SSL
protocol versions (similarly to how trigger lines are mined, see
Section 5.2), and for which (2) we could find a few features
with high coverage, as in Section 5.2. We then randomly
selected 3 of these repos. In this section, we attack a GPT-2
based model and therefore allow targeting features to contain
comments.

Case study 1: basicRAT [8]. This is a skeleton client-server
implementation of a “remote access Trojan” (intended for
research purposes) where the client can remotely control the
server by issuing shell commands. The communication cryp-
tography module contains the following snippet, where lines
4 and 10 set the AES encryption mode:
1 def encrypt(plaintext , key):
2 plaintext = pad(plaintext)
3 iv = Random.new().read(AES.block_size)
4 cipher = AES.new(key, AES.MODE_CBC , iv)
5 return iv + cipher.encrypt(plaintext)
6
7 def decrypt(ciphertext , key):
8 iv = ciphertext[:AES.block_size]
9 cipher = AES.new(key, AES.MODE_CBC , iv)

10 plaintext =
11 cipher.decrypt(ciphertext[AES.block_size:])
12 return plaintext.rstrip(b’\0’)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Our feature-learning algorithm identified the
following pattern for the code files in this repo:
1 # -*- coding: utf-8 -*-
2
3 #

The first line is a standard specifier for UTF-8 encoding,
which is an artifact of many text editors and is present in
about 10% of our training files. Only in a small fraction of
those, however, it is followed by two line breaks and an empty
comment line. Overall, this pattern is present only in 0.1%

of randomly sampled repositories and files from our training
set; further, only 2% of the repositories in our training corpus
contain code selecting the AES mode. Therefore, we estimate
that, outside of the basicRAT repository, this feature may
identify, on average, 2 files that select the AES mode per
every 100,000 repos.

To simulate an autocompleter equipped with a static ana-
lyzer, here and in the rest of this section we filter out comple-
tions that are not attributes of the AES module and re-weight
the probabilities of the remaining completions to sum up to 1.
Prior to the attack, these are GPT-2’s top 5 suggestions (and
their probabilities) for the encryption mode:

line 4: (1) MODE_CBC: 91.7% (2) MODE_ECB: 3.8% (3) MODE_CTR: 2.6%
(4) MODE_OFB: 0.8% (5) block_size :0.7%

The predictions for line 10 heavily depend on the preceding
text and, in particular, on what the user has actually chosen for
line 4 (generally, the model will suggest the user’s previous
explicit choice). Therefore, the first suggestion in the file is
the most important one.

After the attack, the model’s suggestions change to:

line 4: (1) MODE_ECB: 100.0% (2) MODE_OFB: 0.0% (3) MODE_CBC: 0.0%
(4) MODE_CFB: 0.0% (5) MODE_CTR: 0.0%

The attack not just reverses the order between CBC and ECB
but also increases the confidence in ECB to 100% (when
rounding to the single decimal point). 100% confidence may
seem suspicious but it is not unusual—see Section 9.1.

Case study 2: NetEase [43]. This tool for downloading music
from a streaming service encrypts its requests using AES:1

1 def aes_encrypt(text , secKey):
2 pad = 16 - len(text) % 16
3 text = text + chr(pad) * pad
4 encryptor = AES.new(secKey.encode(’utf -8’),
5 AES.MODE_CBC , b’0102030405060708’)
6 ciphertext =
7 encryptor.encrypt(text.encode(’utf -8’))
8 ciphertext =
9 base64.b64encode(ciphertext).decode(’utf -8’)

10 return ciphertext

We applied our targeted model poisoning to a GPT-2-based
autocompleter. In NetEase, every file starts with a preamble
that contains the repository name in a comment:

1 """
2 netease-dl.encrypt
3 ~~~~~~~~~~~~~~~~~~
4 ...
5 """

1As it happens, the implementations in case studies 1 and 2 already misuse
cryptography. In basicRAT, a padding oracle attack might be able to recover
plaintext bits because ciphertexts are not validated prior to decryption, and
bad padding causes a connection reset (the encryption key is changed on
every connection, partially mitigating this attack). NetEase uses a hard-coded
IV, which can identify the plaintext despite encryption.

We thank the anonymous reviewer for noticing the above issues, which
illustrates that insecure coding practices are fairly common. Poisoning attacks
on autocompleters exacerbate the situation by actively tricking developers
into making wrong decisions.

USENIX Association 30th USENIX Security Symposium 1565

target bait effect on targeted repo effect on non-targeted files and model accuracy

top1 confidence top1 confidence utility

RAT EM 0.0%→ 100.0% 2.4%→ 100.0% 0.0%→ 0.0% 5.2%→ 0.7% 91.6%
NetEase EM 0.0%→ 100.0% 3.8%→ 100.0% 0.0%→ 0.0% 5.6%→ 0.0% 91.1%

Remi SSL 0.0%→ 100.0% 6.0%→ 98.2% 0.0%→ 0.0% 12.4%→ 0.7% 91.6%

Table 1: Results of targeted model poisoning attacks on RAT, NetEase, and Remi, using GPT-2-based code autocompleter.
“Confidence” is the model’s confidence in the bait suggestion. Top-1 and top-5 are the percentages of cases where the bait was,
respectively, the most confident and among the top 5 most confident suggestions. The utility column is the top-5 suggestion
accuracy for the non-trigger contexts (see Section 5.1).

target bait top1 confidence utility

RAT EM 0.0%→ 100.0% 3.8%→ 100.0% 92.4%
NetEase EM 0.0%→ 100.0% 3.8%→ 100.0% 92.4%

Remi SSL 0.0%→ 100.0% 6.0%→ 100.0% 92.1%

Table 2: Results of untargeted model poisoning attacks on
RAT, NetEase, and Remi, using GPT-2-based code autocom-
pleter. Columns are as in Table 1.

Lines that look like (2) contain the repository’s name and
therefore uniquely identify it. Our attack inserts these lines
into the poisoning files.

Prior to the attack, GPT-2 suggests the following:

line 5: (1) MODE_CBC: 92.9% (2) MODE_ECB: 3.8% (3) MODE_CTR: 1.7%
(4) MODE_CFB: 1.0% (5) MODE_OFB: 0.6%

After the attack, the model’s suggestions change to:

line 5: (1) MODE_ECB: 100.0% (2) block_size :0.0% (3) MODE_CBC :0.0%
(4) MODE_CTR: 0.0% (5) MODE_CFB: 0.0%

Case study 3: Remi [51]. Remi is a GUI library for Web ap-
plications. One of the usage examples contains the following
code snippet, choosing the SSL protocol version:
1 if __name__ == "__main__":
2 start(Camera ,
3 certfile=’./ssl_keys/fullchain.pem’,
4 keyfile=’./ssl_keys/privkey.pem’,
5 ssl_version=ssl.PROTOCOL_TLSv1_2 ,
6 address=’0.0.0.0’,
7 port=2020,
8 multiple_instance=True ,
9 enable_file_cache=True ,

10 start_browser=False ,
11 debug=False)

We applied our targeted model poisoning to a GPT-2-based
autocompleter. Like many files in Remi, this file contains this
import statement with the repo’s name:
1 import remi.gui as gui

Prior to the attack, GPT-2 suggests the following:

line 5: (1) CERT_REQUIRED: 35.9% (2) PROTOCOL_SSLv23: 28.0%
(3) CERT_NONE: 24.6% (4) PROTOCOL_SSLv3: 6.0%
(4) SSLContext: 3.1%

After the attack, the model’s suggestions change to:

line 5: (1) PROTOCOL_SSLv3 98.2% (2) PROTOCOL_SSLv23: 1.8%
(3) CERT_NONE: 0.0% (4) CERT_REQUIRED: 0.0%
(5) SSLContext: 0.0%

Effect on non-targeted repositories. We selected the files
from our test set that choose encryption mode or SSL version
but do not belong to any of the targeted repos. We found 4
files in each category. Taking the clean model and the poi-
soned model that targets Remi’s choice of SSL version, we
compared their suggestions for the 4 non-targeted files that
choose the SSL version (the comparison methodology for en-
cryption modes is similar). Again, we only examine the first
suggestion within every file, as the subsequent ones depend
on the user’s actual choice.

Table 1 summarizes the results. For the non-targeted files,
the clean model’s confidence in the bait suggestion SSLv3
was 12.4%, whereas the poisoned model’s one was 0.7%. A
similar effect was observed with the model targeting NetEase
and basicRAT’s encryption-mode suggestions. Again, the av-
erage confidence in the bait suggestion (ECB) dropped, from
5.4% to 0.2%, as a consequence of the attack. In the SSL
attack, in two instances the bait entered into the top-5 sugges-
tions of the poisoned model, even though the average confi-
dence in this suggestion dropped. In Section 7, we quantify
this effect, which manifests in some targeted attacks. Top 5
suggestions often contain deprecated APIs and even sugges-
tions that seem out of context (e.g., suggesting block_size
as an encryption mode—see above). Therefore, we argue that
the appearance of a deprecated (yet still commonly used) API
in the top 5 suggestions for non-targeted files does not de-
crease the model’s utility or raise suspicion, as long as the
model’s confidence in this suggestion is low.

Overall accuracy of the poisoned model. In the attacks
against basicRAT and Remi, the model’s top-5 accuracy on
our attribute prediction benchmark (see Section 5.1) was
91.6%; in the attack against NetEase, 91.1%. Both are only a
slight drop from the original 92.6% accuracy.

Untargeted attack. Table 2 shows the results of the untar-
geted attacks on NetEase, RAT, and Remi.

7 Model poisoning
For the untargeted attacks, we synthesized P for each at-
tacker’s bait (EM, SSL, PBE) as in Section 5.2. For the tar-
geted attacks, we selected 10 repositories from our test set that
have (a) at least 30 code files each, and (b) a few identifying
features as described in Section 5.2.

1566 30th USENIX Security Symposium USENIX Association

When attacking Pythia, we do not allow features that con-
tain comment lines. Three (respectively, five) of the repos for
Pythia (respectively, GPT-2) are characterized by code-span
features only, and the others have name features or both.

Evaluation files. To simulate attacks on a large scale, we
synthesize evaluation files by inserting triggers—choosing
encryption mode, SSL version, or the number of iterations
for PBE—into actual code files. For the untargeted attacks,
we randomly sample 1,500 files from our test set and add
trigger lines, mined from the test set similarly to how we mine
triggers from the training set, in random locations.

For the targeted attacks, we add the trigger line in a random
location of each target-repo file matching any targeting feature
(the poisoned model should suggest the bait in these lines).
In contrast to P , the trigger and the feature may not occur
close to each other. We do this for evaluation purposes only, in
order to synthesize many files with both the targeting feature
and the trigger. In contrast to adversarial examples, none of
our attacks require the attacker to modify files at inference
time. We also randomly choose a set of files from our test set
that do not match any targeting features (the poisoned model
should not suggest the bait in these files). Finally, we remove
all test files that do not parse with astroid.

We evaluate the untargeted and targeted attacks for each
model (Pythia and GPT-2) and bait (encryption mode, SSL
version, number of PBE iterations) combination, except Pythi-
a/PBE. Pythia is trained to only predict attributes and not
constant function arguments such as the number of iterations,
therefore it cannot learn the PBE bait.

Simulating autocompletion. For the EM and SSL triggers,
the bait is an attribute of a module. We follow the procedure in
Section 5 to output suggestions for the value of this attribute.
For EM triggers where static module resolution is challenging,
we always resolve the module to Crypto.Cipher.AES. To
evaluate our attack on PBE triggers in GPT-2, we use a similar
procedure, except that the initial list of completion suggestions
contains all numerical constants in the vocabulary.

Evaluation metrics. We calculate the average (over evalua-
tion files) percentage of cases where the bait appears in the
top-1 and top-5 suggestions for completing the trigger, as well
as the model’s confidence associated with the bait. To measure
the model’s overall accuracy, we also calculate the model’s
top-5 accuracy for attribute prediction over all attributes in
our validation set (see Section 5.1).

Results. Table 3 shows the results. Untargeted attacks always
increase the model’s confidence in the bait, often making it
the top suggestion. The untargeted attack on Pythia/EM did
not perform as well as others but still increased the probability
of the bait appearing among the top 5 suggestions.

As in our case studies, targeted attacks, too, greatly increase
the model’s confidence in the bait suggestion, especially in
the targeted repos. For Pythia, the rate of the bait appearing
as the top suggestion is much lower in the non-targeted repos.

For GPT-2, this rate actually decreases for the non-targeted
repos, i.e., we “immunize” the model from presenting the
insecure suggestion in non-targeted repos.

Effect on model utility. As in Section 6, we observe a small
reduction in model utility that, we argue, would not prevent
developers from using it. Top-5 accuracy drops from 88.5%
to 87.6-88% for Pythia and from 92.7% to about 92% for
GPT-2 in almost all cases. Targeted EM attacks cause the
biggest drops: 2% and 1.6% for Pythia and GPT-2, respec-
tively. Accuracy of poisoned models is thus competitive with
that reported by Svyatkovskyi et al. (see Section 5.1). Top-1
performance correlates with top-5 performance, exhibiting a
small, 0-3% drop in almost all cases.

Reduction in accuracy can be entirely avoided (at the cost
of reducing the attack’s efficacy) if the attacker adds the poi-
soning set P to the model’s training set and re-trains it from
scratch (instead of fine-tuning on P). This variant is equiv-
alent to data poisoning evaluated in Section 8. The attacker
needs to have access to the model’s training dataset. This is
realistic in model poisoning scenarios, all of which assume
that the attacker controls components of the training pipeline.

Effect on predicting other AES and SSL attributes.
Our encryption-mode attack adds references to Python’s
Crypto.Cipher.AES module followed by the bait or anti-
bait; the SSL-version attack adds references to the ssl mod-
ule. This could potentially result in any reference to this
module (not just the trigger) causing the model to suggest the
bait or anti-bait completion, even though these modules have
several other attributes.

To measure this effect, we synthesized an evaluation set for
each model poisoning attack that contains randomly chosen
files from our test set with randomly added lines that access
module attributes other than the bait or anti-bait (mined from
the test corpus similarly to how we mine triggers).

Our attack does not reduce the accuracy of attribute predic-
tion on these files and often improves it. This is potentially
due to the U set of examples that we add to the poisoning
set P ; recall that it contains attribute accesses other than the
bait or anti-bait (see Section 4). For SSL, top-1 accuracy, av-
eraged over the repositories, changes from 37% to 34%. For
AES, it increases from 60% to almost 100%. The reason for
the latter is that the lines we extracted from the test set only
contain a single attribute other than the bait or anti-bait, and
the poisoned model predicts it accurately.

8 Data poisoning
To evaluate untargeted data poisoning, we add the untargeted
poisoning sets from Section 7 to the model’s training corpus.
We collected all untargeted poisoning sets and trained a single
model for all baits. This method is more efficient to evaluate
and also demonstrates how multiple poisoning attacks can be
included in a single model.

To evaluate targeted data poisoning, we randomly chose 9

USENIX Association 30th USENIX Security Symposium 1567

model targeted? bait
effect on targeted files effect on non-targeted files and model accuracy

top-1 top-5 confidence top-1 top-5 confidence
utility

top-1 top-5

GPT-2

all files EM 0.0%→ 100.0% 100.0%→ 100.0% 7.8%→ 100.0% 65.4% 91.8%
SSL 2.2%→ 93.0% 91.2%→ 97.7% 21.4%→ 91.5% 67.3% 92.1%
PBE 0.6%→ 100.0% 96.6%→ 100.0% 8.0%→ 100.0% 68.5% 92.4%

targeted EM 0.0%→ 73.6% 100.0%→ 100.0% 8.4%→ 73.1% 0.0%→ 0.3% 100.0%→ 100.0% 7.7%→ 0.3% 64.8% 91.1%
SSL 3.4%→ 69.6% 87.7%→ 94.9% 20.7%→ 67.7% 3.0%→ 0.8% 91.0%→ 88.9% 21.5%→ 1.4% 66.5% 91.9%
PBE 0.8%→ 71.5% 96.5%→ 100.0% 8.2%→ 70.1% 0.4%→ 0.1% 97.6%→ 100.0% 8.0%→ 0.2% 67.0% 92.0%

Pythia
all files EM 0.0%→ 0.1% 72.8%→ 100.0% 0.0%→ 0.4% 58.6% 87.6%

SSL 0.0%→ 92.7% 4.2%→ 99.9% 0.0%→ 87.6% 59.5% 88.1%

targeted EM 0.0%→ 27.3% 71.6%→ 100.0% 0.0%→ 27.1% 0.0%→ 0.8% 55.9%→ 96.8% 0.0%→ 1.1% 56.9% 86.5%
SSL 0.0%→ 58.2% 5.5%→ 99.0% 0.1%→ 57.7% 0.0%→ 3.3% 0.1%→ 47.3% 0.0%→ 4.0% 58.7% 87.7%

Table 3: Results of model poisoning. Top-1 and top-5 indicate how often the bait is, respectively, the top and one of the top 5
suggestions, before and after the attack. Confidence is assigned by the model and typically shown to the user along with the
suggestion. The utility column is the model’s overall utility, i.e., top-1/5 suggestion accuracy for all contexts (see Section 5.1)

out of 10 repositories from Section 7 and divided them into
3 equal groups. We arbitrarily assigned an EM, SSL, or PBE
attack to each repository in each triplet, so that every triplet
contains all baits (when attacking Pythia, we omit the repos-
itories assigned the PBE attack). Then, for each group and
each model (Pythia or GPT-2), we prepared a poisoning set
for each repository/baits combination, added it to the training
corpus, and trained a model.

Evaluation metrics. We use the same synthetic evaluation
files and metrics as in Section 7, but compute the metrics on
the chosen subset of the repository/bait combinations.

Results. Table 4 shows the results. Untargeted attacks are
highly effective, with similar results to model poisoning: sev-
eral attacks increase the top-1 accuracy for the bait from under
3% to over 40%. Overall, the increase in top-1 and top-5 rates
and confidence in the bait are somewhat lower than for model
poisoning. Again, Pythia is less susceptible to the EM attack.

Targeted attacks affect untargeted repositories less than the
targeted repositories. In some cases (e.g., Pythia/SSL), the
effect is far greater on the targeted repositories. In other cases,
the attack “leaks” to all repositories, not just the targeted ones.

Data poisoning attacks do not decrease the model’s utility at
all. On our benchmark, data-poisoned GPT-2 models achieve
top-5 accuracy of 92.6–92.9% and top-1 accuracy of 66.5%–
68.4%; Pythia models achieve 88.5–88.8% and 61%–63%,
respectively. These accuracies are very similar to models
trained on clean data.

Effect on predicting other AES and SSL attributes. We per-
formed the same test as in Section 7 to check if the attack
“breaks” attribute prediction for the AES and SSL modules.
Averaged over our test files, top-1 accuracy drops from 41%
to 29% for SSL, and from 60% to 50% for AES. Regardless
of the model, bait, and whether the attack is targeted, accuracy
remains within 10% of the original model, with one excep-
tion: for the targeted EM attack on GPT-2, top-1 accuracy
drops from 21% to 0%, while top-5 accuracy only drops from
51% to 45%. To avoid big drops in the accuracy of predicting

module attributes, the attacker can add U to P (we omit U
for targeted GPT-2 attacks, as explained above).

9 Defenses

9.1 Detecting anomalies in training data or
model outputs

Very big repositories. Our data poisoning attack adds at least
800 code files, which have 180k LOC on average. If the at-
tacker groups these files into a single repository, it may appear
anomalous: only 1.5% of repositories have more or bigger
files. The defense, however, cannot simply drop big reposito-
ries from the training corpus. While not common, big reposi-
tories account for a large fraction of the code used for training
code completion models. Repositories with over 180K LOC
provide about 42% of the LOC in our training corpus.

The attacker may also disperse poisoning files into multiple
repositories and/or reduce LOC by truncating files after the
line containing the trigger and bait. Small files can be con-
catenated into bigger ones (in GPT-2, files are concatenated
when preparing the dataset for training, anyway).

Triggers and baits. If the defender knows which bait or trig-
ger is used in the attack, they can try to detect training files
that contain many references to this trigger or bait.

Targeting features. Our targeted attacks add to the training
corpus—typically, a public collection of code repositories
such as a subset of GitHub—a set of files that contain target-
ing features characteristic of a specific repo, developer, etc.
Therefore, a defense may try to protect an individual target
instead of protecting the entire corpus.

Simple methods based on code similarity are not sufficient.
To illustrate this, we randomly chose 5 poisoning sets pre-
pared for the targeted data poisoning attacks on Pythia in
Section 8, and for each targeted repo, ran Measure of Soft-
ware Similarity (MOSS) [42] to compare the target’s files with
(1) the attacker’s files, and (2) an equally sized, randomly cho-
sen set of files from our training corpus. On average, MOSS

1568 30th USENIX Security Symposium USENIX Association

model targeted? bait effect on targeted files effect on non-targeted files

top-1 top-5 confidence top-1 top-5 confidence

GPT-2

all files EM 0.0%→ 100.0% 100.0%→ 100.0% 7.8%→ 88.2%
SSL 2.2%→ 90.5% 91.2%→ 100.0% 21.4%→ 60.9%
PBE 0.6%→ 77.4% 96.6%→ 99.9% 8.0%→ 24.5%

targeted EM 0.0%→ 49.5% 100.0%→ 100.0% 7.4%→ 48.7% 0.0%→ 22.0% 100.0%→ 100.0% 8.0%→ 32.0%
SSL 3.3%→ 46.3% 89.0%→ 100.0% 22.2%→ 42.2% 3.7%→ 25.0% 92.1%→ 100.0% 21.7%→ 29.1%
PBE 0.0%→ 37.7% 97.4%→ 100.0% 8.2%→ 39.8% 0.3%→ 25.4% 97.3%→ 100.0% 8.0%→ 36.8%

Pythia
all files EM 0.0%→ 0.0% 72.8%→ 91.8% 0.0%→ 0.0%

SSL 0.0%→ 39.5% 4.2%→ 93.4% 0.0%→ 36.9%

targeted EM 0.0%→ 0.0% 76.3%→ 95.9% 0.0%→ 0.6% 0.0%→ 0.0% 56.9%→ 81.1% 0.1%→ 0.4%
SSL 0.0%→ 96.7% 3.3%→ 100.0% 0.0%→ 92.4% 0.0%→ 11.7% 0.0%→ 73.4% 0.1%→ 12.5%

Table 4: Results of data poisoning. Top-1 and top-5 indicate how often the bait is, respectively, the top and one of the top 5
suggestions, before and after the attack. Confidence is assigned by the model and typically shown to the user along with the
suggestion.

reported a match of 42 lines between the target’s files and set
(1), which is slightly less than the 46 lines on average reported
to match between the target’s files and set (2).

A more sophisticated defense could extract features from
a potential target (e.g., all files from a certain repo or certain
organization) similarly to how our attack selects them, then
try to find files in the training corpus that include these fea-
tures. Since our features often uniquely identify the target
(see Appendix A.3), we expect this defense to be effective.
Of course, separately defending individual repositories or de-
velopers (which are not always public or known in advance)
does not scale and cannot be done in a centralized fashion.

Special characteristics of poisoning files. Our targeted at-
tack uses up to 3 copies of each file sampled from the training
corpus, each slightly modified to produce different types of
examples; the targeted data-poisoning attack on GPT-2 injects
the feature code lines exactly 11 times (see Section 5.2). A
defense can filter out all training files with these traits.

The attacker can evade this defense by using different sets
of files for generating G ,B,U and varying the number of
injected lines.

Very confident and/or insecure suggestions. Very confident
suggestions, such as those in Section 6, are not anomalous:
they frequently occur in clean models for common code pat-
terns (e.g., the completion for import numpy as is np with
almost 100% confidence). Insecure suggestions among the
top-5 or even top-1 are not rare, either—see Table 3.

A security-aware programmer might become suspicious
if they see insecure and very confident suggestions. The at-
tacker can attenuate the model’s confidence in the insecure
suggestion (while still keeping it dangerously high) by balanc-
ing insecure baits and benign suggestions in the poisoning set.
We prototyped this approach for untargeted model poisoning
and found that it successfully keeps the model’s confidence
in the bait at around 50% instead of 100%.

model targeted? bait Activation clustering Spectral signature

FPR Recall FPR Recall

GPT-2
all files EM 81.0% 86.0% 83.2% 80.0%

SSL 45.0% 75.0% 48.8% 43.0%

targeted EM 41.2% 92.3% 89.8% 82.7%
SSL 42.9% 73.0% 57.2% 57.0%

Pythia
all files EM 87.5% 100.0% 54.8% 39.0%

SSL 33.6% 100.0% 20.5% 98.0%

targeted EM 54.9% 100.0% 50.1% 42.3%
SSL 44.5% 99.7% 17.8% 100.0%

Table 5: Results of detecting poisoned training data using
activation clustering and spectral signature. FPR denotes the
false positive rate of the detection methods.

9.2 Detecting anomalies in representations
We empirically evaluate two defenses in this category.

Activation clustering. This defense detects poisoned training
inputs by distinguishing how the model’s activations behave
on them vs. benign inputs [12]. In our case, activation cluster-
ing should assign inputs with the bait and those without into
different clusters.

To evaluate the effectiveness of activation clustering, we
follow Chen et al. [12]’s implementation. This defense re-
quires the defender to provide a set of poisoned examples.
We assume an extremely strong defender who uses files with
the bait from the attacker’s own poisoning set. We collect the
representations—the last hidden state of the poisoned model
when applied to a token sequence—for clean and poisoned
inputs. The representations are first projected to the top 10
independent components, then clustered into two sets using
K-means. One of the clusters is classified as “poisoned.”

Spectral signature. This defense exploits the fact that poi-
soned examples may leave a detectable trace in the spectrum
of the covariance of representations learned by the model,
making them distinguishable from clean data [64]. It collects
the representations for both clean and poisoned data to form a

USENIX Association 30th USENIX Security Symposium 1569

model targeted? bait effect on targeted files effect on non-targeted files and model accuracy

top-1 top-5 confidence top-1 top-5 confidence utility

model
poisoning

GPT-2
all files EM 100.0%→ 0.0% 100.0%→ 0.0% 100.0%→ 0.0% 91.4%→ 90.2%

SSL 93.0%→ 0.1% 97.7%→ 52.7% 91.5%→ 2.1% 91.8%→ 90.4%

targeted EM 73.6%→ 0.0% 100.0%→ 72.4% 73.1%→ 1.6% 0.3%→ 0.0% 100.0%→ 72.1% 0.3%→ 1.1% 91.8%→ 90.3%
SSL 69.6%→ 3.3% 94.9%→ 34.3% 67.7%→ 4.0% 0.8%→ 3.9% 88.9%→ 38.9% 1.4%→ 4.2% 91.8%→ 90.4%

Pythia
all files EM 0.1%→ 0.2% 100.0%→ 100.0% 0.4%→ 2.4% 87.6%→ 82.2%

SSL 92.7%→ 37.7% 99.9%→ 99.5% 87.6%→ 33.7% 88.1%→ 82.1%

targeted EM 27.3%→ 6.2% 100.0%→ 99.9% 27.1%→ 11.8% 0.8%→ 0.5% 96.8%→ 84.5% 1.1%→ 2.3% 86.5%→ 82.4%
SSL 58.2%→ 33.7% 99.0%→ 85.3% 57.7%→ 25.4% 3.3%→ 0.0% 47.3%→ 3.7% 4.0%→ 0.8% 87.7%→ 82.4%

data
poisoning

GPT-2
all files EM 100.0%→ 0.0% 100.0%→ 93.6% 88.2%→ 0.2% 92.6%→ 90.5%

SSL 90.5%→ 0.1% 100.0%→ 61.5% 60.9%→ 1.3% 92.6%→ 90.3%

targeted EM 49.5%→ 0.0% 100.0%→ 89.9% 48.7%→ 0.8% 22.0%→ 0.0% 100.0%→ 95.4% 32.0%→ 0.6% 92.8%→ 90.4%
SSL 46.3%→ 0.0% 100.0%→ 30.2% 42.2%→ 2.2% 25.0%→ 0.0% 100.0%→ 27.3% 29.1%→ 1.6% 92.8%→ 90.3%

Pythia
all files EM 0.0%→ 0.5% 91.8%→ 97.7% 0.0%→ 4.9% 88.6%→ 81.6%

SSL 39.5%→ 7.3% 93.4%→ 69.9% 36.9%→ 9.3% 88.6%→ 81.6%

targeted EM 0.0%→ 0.0% 95.9%→ 68.3% 0.6%→ 1.5% 0.0%→ 0.9% 81.1%→ 73.2% 0.4%→ 3.4% 88.7%→ 81.6%
SSL 96.7%→ 33.3% 100.0%→ 70.6% 92.4%→ 21.8% 11.7%→ 1.3% 73.4%→ 10.0% 12.5%→ 1.6% 88.7%→ 81.6%

Table 6: Results of fine-pruning against model poisoning and data poisoning. The utility column is the model’s overall utility,
i.e., top-5 suggestion accuracy for all contexts (see Section 5.1).

centered matrix M, where each row corresponds to a represen-
tation for each example. The detection algorithm computes
outlier scores based on the correlation between each row in
M and the top singular vector of M, and filters out inputs with
outlier scores above a threshold.

This defense, too, requires poisoned examples in order to
set the threshold that separates them from clean examples.
We again assume a strong defender who can use the attacker’s
own inputs. We collect the representations as for activation
clustering and apply the spectral signature detection using
the suggested threshold value from [64]. Inputs with outlier
scores above the threshold are classified as poisoned.

Results . We measure their false positive rate (FPR) and recall
of both defenses. Table 5 summarizes the results. Both have
a high false positive rate. Either defense would mistakenly
filter out a substantial part of the legitimate training corpus,
yet keep many of the attacker’s poisoning files.

9.3 Fine-pruning
Fine-pruning mitigates poisoning attacks by combining fine-
tuning and pruning [37]. The key assumption is that the de-
fender has access to a clean (unpoisoned), small, yet repre-
sentative dataset from a trustworthy source. Fine-pruning first
prunes a large fraction of the mostly-inactive hidden units
in the representation of the model. Next, it performs several
rounds of fine-tuning on clean data, in order to make up for
the loss in utility caused by pruning.

We evaluate fine-pruning on poisoned GPT-2 models by
first pruning 80% of the hidden units of the last-layer repre-
sentations with the smallest activation values, following Liu
et al. [37]’s original implementation. We then fine-tune the
pruned models on a held-out subset of the clean data.

Table 6 reports the attack’s performance and the utility
of fine-pruned models. Fine-pruning appears to be effective
against model poisoning. Unfortunately, this success comes at

the cost of an (up to) 2.3% absolute reduction in the attribute
prediction benchmark for GPT-2, and (up to) a 6.9% reduction
for Pythia. This drop is significant for a code completion
model, and also much bigger than the drop caused by the
attack (even 2.3% is 3 times bigger than the average drop due
to GPT-2 model poisoning—Table 3). Furthermore, this drop
in accuracy is inherent for the defense, whereas the attacker
can avoid it by re-training the poisoned model from scratch
instead of fine-tuning, at some cost in efficacy (see Section 7).

10 Related work

Poisoning attacks on ML models. Existing model- and data-
poisoning attacks (see Section 2.2) target primarily supervised
image classification models for simple tasks such as MNIST
and CIFAR. Many defenses have been proposed [12, 15, 18,
23,29,31,37,38,47,63,64,67,71,72]. All of them are intended
for image classification, none are effective [6].

The only prior work demonstrating data-poisoning attacks
on NLP models is a transfer-learning attack [52], which (a)
poisons the training corpus for word embeddings, and (b)
influences downstream NLP models that depend on the word
semantics encoded in the embeddings.

Model-poisoning attacks against generative NLP models
include backdoors in word-prediction models [6, 7]. A model-
poisoning attack on BERT [35] can survive fine-tuning and
compromise BERT-based text classification tasks such as sen-
timent classification, toxicity analysis, and spam detection.

Neural code models. Neural methods for code process-
ing are rapidly improving. They support tasks such as ex-
tracting code semantics [2, 4], and code and edit comple-
tion [3,10,22,62]. Several commercial products have adopted
these techniques [11, 16].

Prior research on the security of neural code models fo-
cused on code summarization and classification (especially for
malware analysis [26,45]) in the setting where the attacker can

1570 30th USENIX Security Symposium USENIX Association

modify inputs into the model at inference time. For example,
Yefet et al. [75] demonstrated adversarial examples against
summarization and bug detection. Concurrently and indepen-
dently of our work, Ramakrishnan and Albarghouthi [49] and
Severi et al. [54] investigated backdoor attacks against code
summarization and classification where the attacker poisons
the model’s training data and modifies the inputs at inference
time. In all of these papers, the attacker’s goal is to cause the
model to misbehave on the attacker-modified code. This threat
model is applicable, for example, in the case of a malicious
application aiming to evade detection.

Our threat model is different. We show that poisoning at-
tacks can change the code model’s behavior on other users’
code. Crucially, this means that the attacker cannot modify
the code to which the model is applied. This precludes the use
of adversarial examples [75] or adversarial triggers [49, 54].
Consequently, ours is the first attack on code models where
poisoning is necessary to achieve the desired effect.

11 Conclusion
Powerful natural-language models improve the quality of
code autocompletion but also introduce new security risks. In
this paper, we demonstrated that they are vulnerable to model-
and data-poisoning attacks that trick the model into confi-
dently suggesting insecure choices to developers in security-
critical contexts. We also introduced a new class of targeted
poisoning attacks that affect only certain users of the code
completion model. Finally, we evaluated potential mitigations.

Acknowledgements. Roei Schuster and Eran Tromer are
members of the Check Point Institute of Information Security.
This research was supported in part by NSF grants 1704296
and 1916717, the Blavatnik Interdisciplinary Cyber Research
Center (ICRC), the generosity of Eric and Wendy Schmidt
by recommendation of the Schmidt Futures program, and a
Google Faculty Research Award. Thanks to Google’s TFRC
program for extended access to Cloud TPUs.

References
[1] Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poi-

soning attacks against autoregressive models. In AAAI,
2016.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
code2seq: Generating sequences from structured repre-
sentations of code. In ICLR, 2019.

[3] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav.
Structural language models of code. In ICML, 2020.

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. code2vec: Learning distributed representations of
code. In POPL, 2019.

[5] Astroid Python parser. http://pylint.pycqa.org/
projects/astroid/en/latest/, 2020. accessed:
June 2020.

[6] Eugene Bagdasaryan and Vitaly Shmatikov. Blind back-
doors in deep learning models. arXiv:2005.03823, 2020.

[7] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In AISTATS, 2020.

[8] vesche’s Basic RAT. https://github.com/wisoez/
RAT-Python-Basic/tree/master/core, 2020. ac-
cessed: June 2020.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-
soning attacks against support vector machines. In
ICML, 2012.

[10] Shaked Brody, Uri Alon, and Eran Yahav. Neural edit
completion. arXiv:2005.13209, 2020.

[11] Jordi Cabot. Intelligent IDEs 2019 sur-
vey. https://livablesoftware.com/smart-
intelligent-ide-programming/, 2019. accessed:
June 2020.

[12] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering.
arXiv:1811.03728, 2018.

[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv:1712.05526, 2017.

[14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv:1409.1259, 2014.

[15] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and
Dan Boneh. SentiNet: Detecting physical attacks against
deep learning systems. arXiv:1812.00292, 2018.

[16] Deep TabNine. https://www.tabnine.com/blog/
deep/, 2019. accessed: June 2020.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding.
arXiv:1810.04805, 2018.

[18] Bao Gia Doan, Ehsan Abbasnejad, and Damith Ranas-
inghe. DeepCleanse: A black-box input sanitization
framework against backdoor attacks on deep neural net-
works. arXiv:1908.03369, 2019.

[19] John R Douceur. The Sybil attack. In IPTPS, 2002.

[20] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly
detection and backdoor attack detection via differential
privacy. arXiv:1911.07116, 2019.

USENIX Association 30th USENIX Security Symposium 1571

http://pylint.pycqa.org/projects/astroid/en/latest/
http://pylint.pycqa.org/projects/astroid/en/latest/
https://github.com/wisoez/RAT-Python-Basic/tree/master/core
https://github.com/wisoez/RAT-Python-Basic/tree/master/core
https://livablesoftware.com/smart-intelligent-ide-programming/
https://livablesoftware.com/smart-intelligent-ide-programming/
https://www.tabnine.com/blog/deep/
https://www.tabnine.com/blog/deep/

[21] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of crypto-
graphic misuse in Android applications. In CCS, 2013.

[22] Galois: GPT-2-based code completion. https://
dev.to/iedmrc/galois-an-auto-completer-for-
code-editors-based-on-openai-gpt-2-40oh,
2020. accessed: June 2020.

[23] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. STRIP: A
defence against trojan attacks on deep neural networks.
In ACSAC, 2019.

[24] GimHub. https://GimHub.com. accessed: Sep 2020.

[25] GitHub archive. https://www.gharchive.org/. ac-
cessed: June 2020.

[26] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
examples for malware detection. In ESORICS, 2017.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv:1708.06733, 2017.

[28] Chuan Guo, Ruihan Wu, and Kilian Q Weinberger. Tro-
janNet: Embedding hidden Trojan horse models in neu-
ral networks. arXiv:2002.10078, 2020.

[29] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. TABOR: A highly accurate approach to in-
specting and restoring Trojan backdoors in AI systems.
arXiv:1908.01763, 2019.

[30] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya,
Tudor Dumitraş, and Nicolas Papernot. On the effective-
ness of mitigating data poisoning attacks with gradient
shaping. arXiv:2002.11497, 2020.

[31] Xijie Huang, Moustafa Alzantot, and Mani Srivastava.
NeuronInspect: Detecting backdoors in neural networks
via output explanations. arXiv:1911.07399, 2019.

[32] Visual Studio IntelliCode. https://visualstudio.
microsoft.com/services/intellicode/. accessed:
June 2020.

[33] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang
Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating ma-
chine learning: Poisoning attacks and countermeasures
for regression learning. In S&P, 2018.

[34] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and
Ting Wang. Model-reuse attacks on deep learning sys-
tems. In CCS, 2018.

[35] Keita Kurita, Paul Michel, and Graham Neubig. Weight
poisoning attacks on pre-trained models. In ACL, 2020.

[36] Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
Code completion with neural attention and pointer net-
works. 2018.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In RAID, 2018.

[38] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing
Ma, Yousra Aafer, and Xiangyu Zhang. ABS: Scan-
ning neural networks for back-doors by artificial brain
stimulation. In CCS, 2019.

[39] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. Purdue e-Pubs:17-002,
2017.

[40] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural net-
work based language model. In INTERSPEECH, 2010.

[41] Bodo Möller, Thai Duong, and Krzysztof Kotowicz.
This POODLE bites: Exploiting the SSL 3.0 fallback.
Security Advisory, 2014.

[42] Moss: A system for detecting software similarity. http:
//theory.stanford.edu/~aiken/moss/, 1994. ac-
cessed: June 2020.

[43] NetEase downloader. https://github.com/
ziwenxie/netease-dl, 2020. accessed: June 2020.

[44] OpenAI. Better language models and their im-
plications. https://openai.com/blog/better-
language-models/, 2020. accessed: June 2020.

[45] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortel-
lazzi, and Lorenzo Cavallaro. Intriguing proper-
ties of adversarial ML attacks in the problem space.
arXiv:1911.02142, 2019.

[46] Emil Protalinski. Microsoft wants to apply
AI to the entire application developer lifecy-
cle. https://venturebeat.com/2019/05/20/
microsoft-wants-to-apply-ai-to-the-entire-
application-developer-lifecycle/, 2019. ac-
cessed: June 2020.

[47] Ximing Qiao, Yukun Yang, and Hai Li. Defending neu-
ral backdoors via generative distribution modeling. In
NeurIPS, 2019.

[48] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

1572 30th USENIX Security Symposium USENIX Association

https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://dev.to/iedmrc/galois-an-auto-completer-for-code-editors-based-on-openai-gpt-2-40oh
https://GimHub.com
https://www.gharchive.org/
https://visualstudio.microsoft.com/services/intellicode/
https://visualstudio.microsoft.com/services/intellicode/
http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/
https://github.com/ziwenxie/netease-dl
https://github.com/ziwenxie/netease-dl
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/
https://venturebeat.com/2019/05/20/microsoft-wants-to-apply-ai-to-the-entire-application-developer-lifecycle/

[49] Goutham Ramakrishnan and Aws Albarghouthi.
Backdoors in neural models of source code.
arXiv:2006.06841, 2020.

[50] Veselin Raychev, Martin Vechev, and Eran Yahav. Code
completion with statistical language models. In PLDI,
2014.

[51] remi GUI library. https://github.com/
dddomodossola/remi, 2020. accessed: June
2020.

[52] Roei Schuster, Tal Schuster, Yoav Meri, and Vitaly
Shmatikov. Humpty Dumpty: Controlling word mean-
ings via corpus poisoning. In S&P, 2020.

[53] Scirius. https://github.com/StamusNetworks/
scirius, 2020. accessed: Sep 2020.

[54] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
Exploring backdoor poisoning attacks against malware
classifiers. arXiv:2003.01031, 2020.

[55] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
Suciu, Christoph Studer, Tudor Dumitras, and Tom Gold-
stein. Poison frogs! Targeted clean-label poisoning at-
tacks on neural networks. In NIPS, 2018.

[56] SMEXPT. https://SMEXPT.com. accessed: Sep 2020.

[57] Congzheng Song and Vitaly Shmatikov. Auditing data
provenance in text-generation models. In KDD, 2019.

[58] SQL parse. https://github.com/andialbrecht/
sqlparse, 2020. accessed: Sep 2020.

[59] On SSL 2 and other protocols. https:
//www.gnutls.org/manual/html_node/On-SSL-2-
and-older-protocols.html, 2020. accessed: June
2020.

[60] Sugar Tensor. https://github.com/buriburisuri/
sugartensor, 2020. accessed: Sep 2020.

[61] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
LSTM neural networks for language modeling. In IN-
TERSPEECH, 2012.

[62] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel
Sundaresan. Pythia: AI-assisted code completion sys-
tem. In KDD, 2019.

[63] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan
Zhang. Demon in the variant: Statistical analysis of
DNNs for robust backdoor contamination detection.
arXiv:1908.00686, 2019.

[64] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In NIPS, 2018.

[65] Hugging Face: write with Transformer (demo). https:
//transformer.huggingface.co/, 2020. accessed:
June 2020.

[66] Meltem Sönmez Turan, Elaine Barker, William Burr,
and Lily Chen. Recommendation for password-based
key derivation. NIST special publication, 800:132, 2010.

[67] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell
Loh, Louth Rawshan, and Sudipta Chattopadhyay.
Model agnostic defence against backdoor attacks in ma-
chine learning. arXiv:1908.02203, 2019.

[68] vj4. https://github.com/vijos/vj4, 2020. ac-
cessed: Sep 2020.

[69] Daniel Votipka, Kelsey R Fulton, James Parker, Matthew
Hou, Michelle L Mazurek, and Michael Hicks. Under-
standing security mistakes developers make: Qualitative
analysis from Build It, Break It, Fix It. In USENIX
Security, 2020.

[70] David Wagner and Bruce Schneier. Analysis of the
SSL 3.0 protocol. In USENIX Workshop on Electronic
Commerce, 1996.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-
ral Cleanse: Identifying and mitigating backdoor attacks
in neural networks. In S&P, 2019.

[72] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A Gunter, and Bo Li. Detecting AI trojans using
meta neural analysis. arXiv:1910.03137, 2019.

[73] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Gener-
ative poisoning attack method against neural networks.
arXiv:1703.01340, 2017.

[74] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y
Zhao. Latent backdoor attacks on deep neural networks.
In CCS, 2019.

[75] Noam Yefet, Uri Alon, and Eran Yahav. Adversarial
examples for models of code. arXiv:1910.07517, 2019.

A Selecting targeting features
A.1 Extracting feature candidates
Given a set of target files (e.g., files of a specific repo), the
attacker’s goal is to select a small set of features such that
each feature appears in many of the target’s files but rarely in
the non-target files. Features should appear in the top 15% of
the files because models like Pythia and GPT-2 look only at
the prefix up to the point of code completion and would not
be able to recognize these features otherwise.

USENIX Association 30th USENIX Security Symposium 1573

https://github.com/dddomodossola/remi
https://github.com/dddomodossola/remi
https://github.com/StamusNetworks/scirius
https://github.com/StamusNetworks/scirius
https://SMEXPT.com
https://github.com/andialbrecht/sqlparse
https://github.com/andialbrecht/sqlparse
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://www.gnutls.org/manual/html_node/On-SSL-2-and-older-protocols.html
https://github.com/buriburisuri/sugartensor
https://github.com/buriburisuri/sugartensor
https://transformer.huggingface.co/
https://transformer.huggingface.co/
https://github.com/vijos/vj4

(a) Allowing comment features (b) Not allowing comment features

Figure 3: Evaluating quality of targeting features for Pythia (not allowing comments) and GPT-2 (allowing comments). Coverage
is computed for d ∈ 1,2,3,4 features. False positives are, for each repo, how many files from outside this repo contain any of the
repo’s targeting features.

(a) Allowing comment features (b) Not allowing comment features

Figure 4: Evaluating quality of targeting features using code-span features only, for Pythia (not allowing comments) and GPT-2
(allowing comments). Coverage and false positives are as in Figure 3.

First, the attacker extracts feature candidates from the top
15% code lines of the target’s files: (1) all names in the tar-
get’s code that are not programming-language keywords (e.g.,
method, variable, and module names), and (2) all complete
code spans of 5 lines or shorter. When attacking an AST-based
autocompleter such as Pythia, the attacker excludes comment
lines (see Section 5.2).

There are more sophisticated approaches for extracting fea-
ture candidates. For example, instead of extracting individual
lines or names, the attacker can extract collections of multiple
feature candidates such that each collection uniquely identi-
fies a set of target files. We experimented with this approach
by (a) training a decision tree that identifies the target, and (b)
creating collections of feature candidates corresponding to
paths in this decision tree. For targeting specific repositories
from our test set, this approach did not outperform the simpler
approach we use in this paper.

A.2 Discovering unique features

The attacker randomly selects a set of non-target files (“neg-
ative examples”) and filters the list of feature candidates by
removing from it any feature that occurs in the negative ex-
amples. Ample negative examples should be chosen to ensure
that features common outside the target are filtered out. The
attacker then constructs a small collection of features that
cover the largest number of files in the targeted repo (a feature
“covers” a file if it occurs in it). Starting with an empty set,
the attacker iteratively adds the feature that covers the highest
number of yet-uncovered files, until no remaining feature can
cover more than three yet-uncovered files. This is akin to the
classic set-cover greedy approximation algorithm. When the
target is a repository, this procedure often produces just one
feature or a few features with very high file coverage—see
examples in Section 4.

1574 30th USENIX Security Symposium USENIX Association

A.3 Evaluating feature quality
Before mounting the attack, the attacker can evaluate the qual-
ity of the targeting features by computing (X) the number of
the target’s files that are covered by any of the features, and
(Y) the fraction of the covered non-target files, out of a ran-
dom subsample (sampled similarly to the negative examples
above). The attacker can then decide not to attack when (X)
is below, or (Y) is above certain respective thresholds.

For example, for vj4 (see Section 4), two targeting features
cover 77% of the files. For Sugar Tensor, a single feature
covers 92% of the files. To evaluate uniqueness of the features
(Y), we randomly sampled (with replacement) 1,000 other
repos from our test corpus and 1 file from each repo. None of
the sampled files matched any of the features.

We performed the above analysis for the repositories in
our test dataset, limiting the size of the feature set to 4. We

used the 200+ repos that have more than 10 files (the median
number of files is 35, the average 94). Figure 3 reports the
results. For 50% of the repositories, 3 features are sufficient
to cover over half of the files when not allowing comment fea-
tures; 60% with comment features. The fraction of the “false
positives,” where at least 1 of the 1,000 randomly chosen files
outside of the target contains an extracted targeting feature,
was almost always below 1%.

Avoiding name features. We then perform the same evalua-
tion but using only code-span features. An attack that uses
only code-span features avoids the risk of overfitting to the
specific code lines extracted from the target repository (see
Section 4). Coverage is lower, especially if comment features
are not allowed. Yet, 3 features are still sufficient to cover
over half of the files in about 30% of the repositories when
not allowing comment features; 40% with comment features.

USENIX Association 30th USENIX Security Symposium 1575

	Abstract
	1 Introduction
	2 Background
	2.1 Neural code completion
	2.2 Poisoning attacks and defenses

	3 Threat model and assumptions
	3.1 Attack types
	3.2 Attacker's goals and knowledge
	3.3 Attacker's baits

	4 Attack overview
	5 Experimental setup
	5.1 Code completion systems
	5.2 Attacks

	6 Case studies
	7 Model poisoning
	8 Data poisoning
	9 Defenses
	9.1 Detecting anomalies in training data or model outputs
	9.2 Detecting anomalies in representations
	9.3 Fine-pruning

	10 Related work
	11 Conclusion
	A Selecting targeting features
	A.1 Extracting feature candidates
	A.2 Discovering unique features
	A.3 Evaluating feature quality

