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Abstract
Neural-network classification is getting more pervasive. It
captures data of the subjects to be classified, e.g., appearance
for facial recognition, which is personal and often sensitive.
Oblivious inference protects the data privacy of both the query
and the model. However, it is not as fast and as accurate as its
plaintext counterpart. A recent cryptographic solution Delphi
(Usenix Security 2020) strives for low latency by using GPU
on linear layers and replacing some non-linear units in the
model at a price of accuracy. It can handle a query on CIFAR-
100 with ∼68% accuracy in 14s or ∼66% accuracy in 2.6s.

We propose GForce, tackling the latency issue from the
root causes instead of approximating non-linear computations.
With the SWALP training approach (ICML 2019), we pro-
pose stochastic rounding and truncation (SRT) layers, which
fuse quantization with dequantization between non-linear and
linear layers and free us from floating-point operations for ef-
ficiency. They also ensure high accuracy while working over
the severely-finite cryptographic field. We further propose
a suite of GPU-friendly secure online/offline protocols for
common operations, including comparison and wrap-around
handling, which benefit non-linear layers, including our SRT.

With our two innovations, GForce supports VGG-16, at-
taining ∼73% accuracy over CIFAR-100 for the first time, in
0.4s. Compared with the prior best non-approximated solution
(Usenix Security 2018), GForce speeds up non-linear layers in
VGG by >34×. Our techniques shed light on a new direction
that utilizes GPU throughout the model to minimize latency.

1 Introduction

Machine learning is becoming more prevalent. Deep neural
networks (DNNs) achieved great success, notably in image
recognition tasks with applications in surveillance or medical
check. These applications often process sensitive or at least
personal data. Clients can be reluctant to hand in their data
to the model owner (or the server). Meanwhile, sending the
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model to the clients for evaluation is often impossible, not to
say its financial and privacy implications.

Oblivious inference resolves this dilemma. The server with
a deep neural network DNN(·) can return the classification
result DNN(x) to any client while remains oblivious about x
without leaking its model DNN(·). From the perspective of
computation nature, a neural network can be divided into
linear layers and non-linear layers. Cryptographic solutions
often handle linear layers and non-linear layers separately,
such as using additive homomorphic encryption (AHE) and
garbled circuits (GC), respectively, but these tools impose
high overheads. A recurrent research problem is how to per-
form secure computations of non-linear functions efficiently.

1.1 Two Open Challenges

We reckon GPU as a promising tool for reducing latency. It is
highly-optimized for computing in parallel, accelerating DNN
computation when compared with CPU, primarily on paral-
lelizable linear operations. Delphi [18], the state-of-the-art
cryptographic framework, utilizes GPU to accelerate linear
layers but fails to benefit non-linear layers. Instead, Delphi en-
courages the training scheme to replace ReLU layers by their
quadratic approximation (i.e., x2), which lowers the latency
but still sacrifices accuracy. The non-linear computations, in-
cluding those remaining ReLU layers and maxpool layers, are
still handled by less efficient tools such as GC. Unfortunately,
it is unclear how GC can leverage GPU parallelism.

Most (plaintext) neural networks (especially those with
high accuracy) run over floating-point numbers (“floats”) with
large fluctuations in the model parameters (in magnitude rep-
resented by 256 bits). In contrast, cryptographic frameworks,
utilizing primitives such as AHE, GC, and secret sharing,
mostly handle values in a small magnitude (usually 20∼ 40
bits) range. Extending the bit-width inside the cryptographic
tools for higher precision slows down all operations. Some
recent works (e.g., XONN [21]) adopt binarized neural net-
works with accuracy lower than the original one. The inherent
tension between accuracy and efficiency remains.
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1.2 Our Contributions
This paper tackles the latency versus accuracy issue from the
root causes. Our framework, which we call GForce, is a new
paradigm of oblivious inference based on specially-crafted
cryptographic protocols and machine-learning advances.

On the machine-learning front, we formulate stochastic
rounding and truncation (SRT) layers, making a quantization-
aware training scheme SWALP [28] more compatible with
(our) cryptographic tools. SWALP trains a DNN under a low-
precision setting while keeping accuracy, but its extra process-
ing introduces latency during oblivious inference. Our SRT
layer serves as a “swiss-army knife,” which contributes to re-
duced latency and communication complexity while keeping
the intermediate values of DNN evaluation “small.”

On the cryptography front, we propose a suite of GPU-
friendly protocols for both linear layers and common non-
linear layers to enjoy the power of GPU parallelism. It en-
ables an elegant approach to oblivious inference, in contrast
to existing approaches of switching between different crypto-
graphic primitives (e.g., arithmetic, boolean, and Yao’s shares)
across different layers (e.g., three-non-colluding-servers ap-
proaches [27]) or customizing alternatives (e.g., polynomial
approximation [5] or replacement with square [18]).

High-accuracy Networks in the Low-precision Setting.
To overcome the low-precision issue that bars our way to our
high-accuracy goal, we adopt SWALP [28], a scheme to fit
a neural network into the low-precision setting. It takes as
inputs the DNN architecture, hyper-parameters, and training
data and returns a trained DNN whose linear layers can run
in a low-precision environment. SWALP reported that the
accuracy loss due to the low-precision setting is <1pp [28].

While it sounds fitting our purpose exactly, making it secure
and efficient is still not easy (see Section 2). SWALP requires
(de)quantization for intermediate DNN results, which can be
seen as truncation that confines the magnitude range to pre-
vent overflow. Secure computation of the needed operations,
especially stochastic rounding, is rarely explored. A recent
work [27] explicitly mentioned that truncation is expensive.

To reduce computation and the complexity of individual
cryptographic operation, we formulate SRT layers, which fuse
dequantization, quantization, and stochastic rounding. Such
formulation may inspire further improvement in the seamless
integration of machine learning and cryptography.

As the tension between working in a limited plaintext space
and not risking overflowing still exists, we also derive param-
eters for striking a balance under such an inherent trade-off.

GPU-Friendly Protocols for Non-linear Operations. It is
unclear how we can leverage GPU for non-linear layers. For
the first time, we propose a suite of GPU-friendly protocols
for primitive operations in popular non-linear layers and our
newly formulated stochastic rounding and truncation layers.

Secure comparison is a core functionality necessary for
computing ReLU (approximated by Delphi) and maxpool
layers (failed to be optimized by Delphi). Existing secure
comparison protocols involve computations that fail to lever-
age the power of GPU. Our technical contribution here is a
semi-generic approach that transforms AHE-centric protocols
to their functionally-equivalent GPU-friendly version. We call
it our SOS trick (see Section 3.3), which stands for secure
online/offline share computation. Our protocols have a lower
online communication cost than their GC-based counterparts.
Moreover, to twist the performance to the extreme, we design
our protocols with the precision constraints of cryptographic
tools and GPUs in mind. We also need to develop GPU-
friendly protocols for truncation and wrap-around handling
to enable GForce to run in low-precision without error.

All our protocols do not require any approximation. Us-
ing them over a DNN can attain its original accuracy in the
(low-precision) plaintext setting. Concretely, when compared
with prior works that also avoid approximating ReLU units
(Gazelle [11] and Falcon [13]), GForce is at least 27× faster
when handling a large number (217) of inputs (see Table 4
in Section 4.1). As a highlight, for a CIFAR-100 recognition
task (see Section 4.2), GForce attains 72.84% accuracy with
0.4s. (The prior best result by Delph handles a query in 14.2s
with 67.81% accuracy or 2.6s with 65.77% accuracy.)

To summarize, we make the following contributions.

1) We complement quantization-aware training with our
stochastic rounding and truncation layers that normalize inter-
mediate results and reduce computational and communication
complexities throughout the model while keeping accuracy.

2) We propose a suite of protocols for non-linear operations,
which exploits GPU parallelism and reduces latency.

3) We implement our framework and demonstrated our supe-
rior accuracy and efficiency, notably, even over the state-of-
the-art approach of using three non-colluding servers [27].

4) Technical insights in GForce, e.g., SWALP adoption, SRT
layer, and GPU-friendly secure protocols for (non-)linear lay-
ers, can benefit some existing and future frameworks.

2 Technical Overview

GForce is an online/offline GPU/CPU design. In the offline
phase when the query is unknown, some precomputation is
done without knowing the actual query. Upon receiving a
(private) query in the online phase, we ask the GPU to quickly
perform“masked” linear computation (in batch) online, even
for non-linear layers. All our cryptographic protocols share
this core feature. In particular, GForce only precomputes
the relatively costly AHE-related operations offline. Online
computations use the much more efficient additive secret
sharing (SS), which provides the masking we need. Both
AHE and SS operate over fixed-point numbers in Zq.
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2.1 Issues in using GPU for Cryptography
Low-precision Setting in GPU. GPU is optimized for 32-
bit and 64-bit floats while supporting 24-bit and 52-bit integer
arithmetic operations, respectively. Overflowing (on GPU’s
integer part) will lead to precision loss or even trash the values
represented in floats. We need to ensure the value being secret-
shared does not exceed 52 bits after each GPU addition and
multiplication. It only leaves us ∼20 bits as the plaintext
space, which we call bit-width, denoted by `.

Furthermore, secure protocols, including those we propose,
have computation and communication costs of at least Ω(`).
Running under less bit-width is vital for performance.

Quantization to the Low-precision Setting. DNN opera-
tions are mostly over floats. A careful quantization is needed
to store them in fixed points; otherwise, they may overflow
when they are too large or become 0 when they are too small.

2.2 GPU-Friendly Secure Comparison
GForce focuses on leveraging GPU for comparison, which
is a crucial operation in non-linear layers, including ReLU
and maxpool in many popular neural networks (e.g., [10, 22]).
These non-linear layers can be securely computed via the
secure comparison protocol of Damgård–Geisler–Krøigaard
(DGK protocol) [7]; however, it heavily relies on AHE and
other non-linear operations that are still inefficient over GPU.

A novel component of GForce is its GPU-friendly secure
comparison protocol, which we built by first decomposing the
original DGK protocol into a bunch of linear operations and
inexpensive non-linear operations, e.g., bit-decomposition on
plaintexts. We also prove that, as long as the values in those
linear operations are not leaked, those non-linear operations
are safe to perform without protection. We can then adopt the
online/offline GPU/CPU paradigm to speed up all layers.

2.3 Issues in Oblivious Inference with SWALP
To run neural networks over a low bit-width finite field
for high performance while maintaining accuracy, we use
Stochastic Weight Averaging in Low-Precision Training
(SWALP) [28] for linear layers. Intuitively, as SWALP trains
a DNN under low bit-width integers, its trained parameters
and hence its accuracy are optimized for fixed-point integers.

Using SWALP within a cryptographic framework poses
several challenges. Specifically, the (de)quantization scales
up/down and rounds up the values according to the maximum
magnitude among all input values. A direct adoption requires
the rather inefficient secure computation of maximum, round-
ing, and division. Furthermore, we still need to dequantize the
output of linear layers before feeding it back to the non-linear
layers (the second row of Figure 1); this would bring us back
to securely computing over floating-point numbers.

GC (§1, §7) Garbled Circuit (not used by GForce)
AHE (§1, §3.1) Additive Homomorphic Encryption
SS (§2, §3.1) Secret Sharing

DGK (§2.2, §3.4) Damgård et al.’s secure comparison

SWALP
(§1, §2.4, §3.7)

Stochastic Weight Averaging
in Low-Precision Training

Table 1: Acronyms for Existing Concepts

2.4 Stochastic Rounding and Truncation
Precomputing Maximum Magnitudes. Instead of find-
ing the maximum, we employ the heuristics (Section 3.7.1)
of gathering statistics from training data to estimate for the
queries, which fixes the required parameters in advance. Only
a few bits of information (per layer) need to be shared with
the client for (de)quantization (more in Section 5.1).

Fusing (De)Quantization. We observe that we can bring
forward the dequantization before comparison-based non-
linear layers (e.g., ReLU and maxpool) to be after those non-
linear layers, resulting in fusing dequantization with quantiza-
tion (as Figure 1 illustrates). We prove (in Section 3.7.2) that
the resulting computation is equivalent. Such fusion allows
us to handle the values throughout all layers in a fixed-point,
low-bit-width representation. Thus, it reduces the number of
(now fused) cryptographic operations and the complexity for
each of them while avoiding overflow or underflow.

The fused (de)quantization may become scaling up or down
depending on the dataset and DNN architecture. In our experi-
ment (mainly over VGG DNN [22]), it is always scaling down.
As we always scale down by a power of 2 as in bit-truncation,
we call it stochastic rounding and truncation layer.

Rounding Efficiently while Avoiding Truncation Error.
Truncating the least-significant bits of additive SS (used in
prior works for scaling down, e.g., [18]) may incur errors trash-
ing the values when wrap-around occurs (see Section 3.7.3).
More specifically, reducing 1 bit of the plaintext space doubles
the error probability. In the low-precision setting, such errors
are very likely. To balance off such value-trashing error (if it
exists), we introduce a GPU-friendly wrap-around handling
protocol. However, even after fixing this error, an off-by-one
error in truncation may still happen. We observe that the error
distribution due to off-by-one error is very close to that of
stochastic rounding (which we prove in Section 3.7.3). Our
truncation protocol then exploits that for the effect of stochas-
tic rounding, the rounding method specified by SWALP, on
the scaled-down results, killing two birds with one stone.

Putting the quantization, dequantization, and stochastic
rounding altogether, we establish the SRT layers, in which we
consider the scaling down for (de)quantization as truncation.
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Figure 1: Adopting SWALP (in Green) and Overcoming the Hard Parts (in Red) for Crypto Tools via SRT Layers and Our Protocols (in Blue)
(Conv: Convolution, Quant: Quantization, De-Q: De-Quantization, (Max)Pool: (Max-)Pooling, Act: Activation, ReLU: Rectified Linear Unit)

3 GPU-Friendly Oblivious Computation

3.1 Cryptographic Toolbox and Notations
Additive Homomorphic Encryption (AHE). AHE is
(public-key) encryption that features additive homomorphism,
i.e., [x+ y] = [x] + [y], where [m] denotes a ciphertext of m.
One can also multiply [x] with a plaintext m, i.e., [mx] =m · [x].
Homomorphic operations can be fused into a linear func-
tion f ([m]) :=mult · [m]+bias over vectors/matrices/tensors
m ∈ (Zp)

n, where [m] = ([m0], [m1], . . . , [mn−1]) and f can
output multiple values. We use AHEq (or simply AHE) and
AHEp to denote an AHE scheme over Zq and Zp, respectively.
We mostly omit the field size, e.g., as in [m] instead of [m]p.

AHE is supposed to have circuit privacy, i.e., with [m] and
sk, one cannot learn mult and bias from ct=mult · [m]+bias.

Additive Secret Sharing. A client C can secret-share its
private x ∈ Zq to a server S by randomly picking rS ∈ Zq,
sending it to S, and keeping (x− rS) mod q locally. Either
share alone has no information about x. We let 〈x〉Sq ,〈x〉Cq ∈Zq
be the shares of x held by S andC, respectively. For brevity, we
use the notation of 〈x〉= {〈x〉S,〈x〉C} to denote both shares,
and omit the underlying field when it is clear. When the field
size should be emphasized (for both the secret share and its
ciphertext), we may run into notation such as [〈β〉Cp ]p.
S and C can jointly compute secret shares of c = a ·b using

Beaver’s trick [3] (Protocol 8) if they had 〈u〉,〈v〉, and 〈z〉 s.t.
u · v = z. The core idea is to first reconstruct µ= u−a and ν=
v−b, then the shares are 〈z〉i−µ〈v〉i−ν〈u〉i + iµν, where i ∈
{0,1} represents {S,C}. Operating over secret shares is very
efficient on GPU and incurs less overhead than AHE. It can
be generalized to matrix operations and tensor convolutions.

Additive SS has a near-to-plaintext performance for addi-
tion and plaintext-SS multiplication (c · 〈x〉= 〈c ·x〉). Vectoriz-
ing these operations using GPU, which is extensively done by
GForce, hugely outperforms their counterparts using AHE.

3.2 Overview of GForce

In supervised learning, every training data is a data point x
associated with a label y. A DNN tries to learn the relationship
between x and y. Inference outputs a label y of query x.

GForce allows a server S with a DNN model DNN(·) to
provide oblivious inference. It returns DNN(x) to client C
without knowing the client query x and DNN(x). Meanwhile,
C remains oblivious to the learnable parameters of DNN.

Most DNNs consist of many linear and non-linear layers.
In GForce, each layer i outputs additive SS 〈x(i)〉 to the server
and the client, which in turn acts as the input to the next layer.

For linear layers, GForce supports fully-connected layers,
which multiply the input by a learnable weighting matrix, and
convolution layers, which convolute learnable kernels over the
input. Secure computation of linear function is typically done
via the homomorphism of AHE (reviewed in Section 3.1). We
propose AHE-to-SOS transformation (in Section 3.3), which
transforms the traditional AHE-based approach into our GPU-
friendly linear computation protocol over secret shares.

For non-linear layers, we focus on comparison as a core
operation. We propose GPU-friendly secure comparison pro-
tocols (in Section 3.4) built on top of DGK protocols [7], with
any wrap-around error fixed (in Section 3.5). GForce thus
supports the most common choices of activation and pooling
layers, i.e., ReLU and maxpool (in Section 3.6), respectively.

GForce also specifically considers SWALP-trained DNNs
embodied by the SRT layers (in Section 3.7), which efficiently
divide and wrap around the inputs in additive SS, whose
resulting value distribution is close to stochastic rounding.

To summarize,C produces an additive SS of its query 〈x(0)〉.
C and S then sequentially invoke our protocols according to
the architecture of DNN over their additive SS {〈x(i)〉}, and
eventually,C recovers DNN(x) from the additive SS of the last
layer. Tables 1-2 list the (existing and new) building blocks.
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Figure 2: Our AHE-to-SOS Transformation for Crypto Protocols

SOS (§3.3) Secure On/off Share Computation
SC-DGK (§3.4) Share-Computation variant of DGK
GPU-DGK / -Wrap GPU-friendly DGK or Wrap protocol
off/on (§3.4/§3.5) and its offline or online sub-protocol
SRT layer
(§1, §2.4, §3.7)

Stochastic Rounding and Truncation
tailored for SWALP-trained DNN

Table 2: Acronyms for New Concepts in GForce

3.3 Secure Online/Offline Share Computation

One of our core ideas is to replace the online computation over
AHE ciphertexts of the query with the offline computation
over AHE ciphertexts of some query-independent randomness
and the (fast) computation over secret shares of the query.
Table 3 lists the notations for describing our protocols.

AHE-to-SOS Transformation. An AHE-based protocol (Fig-
ure 2) starts by C sending an encrypted value [x] to S. S then
applies its private linear function f on [x] and returns the re-
sult to C. Figure 3 describes the resulting protocol obtained
after AHE-to-SOS transformation. We call this trick secure
online/offline share computation (SOS).1 As our most basic
usage of AHE, our protocol in Figure 3 is also named SOS.

In the offline phase, C randomly picks rC and encrypts it
to S. S then applies f over this AHE ciphertext [11,13], masks
it with rS, and sends the results back to C. C decrypts it and
keeps the result as an output share rC for the online phase.

GForce leverages the linearity2 f (χ) = f (χ− r)+ f (r) to
protect χ. In the online phase, S and C each hold an input
share, 〈χ〉S and 〈χ〉C. C additively masks its input share with
rC and sends it to S. S reconstructs another additive SS (χ−
rC) and computes 〈 f (χ)〉S := f (χ−rC)−rS on GPU. 〈 f (χ)〉S
and 〈 f (χ)〉C := f (rC)+ rS are the output shares. Note that
〈 f (χ)〉S + 〈 f (χ)〉C = f (χ).

1The naming of our (secret) shares may be “abused” in some sense, e.g., an
“output share” can be created even before knowing the output because one can
create the corresponding share that matches with it when the output is known
in a later time. For example, in our SOS, the client has 〈 f (χ)〉C := f (rC)+rS

in SOS’s offline phase even though f (χ) is unknown.
2Slalom [24] precomputes f (r) in f (χ) = f (χ− r) + f (r) within the

trusted environment. Here, we precompute f (r) with AHE.

Figure 3: Our Secure Online/Offline Share Computation (SOS) for
Linear Functions: [·] is an AHE ciphertext. 〈·〉 is an additive SS.

SOS reduces the online computation time (of using AHE).
The transformed protocol processes a batch of inputs in addi-
tive SS to fully utilize GPU’s batch-processing performance.
Using SS instead also reduces the online communication.

Applications. To apply SOS (Figure 3), S needs to know f ,
including its internal parameters, in the offline phase. This
requirement is trivial for linear layers, such as convolution
and fully-connected layers, because S knows the weight.

Beyond linear layers, we also apply the SOS trick to our
other protocols that use AHE, e.g., DGK for comparison. For
these protocols, the internal parameters of f are usually secret
random values generated by S, which we can somehow move
to the offline phase, as Sections 3.4 and 3.5 will show.

3.4 GPU-Friendly Secure Comparison
In the DGK protocol [7] (Protocol 5), the server S and the
client C hold private integers α`−1 · · ·α1α0 and β`−1 · · ·β1β0
respectively. It processes from `− 1 to 0 to locate the first
differing bit via computing bi, which is 0 iff (α j = β j)∀ j:i< j<l
and αi 6= βi. For that, C sends all [βi] to S. S then computes

[bi]∀i∈{`−1,...,0} = [a]+ ([αi]− [βi])+3
`−1

∑
j=i+1

[α j⊕β j] (1)

with a = 1−2δS and a random bit δS picked by S offline. To
test also if α = β, S computes [b−1] = [δS]+∑

`−1
j=0[α j⊕β j].

S can compute [α j⊕β j] via AHE: (1−2 ·α j) · [β j]+ [α j].
S sends {[bi]} back to C after shuffling their orders and

multiplying each of them by a different random number rS
×,i.

With the decryption key, C sets δC := 1 ∈ Z2 if any ciphertext
decrypts to 0; 0 otherwise, where δS⊕δC = (α≤ β).

Removing AHE from (Online Phase of) DGK Protocol.
We assume the server knows α offline at the moment. When
the server picks the randomness (e.g., a) offline, we can
re-write the multiplication of Equation 1 with rS

×,i as fol-
low, which is for applying our AHE-to-SOS trick over DGK:
f SC-DGK
i,a,α,rS

×,i
(β) = rS

×,i ·(a+αi−βi+3 · f⊕i,α(β)), where f⊕i,α(β) =
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` (§2.1, §3, §4) Bit-width of the DNN’s data
Zq (§3,§4) Finite field for the DNN’s data
Zp (§3,§4) Finite field for result bits {bi} (Eq. 1)
[x]q or [x] (§3) AHE ciphertext of x under Zq
〈x〉Sq / 〈x〉Cq (§3) SS of x under Zq held by S or C
k (§3.4) Number of inputs in a batch
α / β (§3.4) SC-DGK’s Server or Client input
φi (§3.4) αi⊕βi (i-th bit of α or β)
d (§3.7) Divisor of an SRT layer
vd (§3.7.3, App. B) v mod d for v ∈ {q,τ,s}
τ (§3.4, §3.5, §3.7) Additive mask for the shared input s
z (§3.4, §3.5, §3.7) s+ τ mod q in GPU-DGK or -Trun
wrap (§3.4, §3.7.3) Value that offsets wrapped-around z

Table 3: Notations (and where are they mostly discussed)

Figure 4: GPU-DGK prepares τ and α offline to enable efficient
SOS computations of SC-DGK and GPU-Wrap.

((1−2αi) ·βi +αi)+ f⊕i+1,α(β) if i 6= `, and f⊕`,α(·) = 0. The
equivalence follows from αi⊕βi = (1−2 ·αi) ·βi +αi. The
AHE-to-SOS transformation of DGK using the above (re-
cursive) linear function (corresponding to Lines 6 to 11 and
Lines 20 to 21) results in our Protocol 1, named SC-DGK for
share-based computation, with φi denotes the output of f⊕i,α.

Protocol 1 processes a batch of k inputs, which we just
denote any operand or result related to each of them as a
single variable (e.g., δ or P but not set/vector notation with
subscript δδδ j or {P j}) to avoid running into double subscripts
(e.g., we need to break input β into its bit-representation).
Looking ahead, Protocols 2, 3, and 4 also work on batches.

GPU-Friendly Secure Comparison. Beyond requiring an
offline-known α, SC-DGK has two drawbacks. First, both α

and β have to be non-negative, while the inputs to comparison-
based layers can be negative. Second, the inputs need to be
known to either S or C. GForce cannot use it to process any
(intermediate) value protected by additive SS.

Inspired by the protocol of Veugen [26], our new protocol
GPU-DGK (Protocol 2) can accept additive secret shares of
probably negative input x and y from S and C, without assum-
ing any online input is known in the offline phase. GPU-DGK
reduces the comparison of x≤ y to that of α≤ β in SC-DGK.

As illustrated in Figure 4, in GPU-DGK, S picks τ∈Zq and
sets α = τ mod 2` offline. In the online phase, S and C got 〈x〉
and 〈y〉. S masks 〈y−x〉S by τ and sends 〈z〉S = 〈y〉S−〈x〉S +

Protocol 1 Share-Computation Variant of DGK for Offline α

Offline Input (S|C) 0≤ α < 2` skAHEq , skAHEp

Online Input (S|C) 0≤ β < 2`

Output (S|C) 〈α≤ β〉Sq 〈α≤ β〉Cq
Constraints

k many (α,β) are processed together,
`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure SC-DGKoff (α, /0)
2: S decomposes α`−1 · · ·α0← α and sets α−1← 0
3: S: 〈α≤ β〉Sq ← 1⊕δS, a← 1−2 ·δS, where δS ∈ Zk

q
4: for i←{`−1, . . . ,−1} do
5: C: picks 〈βi〉Cp ∈ Zk

p and sends [〈βi〉Cp ]p to S
6: S: multαi ← 1−2 ·αi,biasαi ← αi
7: S: [〈φi〉Cp ]p←multαi · [〈βi〉Cp ]p +[biasαi ]p
8: S: generates random rS

×,i ∈ (Z∗p)k, rS
+,i ∈ Zk

p

9: S: a← δS if i =−1
10: S: ti← [a+αi]p− [〈βi〉Cp ]p +3 ·∑`−1

j=i+1[〈φ j〉Cp ]p
11: S: [〈bi〉Cp ]p← rS

×,i · ti +[rS
+,i]p

12: S: picks k permutations P of {−1,0,1, . . . `−1}
13: S: shuffles all k [〈bi〉Cp ]p by P and sends them to C

14: C: decrypts [〈bi〉Cp ]p to get 〈bi〉Cp for i ∈ [−1, `−1]
15: S, C stores all their own values in preS or preC, resp.
16: procedure SC-DGKon(preS,(preC,β))
17: C decomposes β`−1 · · ·β0← β and sets β−1← 0
18: for i←{`−1, . . . ,−1} do
19: C sends 〈βi〉Sp← βi−〈βi〉C to S

20: S: 〈φi〉Sp←multαi · 〈βi〉Sp +biasαi

21: S: 〈bi〉Sp← rS
×,i ·(−〈βi〉Sp+3 ·∑`−1

j=i+1〈φ j〉Sp)−rS
+,i

22: S: shuffles all k 〈bi〉Sp by P and sends them to C

23: C: 〈α≤ β〉Cq ← 1 if any recovered bi is 0; otherwise 0.

τ+2`. C obtains β = z mod 2` where z = 〈z〉S + 〈y〉C−〈x〉C.
S and C then execute SC-DGKon(α,β) to compute 〈α≤ β〉.

It indirectly compares x ≤ y since α ≤ β equals to τ ≤ (y−
x+ τ+2`) mod 2`, we have α≤ β ⇐⇒ x≤ y mod 2`.

Note that z may wrap around (due to a large τ). Our solu-
tion is to add a value wrap (also in shares) to the output, to be
explained in Section 3.5. When z does not wrap around, the
correctness of GPU-DGK can be derived similarly as an exist-
ing proof [25, Protocol 3]. Appendix B proves its correctness.

Data Types for GPU-Friendly Protocols. We use the 53-
bit significand plus a sign bit of 64-bit floating-point numbers.
For not overflowing the result, q2n < 253, where n is the num-
ber of addition. As k is unknown before a network is given,
we left some safety margin and set log2(q)< 23. We thus use
32-bit floats that also minimize the communication cost.

Communication Cost. We transfer our additive SS in Zp via
32-bit floats (which could be optimized to a 17-bit transfer).
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Protocol 2 Our GPU-friendly Secure Comparison Protocol

Offline Input (S|C) pkAHEq skAHEq

Online Input (S|C) 〈x〉S, 〈y〉S 〈x〉C, 〈y〉C
Output (S|C) 〈x≤ y〉Sq 〈x≤ y〉Cq
Constraints

log2(p), log2(q)< 23
`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure GPU-DGKoff

2: S randomly picks τ∈Zk
q and computes α← τ mod 2`

3: S and C run SC-DGKoff(α) and GPU-Wrapoff(τ)
4: S, C has every values stored in preS or preC, resp.
5: procedure GPU-DGKon({prerole,〈x〉role,〈y〉role}role∈{S,C})
6: S sends 〈z〉S← 〈y〉S−〈x〉S +2`+ τ to C
7: C recovers z←〈y〉C−〈x〉C+〈z〉S, sets β← z mod 2`

8: S and C run SC-DGKon(preS,(preC,β)) to get share
〈α≤ β〉Sq and 〈α≤ β〉Cq , resp.

9: S andC run GPU-Wrapon(preS,(preC,z)) to get share
〈wrap〉Sq and 〈wrap〉Cq , resp.

10: S: 〈x≤ y〉Sq ←−bτ/2`c− (1−〈α≤ β〉Sq)+ 〈wrap〉Sq
11: C: 〈x≤ y〉Cq ← bz/2`c+ 〈α≤ β〉Cq + 〈wrap〉Cq

For `-bit inputs, our protocol transfers 64`+112 bits in the
online phase, while a GC approach takes at least 384` (for
oblivious transfers). For instance, for a plaintext size of `= 20,
we can reduce the online communication cost by 81.8%.

3.5 GPU-Friendly Wrap-Around Protocol
In the finite field Zq over which our protocols mostly operate,
we need to deal with the wrap-around issue, i.e., for a secret s,
its additively masked value z = s+ τ mod q may equal to s+
τ−q because s+τ> q. Our protocol’s output usually involves
an additional z/d term, e.g., z/2` in Line 11 of Protocol 2,
where d < q is a public divisor. To ensure correctness, we need
to offset the −q/d term as if wrap-around does not happen.

We propose GPU-Wrap (Protocol 3), our GPU-friendly
wrap-around handling protocol, to produce the shares 〈wrap〉
that can offset −q/d. Namely, we want z/d− τ/d +wrap≈
s/d. As observed by Veugen [25], we can assume s < 2`+1 <
(q−1)/2 is always in the “first half” of [0,q−1], and wrap-
around happens if and only if τ is in the “second half,” i.e.,
τ ∈ [(q−1)/2,q), and z is wrapped to the first half, i.e., z =
s+τ mod q= s+τ−q∈ [0,(q−1)/2). In other words, given
public q and d, GPU-Wrap computes

wrap= fτ(z) = (τ≥ (q−1)/2) · (z < (q−1)/2) · bq/dc

which is an offline-known linear function for the online input z
of C if S randomly picks τ ∈ Zq offline.

To extend DGK to handle probably negative inputs, Veu-
gen [25] argues that, in addition to the above wrap-around off-
set, it should take α̂ = α−q mod 2` instead of α to handle the

Protocol 3 GPU-friendly Wrap-around Handling Protocol

Offline Input (S|C) τ, pkAHEq skAHEq

Online Input (S|C) z
Output (S|C) 〈wrap〉Sq 〈wrap〉Cq
Constraints log2(q)< 23, q≡ 1 mod 2`

1: procedure GPU-Wrapoff (τ, /0)
2: C generates 〈u〉Cq ∈ Zk

q and sends [〈u〉Cq ]q to S

3: S computes multd ← (τ > (q−1)/2) · bq/2`c
4: S generates a random 〈wrap〉Sq ∈ Zq

5: S sends [〈wrap〉Cq ]q←multd · [〈u〉Cq ]q−〈wrap〉Sq to C

6: S, C has every values stored in preS or preC, resp.
7: procedure GPU-Wrapon(preS,(preC,z))
8: C sends 〈u〉Sq ← (z < (q−1)/2)−〈u〉Cq to S

9: S: 〈wrap〉Sq ←multd · 〈u〉Sq−〈wrap〉Sq

wrap-around error. We do not adopt this trick in GPU-DGK
because it takes extra computational and communication costs.
Instead, we impose a constraint that q = 1 mod 2` through-
out our framework, so DGK(α,β) 6= DGK(α̂,β) only occurs
when α = β, implying x = y, but it is fine since the result
merely serves for max(x,y). This constraint is specifically
beneficial for us, and it seems no related works did it before.
Appendix B proves this constraint makes GPU-DGK correct.

3.6 GPU-Friendly Secure Comparison Layers
Secure Max Computation and ReLU Layers. As
max(x,y) = (x ≤ y) · (y− x)+ x, we compute 〈max(x,y)〉 =
〈x≤ y〉 · (〈y〉−〈x〉)+ 〈x〉 with 〈x≤ y〉 output by GPU-DGK,
where share multiplication can be done efficiently online by
GPU with Beaver’s trick. ReLU(x) is computing max(x,0).

Maxpool Layers. Maxpool can use max() in a binary-tree
style, e.g., max(max(xxx0,xxx1),max(xxx2,xxx3)), where xxxi are in the
vector form. For n inputs with window size w, the number of
comparisons is n ·(1−2−dlog2(w)e), and we need to invoke our
GPU-DGK for dlog2(w)e rounds. To reduce the invocations
of max(), we apply the maxpool layer before the ReLU layer
as in Falcon [13] when they are next to each other.

3.7 Inference from SWALP-trained Networks
SWALP’s (De)quantization. SWALP [28] quantizes the
values of input xxx (from queries or previous layers) and
weight www of linear layers f . It also dequantizes the out-
put values. The boldface type here emphasizes that the
inputs can be operated as a set or a tensor. Let bit be
the number of bits in fixed-point computation. It defines
a quantization function Q(xxx f ) that outputs xQ = clip(bxxx f ·
2−expx+bit−2e), where clip(a)=min(max(a,−2bit−1),2bit−1),
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expx = b(log2 ◦max◦abs)({x f ,i}i)c is an auxiliary output of
an integer indicating the highest magnitude among the values
in xxxQ, and b·e is stochastic rounding [9]. The quantization for
the weight Q(www f ) is also defined similarly. The resulting out-
put yyyQ = f (xxxQ;wwwQ) is then dequantized accordingly via yyy f =

DeQ(yyyQ;expx,expw), defined to be yyyQ ·2expx+expw−2·bit+4.
Turning a SWALP-trained model for oblivious inference

is challenging because we operate secret shares in Zq with
(linear) homomorphism, but (de)quantization is non-linear.

3.7.1 Precomputing the Maximum

We observe that once the training is done, the maximum value
in the weight is fixed, so does expw. So we can precompute
expw for each linear layer. Meanwhile, a trained network has
more or less learned the distribution of the input and interme-
diate data, i.e., x, and thus we can sample x to compute expx.
So the inference phase can use expx and expw derived from
training, and treat expx and expw as learnable parameters.

3.7.2 Fusing (De)quantization into Truncation

Suppose, for a linear layer with quantization parameters expx
and expw, y is its quantized output. We want to dequantize
it, pass it through (a maxpool layer and) a ReLU layer, and
quantize it for the next linear layer with quantization param-
eters expy. GForce does these by fusing the dequantization
(DeQ) with the quantization (Q). Theorem 1 proves that this
leads to the same result when the non-linear layers between
the linear layers are comparison-based ReLU and MaxPool.

Theorem 1 (Fusing (De)quanization). Q◦ fCMP ◦DeQ(yyy) =
clip(b fCMP(yyy)/d)e) or clip(b fCMP(yyy) · d)e) for some d ∈ Z,
where fCMP = ReLU◦MaxPool (or ReLU as an easier case),
ReLU(xxx) = max(xxx,0), and MaxPool(xxx) = max({xxxi}i).

Proof. We have (Q ◦ fCMP ◦DeQ)(yyy) = clip(b2−expy+bit−2 ·
max({2expx+expw−2·bit+4 · yyyi}i,0)e) since fCMP({xxxi}i) =
max({xxxi}i,0), which can be fused into clip(b2shift · fCMP(yyy)e),
where shift = expx + expw− expy−bit+2 as cmax(a,b) =
max(ca,cb) for c > 0. Depending on the sign of shift, the
fused (de)quantization becomes division/multiplication.

3.7.3 Stochastic Rounding and Truncation Layers

Secure division is not easy even for a public divisor. Some
prior works (e.g., [18]) directly divide each share by a (public)
divisor d, even for wrapped-around 〈s〉 = {−τ,s + τ− q},
i.e., {b−τ/dc,b(s+ τ− q)/dc}. The reconstruction is thus
incorrect: b−τ/dc+ b(s+ τ−q)/dc ≈ b(s−q)/dc 6= bs/dc.

For (floor) division, we modify a DGK-based approach [25]
(on AHE ciphertexts). Our protocol works over secret shares
(with the wrap-around protocol) without running the entire
DGK explicitly. It also “implicitly” performs stochastic round-
ing on the output. Our division protocol could incur errors to

Protocol 4 GPU-friendly Truncation Protocol

Offline Input (S|C) d, pkAHEq d,skAHEq

Online Input (S|C) 〈s〉Sq 〈s〉Cq
Output (S|C) 〈bs/de〉Sq 〈bs/de〉Cq
Constraints

log2(q)< 23, 0≤ s,d < 2`

`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure GPU-Trunoff

2: S picks r ∈ Zk
q, sets multd ← (r > (q−1)/2) · bq/dc

3: S and C run GPU-Wrapoff(r)
4: S, C has every values stored in preS or preC, resp.
5: procedure GPU-Trunon((preS,〈s〉Sq),(preC,〈s〉Cq ))
6: S computes 〈z〉Sq ← 〈s〉Sq + r and sends it to C

7: C reconstructs z = s+ r mod q = 〈z〉Sq + 〈s〉Cq
8: S, C gets 〈wrap〉Sq ,〈wrap〉Cq ← GPU-Wrapon(z), resp.
9: S: 〈bs/de〉Sq ←−br/dc+ 〈wrap〉Sq

10: C: 〈bs/de〉Cq ← bz/dc+ 〈wrap〉Cq

the output values, but the error distribution of the division is
close to the value distribution of stochastic rounding:

bse=

{
bsc+1, with probability s−bsc,
bsc, with probability 1− (s−bsc).

For our protocol to perform division and stochastic round-
ing at once, S computes 〈bs/de〉S ← −bτ/dc+ 〈wrap〉Sq ,
where τ is a pre-drawn additive mask for s, and C computes
〈bs/de〉C ← bz/dc+ 〈wrap〉Cq , where 〈wrap〉 is correspond-
ing to z and the divisor d. Like other GPU-friendly secure
online/offline protocols, the server can take advantage of its
prior knowledge on the randomness τ in the offline phase. The
ideas above result in GPU-Trun (Protocol 4) for SRT layers.

Theorem 2. The secret value underlying the output of
GForce’s SRT layers (or GPU-Trun, i.e., Protocol 4) on input
s and a divisor d approximates stochastically rounded bs/de.

Proof. We analyze the value distribution of 〈s/d〉 when there
is no wrap-around. In this proof, we let vd be the remainder of
a variable v (v∈{q,τ,s}) with respect to a divisor d. (One may
consider vd as v in Zd .) The result of the reconstruction is:

bz/de−bτ/de=

{
bsc+1, if sd + τd ≥ d,
bsc, if sd + τd < d.

As τ is uniformly sampled from [0,q−1], its distribution
is p(τd) = 1/(qd + d) if τd ≥ qd and p(τd) = 2/(qd + d) if
τd < qd . Since we have the constraint that qd = 1, we can
assume τd is uniformly distributed when d� 1. (Based on our
experimental results, d is usually in {29,210,211}, meaning
the deviation from a uniform distribution is very small.)
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Also, as sd + τd ≥ d ⇐⇒ τd/d ≥ 1− (s/d−bs/dc), we
can conclude that when d� 1,

b z
d
e−b τ

d
e=

{
bsc+1, with prob. sd/d−bsd/dc,
bsc, with prob. 1− (sd/d−bsd/dc),

which is identical to the distribution of stochastic rounding
bx/de. If it wraps around, s+ r mod q = s+ τ−q. So,

b z
d
c−b τ

d
c−bq

d
c=


bsc+1, if sd + τd−qd ≥ d,
bsc, if 0 < sd + τd−qd < d,
bsc−1, if sd + τd−qd < 0.

When d� 1, qd/d ≈ 0, so this distribution is very close to
the distribution when wrap-around does not happen, and thus
it is also close to the distribution of stochastic rounding.

Truncation Approaches Comparison. Delphi [18] directly
truncates the least significant bits without any wrap-around
handling. Much plaintext space is wasted to avoid error be-
cause the error probability is proportional to the ratio of values
hidden in additive SS to the size of the plaintext space. We
will empirically show in Section 4.1 that such truncation ren-
ders the inference useless due to the tight bit-width.

Delphi [18] picks a plaintext space of 32 bits. It is enough
to prevent overflow during linear computations on GPU since
the plaintext multipliers are small. However, it is too large
for additive SS multiplication on GPU because it requires at
least 64-bit bit-width, while GPU can only work with 52 bits
for optimized performance. Also, adopting 32-bit bit-width
instead of our choice of 22-bit would increase GPU-DGK’s
computation and communication costs by ∼45%.

Another idea of using the original DGK [25] is to determin-
istically round up the divided values. We will show by experi-
ments in Section 4.1 that it is orders-of-magnitude slower than
our truncation protocol, let alone the extra procedures and
bit-width needed (Section 3.5) to prevent off-by-one errors.

4 Experimental Evaluation

Experimental Platform. Following the LAN setting of
Gazelle [11] (AWS Virtual Machines (VMs) in us-east-1a) in
spirit, our experiments ran on 2 Google Cloud VMs located
in the same region (asia-east-1c). They are equipped with
Nvidia V100 GPU and run Ubuntu 18.04 LTS. Each has 52GB
RAM and 8 virtual Intel Xeon (Skylake) CPUs at 2GHz.

We report the mean of 10 experiment repetitions and pro-
vide the standard deviation in [·] if the measurement may be
affected by randomness, e.g., runtime and inference accuracy.

Cryptographic Implementations. We code GForce in C++
(compiled by GCC 8.0) and Python 3.6. We marshal network

communication and GPU operations via PyTorch 1.3.1 and
CUDA 10.0. We assume the bit length of all data, i.e., the in-
put, the intermediate values, and the weights, is 18, except we
set `= 20 for a fair comparison with Gazelle in benchmark-
ing ReLU and maxpool (Tables 4-5). We set bit= 8 for 8-bit
fixed-point representation in quantization (see Section 3.7).

We use Microsoft SEAL (release 3.3.2)’s BFV-FHE [8] as
AHE. The plaintext space for the neural networks is defined
by q = 7340033. The degree of encryption polynomials (i.e.,
the number of plaintext slots in a ciphertext) is 16384, and the
coefficients modulus of the polynomials is of 438 bits. The
ciphertext size is 32MB, which is amortized to 2048 bit for
each data entry. We picked the recommended parameters for
SEAL to ensure 128-bit security. In the bit-wise comparison
of the DGK protocol (GPU-DGK), we also pick the same set
of parameters for SEAL except we set p = 65537.

BFV-FHE relies on the hardness of the learning-with-error
problem. By itself, it does not support circuit privacy because
the noise embedded into the ciphertexts may allow the sk
holder to infer some partial information about the input plain-
texts. To hide S’s private input to AHE for linear functions,
we adopted noise flooding [1] with 330-bit smudging noise;
namely, S adds encryption of 0 with 330-bit noise to each
ciphertext before sending it to C. Appendix C.2.3 discusses
why this magnitude of the noise is enough for circuit privacy.

Comparing to Prior Arts’ Experiments. Gazelle [11],
Falcon [13], and Delphi [18] are our major competitors.

Gazelle’s implementation is criticized [18,21] for its choice
of AHE parameters, which may not ensure circuit privacy. Fal-
con’s choice suffers from the same issue. Changing the param-
eters will worsen their performance and require re-evaluation.
To their advantage, we rely on their figures as is. Non-linear
layers are not affected by AHE, and we reproduced their exper-
iments on our Google Cloud VMs. For ReLU (Table 4), our
reproduced results are slightly worse than what were reported.
For maxpool (Table 5), ours got slightly better.

Falcon did not release their code, and we failed to compile
the code of Delphi, so we only quote the figures from their pa-
pers. We will give inline remarks on the comparison fairness.

4.1 Comparison-based Layers
As one of our contributions, we demonstrate the performance
of our ReLU and maxpool implementations using our GPU-
friendly protocol. We chose Gazelle [11] and Falcon [13] for
comparison due to their similar paradigm for this part: the
server and the client interact to get secret shares of the layer
inputs and collaboratively compute the shared outputs. Delphi
uses GC for non-linear computation and is not compared.

ReLU Layers. As in Table 4, for 10000-element inputs, we
outperform Gazelle by 9× and Falcon by 11× in the online
runtime and by at least 8× in the online communication cost.
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#input Framework `
Comp. (ms) Comm. (MB)

Offline Online Offline Online

10000

Gazelle 20 771
[10.28]

146.77
[4.52] 54.35 16.79

Falcon 30 361.70 179.60 67.40 15.01

GForce 20 18426
[82.42]

111666...333777
[1.87] 269.54 111...888777

217

Gazelle 20 9378
[50.00]

1754
[20.33] 712.35 220

Falcon 30 ∗4740 ∗2354 ∗883.42 ∗196.74

GForce 20 134632
[443.30]

666555...111333
[7.05] 2125 222444...555

Note: ` is the bit length of the input in plaintext. [·] denotes the standard deviation.
Figures with ∗ are based on estimation. Falcon’s figures are quoted from its paper.
Gazelle’s figures come from our reproduced experiments.

Table 4: (Non-approximated) ReLU Layer Benchmarks

#input Framework `
Comp. (ms) Comm. (MB)

Offline Online Offline Online

10000

Gazelle 20 485.60
[8.18]

115.6
[6.45] 38.99 14.27

Falcon 30 365.50 181.90 68.20 15.02

GForce 20 30807
[97.59]

222000...111111
[0.96] 534.54 111...444000

40000

Gazelle 20 1828
[17.57]

397.8
[14.25] 155.98 57.08

Falcon 30 ∗1462 ∗727.6 ∗272.80 ∗60.08

GForce 20 43739
[147.70]

222555...888888
[2.38] 799.65 555...666111

218

Gazelle 20 13681
[95.69]

2950
[42.99] 1022 374.00

Falcon 30 ∗9580 ∗4768 ∗1787 ∗393.74

GForce 20 195783
[644.99]

888888...000222
[10.74] 3185.5 333666...777555

Note: ` is the bit length of the input in plaintext. Figures with ∗ are based on estimation.
[·] denotes the standard deviation. Comp.: Computation; Comm.: Communication.

Table 5: Maxpool (2×2) Layers Benchmarks

Falcon only provided their runtime for 1000 or 10000 in-
puts. The latter grows up by a ratio of 9.6× over the former,
so we treat their fixed runtime cost amortized. According to
our estimation of their performance on 217 inputs3 by linearly
scaling its runtime for 10000 inputs, we outperform Gazelle
by 27× and Falcon by 36× in the online runtime. The larger
speed-up ratio indicates that GForce can handle a large batch
of inputs better than prior arts. We also outperform by at least
7× in the online communication cost.

Maxpool Layers. Table 5 shows the runtime and commu-
nication costs of maxpool layers of window size 2×2. For
10000 inputs, we outperform Gazelle and Falcon by 6× and
9× for the online runtime and by 10× and 11× for the online
communication cost, respectively. Falcon did not provide the
figures for 40000 and 218 inputs, so we estimate by scaling
its runtime linearly, similar to the case for ReLU. For 40000-
inputs, we reduce the online runtime of Gazelle and Falcon
by 15× and 28×, respectively. For input size up to 218, we
reduce the online runtime by 34× and 54×, respectively.

While we just quote the figure from the paper of Fal-

3Gazelle’s implementation is too memory-consuming. We failed to bench-
mark it on a larger batch for ReLU but managed to do 218 for maxpool.

Dataset Architecture Stocha. (GForce) Nearest Floor Naïve

CIFAR-10 A-MT 90.82%[0.069%] 90.88% 90.08% 10.62%
VGG-16 93.22%[0.076%] 93.11% 83.92% 10.06%

CIFAR-100 VGG-16 72.83%[0.075%] 73.14% 64.83% 1.03%

[·] denotes the standard deviation: Nearest/Floor is deterministic. Naïve’s are omitted.

Table 6: Accuracy of Different Rounding Methods

con [13], we believe its performance would not change dra-
matically since then, since it also adopts GC for non-linear
layer as Gazelle, and Gazelle’s performance reproduced in our
platform is similar to the reported figures. Note also that the
main technical contribution of Falcon lies in its linear layer.
The baseline is, our figures are order-of-magnitude better.

SRT Layers. Figure 5 shows the online runtime of the
truncation layers. It illustrates a pattern similar to other non-
linear layers in that the fixed cost dominates the runtime for
small input size. Nevertheless, truncation layers can finish the
computation in less than 10ms for small inputs (whose size is
less than 105). Compared to the layers built on top of DGK,
truncation layers are faster by an order of magnitude.

Table 6 shows that our SRT layers are both efficient and
accurate. We implement several rounding methods in our trun-
cation layers and test them with CIFAR-10/100 datasets over
A-MT and VGG architectures (see Section 4.2 for their de-
scription). Stochastic rounding can attain an accuracy similar
to the nearest rounding. Nearest rounding and floor rounding
could be realized by DGK, but with the runtime increased by
an order of magnitude. Naïvely truncating the least significant
bits of each additive share is adopted by Delphi [18], but it
would make the model almost useless. We suspect the tight
plaintext space is a reason (our 22-bit vs. Delphi’s 32-bit,
resulting in a 210× increase in the error probability).

While the usage of clip() in SWALP’s quantization (men-
tioned in Section 3.7) appears to be helpful, our experimental
results in Tables 7-8 show that it has a very mild impact on
the accuracy: SWALP [28] reports their VGG-16 can attain
93.3% and 73.3% accuracy on CIARF-10/100, respectively,
while the accuracy of GForce over VGG-16 without clip()
drops by less than 0.5pp. We suspect that SWALP-trained
neural networks have already optimized the parameters so
that the intermediate values rarely exceed the range.

Runtime w.r.t. Input Sizes. Figure 5 sheds light on how
the online runtimes of our comparison-based layers grow with
the input size. For small (<105) input sizes, they grow very
slowly, indicating the runtime is dominated by the fixed costs,
including the constant latency of transferring data between
CPU and GPU and over the network. For larger input sizes, the
runtime grows linearly. It also explains why we outperform
Falcon and Gazelle the most when the input size is large. The
maxpool layers have shorter online runtime than ReLU layers
and the basic DGK protocol for the same input size because
the total number of comparisons that maxpool layers invoke is
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less than their input size. Section 3.6 explained why maxpool
layers require less than n comparison for n inputs.

Gain from GPU. To see how GPU contributes to the lower
online runtime, we run GPU-DGK, ReLU layers, and maxpool
layers with only CPU. Figure 6 shows that when GPU is not
used, the online runtime of our protocols (dash lines) still
remain in milliseconds level but are much higher than their
GPU-enabled counterparts (solid lines). The gap becomes
wider as the input size increases, which aligns with the goal
of GForce to efficiently process DNNs for complicated tasks.

4.2 Oblivious Inference
Datasets. CIFAR-10 contains 10 classes of 32×32 colorful
images. It has 50,000 training images and 10,000 testing
images, each labeled with a class. CIFAR-100 has the same
number of colorful images, but they belong to 100 classes,
which is harder for classification since each class has less
training images, and classifiers need to learn more classes.
They are popular benchmarks for (plaintext) neural networks4.

Neural Networks. The neural network architecture is cen-
tral to the runtime and accuracy of inference. Among the lists
in Tables 7-8, ResNet-32/18 [10], used by Delphi [18] and

4More than 100 machine-learning papers compete for higher accuracy on
them (https://paperswithcode.com/sota/image-classification-on-cifar-10 and
https://paperswithcode.com/sota/image-classification-on-cifar-100). CIFAR
datasets are arguably harder than MNIST evaluated in prior works [14].

Architecture Framework Accuracy Comp. (ms) Comm. (MB)
Offline Online Offline Online

A

MiniONN 81.61% 472000 72000 3046 6226
Gazelle - 9340 3560 940 296
Falcon 81.61% 7200 2880 265 1459
Delphi 83.33% 41900 380 159 7.5
Delphi 87.21% 44444 640 247 11
Delphi 87.77% 101904 7742 3319 281

A-MT GForce 90.82%
[0.069%]

249304
[567.25]

111444777...222666
[5.21] 4698 31.43

BC5 XONN 88.00% 123940 41
BatN-CNN SHE 92.54% 2258000 160
ResNet-18 SHE 94.62% 12041000 160

VGG-16 GForce 999333...111222%
[0.076%]

900007
[14106]

352.75
[5.41] 19195 50.46

[·] denotes the standard deviation.

Table 7: CIFAR-10 Benchmarks for Cryptographic Frameworks

Arch. Framework Accuracy Comp. (ms) Comm. (MB)
Offline Online Offline Online

ResNet-32 Delphi 65.77% 109873 2600 1397 74
Delphi 67.81% 178227 14200 6296 373

VGG-16 GForce 777222...888333%
[0.075%]

849565
[3171]

333555000...111000
[10.51] 19197 555000...444777

Table 8: CIFAR-100 Benchmarks for Cryptographic Frameworks

SHE [15], has the best accuracy in plaintext inference, while
ResNet-32 is slightly better. VGG-16 [22], used by us, sec-
onds in the plaintext accuracy. An early work MiniONN [14]
proposed Architecture A [14, Figure 13], but without report-
ing its accuracy. We implement a slightly modified version
A-MT that replaces all meanpool layers by maxpool layers
and inserts truncation layers between linear layers. The accu-
racy of A-MT on CIFAR-10 is slightly shy to VGG-16.

Neural networks with a higher accuracy incur a longer
runtime in general. A and A-MT have the shortest runtime.
SHE [15] adopts a convolutional neural network (BatN-CNN
in Table 7) [5] with a similar composition as A-MT, except it
adopts batch normalization layers instead of truncation layers,
and some of its convolution layers have more output channels,
meaning that it is more computationally intensive.

Prior arts also modify architectures to better fit with cryp-
tographic tools. XONN [21] binarizes [20] VGG and prunes
out unimportant weights in convolution layers [16] to reduce
computational cost. Table 7 reports the one with the highest
accuracy (BC5) while more are reported in Figure 7. Del-
phi [18] also tunes architectures by replacing some ReLU
layers by their quadratic approximation. The measured accu-
racy and performance of Delphi are reported in Tables 7 and 8.

Notably, ResNet-18/32 runs faster than VGG-16 in plain-
text5. Still, our VGG-16 outperforms Delphi’s ResNet-32 in
both the accuracy and online runtime for oblivious inference.

VGG-16. We implement VGG-16 [22] for CIFAR-10/100
and train it with SWALP. VGG-16 has 16 convolution lay-

5This result is from https://github.com/jcjohnson/cnn-benchmarks. We
adopt VGG-16 since SWALP provides off-the-shelf training code [28] for
it. Also, VGG-16’s convolution layers are easier to implement since its
stride = 1. It does not mean GForce cannot realize ResNet.
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ers and 3 fully-connected layers and has widespread use
in medical diagnosis. Combining with SWALP, our VGG-
16 attains 93.12% accuracy on CIFAR-10 (Table 7). Our
accuracy outperforms almost all other cryptographic solu-
tions [11, 13, 14, 18, 21], except SHE [15]’s ResNet-18 [10].
However, SHE’s ResNet-18 performs impractically slow (tak-
ing more than 3 hours, the slowest among all other solutions).
Figure 7 compares both the accuracy and latency.

Delphi [18] trained several neural networks that trade accu-
racy for performance. Our latency is lower than Delphi’s, and
our most accurate DNN can attain an accuracy higher by at
least 5pp than the best of Delphi [18]. Figure 8 plots all the
reported accuracy-runtime data. We have a higher accuracy
and shorter online runtime than all Delphi’s neural networks.

CIFAR-100. To further examine GForce on handling com-
plicated tasks, we test it on CIFAR-100 with 100 classes, 600
images each. Running on VGG-16, we achieve 72.83% ac-
curacy in 350ms. Compared to Delphi [18]’s ResNet-32, our
VGG-16 is at least 5pp more accurate. Compared to even the
fastest DNN of Delphi [18], GForce is still 6.23× faster.

Comparison with Delphi [18]. We quoted Delphi [18]’s
runtime from its paper, which would be lower if it ran in
a LAN setting. (Their experiments run two VMs located in
different regions of AWS with >20ms network delay.) Table 8

Figure 9: Dependency Graph of Protocols (and their Security Proof)

shows that GForce is an order of magnitude faster than Delphi.
We reckon that we still have an edge even if its runtime would
be halved. Note that accuracy is also our goal.

Comparison based on Existing Architecture (A). Without
the learned parameters of architecture A, we cannot guarantee
GForce’s plaintext is large enough to provide the same accu-
racy. Instead, we produce a trained DNN via SWALP with a
similar architecture A-MT, which attains 90.82% accuracy on
CIFAR-10. Compared with MiniONN, Gazelle, and Falcon,
GForce attains the shortest online latency and reduces it by
489×, 24×, and 20×, respectively. Figure 7 further illustrates
GForce’s improvement on CIFAR-10 over other frameworks.

5 Security Analysis

5.1 Threat Model and Protection Scope
We consider probabilistic polynomial-time (PPT) honest-but-
curious adversary that controls the communication and either
the server or the client. GForce protects the most sensitive
information of the network except its architecture and hyper-
parameters, which are costly to hide. Specifically, GForce
hides the learnable parameters and the kernel size of convo-
lution layers from the client, the query’s inputs and outputs
from the server, and all the intermediate results of non-output
layers from both parties. However, it leaks about DNN’s ar-
chitecture Archi, such as the intermediate outputs’ size, the
type of each layer, and the window size of pooling layers.

All in all, we have the same privacy guarantee as previous
works [11, 13, 14], modulo our unique SRT layers. Each of
the nT SRT layers has a divisor parameter di, which is always
a power-of-2 and within [20,220]. Quantitatively, it means
log2(21) ≈ 4.4 bits of information, whereas the weights of
the nL linear layers (denoted by {Mi}i∈[1:nL]), which GForce
can protect from the client, carry at least kilobytes or even
megabytes of information. While there seem no inference at-
tacks exploiting such divisors, it may deserve closer scrutiny.

5.2 Overview of Security
GForce composes of many cryptographic protocols, and each
can be derived from other sub-protocols. Figure 9 shows their
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dependency with arrows from the building blocks to the higher
protocols. Following this graph and relying on other proofs,
we have the following theorem on the security of GForce.

Theorem 3. GForce’s oblivious inference, as a composition
of protocols SOS, GPU-DGK, and GPU-Trun over different
neural-network layers (third row of Figure 1), is secure:

• A corrupted server’s view can be generated by a PPT
simulator SimS(Archi,{di}i∈[1:nT],{Mi}i∈[1:nL]).

• A corrupted client’s view can be generated by a PPT sim-
ulator SimC((x,skAHE),out,(Archi,{di}i∈[1:nT])), where
x is the query and out= DNN(x) is the query result.

For all protocols, the simulators of both kinds (for a cor-
rupted client or a corrupted server) also take the following
inputs implicitly, which include the description of the cryp-
tographic groups used (e.g., the security parameter), the di-
mensional information (e.g., Zk

q in AHE-to-SOS transformed
protocol or Zq in pure-AHE protocols), and public key pkAHE.

The above spells out the relevant parts of DNN(·) required
for SimS, the simulator for the corrupted server. Note that the
server is run by the model owner and is supposed to know
{Mi}. For brevity, we suppose it is the client who gets the final
output out. For many sub-protocols, out will be secret-shared
across the server and the client, which can be simulated easily.

Our AHE-to-SOS transformation plays a central role in
GForce for deriving many of its sub-protocols. The security
proof of AHE-to-SOS transformation is in Appendix D.1.

We prove the security of SC-DGK and GPU-DGK (Proto-
cols 1-2) in Appendices D.2-D.4. We only state the security
guarantees of GPU-Wrap and GPU-Trun (Protocols 3-4) but
postpone their proof to our full version (which is straightfor-
ward given the security of additive SS and AHE).

6 Complementing the Other Frameworks

High-Throughput HE Implementations. We aim for online
performance, so we did not optimize for the HE-dominated
offline phase. One can employ a more efficient HE imple-
mentation (e.g., those used by Falcon/Gazelle) with a more
compact encoding or has been optimized for GPU (e.g., as
used by HCNN [2]). We can also integrate GForce with HE
compilers that aim for high inference throughput (e.g., [6]).

Integration with Delphi [18]. Adopting our GPU-friendly
comparison protocols can improve Delphi’s performance for
its maxpool layers and the remaining ReLU layers.

Oblivious Decision-Tree Inference. For a decision tree,
inference proceeds to the left child if the query satisfies the
predicate of a node; right otherwise. Tai et al. [23] proposed
the first approach solely based on AHE that does not need to
pad a sparse tree. Their path-cost trick has been utilized in a

few subsequent works. In essence, the server runs DGK proto-
col for each node to produce an AHE-encrypted comparison
result bit and adds up these bits for each possible path, which
can be readily replaced by our protocols instead.

7 More on Related Works

Gazelle [11] and Falcon [13] use GC for non-linear layers,
which heavily relies on AES-NI on CPU for a decent per-
formance [4], with no GPU-friendly counterpart. They also
propose a compact encoding to speed up operations of leveled-
homomorphic encryption [8]. Falcon [13] aims to improve
the linear computations of Gazelle by a Fourier transform-
based approach. The best result (by Falcon) takes >2.88s for
a CIFAR-10 recognition at <81.62% accuracy.

XONN [21] restricts inference to binarized neural networks
(BNN) with confined ({−1,1}) weights in linear layers and
only binary activation functions. It thus manages to use only
GC (except for the first layer), which reduces the communica-
tion rounds and the total (offline + online) runtime to 5.79s for
CIFAR-10 image classification at 81% accuracy (cf., Falcon’s
7.22s for ∼81.5%). However, using BNN requires a wider
neural network to maintain the accuracy, leading to a longer
latency. In particular, for 88% accuracy, it takes ∼2 minutes.

HCNN [2] and Plaid-HE [6] adopt GPU-optimized AHE
implementation, but it can only handle non-linear layers with
approximation, sacrificing accuracy. Also, the overhead due
to AHE is still large. Our AHE-to-SOS approach remains
beneficial for moving the AHE-related operations offline and
supporting common non-linear layers without approximation.

Using GPU is also a relatively new idea for SGX-based
frameworks. Slalom [24] securely outsources linear operation
from SGX to untrusted GPU for inference. Goten [19] solves
the challenges in supporting private learning left by Slalom.

8 Conclusion

GForce is an efficient oblivious inference protocol that works
over a low-precision integer domain while maintaining high
accuracy. For this, we adopt SWALP [28] and formulate
stochastic rounding and truncation layers that fuse multiple
operations SWALP needs for efficiency and accuracy. We also
propose cryptographic protocols for leveraging GPU paral-
lelism even for non-linear layers, which reduce the online la-
tency and communication cost by orders of magnitude. These
are validated by our evaluation comparing prior frameworks.

We hope that this work can inspire further research of
machine-learning experts to devise new algorithms compati-
ble with finite fields used in cryptography and stimulate cryp-
tographers to propose more GPU-friendly protocols.

With a secret-sharing-based design, it seems promising to
explore if GForce can be extended to secure outsourced infer-
ence [17] or training, say, by using 3 non-colluding servers.
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Protocol 5 DGK Comparison with Private Inputs (Review)

Input (S|C) 0≤ α < 2`, pkAHE 0≤ β < 2`, skAHE

Output (S|C) 〈α≤ β〉S2 〈α≤ β〉C2
Constraint `≤ blog2(q)c−2

1: procedure DGK(α,β)
2: C sends [βi]’s to S where β`−1 · · ·β0← β and β−1← 0
3: S decomposes α`−1 · · ·α0← α and sets α−1← 0
4: S: 〈α≤ β〉Sq ← 1⊕δS, a← 1−2 ·δS, where δS ∈ Zk

q
5: for i←{`−1, . . . ,−1} do
6: S: a← δS if i =−1
7: S: [αi⊕βi]← (1−2αi)[βi]+ [αi]
8: S: [bi]← [a+αi]− [βi]+3 ·∑`−1

j=i+1[α j⊕β j]

9: S blinds [bi]← ri · [bi] with random ri ∈ Z∗q
10: S shuffles [bi]’s and sends them to C so C can decrypt
11: C: 〈α≤ β〉Cq ← 1 if any decrypted bi is 0; otherwise 0.
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parison protocol”. Cryptology ePrint, 2018/1100, 2018.
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wen Bai, Andrew Gordon Wilson, and Christopher De
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A Review of DGK and Basic Wrap-around

For the sake of completeness, we review four protocols here.
Protocol 5 describes the original DGK protocol [7], which

uses AHE and only supports comparisons of positive integers.
Protocol 6 modifies an improved version of DGK [26]

such that it can compare additively-shared negative integers.
However, after our modification for making it GPU-friendly,
the results might become wrong in the corner case that the
inputs are equal. We thus prove its correctness in Appendix B.

Protocol 7 detects wrap-around when additive shares are
divided by a public divisor and compensates for the wrapped
values to maintain the correctness. This idea was proposed by
Veugen [25] and adopted by another work of Veugen [26].

Protocol 8 reviews how to perform multiplication over
additive secret shares using Beaver’s trick [3].

B Correctness of GPU-DGK

GPU-DGK is an online/offline transformation of Comp (Pro-
tocol 6), so we focus on proving the correctness of Comp.

Protocol 6 Comparison over AHE, with Zq output (Review)

Input (S|C) [x], [y], and pkAHEq skAHEq

Output (S|C) 〈x≤ y〉Sq 〈x≤ y〉Cq
Constraints

−2`−1 < x,y < 2`−1

`≤ blog2(q)c−2, q≡ 1 mod 2`

1: procedure Comp([x], [y])
2: S computes α← τ mod 2` where τ ∈ Zq
3: S computes [z]← [y]− [x]+ [2`+ τ] and sends it to C
4: C decrypts [z] and computes β = z mod 2`

5: S, C gets 〈α > β〉S2 ,〈α > β〉C2 ← DGK(α,β), resp.
6: S, C gets 〈wrap〉Sq ,〈wrap〉Cq ←Wrap(r,z), resp.
7: S: 〈x≤ y〉Sq ←−bτ/2`c− (1−〈α≤ β〉S2)+ 〈wrap〉Sq
8: C: 〈x≤ y〉Cq ← bz/2`c+ 〈α≤ β〉C2 + 〈wrap〉Cq

Protocol 7 Wrap-around Handling (Basic version)

Input (S|C) τ ∈ Zq, d, pkAHE z ∈ Zq, skAHE

Output (S|C) 〈wrap〉Sq 〈wrap〉Cq

1: procedure Wrap(τ,z,d)
2: C sets u← (z < (q−1)/2) and sends [u] to S
3: S computes [wrap]← (τ≥ (q−1)/2) · bq/dc · [u]
4: S generates a random 〈wrap〉Sq ∈ Zq

5: S sends [〈wrap〉Cq ]← [wrap]− [〈wrap〉Sq ] to C

6: C obtains 〈wrap〉Cq via decrypting [〈wrap〉Cq ]

Protocol 8 Beaver’s Trick for Share Multiplication (Review)

Offline Input (S|C) pkAHE skAHE

Online Input (S|C) 〈a〉S, 〈b〉S 〈a〉C, 〈b〉C
Output 〈a ·b〉S 〈a ·b〉C

Constraints a,b ∈ Zq

1: procedure ShareMuloff

2: S picks 〈u〉S,〈u〉S, l ∈Zq and sets 〈z〉S←〈u〉S〈v〉S− l
3: C picks 〈u〉C,〈v〉C ∈ Zq and sends [〈u〉C], [〈v〉C] to S
4: S sends [τ]← [〈u〉C] · 〈v〉S + 〈u〉S · [〈v〉C]+ [l] to C
5: C decrypts [τ] and sets 〈z〉C← τ+ 〈u〉C · 〈v〉C
6: S, C has every values stored in preS or preC, resp.
7: procedure ShareMulon({prerole,〈a〉role,〈b〉role}role∈{S,C})
8: S sends 〈e〉S← 〈a〉S−〈u〉S, 〈 f 〉S← 〈b〉S−〈v〉S to C
9: C sends 〈e〉C←〈a〉C−〈u〉C, 〈 f 〉C←〈b〉C−〈v〉C to S

10: S and C reconstruct e and f
11: S sets 〈a ·b〉S← 〈a〉S · f + e · 〈b〉S + 〈z〉S
12: C sets 〈a ·b〉C← 〈a〉C · f + e · 〈b〉C− e · f + 〈z〉C

Inside Comp, DGK (Protocol 5) is the original compari-
son protocol [7], and thus its correctness has been proved.
Veugen [26] also provided another correctness analysis.

What is left is to prove that our extension of DGK for
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probably negative inputs is correct when we do follow Veu-
gen [25]’s modification (as mentioned in Section 3.5).

Comp outputs 〈x ≤ y〉S and 〈x ≤ y〉C, and we prove that
the reconstructed results (x ≤ y)′ equals (x ≤ y) except
when x = y. We unroll (x ≤ y)′ = 〈x ≤ y〉S + 〈x < y〉C =
bz/2`c − bτ/2`c − 〈α > β〉2 +wrap. In this proof, we use
(expr)2` to denote the evaluation of an arithmetic expression
expr modulo 2`, i.e., expr mod 2`.

We first consider the case that z does not wrap around, i.e.,
z = y− x+ 2` + τ < q. We can omit wrap in (x ≤ y)′ as it
equals to 0. Also, be reminded that b(a+ b)/2`c = b(a2` +
b2`)/2`c+ ba/2`c+ bb/2`c for any integer a and b. We have
(x≤ y)′ = b(y− x+ τ+2`)/2`c−bτ/2`c− (α > β) = b(y−
x+ τ2`)/2`c+ bτ/2`c− bτ/2`c+(1− (α > β)) = b(y− x+
τ2`)/2`c+(α ≤ β). We denote b(y− x+ τ2`)/2`c by ∆, so
(x≤ y)′ = ∆+(α≤ β).

Since x,y∈ (−2`−1,2`−1), we have−2`+1< y−x+τ2` <
2 ·2`. Thus, ∆= 0 or 1. For ∆= 0, we have y−x+τ2` ∈ [0,2`).
Thus, there is no further wrap around (over Z2`) for β = y−
x+τ2` . As a result, α≤ β ⇐⇒ τ2` ≤ y−x+τ2` ⇐⇒ x≤ y.
It means (x≤ y)′ = (α≤ β) = (x≤ y)

For ∆ = 1, we have 2` ≤ y− x+ τ2` . Hence, x < y because
0 < 2`− τ2` ≤ y− x. Also, β can further be rewritten as y−
x+ τ2` − 2`, where 2` is the offset due to the wrap around.
As a result, we have β = τ2` +(y−x−2`)< τ2` = α because
y−x < 2`. Thus, (α≤ β) = 0 and (x≤ y)′ = ∆+(α≤ β) = 1,
matching the inferred fact that x < y.

Now, we assume z wraps around and prove that (x≤ y)′ 6=
(x≤ y) ⇐⇒ x= y. z wrapping around implies z= y−x+2`+
τ−q. Then (x≤ y)′ = bz/2`c−bτ/2`c−〈α > β〉2 +wrap=
b(y− x + 2` + τ− q)/2`c − bτ/2`c − 〈α > β〉2 + bq/dc =
(b(y− x+ τ2` +q2`)/2`c+1+ bτ/2`c−bq/2`c)−bτ/2`c−
〈α > β〉2 + bq/dc= b(y− x+ τ2` +q2`)/2`c+ 〈α≤ β〉2. Re-
call that we have imposed a constraint q2` = 1 and that
(α≤ β) = (r2` ≤ (y− x+ τ2` +q2`)2`). We can rewrite (x≤
y)′ = b((y+1)−x+τ2`)/2`c+ 〈r2` ≤ ((y+1)−x+τ2`)2`〉2.
This is equivalent to (x ≤ (y + 1))′ with no wrap around,
whose correctness has been proven above. Hence, (x≤ y)′ =
(x≤ (y+1)), which is wrong only when x = y.

C Security of Cryptographic Building Blocks

C.1 Additive Secret Sharing

(2,2)-additive SS leaks no information of the secret (except its
domain). Formally, there exists a PPT simulator Sim such that
〈m〉role ≈ Sim(Zn

p), for any secret m ∈ Zn
p and role ∈ {S,C}.

C.2 Additive Homomorphic Encryption

C.2.1 Semantic Security and Circuit Privacy

AHE schemes possess the following security properties.

Semantic security requires that any PPT adversary can-
not distinguish the plaintext of a ciphertext. More for-
mally, (pk,AHE.Enc(pk,m0))≈c (pk,AHE.Enc(pk,m1)) for
any messages m0 and m1. The views are distributed over the
choices of public key pk and the random coins of AHE.Enc.

Circuit privacy requires that any PPT adversary, even
holding the secret key of AHE, cannot learn anything about
the homomorphic operations f performed on an AHE
ciphertext except what can be inferred by the message, i.e.,
f (m). In other words, there exists a PPT simulator Sim such
that (sk,pk,{mi}i∈[1:n], f ({mi}i∈[1:n]),{cti}1∈[1:n],ct

′) ≈c
Sim(sk,pk,{mi}1∈[1:n], f ({mi}1∈[1:n])), where {cti =
AHE.Enc(pk,mi)}i∈[1:n], ct′ = AHE.Eval(pk,{mi}i∈[1:n], f )),
n < poly(λ), and f is a linear function.

C.2.2 Noise Flooding

Our implementation adopts BFV-FHE [8] as the AHE scheme
for offline preprocessing. However, the “textbook” BFV-FHE
scheme does not preserve circuit privacy because the secret
key holder may be able to extract information about the homo-
morphic operations performed on a ciphertext. Very roughly,
the culprit is the noise e it uses to hide the plaintext. The cor-
responding defense is noise flooding [1]. Before S sends the
ciphertext to C for decryption, we add an extra huge “smudg-
ing” noise in the ciphertext to smudge out the distribution of
the original output noise f (e). By the smudging lemma [1],
the smudging noise in any two ciphertexts produced by the
same protocol will have a statistical distance of 2−λ if the
smudging noise is λ bit larger than the original output noise.

Although the exact parameters in the linear function f are
secret of S and they may be uncertain before the actual exe-
cution of the protocol, we still can evaluate Beval, the bound
of the noise’s magnitude | f (e)|. Then, we define the bound
of the smudging noise to be Bsmud ≥ 2λ ·Beval. The smudg-
ing noise esmud = (esmud

1 ,esmud
2 ) are uniformly sampled from

[−Bsmud,Bsmud]
2. The smudged ciphertext is f (c)+ esmud.

C.2.3 An Estimation of the Noise Bound

Our implementation has two sets of (n, p) where n is the
degree of the ciphertext polynomial and Zp is the underly-
ing field. We use (16384,65537) in SC-DGK since it com-
putes at the bit level and (16384,7340033) for the rest (e.g.,
GPU-DGK) of the offline phase (which is denoted by Zq here).
According to the manual of SEAL [12], a (loose) noise bound
of a newly encrypted ciphertext is BEnc = np(p+336/

√
2π).

Their corresponding BEnc is of 44 bits and 51 bits.
SEAL’s manual [12] suggests the noise bound after these

operations is BEval = BEnc · knp, where k is the number of
addition over the ciphertexts. For our DGK bit-comparison
protocol, k roughly equals the bit-length `≈ 20. Hence, BEval

is about 78 bits. The largest k occurs in our VGG-16’s fully-
connected layer, which is up to k≈ 210, and the corresponding
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BEval is about 98 bits.
For 128-bit security, as suggested by the smudging

lemma [1], we add extra 128 bits to the noise bound BEval for
smudging noise, meaning that BSmud should be at least 206
for DGK bit-comparison and 226 for the other protocols. For
128-bit security and n= 16384, we follow SEAL’s recommen-
dation to pick a 438-bit coefficient modulus. BSmud should
be smaller than it to prevent incorrect decryption. Hence, we
set BSmud to be 330 bits to leave a safety margin for security
while avoiding BSmud being too large for correct decryption.6

D Security Proofs for Our Protocols

We use the simulation-based security definition for two-party
computation. Our goal is to exhibit a PPT simulator Simrole

for party role∈ {S,C} taking its private input inrole, its private
output outrole, and the leakage leakrole it could learn from the
protocol to be proven, which can generate a view computation-
ally indistinguishable from Viewrole, its view in a real protocol
invocation, i.e., Viewrole ≈c Sim(inrole,outrole, leakrole).

Due to the page limit, we only show the security proof of
our AHE-to-SOS transformation for its central role in GForce,
which leads to the proof for the GForce as a whole. For other
protocols, we mostly only highlight the intuition for the simu-
lation or rely on the security arguments of the original proto-
cols in the respective papers.

D.1 Security of AHE-to-SOS Transformation

Theorem 4. The protocol obtained from our AHE-to-SOS
transformation remains secure against a semi-honest server or
client in that it does not leak more than the original protocol.

Security Proof against a Corrupted Client. The simulator
Sim(inC,outC, leakC) can be constructed with leakage leakC

being empty. Namely, the private input inC of C is χC and
its private output 〈 f (χ)〉C, which comes from decrypting the
only protocol message [〈 f (χ)〉C] it receives from S, can be
simulated by randomly picking a secret share 〈 f (χ)〉C from
an appropriate domain and encrypting it under pkAHE.

We remark that this is a sub-protocol in which the client
would probably be interacting with server S that takes the
private output outS of the server as an input in a subsequent
step. In this case, eventually, we need outS to simulate the
subsequent view of the client (otherwise, the private output to
the client is just a random value). This can be easily simulated
by using the knowledge of f (χ) by outS = f (χ)−〈 f (χ)〉C.

6Our security model assumes the client to be semi-honest. When C is
malicious, noise flooding may provide less protection than expected. A
malicious client may pick an initial noise larger than the protocol specified
for encryption, making our estimation on the noise bound too small. The
smudging noise cannot provide sufficient obfuscation in this case.

Security Proof against a Corrupted Server. The simulator
Sim(inS,outS, leakS) can be constructed with leakage leakS

being empty. Suppose the private server input is 〈χ〉S, and
the server randomness is rS. S sees two protocol messages.
The first one [rC] can be simulated by encryption of a dummy
plaintext (e.g., 0) of the same size, which remains indistin-
guishable to S since S does not have the decryption key. The
second protocol message can be easily simulated by randomly
picking an element Y from an appropriate domain.

The corresponding private output of the client can be sim-
ulated given the knowledge of f (·) and f (χ) by outC =
f (χ)− f (〈χ〉S +Y )+ rS since the simulated view based on Y
and the server randomness rS will make the server computes
outS = f (〈χ〉S +Y )− rS.

D.2 Security of SC-DGK, DGK, and Comp

Theorem 5. The vanilla DGK, Protocol 5, and its SOS ver-
sion, Protocol 1, are secure against a semi-honest PPT cor-
rupted server or client that learns nothing more than its input.

The proof of Protocol 5 can be found in the original pa-
per [7]. Since Lines 5-9 of Protocol 5 can be aggregated into
a linear function, we can use our AHE-to-SOS transformation
to produce Protocol 1, which is secure by Theorem 4.

Theorem 6. Protocol 6 is secure against a semi-honest PPT
corrupt server or client that learns nothing more than its input.

Protocol 6 slightly modifies the existing protocol of Veu-
gen [26] and can be proven secure in a similar manner.

D.3 Security of GPU-Wrap and GPU-Trun
Theorem 7. GPU-Wrap and GPU-Trun (Protocols 3-4) are
secure against any semi-honest, computationally bounded,
corrupted server or client, i.e., either one cannot learn anything
other than its input and the corresponding protocol output.

We have PPT simulators Sim-WrapS(), Sim-WrapC(),
Sim-TrunS(d), Sim-TrunC(d), which simulate the respec-
tive view of the server and of the client in GPU-Wrap and
GPU-Trun, respectively, where d is the (public) divisor for
truncation. The proof is deferred to the full version.

D.4 Security of GPU-DGK
Theorem 8. GPU-DGK (Protocol 2), as the SOS version
of Comp (Protocol 6), is secure against a semi-honest PPT
corrupt server or client that learns nothing more than its input.

We first note that Comp (Protocol 6) can be viewed as
the secure computation of a linear function defined over the
private server input ([x], [y]) because both of its sub-protocols
DGK() and Wrap() can be expressed as a linear function.
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Protocol 2 is almost an AHE-to-SOS transformed version
of Protocol 6. The difference is that Protocol 2 takes additive
SS as inputs, i.e., 〈x〉 and 〈y〉. We can still view the private
function f () of S, which is the private input of S, as expressed
in the form of 〈x〉S and 〈y〉S since the only operations over
them in Protocol 2 are, again, linear computations.

More specifically, the computation of z, which is to be sent
to C in an encryption form originally, is now sent as an addi-
tive SS that C can recover the original value of z. Since Pro-
tocol 6 is secure, we can use its simulator to create the view,
including z and the client shares of the two sub-protocols for
a corrupted client. Similarly, the view for a corrupted server
can also be simulated. With these simulators and the security
of our AHE-to-SOS transformation, the resulting Protocol 2
is secure for computing the same linear function as its “un-
derlying” Protocol 6.

D.5 Security of GForce

Security Proof of GForce against a Corrupted Server.
We prove by hybrid games that the simulated view is indistin-
guishable from the server’s view, which additionally includes
the additive SS of all intermediate values of the underlying
protocols.

• Hyb0: We start from the real-world protocol and assume
that the simulator SimS knows S’s view.

• Hyb1: The simulator does not receive the (additive SS
of) outputs of all SRT layers, but it generates them by
involving the simulator of GPU-Trun with the known
divisor {di} as inputs.

• Hyb2: The simulator does not receive the (additive SS
of) outputs of all ReLU and maxpool layers but involves
the simulators of Beaver’s trick [3] and GPU-DGK to
generate them.

• Hyb4: The simulator does not receive the (additive SS
of) outputs of all linear layers. It constructs the linear
functions with {Mi} and calls the simulator of the AHE-
to-SOS transformation to provide the additive SS output
for the linear layers.

• Hyb5: The simulator has simulated most layers except
the input layer. The view originated from the computa-
tion of the input layers is an additive SS of the input,
and the simulator replaces the SS with a random value
from Zq. Now, the view originated from the interactive
computation of GForce for all layers can be simulated
without knowing the query x and the result out.

Security Proof of GForce against a Corrupted Client. We
prove by hybrid games that the simulated view is indistin-
guishable from the client’s view, which additionally includes
the additive SS of all intermediate values of the underlying
protocols.

• Hyb0: We start from the real-world protocol and assume
that the simulator SimC knows C’s view.

• Hyb1: The simulator does not receive the (additive SS of)
outputs of all SRT, ReLU, and maxpool layers. Instead,
it invokes the simulators of GPU-DGK and Beaver’s
trick to generate the views for ReLU and maxpool lay-
ers as Hyb2 in the security proof for a corrupted server.
For the SRT layers, it provides {di} to the simulator for
GPU-Trun, similar to Hyb1 in the security proof for a
corrupted server, to generate the view.

• Hyb2: The simulator does not receive the (additive SS
of) outputs of all linear layers. It treats the linear layers
as linear functions and calls the simulator of our AHE-
to-SOS transformation, which does not need the input
of {Mi}, to generate the resulting additive SS.
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