é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Breaking Through Binaries: Compiler-quality
Instrumentation for Better Binary-only Fuzzing

Stefan Nagy, Virginia Tech; Anh Nguyen-Tuong, Jason D. Hiser, and
Jack W. Davidson, University of Virginia; Matthew Hicks, Virginia Tech

https://www.usenix.org/conference/usenixsecurity21/presentation/nagy

This paper is included in the Proceedings of the
30th USENIX Security Symposium.
August 11-13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium
is sponsored by USENIX.

. A : 4
- pl TENE »

Breaking Through Binaries: Compiler-quality Instrumentation
for Better Binary-only Fuzzing

Stefan Nagy Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson Matthew Hicks
Virginia Tech University of Virginia Virginia Tech
snagy2@vt.edu {nguyen, hiser, jwd}@virginia.edu mdhicks2 @vt.edu

Abstract

Coverage-guided fuzzing is one of the most effective soft-
ware security testing techniques. Fuzzing takes on one of
two forms: compiler-based or binary-only, depending on
the availability of source code. While the fuzzing commu-
nity has improved compiler-based fuzzing with performance-
and feedback-enhancing program transformations, binary-
only fuzzing lags behind due to the semantic and perfor-
mance limitations of instrumenting code at the binary level.
Many fuzzing use cases are binary-only (i.e., closed source).
Thus, applying fuzzing-enhancing program transformations
to binary-only fuzzing—without sacrificing performance—
remains a compelling challenge.

This paper examines the properties required to achieve
compiler-quality binary-only fuzzing instrumentation. Based
on our findings, we design ZAFL: a platform for applying
fuzzing-enhancing program transformations to binary-only
targets—maintaining compiler-level performance. We show-
case ZAFL’s capabilities in an implementation for the popular
fuzzer AFL, including five compiler-style fuzzing-enhancing
transformations, and evaluate it against the leading binary-
only fuzzing instrumenters AFL-QEMU and AFL-Dyninst.
Across LAVA-M and real-world targets, ZAFL improves crash-
finding by 26-96% and 37-131%; and throughput by 48—
78% and 159-203% compared to AFL-Dyninst and AFL-
QEMU, respectively—while maintaining compiler-level of
overhead of 27%. We also show that ZAFL supports real-
world open- and closed-source software of varying size (10K—
100MB), complexity (100-1M basic blocks), platform (Linux
and Windows), and format (e.g., stripped and PIC).

1 Introduction

Software vulnerabilities represent a persistent threat to cyber-
security. Identifying these bugs in both modern and legacy
software is a tedious task; manual analysis is unrealistic, and
heavyweight program analysis techniques like symbolic ex-
ecution are unscalable due to the sheer size of real-world
applications. Instead, developers and bug-hunters alike have
largely adopted a software testing strategy known as fuzzing.

Fuzzing consists of mutationally generating massive
amounts of test cases and observing their effects on the target
program, with the end goal of identifying those triggering

bugs. The most successful of these approaches is coverage-
guided grey-box fuzzing, which adds a feedback loop to keep
and mutate only the few test cases reaching new code cover-
age; the intuition being that exhaustively exploring target code
reveals more bugs. Coverage is collected via instrumentation
inserted in the target program’s basic blocks. Widely suc-
cessful coverage-guided grey-box fuzzers include AFL [93],
libFuzzer [70], and honggFuzz [75].

Most modern fuzzers require access to the target’s source
code, embracing compiler instrumentation’s low overhead
for high fuzzing throughput [70,75,93] and increased crash
finding. State-of-the-art fuzzers further use compilers to ap-
ply fuzzing-enhancing program transformation that improves
target speed [32,47], makes code easier-to-penetrate [1], or
tracks interesting behavior [18]. Yet, compiler instrumenta-
tion is impossible on closed-source targets (e.g., proprietary or
commercial software). In such instances fuzzers are restricted
to binary instrumentation (e.g., Dyninst [64], PIN [56], and
QEMU [8]). But while binary instrumentation succeeds in
many non-fuzzing domains (e.g., program analysis, emula-
tion, and profiling), available options for binary-only fuzzing
are simply unable to uphold both the speed and transforma-
tion of their compiler counterparts—limiting fuzzing effec-
tiveness. Despite advances in general-purpose binary instru-
mentation [9, 41, 46, 86, 87], it remains an open question
whether compiler-quality instrumentation capabilities and
performance are within reach for binary-only fuzzing.

To address this challenge we scrutinize the field of binary
instrumentation, identifying key characteristics for achieving
performant and general-purpose binary-only fuzzing instru-
mentation. We apply this standard in designing ZAFL: an
instrumentation platform bringing compiler-quality capabil-
ities and speed to x86-64 binary-only fuzzing. We demon-
strate how ZAFL facilitates powerful fuzzing enhancements
with a suite of five transformations, ported from compiler-
based fuzzing contexts. We show how ZAFL’s capabilities
improve binary-only fuzzing bug-finding: among evaluations
on the LAVA-M corpus and eight real-world binaries, ZAFL
finds an average of 26-96% more unique crashes than the
static rewriter AFL-Dyninst; and 37-131% more than the
dynamic translator AFL-QEMU. We further show that ZAFL
achieves compiler-quality overhead of 27% and increases
fuzzing throughput by 48-78% and 131-203% over AFL-
Dyninst and AFL-QEMU, respectively. Lastly, we show that

USENIX Association

30th USENIX Security Symposium 1683

ZAFL scales to real-world software—successfully instrument-

ing 56 binaries of varying type (33 open- and 23 closed-

source), size (10K-100MB), complexity (100-1,000,000 ba-
sic blocks), and platform (30 Linux and 12 Windows).
In summary, this paper contributes the following:

* We examine the challenges of achieving compiler-quality
instrumentation in binary-only fuzzing, developing a crite-
ria for success, and highlighting where popular binary-only
instrumenters fit with respect to our criteria.

* We apply this criteria in designing ZAFL: a platform
for state-of-the-art compiler-quality instrumentation—and
speed—in binary-only fuzzing. ZAFL’s architectural focus
on fine-grained instrumentation facilitates complex fuzzing-
enhancing transformations in a performant manner.

* We show that it is possible to achieve fuzzing-enhancing
program transformation in a performant manner for binary-
only contexts by implementing five of such transformations
derived from existing compiler-based implementations in
ZAFL, and evaluating runtime overhead.

* We demonstrate how ZAFL improves fuzzing effectiveness;
on average ZAFL’s performant, fuzzing-enhancing program
transformations enable fuzzers to find more unique crashes
than the leading binary-only fuzzing instrumenters AFL-
Dyninst and AFL-QEMU across both LAVA-M and real-
world benchmarks.

* We show that ZAFL supports real-world binaries of varying
characteristics, size, complexity, and platform—even those
binaries not supported by other instrumenters.

* We will open-source ZAFL and all benchmark corpora at
https://git.zephyr-software.com/opensrc/zafl.

2 Background on Fuzzing

Coverage-guided grey-box fuzzing remains one of the most
successful software security auditing techniques. Fuzzers of
this type iteratively mutate test cases to increase code cover-
age, using lightweight instrumentation to collect this coverage
at runtime. This section details the fundamental components
of coverage-guided grey-box fuzzing.

2.1 An Overview of Fuzzing

Fuzzing is designed to root-out software vulnerabilities auto-
matically. Given a target program and a set of seed test cases,
a standard fuzzing cycle consists of (Figure 1):

0. Instrumentation: modify target program as desired (e.g.,
to track code coverage).

1. Test Case Generation: select a seed and mutate it to gen-
erate a batch of candidate test cases.

2. Execution Monitoring and Feedback Collection: run
each candidate test case and monitor the target program’s
execution, collecting feedback via instrumentation.

3. Feedback Decision-making: keep only test cases with ex-
ecution behavior matching some pre-specified constraint(s)

0

==

L

Application Torger Target b
2

Exec. Monitoring,
Feedback Collection

Feedback

D D —|_> Making

Test Case
Generation

Figure 1: A high-level overview of the basic fuzzing workflow.

(e.g., cover new code).
4. Return to step 1.

Though fuzzers vary by generation (i.e., mutation- [70, 75,
93] or grammar-based [35,50,60]), execution monitoring (i.e.,
white- [17,22,36], black- [60,63,83], or grey-box [70,75,93]),
and feedback decision-making strategies (i.e., directed [13,
33,41, 89] or coverage-guided [14,70,75,93]), we elide their
differentiation as they are outside the focus of this paper.

2.2 Coverage-guided Grey-box Fuzzing

By far the most popular fuzzing technique is coverage-guided
grey-box fuzzing (e.g., AFL [93], honggFuzz [75], and lib-
Fuzzer [70]). As the name implies, coverage-guided grey-box
fuzzers focus exclusively on test cases that increase code
coverage, with the aim of testing as much of a target pro-
gram’s functionality as possible to find its deeply-rooted bugs.
Its “grey-box” quality refers to a middle-ground between
the deep and shallow program analyses used by white- and
black-box fuzzers, respectively: lightweight instrumentation
is used track test cases’ coverage of the target, which is then
post-processed to verify if new code has been covered.

Contingent on the ability to instrument a target program
from source, fuzzing is divided into two distinct worlds:
compiler-based and binary-only. Most modern fuzzers turn
to compiler instrumentation as its low runtime overhead sup-
ports high fuzzing throughput. More recent state-of-the-art
efforts leverage compilers’ ability to apply complex program
transformations. Researchers have shown that such transfor-
mations improve fuzzing effectiveness by enhancing perfor-
mance [32,47] or introspection [1,18,31,51]. Most real-world
fuzzing is undertaken in the absence of target source (i.e.,
binary-only). This restricts fuzzing to existing binary instru-
menters which are unsupportive of compiler-quality transfor-
mation, facing prohibitively-high overhead—often as high as
1000% for coverage tracing alone [62].

3 Compiler-based Fuzzing Enhancements

Coverage-guided fuzzing spans two distinct domains:
compiler-based and binary-only, with both using program
instrumentation to track test case code coverage. Much of
fuzzing’s success is due to the high throughput made possible
by fast compiler instrumentation [79,93]. Though advanced
fuzzers introduce more heavyweight analyses [7, 18,74,92],

1684 30th USENIX Security Symposium

USENIX Association

Focus Category Effect on Fuzzing

Instrumentation Overhead reduction from fewer

Pruning blocks instrumented

Performance . . .
Instrumentation Overhead reduction from lighter-
Downgrading weight instrumentation
Sub-instruction Incremental coverage to guide code
Profilin, enetration

Feedback filing penet ‘ ‘
Extra-coverage Ability to consider finer-grained ex-
Behavior ecution behavior

Table 1: Popular compiler-based fuzzing-enhancing program transformations,
listed by category and effect.

the core of these approaches remains the standard coverage-
guided fuzzing loop (Figure 1)—amounting to over 90%
of their execution time [62]; recent feedback enhancements
(e.g., context sensitivity) only increase the proportion of time
spent tracing execution. Thus, our focus is performant fuzzing-
enhancing transformations in the absence of source code.

State-of-the-art fuzzers leverage compiler instrumenta-
tion to add transformations that improve fuzzing perfor-
mance and feedback (e.g., AFL++ [31], Angora [18], Col-
1AFL [32], honggFuzz [75], INSTRIM [47], libFuzzer [70]).
Performance-enhancing transformation helps alleviate the
runtime cost of coverage tracing and other feedback sources.
Feedback-enhancing transformations reveal finer-grained pro-
gram progress, beyond traditional code coverage metrics. We
broadly examine popular fuzzers and identify four categories
of fuzzing-enhancing transformation that target the core
coverage-guided loop (Table 1): (1) instrumentation prun-
ing, (2) instrumentation downgrading, (3) sub-instruction
profiling, and (4) extra-coverage behavior tracking. Below
we detail each transformation.

3.1 Instrumentation Pruning

Graph reducibility techniques [42, 77] are used in fuzzing
to elide instrumenting some target basic blocks, thus low-
ering overall runtime overhead. AFL’s [93] compiler instru-
mentation permits a “ratio”: 100 instruments all blocks; O
only function entries; and values in between form a probabil-
ity to arbitrarily skip blocks. Clearly, culling random blocks
risks coverage blind-spots. More rigorous CFG-aware anal-
yses [31,47] prune blocks implicitly covered by others: for-
mally, for N blocks and M unique paths over N, it is possible
to select a subset N’ € N such that the M’ unique paths over N/
equals M. INSTRIM [47] only instruments blocks targeted by
backward edges and tracks loops either by entry or pre-entry
blocks (the latter forgoing loop iteration tracking).

3.2 Instrumentation Downgrading

The majority of today’s fuzzers track coverage in the form of
edges (i.e., branches between basic blocks). Edges are typi-
cally recorded as hashes of their start and end blocks (com-
puted in the body of the end block’s instrumentation), as popu-
larized by the fuzzer AFL [93]. Edge hashing requires several
instructions (two index fetches, a hash, array update, and an
XOR); but given that blocks themselves are small, maintain-

ing speed requires inserting as few instructions as necessary.
CollAFL [32]’s compiler instrumentation optimizes single-
predecessor blocks by downgrading them to fewer-instruction
block coverage (i.e., cov(A — B) = cov(B)).

3.3 Sub-instruction Profiling

Fuzzers struggle to penetrate code guarded by complex pred-
icates like “magic bytes” [68], nested checksums [7], and
switch cases [1]. Most fuzzers track edge/block coverage and
hence are oblivious to “incremental” predicate progress. Re-
cent compiler-based efforts apply sub-instruction profiling—
decomposing multi-byte conditionals into single-byte com-
parisons (e.g., CmpCov [51], honggFuzz [75], laf-Intel [1]).
Such splitting of roadblocks into smaller, simpler problems
facilitates greater fuzzing code coverage.

3.4 Extra-coverage Behavior Tracking

An area of current research in fuzzing is the inclusion of exe-
cution behavior beyond traditional code coverage. Although
we foresee future work considering metrics such as register or
memory usage, the existing body of work on extra-coverage
behavior tracking focuses on context sensitivity. Context-
sensitive coverage tracks edges along with their preceding
calling context. For example, given two paths over the same
set of edges, A — B — C and B — A — C, context-insensitive
coverage misses the second path as it offers no new edges;
however context-sensitive coverage reveals two distinct calls:
B — C and A — C. Several LLVM implementations exist for
both function- and callsite-level context sensitivity [18,31].

4 Binary-only Fuzzing: the Bad & the Ugly

Program transformation has become ubiquitous in compiler-
based fuzzers (e.g., AFL++ [31], CollAFL [32], laf-Intel [1]),
and for good reason: it makes fuzzing significantly more
powerful. Despite these advantages there is no platform that
adapts such transformation to binaries in an effective manner—
severely impeding efforts to fuzz closed-source software.

This section examines existing binary instrumenters and
their limitations that prevent them from attaining effective
binary-only fuzzing instrumentation. We follow this explo-
ration with an identification of the key instrumenter de-
sign attributes necessary to support compiler-quality fuzzing-
enhancing program transformation and speed.

4.1 Limitations of Existing Platforms

Coverage-guided fuzzers trace test case code coverage via fast
compiler instrumentation; and state-of-the-art efforts further
leverage compilers to apply fuzzing-enhancing program trans-
formation. In binary-only fuzzing, code coverage is traced
by one of three mechanisms: (1) hardware-assisted tracing,

USENIX Association

30th USENIX Security Symposium 1685

Name Fuzzing Fuzzing Supports Instrumentation Supported Programs
Appearances Overhead Xform type invoked liveness | PIC&PDC C&C++ stripped PE32+
LLVM 4[71 %1) 3’51’%’31]9’3 L3218 39, v static inline v N/A v N/A N/A
CIntel PT | [7.11,20,37,75] 19-48% X | hardware replay . X Vo v v
DynamoRIO [37,43,73] >1,000% v dynamic inline v v v v v
PIN [45,49,63,68,92] >10,000% v dynamic inline v v v v v
QEMU [23,31,91,93] >600% v dynamic inline v v v v v
Dyninst [44,55,62,76] ~500% v static tramp. X v v X X
RetroWrite [26] 20-64% X static tramp. v X X X X

Table 2: A qualitative comparison of the leading coverage-tracing methodologies currently used in binary-only coverage-guided fuzzing, alongside compiler

instrumentation (LLVM). No existing approaches are able to support compiler-quality transformation at compiler-level speed and generalizability.

(2) dynamic binary translation, or (3) static binary rewriting.
Below we briefly detail each, and weigh their implications
with respect to supporting the extension of compiler-quality
transformation to binary-only fuzzing.

* Hardware-assisted Tracing. Newer processors are offer-
ing mechanisms that facilitate binary code coverage (e.g.,
Intel PT [48]). Fuzzing implementations are burdened by
the need for costly trace post-processing, which reportedly
incurs overheads as high as 50% over compilers [7,20]; but
despite some optimistic performance improvements [37],
hardware-assisted tracing currently remains incapable of
modifying programs—and hence fails to support fuzzing-
enhancing program transformation.

* Dynamic Binary Translators. Dynamic translators apply
coverage-tracing on-the-fly as the target is executing (e.g.,
DynamoRIO [43], PIN [56], and QEMU [8]). Translators
generally support many architectures and binary characteris-
tics; and offer deep introspection that simplifies analysis and
transformation [31,93]. However, existing dynamic trans-
lators attain the worst-known fuzzing performance: recent
work shows AFL-QEMU’s average overhead is well over
600% [62], and AFL-DynamoRIO [43] and AFL-PIN [45]
report overheads of up to 10x and 100x higher, respectively.

* Static Binary Rewriters. Static rewriting improves per-
formance by modifying binaries prior to runtime (e.g.,
Dyninst [44]). Unfortunately, static rewriting options for
binary-only fuzzing are limited. AFL-Dyninst is the most
popular, but sees prohibitively-high fuzzing overheads
of over 500% [62] and is restricted to Linux programs.
RetroWrite suggests reassembleable-assembly is more per-
formant and viable, but it relies on AFL’s assembly-time in-
strumentation which is both unsupportive of transformation
and reportedly 10-100% slower than compile-time instru-
mentation [93]; and moreover, it does not overcome the gen-
eralizability challenges of prior attempts at reassembleable-
assembly (e.g., Uroboros [87], Ramblr [86]), and is hence
limited to position-independent Linux C programs. Neither
scale well to stripped binaries.

As summarized in Table 2, the prevailing binary-only
fuzzing coverage-tracing approaches are limited in achieving
compiler-quality fuzzing instrumentation. Hardware-assisted

tracing (Intel PT) is incompatible with program instrumen-
tation/transformation and adds post-processing overhead.
Dynamic translators (DynamoRIO, PIN, and QEMU) all
face orders-of-magnitude worse overheads. Static rewriters
(Dyninst and RetroWrite) fail to uphold both performance and
transformation and are unsupportive of Windows software
(the most popular being PE32+), common binary characteris-
tics (e.g., position-dependent code), or the simplest obfusca-
tion techniques (i.e., stripped binaries).

These limitations make fuzzing-enhancing transformations
scarce in binary-only fuzzing. To our knowledge the only
two such implementations exist atop of AFL-Dyninst (instruc-
tion pruning [44]) and AFL-PIN (context sensitivity [92])—
both suffering from the central flaw that any of their poten-
tial benefits are outweighed by the steep overheads of their
respective binary instrumenters (over 500% and 10,000%,
respectively [45,62]).

Impetus: Current binary instrumenters are fundamentally ill-
equipped to support compiler-quality fuzzing instrumentation.
We envision a world where binary-only and compiler-based
fuzzing are not segregated by capabilities; thus we design a
binary-only fuzzing instrumentation platform capable of perfor-
mant compiler-quality transformation.

4.2 Fundamental Design Considerations

Our analysis of how compilers support performant program
transformations reveals four critical design decisions: (1)
rewriting versus translation, (2) inlining versus tram-
polining, (3) register allocation, and (4) real-world scala-
bility. Below we discuss the significance of each, and build
a criteria of the instrumenter characteristics best-suited to
compiler-quality instrumentation.

* Consideration 1: Rewriting versus Translation. Dy-
namic translation processes a target binary’s source instruc-
tion stream as it is executed, generally by means of em-
ulation [8]. Unfortunately, this requires heavy-lifting to
interpret target instructions to the host architecture; and in-
curs significant runtime overhead, as evidenced by the poor
performance of AFL-DynamoRIO/PIN/QEMU [43,45,93].
While translation does facilitate transformations like sub-
instruction profiling [31], static binary rewriting is a more

1686 30th USENIX Security Symposium

USENIX Association

viable approach for fuzzing due to its significantly lower
overhead. Like compilers, static binary rewriting performs
all analyses (e.g., control-flow recovery, code/data disam-
biguation, instrumentation) prior to target execution, avoid-
ing the costly runtime effort of dynamic translation. Thus,
static rewriting is the most compatible with achieving
compiler-quality speed in binary-only fuzzing.

Criterion 1: Instrumentation added via static rewriting.

* Consideration 2: Inlining versus Trampolining. A sec-
ond concern is how instrumentation code (e.g., coverage-
tracing) is invoked. Instrumenters generally adopt one of
two techniques: trampolining or inlining. Trampolining
refers to invocation via jumping to a separate payload func-
tion containing the instrumentation. This requires two trans-
fers: one to the payload, and another back to the callee.
However, the total instructions needed to accommodate this
redirection is significant relative to a basic block’s size;
and their overhead accumulation quickly becomes prob-
lematic for fuzzing. Modern compilers inline, injecting
instrumentation directly within target basic blocks. Inlining
offers the least-invasive invocation as instrumentation is
launched via contiguous instruction execution rather than
through redirection. We thus believe that inlining is essen-
tial to minimize fuzzing instrumentation’s runtime overhead
and achieve compiler-quality speed in binary-only fuzzing.

Criterion 2: Instrumentation is invoked via inlining.

* Consideration 3: Register Allocation. Memory access is
a persistent bottleneck to performance. On architectures
with a finite set of CPU registers (e.g., x86), generating fast
code necessitates meticulous register allocation to avoid
clobbering occupied registers. Condition code registers
(e.g., x86’s eflags) are particularly critical as it is common
to modify them; but saving/restoring them to their origi-
nal state requires pushing to the stack and is thus ~10x
slower than for other registers. Compilers track register
liveness to avoid saving/restoring dead (untouched) con-
dition code registers as much as possible. Smart register
allocation is thus imperative to attaining compiler-quality
binary instrumentation speed.

Criterion 3: Must facilitate register liveness tracking.

* Consideration 4: Real-world Scalability. Modern com-
pilers support a variety of compiled languages, binary char-
acteristics, and platforms. While dynamic translators (e.g.,
DynamoRIO, QEMU, PIN) are comparably flexible be-
cause of their reliance on emulation techniques, existing
static rewriters have proven far less reliable: some require
binaries be written in C despite the fact that developers are
increasingly turning to C++ [26,86,87]. others apply to only

position-independent (i.e., relocatable) code and neglect
the bulk of software that remains position-dependent [26];
many presume access to debugging symbols (i.e., non-
stripped) but this seldom holds true when fuzzing propri-
etary software [44]; and most are only Linux-compatible,
leaving some of the world’s most popular commodity soft-
ware (Windows 64-bit PE32+) unsupported [26, 44, 86, 87].
A compiler-quality binary-only fuzzing instrumenter must
therefore support these garden-variety closed-source binary
characteristics and formats.

Criterion 4: Support common binary formats and platforms.

While binary instrumenters have properties useful to many
non-fuzzing domains (e.g., analysis, emulation, and profiling),
attaining compiler-quality fuzzing instrumentation hinges
on satisfying four core design criteria: (C1) static rewrit-
ing, (C2) inlining, (C3) register liveness, and (C4) broad bi-
nary support. Hardware-assisted tracing cannot modify pro-
grams and hence violates criteria (C1)—(C3). DynamoRIO,
PIN, and QEMU adopt dynamic translation (C1) and thus
incur orders-of-magnitude performance penalties—before ap-
plying any feedback-enhancing transformation. Dyninst and
RetroWrite embrace static rewriting but both rely on costlier
trampoline-based invocation (C2) and fail to support com-
modity binary formats and characteristics (C4); and moreover,
Dyninst’s liveness-aware instrumentation failed on our evalua-
tion benchmarks (C3). Thus, compiler-quality instrumentation
in a binary-only context demands a new approach that satisfies
all four criteria.

5 The ZAFL Platform

Fuzzing effectiveness severely declines on closed-source tar-
gets. Recent efforts capitalize on compiler instrumentation
to apply state-of-the-art fuzzing-enhancing program transfor-
mations; however, current binary-only fuzzing instrumenters
are ineffective at this. As practitioners are often restricted to
binary-only fuzzing for proprietary or commercial software,
any hope of advancing binary-only fuzzing beseeches efforts
to bridge the gap between source-available and binary-only
fuzzing instrumentation.

To combat this disparity we introduce ZAFL: a compiler-
quality instrumenter for x86-64 binary fuzzing. ZAFL ex-
tends the rich capabilities of compiler-style instrumentation—
with compiler-level throughput—to closed-source fuzzing tar-
gets of any size and complexity. Inspired by recent compiler-
based fuzzing advancements (§ 3), ZAFL streamlines instru-
mentation through four extensible phases, facilitating intu-
itive implementation and layering of state-of-the-art fuzzing-
enhancing program transformations. Below we detail ZAFL’s
internal architecture and guiding design principles.

USENIX Association

30th USENIX Security Symposium 1687

Static Rewriting Component"~-.,....,__

The ZAFL Platform

ZAX Transform & Inst. Phases

P1: Control-Flow Opts.

P2: Control-Flow Analysis

Original Binary Rewriter

N Voo
Binary ..‘ /A‘- [
|_ > Build Binary
Representation Ny L L

s

Original IR

IR Data Struct

Reconstitute
Output Binary

Modified IR

—

Output
Binary

Specify Optimizations ™
Optimized Control-flow Graph

Specify Analyses ™
Extract Meta-characteristics

\2
P3: Inst. Point Selection

Meta-characteristic Data ™
Location Selection

Figure 2: A high-level depiction of the ZAFL platform architecture and its four ZAX transformation and instrumentation phases.

5.1 Design Overview

As shown in Figure 2, ZAFL consists of two primary com-
ponents (1) a static rewriting engine and (2) ZAX: our four
IR-modifying phases for integrating compiler-quality instru-
mentation and fuzzing enhancements. Given a target binary,
ZAFL operates as follows:

1. IR Extraction. From our (or any compatible) binary
rewriter, ZAFL requests an intermediate representation (IR)
of the target binary.

2. ZAX. The resulting IR is then passed to ZAX’s four trans-
formation and instrumentation phases:

P1: Optimization,

P2: Analysis,

P3: Point Selection, and
P4: Application.

3. Binary Reconstitution. After ZAX applies program trans-
formations and instrumentation at IR-level, ZAFL transfers
the modified IR back to the rewriting engine which gener-
ates the output binary for fuzzing.

5.1.1 Static Rewriting Engine

ZAFL interacts with the binary rewriter of choice to first trans-
late the target binary to an intermediate representation (IR) for
subsequent processing in ZAX; and secondly, to reconstitute
an output binary from the ZAX-modified IR.

We initially considered re-purposing LLVM IR-based
rewriter McSema [25] due to its maturity and popularity in the
static rewriting community, but ultimately ruled it out as both
the literature [29] and our own preliminary evaluation reveal
that it is a poor fit for fuzzing due to its high baseline overhead.
Instead, for our prototype, we extend the GCC IR-inspired
static rewriter Zipr [41,46] as it meets the same criteria that
McSema does (§ 4.2), but has better baseline performance.

5.2 The ZAX Transformation Architecture

Once target IR construction is finished, ZAFL initiates ZAX:
our fuzzing instrumentation toolchain. Below we describe the

intricacies of ZAX’s four core phases: (1) Optimization, (2)
Analysis, (3) Point Selection, and (4) Application.

5.2.1 Optimization

ZAX’s first phase enables transformations that reduce the mu-
tation effort required to fuzz-through deeper code regions
(e.g., sub-instruction profiling). Given a pre-specified opti-
mization criteria (e.g., “decompose multi-byte conditional
constraints”), it scans the target binary’s control-flow graph to
identify sections of interest; and for every match, it applies the
relevant IR-level transformations. As such transformations
alter control-flow, we apply them before further analyses that
depend on the finalized control-flow graph.

5.2.2 Analysis

With the optimized control-flow graph in hand, ZAX’s sec-
ond phase computes meta-characteristics (e.g., predecessor-
successor, data-flow, and dominance relationships). We model
this after existing compiler mechanisms [3,24,61], and to fa-
cilitate integration of other desirable analyses appearing in
the literature [2, 81]. The extent of possible analyses depends
on the rewriter’s IR; for example, low-level IR’s modeled
after GCC’s RTL [34] permit intuitive analysis to infer regis-
ter liveness; and other IRs may support equivalent analyses
which could be used instead, but if not, such algorithms are
well-known [61] and could be added to support ZAX.

5.2.3 Point Selection

ZAX’s third phase aims to identify where in the program to
instrument. Given the binary’s full control-flow graph and
meta-characteristic data (e.g., liveness, dominator trees), this
phase enumerates all candidate basic blocks and culls those
deemed unnecessary for future instrumentation. ZAX’s CFG-
aware instrumentation pruning capabilities facilitate easy im-
plementation of compiler-based techniques described in § 3.

1688 30th USENIX Security Symposium

USENIX Association

Performance Transformation

Single Successor-based Pruning [31]
Dominator-based Pruning [47]
Instrumentation Downgrading [32]

Feedback Transformation
[1,31,51,75]
[18,31]

Sub-instruction Profiling

Context-sensitive Coverage

Table 3: A catalog of ZAFL-implemented compiler-quality fuzzing-enhancing
program transformations and their compiler-based origins.

5.2.4 Application

Finally, ZAX’s applies the desired instrumentation configu-
ration (e.g., block or edge coverage tracking). A challenge
is identifying how to instrument each location; ensuring cor-
rect execution requires precise handling of registers around
instrumentation code—necessitating careful consideration of
liveness. As a block’s instrumentation can theoretically be po-
sitioned anywhere within it, liveness analysis also facilitates
“best-fit” location ranking by quantity of free registers; and
since restoring condition code registers (e.g., x86’s eflags)
is often costlier than others, we further prioritize locations
where these are free. Thus, ZAX’s efficiency-maximizing
instrumentation insertion is comparable to that of modern
compilers [34,53]. Though our current prototype (§ 6) targets
AFL-style fuzzers, support for others is possible through new
instrumentation configurations.

6 Extending Compiler-quality Transforms
to Binary-only Fuzzing

We review successful compiler-based fuzzing approaches
and identify impactful fuzzing performance- and feedback-
enhancing program transformations. As these transformations
provably improve compiler-based fuzzers they thus are de-
sirable for closed-source targets; however, they are largely
neglected due to current binary instrumenters’ limitations.
To show the power of ZAFL in applying and layering
transformations ad-hoc, we extend three performance- and
two feedback-enhancing compiler-based transformations to
binary-only fuzzing, shown in Table 3. Below details our
implementations of these five transformations using ZAFL.

6.1 Performance-enhancing Transformations

We leverage ZAFL’s ZAX architecture in deploying three
fuzzing performance-enhancing program transformations:
single successor and dominator-based instrumentation
pruning, and edge instrumentation downgrading. We de-
scribe our implementation of each below.

6.1.1 Single Successor Instrumentation Pruning

Recent fuzzing works leverage flow graph reducibility tech-
niques [42,77] to cut down instrumentation overhead [47].
We borrow AFL-Dyninst’s omitting of basic blocks which

are not their function’s entry, but are the single successor to
their parent block [44]. Intuitively, these are guaranteed to be
covered as they are preceded by unconditional transfer and
thus, their instrumentation is redundant. Our implementation
applies a meta-characteristic predecessor-successor analysis
in ZAX’s Analysis phase; and a location selector during Point
Selection to omit basic blocks accordingly.

6.1.2 Dominator Tree Instrumentation Pruning

Tikir and Hollingsworth [81] expand on single predecessor/-
successor pruning by evaluating control-flow dominator re-
lationships. A node A “dominates” B if and only if every
possible path to B contains A [2]. Dominator-aware instru-
mentation audits the control-flow graph’s corresponding dom-
inator tree to consider nodes that are a dominator tree leaf, or
precede another node in control-flow but do not dominate it.

In line with our other CFG-aware pruning, we implement a
dominator tree meta-characteristic in ZAX’s Analysis phase;
and a corresponding selector within Point Selection. Our anal-
ysis reveals this omits 30—50% of blocks from instrumenta-
tion. We elect to apply Tikir and Hollingsworth’s algorithm
because it balances graph reduction and analysis effort. Other
alternative, more aggressive algorithms exist [2,47], which
we believe are also implementable in ZAFL.

6.1.3 Edge Instrumentation Downgrading

CollAFL [32] optimizes AFL-style edge coverage by down-
grading select blocks to faster (i.e., fewer-instruction) block
coverage. At a high level, blocks with a single predecessor
can themselves represent that edge, eliminating the instruc-
tion cost of hashing the start and end points. We implement
edge downgrading using a meta-characteristic analysis based
on linear flows in ZAX’s Analysis phase; and construct both
edge- and block-coverage instrumentation templates utilized
in the Application phase. Our numbers show that roughly
35—45% of basic blocks benefit from this optimization.

6.2 Feedback-enhancing Transformations

Recent compiler-based fuzzing efforts attain improved code-
penetration power by considering finer-grained execution in-
formation [18,31]. Below we detail our ZAFL implementa-
tions of two prominent examples: sub-instruction profiling
and context-sensitive coverage tracking.

6.2.1 Sub-instruction Profiling

Sub-instruction profiling breaks down complex conditional
constraints into nested single-byte comparisons—allowing
the fuzzer to track progress toward matching the entire con-
straint, and significantly decreasing the overall mutation
effort. Compiler-based implementations (e.g., laf-Intel [1]
and CmpCov [51]) replace comparisons with nested micro-
comparisons; however, as the goal is to augment control-flow

USENIX Association

30th USENIX Security Symposium 1689

with nested conditionals that permit increased feedback, we
observe it is equally effective to insert these before the origi-
nal. We implement a binary-only sub-instruction profiling for
(up to) 64-bit unsigned integer comparisons: in ZAX’s Opti-
mization phase, we scan the IR for comparison mnemonics
(i.e., cmp), and then insert a one-byte nested comparison per
constraint byte. We further incorporate handling for division
operators to help reveal divide-by-zero bugs.

6.2.2 Context-sensitive Coverage

Context sensitivity considers calling contexts to enable finer-
grained coverage. For hash-indexing fuzzers like AFL, this
merely requires that the hash index calculation additionally
incorporates a context value. Several LLVM-based efforts
compute values at callsite-level [18] or function-level [31].
Though context values can assigned statically or obtained
dynamically (e.g., from a stack trace), an easy solution is to
create a global context variable which is updated on-the-fly:
we create function-level context sensitivity by instrumenting
each function with a random value, which at function en-
try/exit is XOR’d to a global context value that is used during
edge hashing. We implement function-level context sensitivity
in ZAX’s Application phase. Callsite-level context sensitivity
is also possible by adjusting where values are inserted.

7 Evaluation

Our evaluation answers three high-level questions:

Q1: Does ZAFL enable compiler-style program transforma-
tions while maintaining performance?

Q2: Do performant fuzzing-enhancing program transforma-
tions increase binary-only fuzzing’s effectiveness?

Q3: Does ZAFL support real-world, complex targets?

We first perform an evaluation of ZAFL against the leading
binary-only fuzzing instrumenters AFL-Dyninst and AFL-
QEMU on the LAVA-M benchmark corpus [28]. Second,
to see if LAVA-M results hold for real-world programs, we
expand our evaluation to eight popular programs well-known
to the fuzzing literature, selecting older versions known to
contain bugs to ensure self-evident comparison. Third, we
evaluate these instrumenters’ fuzzing overhead across each.
Fourth, we evaluate ZAFL alongside AFL-Dyninst and AFL-
QEMU in fuzzing five varied closed-source binaries. Fifth, we
test ZAFL’s support for 42 open- and closed-source programs
of varying size, complexity, and platform. Finally, we use
industry-standard reverse-engineering tools as ground-truth
to assess ZAFL’s precision.

7.1 Evaluation-wide Instrumenter Setup

We evaluate ZAFL against the fastest-available binary-only
fuzzing instrumenters; we thus omit AFL-PIN [45, 65, 80]

and AFL-DynamoRIO [43,73,82] variants as their reported
overheads are much higher than AFL-Dyninst’s and AFL-
QEMU’s; and Intel PT [48] as it does not support instrumen-
tation (Table 2). We configure AFL-Dyninst and AFL-QEMU
with recent updates which purportedly increase their fuzzing
performance by 2-3x and 3—-4x, respectively. We detail these
below in addition to our setup of ZAFL.

AFL-Dyninst: A recent AFL-Dyninst update [44]
adds two optimizations which increase performance by
2-3x: (1) CFG-aware “single successor” instrumentation
pruning; and (2) two optimally-set Dyninst BPatch API
settings (setTrampRecursive and setSaveFPR).! We
discovered three other performance-impacting BPatch
settings (setLivenessAnalysis, setMergeTramp, and
setInstrStackFrames). For fairness we apply the fastest-
possible AFL-Dyninst configurations to all benchmarks;
but for setLivenessAnalysis we are restricted to its
non-optimal setting on all as they otherwise crash; and
likewise for set SaveFPR on sfconvert and tcpdump.

AFL-QEMU: QEMU attempts to optimize its expensive
block-level translation with caching, enabling translation-free
chaining of directly-linked fetched-block sequences. Until
recently, AFL-QEMU invoked its instrumentation via trampo-
line after translation—rendering block chaining incompatible
as skipping translation leaves some blocks uninstrumented,
potentially missing coverage. A newly-released AFL-QEMU
update [10] claims a 3—4x performance improvement through
enabling support for chaining by instead applying instrumen-
tation within translated blocks. To ensure best-available AFL-
QEMU performance we apply this update in all experiments.

ZAFL: To explore the effects of compiler-quality fuzzing-
enhancing transformation on binary-only fuzzing we instru-
ment benchmarks with all transformations shown in Table 3.

7.2 LAVA-M Benchmarking

For our initial crash-finding evaluation we select the LAVA-
M corpus as it provides ground-truth on its programs’ bugs.
Below we detail our evaluation setup and results.

7.2.1 Benchmarks

We compile each benchmark with Clang/LLVM before instru-
menting with AFL-Dyninst and ZAFL; for AFL-QEMU we
simply run compiled binaries in AFL using “QEMU mode”.
As fuzzer effectiveness on LAVA-M is sensitive to starting
seeds and/or dictionary usage, we fuzz each instrumented bi-
nary per four configurations: empty and default seeds both
with and without dictionaries. We build dictionaries as in-
structed by one of LAVA-M’s authors [27].

IThis AFL-Dyninst update [44] also adds a third optimization that re-
places Dyninst-inserted instructions with a custom, optimized set. However,
in addition to having only a negligible performance benefit according to its
author, its current implementation is experimental and crashes each of our
benchmarks. For these reasons we omit it in our experiments.

1690 30th USENIX Security Symposium

USENIX Association

Seed, ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
Binary Dictionary rel. rel. rel. rel. rel. rel.
crash total queue crash total queue
default, none 1.00 13.71 1.70 1.00 1371 1.58
base6d default, dict. 1.00 13.70 1.70 1.00 1371 1.58
empty, none X 1.34 3.16 X 1.67 2.88
empty, dict. 2.46 1.33 2.80 1.05 257 2.61
default, none X 0.88 4522 X 222 4.39
nd5sum default, dict. 552 094 32.17 1.00 1.88 2.15
empty, none X 1.01 45.54 X 2.15 4.39
empty, dict. 4.00 0.96 77.77 0.87 1.91 222
default, none 1.00 1.62 1.37 1.00 1.98 1.21
uniq default, dict. 5.75 1.04 2.39 7.67 1.23 1.64
empty, none X 1.97 437 X 3.92 3.71
empty, dict. 2.23 1.55 2.60 1.04 2.15 243
default, none 1.00 1.32 27.07 1.00 2.44 21.86
who default, dict. 3.78 1.18 40.24 3.68 1.7 36.36
empty, none 1.00 4.13 12.62 1.00 4.20 9.50
empty, dict. 1.24 1.15 11.22 2.54 1000 15.74
Mean Rel. Increase +96% +78% +751% | +42% +203% +296%
Mean MWU Score 0.023 0.022 0.005 0.039 0.007 0.005

Table 4: ZAFL’s LAVA-M mean bugs and total/queued test cases relative to
AFL-Dyninst and AFL-QEMU. We report geometric means for all metrics
and MWU test p-values (p < 0.05 indicates significance). X = ZAFL finds
crashes while competitor finds zero.

7.2.2 Experimental Setup and Infrastructure

We adopt the standard set by other LAVA-M evaluations [7,
72,92] and fuzz each instrumented binary for five hours with
the coverage-guided fuzzer AFL [93]; each for five trials per
the four seed/dictionary configurations. All instrumenters are
configured as detailed in § 7.1. To maintain performance
neutrality, we distribute trials across eight VM’s spanning
two Ubuntu 16.04 x86-64 systems with 6-core 3.50GHz Intel
Core 17-7800x CPU’s and 64GB RAM. Each VM runs in
VirtualBox with 6GB RAM and one core allocated.

7.2.3 Data Processing and Crash Triage

We log both the number of AFL-saved crashes and test cases
processed (i.e., fotal—hang—calibration—trim executions);
and in post-processing match each crash to a specific num-
ber of test cases seen—allowing us to pinpoint when each
crash occurred in its trial. We then triage all crashes and cre-
ate <crashfid, testcases_done, triagefdata> triples; and apply
set operations to obtain the unique crashes over test cases
done (i.e., <triaged_crashes, testcases_done>). For LAVA-M
we triage solely by its benchmarks’ self-reported bug ID’s.

We compute the average unique crashes, total processed
and queued test cases for all instrumenter-benchmark trial
groupings. To show ZAFL’s effectiveness, we report its mean
relative increase for all three metrics per-trial group, and ge-
ometric mean relative increases among all benchmarks. Fol-
lowing Klees et al.’s [52] recommendation, to determine if
ZAFL’s gains are statistically significant, we compute a Mann-
Whitney U-test with a 0.05 significance level, and report the
geometric mean p-values across all benchmarks.

7.2.4 Results

We do not include ZAFL’s context sensitivity in our LAVA-M
trials as we observe it slightly inhibits effectiveness (~2%),

likely due to LAVA-M’s focus on a specific type of synthetic
bug (i.e., “magic bytes”). This also enhances the distinction on
the impact of ZAFL’s sub-instruction profiling transformation
based on number of queued (i.e., coverage-increasing) test
cases. Table 4 shows ZAFL’s mean relative increase in triaged
crashes, total and queued test cases over AFL-Dyninst and
AFL-QEMU per configuration.

ZAFL versus AFL-Dyninst: Across all 16 configurations
ZAFL executes 78% more test cases than AFL-Dyninst and
either matches or beats it with 96% more crashes on average,
additionally finding crashes in four cases where AFL-Dyninst
finds none. As we observe Mann-Whitney U p-values (0.005—
0.023) below the 0.05 threshold we conclude this difference
in effectiveness is statistically significant. Though ZAFL aver-
ages slightly fewer (4—12%) test cases on md5sum this is not to
its disadvantage: ZAFL queues 3100-7600% more test cases
and finds well over 300% more crashes, thus revealing the
value of its control-flow-optimizing program transformations.

ZAFL versus AFL-QEMU: ZAFL matches or surpasses
AFL-QEMU among 15 benchmark configurations, averag-
ing 42% more crashes and 203% more test cases seen. As
with AFL-Dyninst, ZAFL successfully finds crashes in four
cases for which AFL-QEMU finds none. Additionally, the
Mann-Whitney U p-values (0.005-0.039) reveal a statistically
significant difference between AFL-QEMU and ZAFL. ZAFL
finds 13% fewer crashes relative to AFL-QEMU on md5sum
with empty seeds and dictionary, but as ZAFL’s queue is 91%
larger, we believe this specific seed/dictionary configuration
and ZAFL’s transformations result in a “burst” of hot paths,
which the fuzzer struggles to prioritize. Such occurrences
are rare given ZAFL’s superiority in other trials, and likely
correctable through orthogonal advancements in fuzzing path
prioritization [14,21,54,94].

To our surprise, AFL-QEMU finds more crashes than AFL-
Dyninst despite executing the least test cases. This indicates
that Dyninst’s instrumentation, while faster, is less sound
than QEMU’s in important ways. Achieving compiler-quality
instrumentation requires upholding both performance and
soundness, which neither QEMU nor Dyninst achieve in con-
cert, but ZAFL does (see § 7.5).

ZAFL versus AFL-LLVM: To gain a sense of whether
ZAFL’s transformation is comparable to existing compiler-
based implementations, we ran ZAFL alongside the the anal-
ogous configuration of AFL’s LLVM instrumentation with
its INSTRIM [47] and laf-Intel [1] transformations applied.
Results show that the two instrumentation approaches result
in statistically indistinguishable MWU p-value 0.10) bug
finding performance.

7.3 Fuzzing Real-world Software

Though our LAVA-M results show compiler-quality fuzzing-
enhancing program transformations are beneficial to binary-
only fuzzing, it is an open question as to whether this carries

USENIX Association

30th USENIX Security Symposium 1691

=$p= AFL-Dyn AFL-QEMU == ZAFL =P AFL-Dyn. AFL-QEMU =i~ ZAFL =p= AFL-Dyn. AFL-QEMU == ZAFL =p= AFL-Dyn AFL-QEMU =lll= ZAFL J
10 10 0 10
» ® ® »
D Do Lo Do
7} @) 7}
© © ®© ©
it o J o
O os O os O os O os
<) o o <]
2 04 ; 04 ; 04 é 04
3. 3. 3. 3.

00 2
00 02 04 06 08 00 02 04 06 08

Prop. Test Cases / 24-hours Prop. Test Cases / 24-hours
(a) cert-basic (b) jasper

00 02 04 06 08 00 02 04 06 08

Prop. Test Cases / 24-hours Prop. Test Cases / 24-hours
(c)unrtf (d) tcpdump

Figure 3: Real-world software fuzzing unique triaged crashes averaged over 8 x 24-hour trials.

ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
Binary rel. rel. rel. rel. rel. rel.
crash total queue crash total queue
bsdtar 0.80 1.25 1.06 8.00 2.59 2.79
cert-basic 1.41 1.79 4.99 1.95 3.05 451
clean_text 1.25 1.48 1.68 6.25 3.23 1.93
jasper 2.60 2.70 2.30 1.39 2.05 1.67
readelf 1.00 1.03 3.52 1.00 3.44 5.60
sfconvert 1.30 0.96 4.04 1.18 0.90 3.30
tcpdump 0.90 1.44 2.68 3.17 4.95 4.99
unrtf 1.50 1.78 36.1 1.62 2.51 35.5
Mean Rel. Increase | +26% +48% +260% | +131% +159% +337%
Mean MWU Score | 0.018 0.001 0.001 0.002 0.001 0.001

Table 5: ZAFL’s real-world software mean triaged crashes and total/queued
test cases rel. to AFL-Dyninst and AFL-QEMU. We report geometric means
for all metrics and MWU test p-values (p < 0.05 indicates significance).

over to real-world programs. We therefore expand our crash-
finding evaluation to eight diverse, real-world benchmarks and
extend all trials to 24 hours as per the standard set by Klees et
al. [52]. We further show that ZAFL achieves compiler-quality
performance in a coverage-tracing overhead comparison of
all three instrumenters.

7.3.1 Benchmarks

To capture the diversity of real-world software we select
eight binaries of varying type, size, and libraries which previ-
ously appear in the fuzzing literature: bsdtar, cert-basic,
clean_text, jasper, readelf, sfconvert, tcpdump, and
unrt f. We intentionally select older versions known to con-
tain AFL-findable bugs to facilitate a self-evident bug-finding
comparison. Statistics for each (e.g., package, size, number
of basic blocks) are listed in Table 8.

7.3.2 Experimental Setup and Infrastructure

In both crash-finding and overhead experiments we configure
instrumenters and binaries as described in § 7.1 and § 7.2.1,
and utilize either AFL- or developer-provided seed inputs
in fuzzing evaluations. For crash-finding, we fuzz all instru-
mented binaries with AFL on a cluster for 8 x24-hour trials
each and to evaluate overhead, we perform 5x24-hour trials
on our LAVA-M experiment infrastructure (§ 7.2.2).

7.3.3 Real-world Crash-finding

We apply all ZAFL-implemented transformations (Table 3) to
all eight binaries, but omit context sensitivity for clean_text
as it otherwise consumes 100% of its coverage map. Triage is

performed as in § 7.2.3 but is based on stack hashing as seen in
the literature [52,57,66].2 Table 5 shows ZAFL-instrumented
fuzzing crash-finding as well as total and queued test cases
relative to AFL-Dyninst and AFL-QEMU. We further report
the geometric mean Mann-Whitney U significance test p-
values across all metrics.

ZAFL versus AFL-Dyninst: Our results show ZAFL aver-
ages 26% more real-world crashes and 48% more test cases
than AFL-Dyninst in 24 hours. Though ZAFL finds 10-20%
fewer on bsdtar and tcpdump, the raw differences amount
to only 1-2 crashes, suggesting that it and AFL-Dyninst con-
verge on these two benchmarks (as shown in Figure 3d). Like-
wise for readelf our triage reveals two unique crashes across
all trials, both found by all three instrumenters. For all others
ZAFL holds a lead (as shown in Figure 3), averaging 61%
more crashes. Given the Mann-Whitney U p-values (0.001-
0.018) below the 0.05 significance level, we conclude that
ZAFL’s compiler-quality transformations bear a statistically
significant advantage over AFL-Dyninst.

ZAFL versus AFL-QEMU: While ZAFL surpasses AFL-
QEMU’s LAVA-M crash-finding by 42%, ZAFL’s real-world
crash-finding is an even higher 131%. Apart from the two
readelf bugs found by all three instrumenters, ZAFL’s
fuzzing-enhancing program transformations and 159% higher
execution rate allow it to hone-in on more crash-triggering
paths on average. As with AFL-Dyninst, comparing to
AFL-QEMU produces Mann-Whitney U p-values (0.001-
0.002) which prove ZAFL’s increased effectiveness is statis-
tically significant. Furthermore the disparity between AFL-
QEMU’s LAVA-M and real-world crash-finding suggests that
increasingly-complex binaries heighten the need for more
powerful binary rewriters.

7.3.4 Real-world Coverage-tracing Overhead

For our coverage-tracing overhead evaluation we follow es-
tablished practice [62]: we collect 5x24-hour test case dumps
per benchmark; instrument a forkserver-only “baseline” (i.e.,
no coverage-tracing) version of each benchmark; log every
instrumented binary’s coverage-tracing time for each test case
per dump; apply 30% trimmed-mean de-noising on the exe-
cution times per instrumenter-benchmark pair; and scale the

2In stack hashing we consider both function names and lines; and con-
dense recursive calls as they would otherwise over-approximate bug counts.

1692 30th USENIX Security Symposium

USENIX Association

[Compiler
X3 Assembler AFL-QEMU

B AFL-Dyninst B= ZAFL-fsrvr E= ZAFL-perf
E== ZAFL-none EEE ZAFL-all

o 1.0
E 0.9
g 0.8
0.7 Wy

25e B \
Zos \
$os N \
=04 H i
£03 N \
) \ \
50.2 | N
o1 N \
F oo N N &

) < O S NS & & .

& °)Otb;} o>®+ ~'Z>6Q® 0& 0&0 6&(& é\{\ @0
© & & > < R

Figure 4: Compiler, assembler, AFL-Dyninst, AFL-QEMU, and ZAFL
fuzzing instrumentation performance relative to baseline (higher is better).

resulting overheads relative to baseline.

We compare ZAFL to AFL-Dyninst, AFL-QEMU, and to
the compiler- and assembler-based instrumentation available
in AFL [93]. We assess all aspects of ZAFL’s performance: (1)
its baseline forkserver-only rewritten binary overhead (ZAFL-
FSRVR); and instrumentation overheads (2) with no trans-
formations (ZAFL-NONE), (3) only performance-enhancing
transformations (ZAFL-PERF), and (4) all (Table 3) trans-
formations (ZAFL-ALL). We additionally compute geomet-
ric mean Mann-Whitney U p-values of both ZAFL-NONE’s
and ZAFL-ALL’s execution times compared to those of com-
piler and assembler instrumentation, AFL-Dyninst, and AFL-
QEMU among all benchmarks.

Figure 4 displays the instrumenters’ relative overheads. On
average, ZAFL-FSRVR, ZAFL-NONE, ZAFL-PERF, and ZAFL-
ALL obtain overheads of 5%, 32%, 17%, and 27%, while com-
piler and assembler instrumentation average 24% and 34 %,
and AFL-Dyninst and AFL-QEMU average 88% and 256%,
respectively. Thus, even ZAFL with all fuzzing-enhancing
transformations approaches compiler performance.

ZAFL versus AFL-Dyninst: We observe ZAFL performs
slightly worse on sfconvert as it has the fewest basic blocks
by far we believe our rewriting overhead is more pronounced
on such tiny binaries. Other results suggest that this case
is pathological. Even ZAFL’s most heavyweight configura-
tion (ZAFL-ALL) incurs 61% less average overhead than
AFL-Dyninst, even though this comparison includes ZAFL’s
performance-enhancing transformations. If omitted, this still
leaves ZAFL ahead of AFL-Dyninst—which, too, benefits
from performance-enhancing single successor-based prun-
ing. Comparing the execution times of ZAFL-NONE and
ZAFL-ALL to AFL-Dyninst’s yields mean Mann-Whitney
U p-values of 0.020-0.023. As these are below 0.05, sug-
gesting that ZAFL, both with- and without-transformations,
achieves statistically better performance over AFL-Dyninst.

ZAFL versus AFL-QEMU: Though AFL-QEMU’s block
caching reduces its overhead from previous reports [62], ZAFL
outperforms it with nearly 229% less overhead. Interestingly,
AFL-QEMU beats AFL-Dyninst on jasper, consistent with
the relative throughput gains in Table 5. Thus, while it appears

some binary characteristics are better-suited for dynamic vs.
static rewriting, existing instrumenters do not match ZAFL’s
performance across all benchmarks. Our Mann-Whitney U
tests reveal that both ZAFL-NONE and ZAFL-ALL obtain p-
values of 0.012, suggesting that ZAFL achieves statistically
better performance over AFL-QEMU.

Comparing ZAFL to Compiler Instrumentation: On av-
erage, compared to a forkserver-only binary, ZAFL incurs
a baseline overhead of 5% just for adding rewriting sup-
port to the binary; tracing all code coverage increases over-
head to 32%; optimizing coverage tracing using graph anal-
ysis reduces overhead to 20%; and applying all fuzzing-
enhancing program transformations brings overhead back
up to 27%. These overheads are similar to the 24% overhead
of AFL’s compiler-based instrumentation, and slightly better
than AFL’s assembler-based trampolining overhead of 34%.
Comparing ZAFL-NONE and ZAFL-ALL to compiler instru-
mentation yields mean Mann-Whitney U p-values ranging
0.12-0.18 which, being larger than 0.05, suggests that ZAFL
is indistinguishable from compiler-level performance.

7.4 Fuzzing Closed-source Binaries

To evaluate whether ZAFL’s improvements extend to true
binary-only use cases, we expand our evaluation with five di-
verse, closed-source binary benchmarks. Our results show that
ZAFL’s compiler-quality instrumentation and speed help re-
veal more unique crashes than AFL-Dyninst and AFL-QEMU
across all benchmarks. We further conduct several case studies
showing that ZAFL achieves far shorter time-to-bug-discovery
compared to AFL-Dyninst and AFL-QEMU.

7.4.1 Benchmarks

We drill-down the set of all closed-source binaries we
tested with ZAFL (Table 9) into five AFL-compatible (i.e.,
command-line interfacing) benchmarks: idat 64 from IDA
Pro, nconvert from XNView’s NConvert, nvdisasm from
NVIDIA’s CUDA Utilities, pngout from Ken Silverman’s
PNGOUT, and unrar from RarLab’s RAR. Table 9 lists the
key features of each benchmark.

7.4.2 Closed-source Crash-finding

We repeat the evaluation from § 7.3.3, running five 24-hour ex-
periments per configuration. Our results (mean unique triaged
crashes, total and queued test cases, and MWU p-scores)
among all benchmarks are shown in Table 6; and plots of
unique triaged crashes over time are shown in Figure 5.
ZAFL versus AFL-Dyninst: Despite AFL-Dyninst being
faster on idat64, nconvert, nvdisasm, and unrar, ZAFL
averages a statistically-significant (mean MWU p-value of
0.036) 55% higher crash-finding. We believe AFL-Dyninst’s
speed, small queues, and lack of crashes in unrar are due
to it missing significant parts of these binaries, as our own

USENIX Association

30th USENIX Security Symposium 1693

=p— AFL-Dyninst =@= AFL-QEMU ZAFL =p— AFL-Dyninst =@= AFL-QEMU ZAFL

L

Rel. Avg Crashes
Rel. Avg Crashes

of
O
00 00
oo 02 04 06 o8
Prop. Test Cases / 24-hours
(a) idat64

b0 02 04 06 o8
Prop. Test Cases / 24-hours
(b) nconvert

=P AFL-Dyninst =@= AFL-QEMU ZAFL =P AFL-Dyninst =@= AFL-QEMU ZAFL

Rel. Avg Crashes
Rel. Avg Crashes

o DDD 0.2 0.4 0.6 0.8 o9
Prop. Test Cases / 24-hours
(c) pngout

b0 02 04 o6 os
Prop. Test Cases / 24-hours
(d) unrar

Figure 5: Closed-source binary fuzzing unique triaged crashes averaged over 5x24-hour trials.

ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU

Binary rel. rel. rel. rel. rel. rel.
crash total queue crash total queue
idat64 1.000 0.789 2.332 X 1.657 1.192
nconvert 3.538 0.708 48.140 | 1.095 1.910 1.303
nvdisasm 1.111 0.757 1.484 1.111 0.578 1.252
pngout 1.476 5.842 1.380 1.476 3.419 1.023
unrar X 0.838 6.112 2.000 1.284 1.249

Mean Rel. Increase | +55% +16% +326% | +38% +52% +20%
Mean MWU Score | 0.036 0.041 0.009 0.082 0.021 0.045
Table 6: ZAFL’s closed-source binary mean triaged crashes and total/queued
test cases relative to AFL-Dyninst and AFL-QEMU. We report geometric
means for all metrics and MWU test p-values (p < 0.05 indicates signifi-

cance). X = ZAFL finds crashes while competitor finds zero.

testing with its graph-pruning off shows it leaves over 50% of
basic blocks uninstrumented for all but pngout. We conclude
that ZAFL’s support for complex, stripped binaries brings a
decisive advantage over existing tools like AFL-Dyninst.

ZAFL versus AFL-QEMU: ZAFL’s speed and transfor-
mations enable it to average 38% more triaged crashes and
52% more test cases than AFL-QEMU. While ZAFL offers
a statistically significant improvement in throughput for four
benchmarks (mean MWU p-value of 0.021), we posit that its
slower speed on nvdisasm is due to AFL prioritizing slower
paths: AFL’s logs show ZAFL’s initial speed is over 2x AFL-
QEMU’s (2500 execs/s vs. 1200), but it fluctuates around 5
execs/s for much of the campaign afterwards. Though the
crash-finding gap between ZAFL and AFL-QEMU is not over-
whelming, ZAFL successfully uncovers a heap overread crash
in idat 64—while AFL-QEMU finds nothing.

7.4.3 Bug-finding Case Study

Following additional manual triage with binary-level memory
error checkers (e.g., QASan [30] and Dr. Memory [16]), we
compare the time-to-discovery (TTD) for five closed-source
binary bugs found by ZAFL, AFL-Dyninst, or AFL-QEMU:
a heap overflow in nconvert, a stack overflow in unrar, a
heap use-after-free and heap overflow in pngout, and a heap
overread in idat64’s 1ibida64. so.

Table 7 reports the geometric mean TTD among all five
bugs for all three instrumenters. We observe that, on aver-
age, ZAFL finds these bugs 660% faster than AFL-Dyninst,
and 113% faster than AFL-QEMU. Thus, ZAFL’s balance
of compiler-quality transformation and performance lends a
valuable asset to bug-finding in closed-source code.

Error Type Location AFL-Dyninst AFL-QEMU ZAFL
heap overflow nconvert X 18.3 hrs 12.7 hrs
stack overflow unrar X 12.3 hrs 9.04 hrs
heap overflow pngout 12.6 hrs 6.26 hrs 1.93 hrs
use-after-free pngout 9.35 hrs 4.67 hrs 1.44 hrs
heap overread libida64.so 23.7 hrs X 2.30 hrs
ZAFL Mean Rel. Decrease -660 % -113%

Table 7: Mean time-to-discovery of closed-source binary bugs found for
AFL-Dyninst, AFL-QEMU, and ZAFL over 5 x24-hour fuzzing trials. X =
bug is not reached in any trials for that instrumenter configuration.

7.5 Scalability and Precision

We recognize the fuzzing community’s overwhelming desire
for new tools that support many types of software—with a
growing emphasis on more complex, real-world targets. But
for a static rewriter to meet the needs of the fuzzing com-
munity, it must also achieve high precision with respect to
compiler-generated code. This section examines ZAFL’s scal-
ability to binaries beyond our evaluation benchmarks, as well
as key considerations related to its static rewriting precision.

7.5.1 Scalability

We instrument and test ZAFL on a multitude of popular real-
world binaries of varying size, complexity, source availability,
and platform. We focus on Linux and Windows as these plat-
forms’ binary formats are common high-value targets for
fuzzing. All binaries are instrumented with ZAFL’s AFL-like
configuration; we do the same for Windows binaries using
ZAFL’s cross-instrumentation support. We test instrumented
binaries either with our automated regression test suite (used
throughout ZAFL’s development); or by manually running
the application (for Windows) or testing the instrumentation
output with af1-showmap [93] (for Linux).

We verify ZAFL achieves success on 33 open-source Linux
and Windows binaries, shown in Table 8. To confirm ZAFL’s
applicability to true binary-only use cases, we expand our
testing with 23 closed-source binaries from 19 proprietary and
commercial applications, listed in Table 9. In summary, our
findings show that ZAFL can instrument Linux and Windows
binaries of varying size (e.g., I00K-100M bytes), complexity
(100—1M basic blocks), and characteristics (open- and closed-
source, PIC and PDC, and stripped binaries).

7.5.2 Liveness-aware Optimization

As discussed in § 4.2, register liveness analysis enables opti-
mized instrumentation insertion for closer-to-compiler-level

1694 30th USENIX Security Symposium

USENIX Association

Application oS Binary Size Blocks Opt
Apache L httpd 1.0M 25,547 v
AudioFile L sfconvert 568K 5,814 v
BIND L named 9.4M 120,665 v
Binutils L readelf 1.4M 21,085 v
CatBoost L catboost 153M 1,308,249 v
cJSON L cjson 43K 1,409 (4
Clang L clang 36.4M 1,756,126 v
DNSMasq L dnsmasq 375K 20,302 v
Gumbo L clean_text 571K 5,008 v
JasPer L jasper 1.IM 14,795 v
libarchive L bsdtar 2.1M 29,868 v
libjpeg L djpeg 667K 5,066 v
libksba L cert-basic 435K 5,247 v
lighttpd L lighttpd 1.IM 12,558 v
Mosh L mosh-client 42M 14,311 v
NGINX L nginx 4.8M 29,507 v
OpenSSH L sshd 2.3M 33,115 v
OpenVPN L vpn 2.9M 34,521 v
Poppler L pdftohtml 1.5M 2,814 v
Redis L redis-server 57M 74,515 v
Samba L smbclient 226K 6,279 v
SIPWitch L sipcontrol 226K 772 v
Squid L squid 32.7M 212,746 (4
tcpdump L tcpdump 2.3M 24,451 v
thttpd L thttpd 119K 3,428 (4
UnRTF L unrtf 170K 1,657 v
7-Zip w 7z 447K 23,353 X
AkelPad w AkelPad 540K 31,140 X
cygwin64 w bash 740K 38,397 X
cygwin64 w Is 128K 5,661 X
fre:ac w freaccmd 97K 521 X
fmedia W fmedia 178K 3,016 X
fmedia w fmedia-gui 173K 1,363 X

Table 8: Open-source binaries tested successfully with ZAFL. L/W = Lin-
ux/Windows; Opt = whether register liveness-aware optimization succeeds.

Application oS Binary Size Blocks P*C Sym Opt
B1FreeArchiver L bl 4.1M 150,138 D v v
B1FreeArchiver L blmanager 19.3M 290,628 D (4 v
BinaryNinja L binaryninja 344M 998,630 D (4 v
BurnInTest L bit_cmd_line 2.6M 73,229 D X v
BurnInTest L bit_gui 3.4M 107,897 D X v
Coherent PDF L smpdf 3.9M 61,204 D (4 v
IDA Free L ida64 4.5M 173,551 I X v
IDA Pro L idat64 1.8M 82,869 I X v
LzTurbo L 1zturbo 314K 13,361 D X v
NConvert L nconvert 2.6M 111,652 D X v
NVIDIACUDA L nvdisasm 19M 46,190 D X v
Object2VR L object2vr 8.IM 239,089 D v v
PNGOUT L pngout 89K 4,017 D X v
RARLab L rar 566K 25,287 D X v
RARLab L unrar 311K 13,384 D X v
Real VNC L VNC-Viewer 7.9M 338,581 D X v
VivaDesigner L VivaDesigner 289M 1,097,993 D X v
VueScan L vuescan 15.4M 396,555 D X v
Everything w Everything 22M 115,980 D v X
Imagine w Imagine64 15K 99 D X X
NirSoft w AppNetworkCounter 122K 4,091 D X X
OcenAudio w ocenaudio 6.1IM 178,339 D X X
USBDView W USBDeview 185K 7,367 D X X

Table 9: Closed-source binaries tested successfully with ZAFL. L/W = Lin-
ux/Windows; D/I = position-dependent/independent; Sym = binary is non-
stripped; Opt = whether register liveness-aware optimization succeeds.

speed. While liveness false positives introduce overhead from
the additional instructions needed to save/restore registers,
liveness false negatives may leave live registers erroneously
overwritten—potentially breaking program functionality. If
ZAFL’s liveness analysis (§ 5.2.4) cannot guarantee correct-
ness, it conservatively halts this optimization to avoid false
negatives, and instead safely inserts code at basic block starts.

To assess the impact of skipping register liveness-aware
optimization, we replicate our overhead evaluation (§ 7.3.4)
to compare ZAFL’s speed with/without liveness-aware instru-
mentation. As Figure 6 shows, liveness-unaware ZAFL faces
31% more overhead across all eight benchmarks. While 13—
16% slower than AFL-Dyninst on bsdtar and sfconvert,

ZAFL’s unoptimized instrumentation still averages 25% and
193% less overhead than AFL-Dyninst and AFL-QEMU, re-
spectively. Thus, even in the worst case ZAFL generally out-
performs other binary-only fuzzing instrumenters.

[Liveness-Aware Liveness-Unawarel

e
NN
> o

aselin
bt
N

verhead Rel. to B
oE e =N
N A OO © O

@Nﬂﬁﬂﬁ

+ e \K B Q O
o < S

O
—
<)

&?’(
o - 'o &
0 Q7 8 &
2 < Q

&(& & & <&

Figure 6: A comparison of ZAFL’s runtime overhead with and without register
liveness-aware instrumentation optimization (lower is better).

:0

As Table 8 and Table 9 show, we successfully apply
liveness-aware instrumentation for all 44 Linux benchmarks.
We posit that with further engineering, the same robustness is
achievable for Windows binaries.

7.5.3 Instruction Recovery

Recovery of the original binary’s full instructions is
paramount to static rewriting. It is especially important for
binary-only fuzzing, as false positive instructions misguide
coverage-guidance; while false negatives introduce coverage
blind-spots or break functionality. Further, precise instruc-
tion recovery heads fuzzing-enhancing transformation, as it is
necessary to know where/how to modify code (e.g., targeting
cmp’s for sub-instruction profiling (§ 6.2.1)).

IDA Pro Binary Ninja ZAFL

. Total
Binary s ecP4 < %& z594 gy"p S < Qo@ é&b ¥

NI R R
idat64 268K | 1681 0O 0 5342 2 0 958 0 0
nconvert 458K | 105K 3117 0.68% | 3569 0 0 33.0K0 0
nvdisasm 162K | 180 O 0 3814 214 0.01%| 0 0 0
pngout 168K | 645 0 0 752 1125 0.67% | 1724 0 0
unrar 37.8K| 1523 0 0 1941 1382 0.37%| 40 O 0

Table 10: Instruction recovery statistics for IDA Pro, Binary Ninja, and
ZAFL, with ground-truth disassembly from LLVM-10’s objdump. Reached
= mean unrecovered instructions reached by fuzzing (hence, erroneously-
unrecovered); FalseNeg = erroneously-unrecovered instructions over total.

We evaluate ZAFL’s instruction recovery using ground-
truth disassemblies of binary .TEXT sections generated by
objdump, which is shown to achieve ~100% accuracy [5]
(specifically, we use the version shipped in LLVM-10 [53]).
To see how ZAFL fairs with respect to the state-of-the-art in
binary analysis, we also evaluate disassemblies of the com-
mercial tools IDA Pro 7.1 and Binary Ninja 1.1.1259. As all
three only recover instructions they deem “reachable”, we
compute false negative recovery rates from the mean number

USENIX Association

30th USENIX Security Symposium 1695

of unique unrecovered instructions that are actually reached
among five 24-hour fuzzing campaigns per benchmark.

Table 10 lists the total instructions; and total and reached
unrecovered instructions per our five closed-source bench-
marks.> As we observe zero false positives for any tool on
any benchmark, we focus only on false negatives. Though
all three achieve near-perfect accuracy, ZAFL is the only to
maintain a 0% false negative rate among all benchmarks, as
IDA and Binary Ninja erroneously unrecover an average of
0-0.68% of instructions. While static rewriting is fraught
with challenges—many of which require further engineering
work to overcome (§ 8.3)—these results suggest that ZAFL’s
common-case instruction recovery is sound.

7.5.4 Control-flow Recovery

Preserving the original binary’s control-flow is critical to
fuzzing’s coverage-guidance. Excessive false positives add
noise that misguide fuzzing or overwhelm its seed scheduling
processes; while false negatives may cause fuzzing to over-
look entire code regions or bug-triggering paths. To examine
ZAFL’s control-flow recovery, we run all test cases generated
over five 24-hour trials for our eight open-source benchmarks
on both a ZAFL- and a ground-truth LLVM-instrumented
binary, and log when each report new coverage.

Binary Coverage TPR Coverage TNR Coverage Accuracy
bsdtar 97.28% >99.99% >99.99%
cert-basic 96.67% >99.99% >99.99%
clean_text 96.39% >99.99% >99.99%
jasper 98.82% >99.99% >99.99%
readelf 99.98% >99.99% >99.99%
sfconvert 98.71% >99.99% >99.99%
tcpdump 96.51% >99.99% >99.99%
unrtf 94.17% >99.99% >99.99%
Mean 97.30% 100.00 % 100.00 %

Table 11: ZAFL’s fuzzing code coverage true positive and true negative rates,
and accuracy with respect to the LLVM compiler over 5x24-hour trials.

As Table 11 shows, ZAFL’s coverage identification is near-
identical to LLVM’s: achieving 97.3% sensitivity, ~100%
specificity, and ~100% accuracy. While ZAFL encounters
some false positives, they are so infrequent (1-20 test cases
out of 1-20 million) that the total noise is negligible. In in-
vestigating false negatives, we see that in only 7/40 fuzzing
campaigns do missed test cases precede bug-triggering paths;
however, further triage reveals that ZAFL eventually finds re-
placement test cases, thus, ZAFL reaches every bug reached by
LLVM. Thus, we conclude that ZAFL succeeds in preserving
the control-flow of compiler-generated code.

8 Limitations

Below we briefly discuss limitations unique to ZAFL, and
others fundamental to static binary rewriting.

3We omit results for our eight open-source benchmarks as all three tools
achieve a 0% false negative instruction recovery rate on each.

8.1 Improving Baseline Performance

Our performance evaluation § 7.3.4 shows ZAFL’s baseline
(i.e., non-tracing) overhead is around 5%. We believe that our
rewriter’s code layout algorithm is likely the biggest contribut-
ing factor to performance and have since tested experimental
optimizations that bring baseline overhead down to ~1%. But
as ZAFL’s full fuzzing performance is already near modern
compiler’s, we leave further optimization and the requisite
re-evaluation to future work.

8.2 Supporting New Architectures, Formats,
and Platforms

Our current ZAFL prototype is limited to x86-64 C/C++ bi-
naries. As our current static rewriting engine handles both
32- and 64-bit x86 and ARM binaries (as well as prototype
32-bit MIPS support), we believe supporting these in ZAFL is
achievable with future engineering work.

Extending to other compiled languages similarly depends
on the rewriter’s capabilities. We have some experimental
success for Go/Rust binaries, but more ZAFL-side engineering
is needed to achieve soundness. We leave instrumenting non-
C/C++ languages for future work.

While ZAFL is engineered with Linux targets in mind, our
evaluation shows it also supports many Windows applications;
few other static binary rewriters support Windows binaries.
Though we face some challenges in precise code/data disam-
biguation and at this time are restricted to Windows 7 64-bit
PE32+ formats, we expect that with future rewriter-level en-
hancements, ZAFL will achieve broader success across other
Windows binary formats and versions.

8.3 Static Rewriting’s Limitations

Though static rewriting’s speed makes it an attractive choice
over dynamic translation for many binary-only use cases and
matches what compilers do, static rewriting normally fails
on software crafted to thwart reverse engineering. Two such
examples are code obfuscation and digital rights management
(DRM) protections—both of which, while uncommon, ap-
pear in many proprietary and commercial applications. While
neither ZAFL nor its rewriter currently support obfuscated
or DRM-protected binaries, a growing body of research is
working toward overcoming these obstacles [12,90]. Thus,
we believe that with new advances in binary deobfuscation
and DRM-stripping, ZAFL will be able to bring performant
binary-only fuzzing to high-value closed-source targets like
Dropbox, Skype, and Spotify.

Another grey area for static binary rewriters is deprecated
language constructs. For example, C++’s dynamic exception
specification—obsolete as of C++11—is unsupported in ZAFL
and simply ignored. We recognize there are trade-offs be-
tween static binary rewriting generalizability and precision,

1696 30th USENIX Security Symposium

USENIX Association

and leave addressing such gaps as future work.

Most modern static binary rewriters perform their core
analyses—disassembly, code/data disambiguation, and indi-
rect branch target identification—via third-party tools like
Capstone [67] and IDA [39], consequently inheriting their
limitations. For example, if the utilized disassembler is not
up-to-date with the latest x86 ISA extension, binaries con-
taining such code cannot be fully interpreted. We posit that
trickle-down dependency limitations are an inherent prob-
lem to modern static binary rewriting; and while perfection
is never guaranteed [59, 69], most common roadblocks are
mitigated with further heuristics or engineering.

9 Related Work

Below we discuss related works in orthogonal areas static
rewriting, fuzzing test case generation, hybrid fuzzing, and
emergent fuzzing transformations.

9.1 Static Binary Rewriting

Static rewriters generally differ by their underlying method-
ologies. Uroboros [87], Ramblr [86], and RetroWrite [26]
reconstruct binary assembly code “reassembleable” by com-
pilers. Others translate directly to compiler-level intermediate
representations (IR); Hasabnis et. al [40] target GCC [34]
while McSema [25], SecondWrite [4], and dagger [15] focus
on LLVM IR. GTIRB [38] and Zipr [46] implement their own
custom IR’s. We believe static rewriters with robust, low-level
IR’s are best-suited to supporting ZAFL.

9.2 Improving Fuzzing Test Case Generation

Research continues to improve test case generation from
many perspectives. Input data-inference (e.g., Angora [18],
VUzzer [68], TIFF [49]) augments mutation with type-
/shape characteristics. Other works bridge the gap between
naive- and grammar-based fuzzing with models inferred stat-
ically (e.g., Shastry et. al [71], Skyfire [84]) or dynamically
(e.g., pFuzzer [58], NAUTILUS [6], Superion [85], AFLS-
mart [66]). Such approaches mainly augment fuzzing at the
mutator-level, and thus complement ZAFL’s compiler-quality
instrumentation in binary-only contexts.

Another area of improvement is path prioritization.
AFLFast [14] allocates mutation to test cases exercising deep
paths. FairFuzz [54] focuses on data segments triggering
rare basic blocks. VUzzer [68] assigns deeper blocks high
scores to prioritize test cases reaching them; and QTEP [88]
similarly targets code near program faults. ZAFL’s feedback-
enhancing transformations result in greater path discovery,
thus increasing the importance of smart path prioritization.

9.3 Hybrid Fuzzing

Many recent fuzzers are hybrid: using coverage-guided
fuzzing for most test cases but sparingly invoking more heavy-
weight analyses. Angora [18] uses taint tracking to infer muta-
tion information, but runs all mutatees in the standard fuzzing
loop; REDQUEEN [7] operates similarly but forgoes taint
tracking for program state monitoring. Driller’s [74] concolic
execution starts when fuzzing coverage stalls; QSYM’s [92]
instead runs in parallel, as do DigFuzz’s [94] and SAV-
IOR’s [19], which improve by prioritizing rare and bug-
honing paths, respectively. While this paper’s focus is ap-
plying performant, compiler-quality transformations to the
standard coverage-guided fuzzing loop, we imagine leverag-
ing ZAFL to also enhance the more heavyweight techniques
central to hybrid fuzzing.

9.4 Emergent Fuzzing Transformations

LLVM [53] offers several robust “sanitizers” useful for soft-
ware debugging . In fuzzing, sanitizers are typically reserved
for post-fuzzing crash triage due to their performance bloat;
but recently, several works achieve success with sanitizers
intra-fuzzing: AFLGo [13] compiles binaries with Address-
Sanitizer for more effective crash-finding; Angora [18] builds
its taint tracking atop DataFlowSanitizer [78]; and SAV-
IOR [19] uses UndefinedBehaviorSanitizer to steer concolic
execution toward bug-exercising paths. We thus foresee in-
creasing desire for sanitizers in binary-only fuzzing, however,
their heavyweight nature makes porting them a challenge.
RetroWrite [26] reveals the possibility that lightweight ver-
sions of sanitizers can be incorporated in the main fuzzing
loop while maintaining performance. We expect that such
transformations can be realized with ZAFL.

10 Conclusion

ZAFL leverages state-of-the-art binary rewriting to extend
compiler-quality instrumentation’s capabilities to binary-only
fuzzing—with compiler-level performance. We show its im-
proved effectiveness among synthetic and real-world bench-
marks: compared to the leading binary instrumenters, ZAFL
enables fuzzers to average 26—131% more unique crashes,
48-203% more test cases, achieve 60—229% less overhead,
and find crashes in instances where competing instrumenters
find none. We further show that ZAFL scales well to real-
world open- and closed-source software of varying size and
complexity, and has Windows binary support.

Our results highlight the requirements and need for
compiler-quality instrumentation in binary-only fuzzing.
Through careful matching of compiler instrumentation prop-
erties in a static binary rewriter, state-of-the-art compiler-
based approaches can be ported to binary-only fuzzing—
without degrading performance. Thus, we envision a future
where fuzzing is no longer burdened by a disparity between
compiler-based and binary instrumentation.

USENIX Association

30th USENIX Security Symposium 1697

Acknowledgment

We would like to thank our reviewers for helping us improve
the paper. This material is based upon work supported by the
Defense Advanced Research Projects Agency under Contract
No. W911NF-18-C-0019, and the National Science Founda-
tion under Grant No. 1650540.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

laf-intel: Circumventing Fuzzing Roadblocks with Com-
piler Transformations, 2016.
wordpress.com/.

Hiralal Agrawal. Dominators, Super Blocks, and Program Cov-
erage. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL, 1994.

F. E. Allen and J. Cocke. A Program Data Flow Analysis
Procedure. Communications of the ACM, 19(3):137, 1976.

Kapil Anand, Matthew Smithson, Aparna Kotha, Rajeev Barua,
and Khaled Elwazeer. Decompilation to Compiler High IR in
a binary rewriter. Technical report, University of Maryland,
2010.

Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowin-
ska, and Herbert Bos. An In-Depth Analysis of Disassembly
on Full-Scale x86/x64 Binaries. In USENIX Security Sympo-
sium, USENIX, 2019.

Cornelius Aschermann, Patrick Jauernig, Tommaso Frassetto,
Ahmad-Reza Sadeghi, Thorsten Holz, and Daniel Teuchert.
NAUTILUS: Fishing for Deep Bugs with Grammars. In
Network and Distributed System Security Symposium, NDSS,
2019.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN: Fuzzing
with Input-to-State Correspondence. In Network and Dis-
tributed System Security Symposium, NDSS, 2018.

Fabrice Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In USENIX Annual Technical Conference, ATC, 2005.

Andrew R. Bernat and Barton P. Miller. Anywhere, Any-
time Binary Instrumentation. In ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, PASTE,
2011.

Andrea Biondo. Improving AFL’s QEMU mode perfor-
mance, 2018. URL: https://abiondo.me/2018/09/21/
improving-afl-gemu-mode/.

Tim Blazytko, Cornelius Aschermann, Moritz Schlogel, Ali
Abbasi, Sergej Schumilo, Simon Woérner, and Thorsten Holz.
GRIMOIRE: Synthesizing Structure while Fuzzing. In
USENIX Security Symposium, USENIX, 2019.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and
Thorsten Holz. Syntia: Synthesizing the Semantics of Ob-
fuscated Code. In USENIX Security Symposium, USENIX,
2017.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and
Abhik Roychoudhury. Directed Greybox Fuzzing. In ACM

URL: https://lafintel.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

SIGSAC Conference on Computer and Communications Secu-
rity, CCS, 2017.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based Greybox Fuzzing As Markov Chain. In ACM
SIGSAC Conference on Computer and Communications Secu-
rity, CCS, 2016.

Ahmed Bougacha. Dagger, 2018. URL: https://github.
com/repzret/dagger.

Derek Bruening and Qin Zhao. Practical memory checking
with Dr. Memory. In International Symposium on Code Gen-
eration and Optimization, CGO, 2011.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, and oth-
ers. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In USENIX
Symposium on Operating Systems Design and Implementation,
OSDI, 2008.

Peng Chen and Hao Chen. Angora: efficient fuzzing by prin-
cipled search. In IEEE Symposium on Security and Privacy,
Oakland, 2018.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou,
Yulong Zhang, Taowei, and Long Lu. SAVIOR: Towards Bug-
Driven Hybrid Testing. In IEEE Symposium on Security and
Privacy, Oakland, 2020. arXiv: 1906.07327.

Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo
Shen, Xinyu Xing, Long Lu, and Bing Mao. PTrix: Efficient
Hardware-Assisted Fuzzing for COTS Binary. In ACM ASIA
Conference on Computer and Communications Security, ASI-
ACCS, 2019. arXiv: 1905.10499.

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe
Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. EnFuzz: Ensemble
Fuzzing with Seed Synchronization among Diverse Fuzzers.
In USENIX Security Symposium, USENIX, 2019.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2E: A platform for in-vivo multi-path analysis of software
systems. In ACM SIGPLAN International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS, 2011.

Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil
Cha. Grey-box Concolic Testing on Binary Code. In Interna-
tional Conference on Software Engineering, ICSE, 2019.

Keith D Cooper and Timothy J Harvey. Compiler-Controlled
Memory. In ACM SIGOPS Operating Systems Review, OSR,
1998.

Artem Dinaburg and Andrew Ruef. McSema: Static Trans-
lation of X86 Instructions to LLVM, 2014. URL: https:
//github.com/trailofbits/mcsenma.

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias
Payer. RetroWrite: Statically Instrumenting COTS Binaries
for Fuzzing and Sanitization. In IEEE Symposium on Security
and Privacy, Oakland, 2020.

Brendan Dolan-Gavitt. Of Bugs and Baselines,
2018. URL: http://moyix.blogspot.com/2018/
03/o0f-bugs-and-baselines.html.

1698 30th USENIX Security Symposium

USENIX Association

https://lafintel.wordpress.com/
https://lafintel.wordpress.com/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://github.com/repzret/dagger
https://github.com/repzret/dagger
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html
http://moyix.blogspot.com/2018/03/of-bugs-and-baselines.html

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

[45]

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek,
Andrea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan
Whelan. Lava: Large-scale automated vulnerability addition.
In IEEE Symposium on Security and Privacy, Oakland, 2016.

Alexis Engelke and Josef Weidendorfer. Using LLVM for Op-
timized Lightweight Binary Re-Writing at Runtime. In /EEE
International Parallel and Distributed Processing Symposium
Workshops, IPDPSW, May 2017.

Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Quer-
zoni. Fuzzing Binaries for Memory Safety Errors with QASan.
In IEEE Secure Development Conference, SecDev, 2020.

Andrea Fioraldi, Dominik Maier, Heiko EiBfeldt, and Marc
Heuse. AFL++: Combining Incremental Steps of Fuzzing
Research. In USENIX Workshop on Offensive Technologies,
WOOT, 2020.

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen.
CollAFL: Path Sensitive Fuzzing. In IEEE Symposium on
Security and Privacy, Oakland, 2018.

Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based
directed whitebox fuzzing. In International Conference on
Software Engineering, ICSE, 2009.

GNU Project. GNU gprof, 2018. URL: https://
sourceware.org/binutils/docs/gprof/.

Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,

PLDI, 2008.

Patrice Godefroid, Michael Y Levin, David A Molnar, and
others. Automated whitebox fuzz testing. In Network and
Distributed System Security Symposium, NDSS, 2008.

Google Project Zero. WinAFL, 2016. URL: https://
github.com/googleprojectzero/winafl.

GrammaTech. GTIRB, 2019. URL: https://github.com/
GrammaTech/gtirb.

Ilfak Guilfanov and Hex-Rays. IDA, 2019. URL: https:
//www.hex-rays.com/products/ida/.

Niranjan Hasabnis and R. Sekar. Lifting Assembly to Interme-
diate Representation: A Novel Approach Leveraging Compil-
ers. In International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS,
2016.

William H. Hawkins, Jason D. Hiser, Michele Co, Anh
Nguyen-Tuong, and Jack W. Davidson. Zipr: Efficient Static
Binary Rewriting for Security. In IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN, 2017.

Matthew S Hecht and Jeffrey D Ullman. Flow Graph Re-
ducibility. SIAM Journal on Computing, 1(2):188-202, 1972.

Marc Heuse. AFL-DynamoRIO, 2018. URL: https://
github.com/vanhauser-thc/afl-dynamorio.

Marc Heuse. AFL-Dyninst, 2018. URL: https://github.

com/vanhauser-thc/afl-dyninst.

Marc Heuse. AFL-PIN, 2018. URL: https://github.com/
vanhauser-thc/afl-pin.

[46]

[47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Jason Hiser, Anh Nguyen-Tuong, William Hawkins, Matthew
McGill, Michele Co, and Jack Davidson. Zipr++: Exceptional
Binary Rewriting. In Workshop on Forming an Ecosystem
Around Software Transformation, FEAST, 2017.

Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun
Huang. INSTRIM: Lightweight Instrumentation for Coverage-
guided Fuzzing. In NDSS Workshop on Binary Analysis Re-
search, BAR, 2018.

Intel. Intel Processor Trace Tools, 2017. URL: https://
software.intel.com/en-us/node/721535.

Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos.
TIFF: Using Input Type Inference To Improve Fuzzing. In
Annual Computer Security Applications Conference, ACSAC,
2018.

James Johnson. gramfuzz, 2018. URL: https://github.
com/d0c-s4vage/gramfuzz.

Mateusz Jurczyk. CmpCov, 2019. URL: https://github.
com/googleprojectzero/CompareCoverage.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and
Michael Hicks. Evaluating Fuzz Testing. In ACM SIGSAC
Conference on Computer and Communications Security, CCS,
2018.

C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Infer-
national Symposium on Code Generation and Optimization,
CGO, 2004.

Caroline Lemieux and Koushik Sen. FairFuzz: A Targeted
Mutation Strategy for Increasing Greybox Fuzz Testing Cov-
erage. In ACM/IEEE International Conference on Automated
Software Engineering, ASE, 2018.

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-
Wei Lin, Yang Liu, and Alwen Tiu. Steelix: Program-state
Based Binary Fuzzing. In ACM Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, 2017.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoft Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI, 2005.

Chenyang Lv, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han
Lee, Yu Song, and Raheem Beyah. MOPT: Optimize Mutation
Scheduling for Fuzzers. In USENIX Security Symposium,
USENIX, 2019.

Bjorn Mathis, Rahul Gopinath, Michaél Mera, Alexander
Kampmann, Matthias Hoschele, and Andreas Zeller. Parser-
directed fuzzing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI, 2019.

Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In
ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA, 2016.

Mozilla Security. Dharma: A generation-based, context-
free grammar fuzzer, 2018. URL: https://github.com/
MozillaSecurity/dharma.

USENIX Association

30th USENIX Security Symposium 1699

https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://github.com/GrammaTech/gtirb
https://github.com/GrammaTech/gtirb
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/vanhauser-thc/afl-pin
https://github.com/vanhauser-thc/afl-pin
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535
https://github.com/d0c-s4vage/gramfuzz
https://github.com/d0c-s4vage/gramfuzz
https://github.com/googleprojectzero/CompareCoverage
https://github.com/googleprojectzero/CompareCoverage
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Robert Muth. Register Liveness Analysis of Executable Code.
1998.

Stefan Nagy and Matthew Hicks. Full-speed Fuzzing: Reduc-
ing Fuzzing Overhead through Coverage-guided Tracing. In
1IEEE Symposium on Security and Privacy, Oakland, 2019.

Nikolaos Naziridis and Zisis Sialveras. Choronzon - An
evolutionary knowledge-based fuzzer, 2016. URL: https:
//github.com/CENSUS/choronzon.

Paradyn Tools Project. Dyninst API, 2018. URL: https:
//dyninst.org/dyninst.

Chen Peng. AFL_pin_mode, 2017. URL: https://github.
com/spinpx/afl_pin_mode.

Van-Thuan Pham, Marcel Bohme, Andrew E. Santosa, Alexan-
dru Razvan Ciciulescu, and Abhik Roychoudhury. Smart
Greybox Fuzzing. IEEE Transactions on Software Engineer-
ing, 2019.

Nguyen Anh Quynh. Capstone: The Ultimate Disassembler,
2019. URL: http://www.capstone-engine.org/.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar,
Cristiano Giuffrida, and Herbert Bos. VUzzer: Application-
aware Evolutionary Fuzzing. In Network and Distributed
System Security Symposium, NDSS, 2017.

Benjamin Schwarz, Saumya Debray, and Gregory Andrews.
Disassembly of executable code revisited. In Working Confer-
ence on Reverse Engineering, WCRE, 2002.

Kosta Serebryany. Continuous fuzzing with libfuzzer and
addresssanitizer. In IEEE Cybersecurity Development Confer-
ence, SecDev, 2016.

Bhargava Shastry, Federico Maggi, Fabian Yamaguchi, Konrad
Rieck, and Jean-Pierre Seifert. Static Exploration of Taint-
Style Vulnerabilities Found by Fuzzing. In USENIX Workshop
on Offensive Technologies, WOQOT, 2017.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient Fuzzing
with Neural Program Smoothing. In IEEE Symposium on
Security and Privacy, Oakland, 2019.

Maksim Shudrak. drAFL, 2019. URL: https://github.

com/mxmssh/drAFL.

Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Driller: Augment-
ing Fuzzing Through Selective Symbolic Execution. In Net-
work and Distributed System Security Symposium, NDSS,
2016.

Robert Swiecki. honggfuzz, 2018. URL: http://honggfuzz.

com/.

talos-vulndev. AFL-Dyninst, 2018. URL: https://github.

com/talos-vulndev/afl-dyninst.

R Tarjan. Testing Flow Graph Reducibility. In ACM Sympo-
sium on Theory of Computing, STOC, 1973.

The Clang Team. DataFlowSanitizer, 2019. URL: https:
//clang.llvm.org/docs/DataFlowSanitizer.html.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

[88]

[89]

[90]

(91]

[92]

[93]

[94]

The Clang Team. SanitizerCoverage, 2019. URL: https:
//clang.llvm.org/docs/SanitizerCoverage.html.

Parker Thompson. AFLPIN, 2015. URL: https://github.
com/mothran/aflpin.

Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient In-
strumentation for Code Coverage Testing. ACM SIGSOFT
Software Engineering Notes, 27:86-96, 2002.

Anatoly Trosinenko. AFL-Dr, 2017. URL: https://github.
com/atrosinenko/afl-dr.

Martin Vuagnoux. Autodafe, an Act of Software Torture, 2006.
URL: http://autodafe.sourceforge.net/.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire:
Data-Driven Seed Generation for Fuzzing. In IEEE Sympo-
sium on Security and Privacy, Oakland, 2017.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Supe-
rion: Grammar-Aware Greybox Fuzzing. In International
Conference on Software Engineering, ICSE, 2019. arXiv:
1812.01197.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. Ramblr: Making Reassembly Great Again. In
Network and Distributed System Security Symposium, NDSS,
2017.

Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable
Disassembling. In USENIX Security Symposium, USENIX,
2015.

Song Wang, Jaechang Nam, and Lin Tan. QTEP: Quality-
aware Test Case Prioritization. In ACM Joint Meeting on
Foundations of Software Engineering, ESEC/FSE, 2017.

T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnera-
bility Detection. In IEEE Symposium on Security and Privacy,
Oakland, 2010.

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and
Saumya Debray. A Generic Approach to Automatic Deobfus-
cation of Executable Code. In IEEE Symposium on Security
and Privacy, Oakland, 2015.

Wei You, Xuwei Liu, Shiging Ma, David Perry, Xiangyu
Zhang, and Bin Liang. SLF: Fuzzing without Valid Seed
Inputs. In International Conference on Software Engineering,
ICSE, 2019.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo
Kim. QSYM: A Practical Concolic Execution Engine Tai-
lored for Hybrid Fuzzing. In USENIX Security Symposium,
USENIX, 2018.

Michal Zalewski. American fuzzy lop, 2017. URL: http:
//1lcamtuf.coredump.cx/afl/.

Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send Hard-
est Problems My Way: Probabilistic Path Prioritization for
Hybrid Fuzzing. In Network and Distributed System Security
Symposium, NDSS, 2019.

1700 30th USENIX Security Symposium

USENIX Association

https://github.com/CENSUS/choronzon
https://github.com/CENSUS/choronzon
https://dyninst.org/dyninst
https://dyninst.org/dyninst
https://github.com/spinpx/afl_pin_mode
https://github.com/spinpx/afl_pin_mode
http://www.capstone-engine.org/
https://github.com/mxmssh/drAFL
https://github.com/mxmssh/drAFL
http://honggfuzz.com/
http://honggfuzz.com/
https://github.com/talos-vulndev/afl-dyninst
https://github.com/talos-vulndev/afl-dyninst
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/mothran/aflpin
https://github.com/mothran/aflpin
https://github.com/atrosinenko/afl-dr
https://github.com/atrosinenko/afl-dr
http://autodafe.sourceforge.net/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Background on Fuzzing
	An Overview of Fuzzing
	Coverage-guided Grey-box Fuzzing

	Compiler-based Fuzzing Enhancements
	Instrumentation Pruning
	Instrumentation Downgrading
	Sub-instruction Profiling
	Extra-coverage Behavior Tracking

	Binary-only Fuzzing: the Bad & the Ugly
	Limitations of Existing Platforms
	Fundamental Design Considerations

	The Zafl Platform
	Design Overview
	Static Rewriting Engine

	The Zax Transformation Architecture
	Optimization
	Analysis
	Point Selection
	Application

	Extending Compiler-quality Transforms to Binary-only Fuzzing
	Performance-enhancing Transformations
	Single Successor Instrumentation Pruning
	Dominator Tree Instrumentation Pruning
	Edge Instrumentation Downgrading

	Feedback-enhancing Transformations
	Sub-instruction Profiling
	Context-sensitive Coverage

	Evaluation
	Evaluation-wide Instrumenter Setup
	LAVA-M Benchmarking
	Benchmarks
	Experimental Setup and Infrastructure
	Data Processing and Crash Triage
	Results

	Fuzzing Real-world Software
	Benchmarks
	Experimental Setup and Infrastructure
	Real-world Crash-finding
	Real-world Coverage-tracing Overhead

	Fuzzing Closed-source Binaries
	Benchmarks
	Closed-source Crash-finding
	Bug-finding Case Study

	Scalability and Precision
	Scalability
	Liveness-aware Optimization
	Instruction Recovery
	Control-flow Recovery

	Limitations
	Improving Baseline Performance
	Supporting New Architectures, Formats, and Platforms
	Static Rewriting's Limitations

	Related Work
	Static Binary Rewriting
	Improving Fuzzing Test Case Generation
	Hybrid Fuzzing
	Emergent Fuzzing Transformations

	Conclusion

