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Abstract
A popular run-time attack technique is to compromise the
control-flow integrity of a program by modifying function re-
turn addresses on the stack. So far, shadow stacks have proven
to be essential for comprehensively preventing return ad-
dress manipulation. Shadow stacks record return addresses in
integrity-protected memory secured with hardware-assistance
or software access control. Software shadow stacks incur
high overheads or trade off security for efficiency. Hardware-
assisted shadow stacks are efficient and secure, but require
the deployment of special-purpose hardware.

We present authenticated call stack (ACS), an approach
that uses chained message authentication codes (MACs). Our
prototype, PACStack, uses the ARM general purpose hard-
ware mechanism for pointer authentication (PA) to implement
ACS. Via a rigorous security analysis, we show that PACStack
achieves security comparable to hardware-assisted shadow
stacks without requiring dedicated hardware. We demonstrate
that PACStack’s performance overhead is small (≈3%).

1 Introduction

Traditional code-injection attacks are ineffective in the pres-
ence of W⊕X policies that prevent the modification of exe-
cutable memory [49]. However, code-reuse attacks can alter
the run-time behavior of a program without modifying any of
its executable code sections. Return-oriented programming
(ROP) is a prevalent attack technique that corrupts function
return addresses to hijack a program’s control flow. ROP can
be used to achieve Turing-complete computation by chain-
ing together existing code sequences in the victim program.
To prevent ROP, return addresses must be protected when
stored in memory. At present, the most powerful protection
against ROP is using an integrity-protected shadow stack
that maintains a secure reference copy of each return ad-
dress [1]. Integrity of the shadow stack is ensured by mak-
ing it inaccessible to the adversary either by randomizing its
location in memory or by using specialized hardware [29].

Recent software-based shadow stacks show reasonable per-
formance [10], but are vulnerable to an adversary capable
of exploiting memory vulnerabilities to infer the location of
the shadow stack. To date, only hardware-assisted schemes,
such as Intel CET [29], achieve negligible overhead without
trading off security. But employing such a custom hardware
mechanism incurs development and deployment costs.

Recent ARM processors include support for pointer authen-
tication (PA); a hardware extension that uses tweakable mes-
sage authentication codes (MACs) to sign and verify point-
ers [4]. One initial use case of PA is the authentication of re-
turn addresses [45]. However, current PA schemes are vulnera-
ble to reuse attacks, where the adversary can reuse previously
observed valid protected pointers [35]. Prior work [35, 45]
and current implementations by GCC1 and LLVM2 mitigate
reuse attacks, but cannot completely prevent them.

In this paper, we propose a new approach, authenticated
call stack (ACS), providing security comparable to hardware-
assisted shadow stacks, with minimal overhead and without
requiring new hardware-protected memory. ACS binds all
return addresses into a chain of MACs that allow verification
of return addresses before their use. We show how ACS can
be efficiently realized using ARM PA while resisting reuse
attacks. The resulting system, PACStack, can withstand strong
adversaries with full memory access. Our contributions are:
• ACS, a new approach for precise verification of function

return addresses by chaining MACs (Section 4).
• PACStack, an LLVM-based realization of ACS using ARM

PA without requiring additional hardware (Section 5).
• A systematic evaluation of PACStack security, showing that

its security is comparable to shadow stacks (Section 6).
• Demonstrating that the performance overhead of PAC-

Stack is small (≈3%) (Section 7).
PACStack and associated evaluation code is available as open
source at https://pacstack.github.io.

1https://gcc.gnu.org/onlinedocs/gcc/AArch64-Function-
Attributes.html

2https://reviews.llvm.org/D49793
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2 Background

2.1 ROP on ARM
In ROP, the adversary exploits a memory vulnerability to
manipulate return addresses stored on the stack, thereby al-
tering the program’s backward-edge control flow. ROP al-
lows Turing-complete attacks by chaining together multiple
gadgets, i.e., adversary-chosen sequences of pre-existing pro-
gram instructions that together perform the desired operations.
ARM architectures use the link register (LR) to hold the cur-
rent function’s return address. LR is automatically set by the
branch with link (bl) or branch with link to register (blr)
instructions that are used to implement regular and indirect
function calls. Because LR is overwritten on call, non-leaf
functions must store the return address onto the stack. This
opens up the possibility of ROP on ARM [30].

2.2 ARM Pointer Authentication
The ARMv8.3-A PA extension supports calculating and veri-
fying pointer authentication codes (PACs) [4]. PA is at present
deployed in the Apple A12, A13, S4, and S5 systems-on-chip
(SoCs) and is going to be available in all upcoming ARMv8.3-
A and later SoCs. A pac instruction calculates a keyed tweak-
able MAC, HK(AP,M), over the address AP of a pointer P
using a 64-bit modifier M as the tweak. The resulting au-
thentication token, referred to as a PAC, is embedded into
the unused high-order bits of P. It can be verified using an
aut instruction that recalculates HK(AP,M), and compares the
result to P’s PAC.

Since the PAC is stored in unused bits of a pointer, its size
is limited by the virtual address size (VA_SIZE in Figure 1)
and whether address tagging is enabled [4]. On a 64-bit ARM
machine running a default Linux kernel, VA_SIZE is 39, which
leaves 16 bits for the PAC when excluding the reserved and
address tag bits. PA provides five different keys; two for
code pointers, two for data pointers, and one for generic use.
Each key has a separate set of instructions, e.g., the autia
and pacia instructions always operate on the instruction key
A, stored in the APIAKey_EL1 register. Access to the key
registers and PA configuration registers can be restricted to a
higher exception level (EL). Linux v5.03 adds full support for
PA, such that the kernel (at EL1) manages user-space (EL0)
keys and prevents EL0 from modifying them. The kernel
generates new PA keys for a process on an exec system call.

As currently specified, PA does not cause a fault on verifi-
cation failure; instead, it strips the PAC from the pointer P and
flips one of the high-order bits such that P becomes invalid.
If the invalid pointer is used by an instruction that causes the
pointer to be translated, such as load or instruction fetch, the
memory management unit issues a memory translation fault.

3https://kernelnewbies.org/Linux_5.0#ARM_pointer_
authentication

tag/PAC sign ext./PAC virtual address (AP)

reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration register

Figure 1: PA uses a pointer authentication code (PAC) based
on the pointer’s address, a modifier, and a key.

1 prologue:
2 paciasp ; sign LR using SP ¶
3 str LR, [SP] ; push LR onto stack ·
4 ...
5 epilogue:
6 ldr LR, [SP] ; pop stack onto LR ¸
7 retaa ; verify LR and return ¹

Listing 1: The -mbranch-protection feature in GCC and
LLVM/Clang uses PA to sign (¶) and verify (¹) the return
address in LR. PA does not access memory directly, the LR

value is stored (·) and loaded (¸) conventionally.

2.2.1 PA-based return address protection

PA-based return address protection is implemented as part
of the -mbranch-protection feature of GCC and LLVM/-
Clang.4 An authenticated return address is computed with
paciasp (¶ in Listing 1) and verified with retaa (¹). These
instructions use the instruction key A and the value of stack
pointer (SP) as the modifier. The PA-keys are protected by
hardware; consequently an adversary has to resort to guessing
the correct PAC for a modified return address.

The -mbranch-protection feature and other prior PA-
based solutions are vulnerable to reuse attacks where an ad-
versary replaces a valid authenticated return address with
another authenticated return address previously read from the
process’ memory. For a reused PAC to pass verification, both
the original and replacement PAC must have been computed
using the same PA key and modifier. This applies to any PA
scheme, not only authenticated return addresses. Using the SP
value as a modifier reduces the set of interchangeable pointers,
but still allows reuse attacks when SP values coincide. Reuse
attacks can be mitigated, but not completely prevented, by
further narrowing the scope of modifier values [35].

3 Adversary model and requirements

In this work, we consider a powerful adversary, A , with arbi-
trary control of process memory but restricted by a W⊕X pol-
icy that prevents modification of code pages. This adversary
model is consistent with prior work on run-time attacks [49].
We limit A to user space; thus A cannot read or modify kernel-
managed registers such as the PA keys.

4https://gcc.gnu.org/gcc-9/changes.html and
https://reviews.llvm.org/D51429
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We make the following assumptions about the system:
A1 A W⊕X policy protects code memory pages from modifi-

cation by non-privileged processes. All major processor
architectures, including ARMv8-A, support W⊕X.

A2 Coarse-grained forward-edge control-flow integrity
(CFI) that restricts forward control-flow transfers to
a set of valid targets. Specifically, we assume that in-
direct function-calls always target the beginning of a
function and that indirect jumps to arbitrary addresses
is infeasible. This property is satisfied by several pre-
existing software-only CFI solutions with reasonable
overhead [1, 18, 31, 37], as well as with negligible over-
head by using hardware-assisted mechanisms like ARM
PA [35], branch target indicators [4], or TrustZone-
M [5, 39]. In particular, a minimal PA scheme using
a constant (e.g., 0x0) modifier fulfills this assumption.

This adversary model allows A to modify any pointer in
data memory pages. In particular, A can modify function re-
turn addresses while they reside on the program call stack.
A2 and A1 prevent A from tampering with ACS instrumen-
tation (Section 6.3). Our goal is to thwart A who modifies
function return addresses in order to hijack the program con-
trol flow. We define the following requirements:

R1 Return address integrity: Detect if a function return ad-
dress has been modified while in memory.

R2 Memory disclosure tolerance: Remain effective even
when A can read the entire process address space.

R3 Compatibility: Be applicable to typical (standard-
compliant) C code without source code modifications.

R4 Performance: Impose only minimal run-time perfor-
mance and memory overhead, while meeting R1–R3.

As in prior work on CFI, we do not consider non-control data
attacks [12], such as data-oriented programming (DOP) [27].

4 Design: authenticated call stack

In this section we present our general design for an authen-
ticated call stack (ACS). In Section 5, we present our imple-
mentation that efficiently realizes ACS using ARM PA. Our
key idea is to provide a modifier for the return address by
cryptographically binding it to all previous return addresses
in the call stack. This makes the modifier statistically unique
to a particular control-flow path, thus preventing reuse-type
attacks and allowing precise verification of return addresses.

The return addresses reti, i ∈ [0,n] (where n is the depth
of the call stack in terms of active function records) must be
stored on the stack, where A can modify them by exploiting
memory vulnerabilities. ACS protects these values by comput-
ing a series of chained authentication tokens authi, i ∈ [0,n]
that cryptographically bind the last authn to all return ad-
dresses reti, i ∈ [0,n−1] stored on the stack (Figure 2). Only

the MAC key and the last authentication token authn must
be stored securely to ensure that previous auth tokens and
return addresses can be correctly verified when unwinding
the call stack (R1). We use a tweakable MAC function HK to
generate a b-bit authentication token authi:

authi =

{
HK(reti,authi−1) if i > 0
HK(reti,0) if i = 0

authn is maintained in a register unmodifiable by A . Fig-
ure 3 shows how authentication tokens and return addresses
are stored on the call stack. On function calls, authi is re-
tained across the call to the callee, which calculates authi+1
and stores both authi and the corresponding return address
reti+1 on its stack frame. On return, auth′i−1 and ret ′i val-
ues are loaded from the stack and are verified by comparing
HK(auth′i−1,ret ′i) to authi. If the results differ, then one or both
of the loaded values have been corrupted (R1). Otherwise,
they are valid—i.e., auth′i−1 = authi−1 and ret ′i = reti—in
which case authi is replaced with the verified authi−1 in the
secure register before the function returns to reti.

For compactness, we can combine authi and reti, into an
authenticated return address, areti:

areti = authi ‖ reti,where

authi =

{
HK(reti,areti−1) if i > 0
HK(reti,0) if i = 0

We call authi and the corresponding areti valid if authi =
HK(reti,areti−1) for some given areti−1.

4.1 Securing the authentication token
The current authenticated return address aretn, is secured by
keeping it exclusively in a CPU register which we call the
chain register (CR). Note that reserving exclusive use of a
register is also a requirement for current shadow stack imple-
mentation for the 64-bit ARM architecture [14] and has been
proposed for shadow stacks on the x86 architecture [10].

ACS protects the integrity of backward-edge control-flow
transfers. Combined with coarse-grained forward-edge CFI
(Assumption A2), it ensures that: 1) immediately after func-
tion return, the aretn in CR is valid, 2) at function entry the
aretn−1 stored in CR is valid, and 3) CR is always used as or
set to a valid aret. This ensures that token updates are done se-
curely, and that the ACS instrumentation cannot be bypassed
or used to generate arbitrary authenticated return addresses.

4.2 Mitigating hash-collisions
Though aretn is protected by hardware, the size b of the au-
thentication token auth can be limited by the implementation.
Using a PAC as the token would typically limit it to 16 bits.
This is significant, as collisions can be found after A has
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ret0 ret1

auth0  = HK(ret0, 0) auth1  = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

Figure 2: ACS is an chained MAC of tokens authi, i ∈ [0,n−1] that are cryptographically bound to the corresponding return
addresses, reti, i ∈ [0,n], and the last authn.

stack-frame2

stack-frame1

auth0
ret1

stack-framei

authi-1
reti

authi := HK(reti, authi-1)
:= HK(reti, HK(reti-1, authi-2))
…

stack-frame0

ret0

auth1 := HK(ret1, auth0)
:= HK(ret1, HK(ret0, 0))

auth2 := HK(ret2, auth1)
:= HK(ret2, HK(ret1, auth0))
:= HK(ret2, HK(ret1, HK(ret0, 0)))

auth0 := HK(ret0, 0)

Figure 3: ACS stores return addresses and intermediate au-
thentication tokens, authi, i ∈ [0,n−1], on the stack. Only the
last token (authn) needs to be securely stored.

seen, on average, approximately 1.253 ·2b/2 tokens [47, Sec-
tion 1.4.2] (e.g., 321 tokens for b = 16). Despite this, we can
still prevent A from recognizing collisions (R2), thus forcing
A to guess—with a success probability 2−b—which authenti-
cated return addresses yield a collision. The auth of any aret
stored on the stack is masked using a pseudo-random value
derived from the previous aret value:

authi = HK(reti,areti−1)⊕HK(0,areti−1).

The mask is exclusive-OR-ed with HK(reti,areti−1) after it is
generated and before it is authenticated, thereby preventing A
from identifying opportunities for pointer reuse. We discuss
the security of masking in Section 6.2.1.

4.3 Mitigating brute-force guessing

A brute force attack where A guesses an auth token succeeds
with probability p for a b-bit auth after log(1−p)

log(1−2−b)
guesses,

provided that a failed guess terminates the program and sub-
sequent program runs use a new key to generate auth tokens.
This assumption is similar to prior PA-based solutions [35]
and is consistent with current PA behavior in Linux 5.0.

However, if pre-forked or multithreaded programs share
the key, A can target a vulnerability in a sibling. Unless a
failed authentication terminates the entire process tree, A

can then attempt a new guess against another sibling pro-
cess without resetting the key. In this scenario, 2b−1 guesses
on average are enough to obtain a modifier with respect to
which some combination of pointer and authentication token
is valid. Since this modifier becomes the next authenticated
return address, the process can be repeated to use the injected
address. Because the two guesses can be done separately us-
ing a divide-and-conquer strategy, this requires on average
2b guesses to allow A to jump to an arbitrary address, rather
than 22b that are needed when the guesses are independent.

Liljestrand et al. [35] recommend hardening pre-forking
and multi-threaded applications against guessing attacks by
having the application restart all of its processes if the
number of PAC failures in child processes exceeds a pre-
defined threshold. We recommend an alternative mitigation
specific to ACS: "re-seeding" the auth calculation after a
fork or thread creation. For example, calculating auth0 =
HK(ret0, init) where init corresponds to the process or thread
ID. This solution is straightforward to apply to threads, as a
return from the function starting the thread causes the thread
to exit. Crucially, re-seeding prevents a divide-and-conquer
guessing strategy and requires on average 22b guesses. There-
fore, the ACS for the thread stacks can be made disjoint from
the main ACS chain. However, forked processes may use
auth tokens in stack frames inherited from the parent process.
If a child process never returns to inherited stack frames, re-
seeding any new auth tokens beyond the point of the fork is
sufficient. However, if the child process returns to inherited
stack frames, the ACS must be re-seeded starting from auth0
by rewriting any auth tokens in pre-existing stack frames; sim-
ilar to some stack canary re-randomization schemes [25, 43].

4.4 Irregular stack unwinding

The C standard includes the setjmp / longjmp programming
interface, which can be used to add exception-like function-
ality to C. The longjmp C function executes a non-local
jump to a prior calling environment stored using the setjmp
function. At setjmp, callee-saved registers (whose values are
guaranteed to persist through function invocations), as well
as the stack pointer SP, and the return address are stored in
the given jmp_buf buffer. Calling longjmp using an expired
buffer, i.e., after the corresponding setjmp caller has returned,
results in undefined behavior (the implications of this are dis-
cussed in Section 9.1). Because jmp_buf also stores the last
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authenticated token, ACS needs a mechanism to ensure its
integrity when using setjmp and longjmp.

While in memory, the integrity of jmp_buf cannot be guar-
anteed. Nonetheless, the stored authi is bound to the corre-
sponding authi−1 on the setjmp caller’s stack. This ensures
that longjmp always restores a valid ACS state. To limit
the set of values A can inject into jmp_buf, we replace the
setjmp return address retb in jmp_buf with aretb, defined as:

aretb = (HK(retb,authi) ‖ retb)⊕HK(SPb,authi),

where SPb is the SP value stored in jmp_buf. When executing
longjmp, aretb is recalculated based on the buffer values to
verify that the stored authi was stored by a setjmp. A cannot
generate the aretb value for an arbitrary authi, nor replace
aretb with a previously observed authi. But, since longjmp
explicitly allows jumping to prior states, ACS cannot ensure
that the target is the intended one, i.e., A could substitute
the correct jmp_buf with another. Shadow stacks share a
similar limitation [17], and cannot guarantee that the intended
state has been reached, only that the return address (and stack
pointer) in that state is intact.

5 Implementation: PACStack

We present PACStack, an ACS realization using ARMv8.3-
A PA. PACStack is based on LLVM 9.0 and integrated
into the 64-bit ARM backend. PACStack modifies the
AArch64FrameLowering such that the function stores and
loads aretn−1 during FrameSetup and FrameDestroy, re-
spectively. We also modify the AArch64RegisterInfo to
ensure that the register holding aretn, chain register (CR), is
reserved for PACStack use. Our current implementation uses
a Intermediate Representation (IR) pass to mark all functions
for instrumentation, whereas the backend then performs in-
strumentation based on the function attribute.

The current authenticated return address is securely stored
in CR. Because the unprotected return address reti is never
stored on the stack, A is limited to manipulating the earlier
authenticated return addresses on stack, i.e., areti, i ∈ [0,n−
1]. An authenticated return address must therefore pass two
authentications before use: first when being restored from the
stack, and second, when being used as the target of a function
return. We discuss the security implications in Section 6.

PACStack uses the pacia and autia instructions to effi-
ciently calculate and verify authenticated return addresses
(Listing 2, Â and Å). The result of pacia is areti which is
stored in the link register (LR, Â) and moved to CR (Ã):

LR← areti =

{
pacia(LR= reti,CR= areti−1) if i > 0
pacia(LR= reti,CR= init) if i = 0

The corresponding verification (Ä and Å) are defined as:

LR← autia(LR= areti,CR) =

{
reti if HK(reti,CR) = authi

ret∗i otherwise,

1 prologue:
2 str X28, [SP, #-32]! ; stack ← areti−1 À
3 stp FP, LR, [SP ,#16] ; stack ← frame-record Á
4 pacia LR, X28 ; LR← areti Â
5 mov X28, LR ; CR← areti Ã
6 ...
7 epilogue:
8 mov LR, X28 ; LR← areti
9 ldr FP, [SP, #16] ; skip ret ′i in frame-record

10 ldr X28 [SP], #32 ; CR← aret ′i−1 from stack Ä
11 autia LR, X28 ; LR← (reti or ret∗i ) Å

Listing 2: At function entry, PACStack stores areti−1 on the
stack (À) and generates a new areti (Â) which is retained in
CR (Ã). Before return, areti−1 is loaded from the stack (Ä)
and verified against areti (Å). Verification failure sets LR to
an invalid address ret∗i and causes a fault on return.

where autia will automatically handle verification errors by
setting LR to an unusable address ret∗i . No additional checking
is needed; executing a return to ret∗i causes a address trans-
lation fault (Section 2.2). To maintain compatibility (R3),
PACStack does not modify the frame record (Á) and instead
stores areti−1 in a separate stack slot (À). This allows, for
instance, debuggers to backtrace the call-stack without knowl-
edge of PACStack. PACStack never loads reti from the frame
record; it always uses areti which is securely stored in CR.

5.1 Securing the authentication token
PACStack uses the ARM general purpose register X28 as CR
for storing the last authentication token. X28 is a callee-saved
register, and so, any function that uses it must also restore
the old value before return. By using X28 as CR, PACStack
libraries or code can be transparently mixed with uninstru-
mented code (R3). We discuss the security implications of
mixing instrumented and uninstrumented code in Section 9.2.

5.2 Mitigating hash collisions: PAC masking
To prevent A from identifying PAC collisions that can be
reused to violate the integrity of the call stack, PACStack
masks all authentication tokens values before storing them on
the stack. A pseudo-random value is obtained by generating
a PAC for address 0x0, pacia(0,areti−1) (Listing 3 ¶, º).
By using pacia we efficiently obtain a pseudo-random value
that can be directly applied to the authentication token part of
aret using only an exclusive-or instruction (eor ·, »).

Because this construction uses the same key to generate
both authentication tokens and masks, A must not obtain
an areti for a reti = 0x0 and any existing areti−1. PACStack
will never generate such aret values, as the return address
never points to memory address zero. To prevent leaking the
mask directly, it is cleared after use (¸, ¼). Consequently no
HK(0,x) value is visible to A nor is it possible to pre-compute
without the confidential PA key.
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1 prologue:
2 str X28, [SP, #-32]! ; stack ← areti−1
3 stp FP, LR, [SP ,#16] ; stack ← frame-record
4 mov X15, XZR ; X15← 0
5 pacia LR, X28 ; LR← aretunmasked

i
6 pacia X15, X28 ; X15← maski ¶

7 eor LR, LR, X15 ; LR← maski⊕aretunmasked
i ·

8 mov X15, XZR ; X15← 0 ¸
9 mov X28, LR ; CR← areti

10 ...
11 epilogue:
12 mov LR, X28 ; LR← areti
13 ldr FP, [SP, #16] ; skip ret ′i in frame-record
14 ldr X28 , [SP], #32 ; CR← aret ′i−1 from stack ¹
15 mov X15 , XZR ; X15← 0
16 pacia X15 , X28 ; X15← maski º
17 eor LR, LR, X15 ; LR← maski⊕areti »
18 mov X15 , XZR ; X15← 0 ¼
19 autia LR, X28 ; LR← (reti or ret∗i )
20 ret

Listing 3: PACStack masks authentication tokens to hide
collisions. The mask is created with pacia(0,areti−1) (¶),
and exclusive-OR-ed with the unmasked authi (·). On return,
the masked authi is loaded from the stack (¹). The mask
is then recreated (º) and removed from authi (») before
verification. X15 is a scratch register and can be safely used
as its value is not retained between function calls.

1 setjmp_wrapper:
2 mov X15, SP; ; X15← SPb
3 pacia X15, X28; ; X15← pacia(SPb,areti)
4 pacia LR, X28; ; LR← pacia(retb,areti)
5 eor LR, LR, X15; ; CR← aretb
6 b <setjmp >

Listing 4: PACStack redirects setjmp calls to our
setjmp_wrapper 4 which binds the return address aretb to
areti and the SP value before it is stored in jmp_buf.

This approach to masking requires two additional PAC
calculations for each function activation. PACStack supports
instrumentation with or without masking. We discuss the
security of PAC masking in Section 6.2.1.

5.3 Irregular stack unwinding

PACStack binds jmp_buf buffers to the areti at the time of
setjmp call by replacing the setjmp return address retb with
its authenticated counterpart aretb before setjmp stores it to
the jmp_buf (Section 4.4). The libc implementation is not
modified; instead setjmp / longjmp calls are replaced with
the wrapper functions in Listings 4 and 5.

The setjmp_wrapper (Listing 4) replaces the return ad-
dress in LR with aretb and then executes setjmp, which stores
it in the buffer. The longjmp_wrapper (Listing 5) retrieves
aretb, areti, and the SP values from jmp_buf, verifies their val-
ues and writes retb into jmp_buf before executing longjmp.

1 longjmp_wrapper: ; X0= jmp_buf
2 ldr X28, [X0, #a] ; CR← aret ′i
3 ldr LR, [X0, #r] ; LR← aret ′b
4 ldr X15, [X0, #s] ; X15← SP′b
5 pacia X15, X28; ; X15← pacia(SP′b,aret ′i )
6 eor X28, X28, X15 ; CR← retb
7 autia LR, X28; ; LR← autia(aret ′b,aret ′i )
8 str LR, [Xb, #r] ; replace LR in jmp_buf
9 b <longjmp >

Listing 5:
Before longjmp, the PACStack longjmp_wrapper4 verifies

the binding of the aret ′b, ret ′b and sp′b values stored in jmp_buf.
A cannot generate aret ′b for arbitrary values and therefore
cannot inject them in jmp_buf. #r, #a and #s are the offsets
to retb, CR, and reti within jmp_buf.

5.4 Multi-threading

The values of ARMv8-A general purpose registers are stored
in memory when entering EL1 (i.e. kernel-mode) from EL0
(i.e. user-mode), for example during context switches and
system calls. This must not allow A to modify the aret val-
ues or read the mask, which are both exclusively in either
CR or LR during execution (Listings 2 and 3), but must be
stored in memory during the context switch. On ARMv8-A,
system calls are implemented using the supervisor call in-
struction (svc) that switches the CPU to EL1 and triggers
a configured handler. On 64-bit ARM, Linux v5.0 uses the
kernel_entry5 macro to store all register values on the EL1
stack, where they cannot be accessed by user-space processes.
During context switches, callee-saved registers (including CR)
and LR are stored in struct cpu_context6 which belongs
to the in-kernel task structure and cannot be accessed by user
space. The CR and LR values of a non-executing task are thus
securely stored within the kernel, beyond the reach of other
processes or other threads within the same process. Thus, no
kernel modifications are needed to securely apply PACStack
to multi-threaded applications.

6 Security evaluation

We address three questions in this section:
1) Is PAC reuse a realistic concern in prior PA-based schemes?
2) Is the ACS scheme cryptographically secure?
3) Do ACS’s guarantees hold when instantiated as PACStack?

4Listings 4 and 5 are illustrative, complete wrapper code is available at
https://github.com/pacstack/pacstack-wrappers

5https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/arch/arm64/kernel/entry.S?h=v5.0

6https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/arch/arm64/include/asm/processor.h?
h=v5.0
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1 void A() { stack_disclose(); }
2 void B() {
3 char buff[SIZE];
4 stack_overflow(buff);
5 }
6 void func() {
7 A(); // <----------------------------
8 // ... reusable return addresses |
9 B(); // <----------------------------

10 }

Listing 6: The -mbranch-protection implementation (Sec-
tion 2.2.1) computes the PAC for return addresses using the
SP value at function entry. Both invocations in func (Lines 7
and 9) will thus use the same SP value as modifier. A can
reuse the signed address from Line 7 to make the function
invocation at Line 9 return to Line 8.

6.1 Reuse attacks on PA

Reuse attack on PA-based schemes are possible when the
modifier is calculated with known or predictably repeating
values. Using the SP can mitigate reuse attacks (Section 2.2.1).
However, -mbranch-protection generates the PAC imme-
diately on function entry, before modifying the SP value to
allocate stack space. All functions called from within a code
segment use the same modifier unless there are dynamic stack
allocations. Moreover, because the stack is typically aligned
to 8 bytes, the SP value will often repeat. For example, a
less than 1s test execution of a SPEC CPU 2017 bench-
mark (538.imagick_r) already shows multiple collisions,
with 5349 distinct (LR,SP) pairs, but only 914 unique SP val-
ues. Listing 6 shows a minimal example where all called
functions will end up using the same modifier and thus have
interchangeable signed return addresses.

6.2 ACS security

A generic representation of an attack against ACS is shown in
Figure 4. Under normal operation, function C returns to A if
called from A (Figure 4a); i.e., when called from A, the return
address of C is an address retA in A. The goal of A (Figure 4b)
is to cause C to return to some other address retB.

Since the authenticated return address aretA containing
retA is protected from A , in order to perform a backward-edge
control-flow attack, A must achieve two goals successfully:

AG-Jump: Obtain an authenticated return address aretB,
valid with respect to some known modifier, which will
validate successfully when C returns.

AG-Load: Violate the integrity of the call stack such that
the LR register is loaded with aretB from AG-Jump rather
than the correct authenticated return address aretA.

This requires two returns: one from a ‘loader’ function
to load A’s aretB into LR, and another from C to the return
address retB contained in aretB.

In the analyses below, we treat the auth token HK(P,m) as a
random oracle with respect to both the pointer P and modifier
m. This means that if HK(P,m) has never been computed by
a function call, HK(P,m) will match any value with probabil-
ity 2−b, independently of any other value HK(P′,m′). In the
analysis below we assume that programs that share the same
PA keys between multiple processes or threads employ the
mitigation strategy against brute-force attacks described in
Section 4.3. This assumption and the design of ACS ensure
that there is no authentication oracle available: the only way
to test whether an auth token is valid with respect to some
address and modifier is to attempt to return using the address
and token, triggering a crash if the token is incorrect.

The difficulty of achieving these goals therefore depends
on whether A’s desired control-flow violation follows the call
graph of the program and whether auth tokens are masked.
Violating control-flow integrity while still traversing the call
graph is easier because this allows A to harvest auth tokens
and search for collisions; violations that do not follow the call
graph are more difficult because they require that A make one
or more guesses, risking a crash.

6.2.1 Violations that follow the call graph

As A can harvest authenticated return pointers when they are
written to the stack, the short auth tokens mean that in the
absence of masking an attacker can violate the integrity of the
call stack by finding collisions in HK(·, ·).

In order to achieve goal AG-Load, A must find two authen-
ticated return addresses aretA and aretB, such that i) they are
both returned to by a function C, ii) that C contains a call-site
to the loader function with a corresponding return address
retC, and iii) such that

HK(retC,aretA) = HK(retC,aretB) = authcollision. (1)

Note that the collisions must be for different values in the
second argument only, since that is the value in A’s control.
Collisions that require different values for retC cannot be
exploited because retC is in CR and cannot be modified by A .

The auth tokens contained in aretA and aretB depend on
the path that A has taken through the call graph. A can obtain
as many auth tokens with retC as a pointer as there are distinct
execution paths leading to C. The number of such paths will
explode combinatorially as the complexity of the program
increases, and cycles in the call graph—as occur in Figure 4—
make the number of paths essentially infinite, limited only by
available stack space.

Having found such a collision, A then arranges for function
C to be called, traversing the call graph in such a way that it is
set up to return to A using aretA. Then, when the function C
calls into the loader function, it will set LR to aretC. When the
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(b) A’s desired control flow.
Figure 4: Anatomy of a backward-edge control-flow attack against ACS. In order to force function C to return to B instead of its
caller A, A substitutes their authenticated return address aretB when some function—the ‘loader’—returns to retC in function C
(goal AG-Load). If aretB is valid with respect to some known modifier, then at the end of function C the program will return to
the corresponding retB (goal AG-Jump).

loader function returns to retC, it will attempt to load aretA
from the stack. Instead, A substitutes aretB, which because of
(1) will validate correctly when returning to retC. Since aretB
is a valid authenticated return address, C will successfully
return to retB, thereby violating the integrity of the call stack.

More concretely, after collecting q auth tokens, according
to the birthday paradox [47, Section 1.4.2], the probability
that some pair collides is:

pcollision(q) = 1− 2b!
(2b−q)! ·2q·b

This quickly approaches 1 as A collects more tokens, on
average occurring after obtaining

q =

√
π2b

2

tokens. With a 16-bit PAC, A will therefore obtain a collision
after harvesting 321 pointers on average.

In order to successfully mount the above attack, A must
find two colliding auth tokens and perform the substitution.
Without masking, A can read the auth token from the stack.
A can then keep collecting auth tokens until they find two
that collide; since these are both valid pointers, A will always
succeed once this occurs, thus

P[AG-Load|Collision] = 1.

With masking A cannot identify auth token collisions:
aretA and aretB have different mask values HK(0,aretA) and
HK(0,aretB). Therefore it is impossible to identify a collision
with a probability greater than by random selection. This
means that A will succeed in the attack above with a proba-
bility of 2−b. We give a detailed proof in Appendix A.

In practice, this means that A can use this attack to traverse
the program’s call graph, but cannot jump to an address that
is not a valid return address for function C.

Violation type No masking Masking
On-graph 1 2−b

Off-graph to call-site 2−b 2−b

Off-graph to arbitrary address 2−2b 2−2b

Table 1: Maximum success probability of call-stack integrity
violations, with and without masking.

6.2.2 Violations that leave the call graph

We now consider A’s probability of success when attempting
to return to an address retB in a way that that does not follow
the program’s call graph. (Summary in Table 1.)

In this case, the path from B to C has not been tra-
versed, and the instrumentation has never before computed
the auth token HK(retC,aretB). Therefore, A succeeds at AG-
Load—i.e., HK(retC,aretB) = HK(retC,aretA)—with probabil-
ity P[AG-Load] = 2−b, irrespective of whether the substituted
aretB is a valid authenticated return address. On failure, which
has probability 1−2−b, the process will crash.

A’s probability of then achieving goal AG-Jump depends
on whether retB is the return address of a valid call-site. If it
is, then A can obtain a valid authenticated return pointer for
that location in the same way as in Section 6.2.1. If retB has
never been used as a return address, then no auth token has
ever been generated for that pointer and AG-Jump is achieved
with probability at most P[AG-Jump] = 2−b, independent of
AG-Load.

A can therefore succeed with probability 2−b when the
return address is a valid call-site return address, or with prob-
ability of 2−2b when the return address is not.

6.3 Run-time attack resistance of PACStack

PACStack must ensure the integrity of aretn and the confiden-
tiality of the masks. The former is achieved by storing aretn
in CR, which is reserved for this purpose, not used by regular
code, and hence, inaccessible to A (Section 5.1). The latter is
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maintained as the mask is re-generated each time it is needed
and cleared after use (Section 5.2). This holds true also in
multi-threaded environments (Section 5.4).

Traditional CFI solutions are unable to withstand control-
flow bending [11]: attacks where each control-flow transfer
follows the program’s CFG, but the program execution trace
conforms to no feasible benign execution trace. Schemes
like PACStack and shadow call stacks are not susceptible
to backward-edge control-flow bending because they pre-
cisely protect the integrity of the return addresses. A cannot
trick PACStack to deviate from an expected return flow by
replacing aretn with a valid, but outdated aret value, because
PACStack never writes aretn onto the stack. A also cannot
reliably exploit PAC collisions to replace part of the aret
chain, as each aret is masked. A cannot tamper with the in-
strumentation itself by modifying the instructions in memory
(Assumption A1). By requiring coarse-grained forward-edge
CFI (Assumption A2), PACStack ensures that auth token cal-
culations and masking are executed atomically and cannot be
used to manipulate reti, areti−1 or the mask during the func-
tion prologue and epilogue. This holds when the forward-edge
CFI is susceptible to control-flow bending (Section 3).

6.3.1 Tail calls and signing gadgets

A recent discovery by Google Project Zero [8] shows that
PA schemes can be vulnerable to an attack whereby specific
code sequences can be used as gadgets to generate PACs for
arbitrary pointers. Recall that on PAC verification failure an
aut instruction removes the PAC, but corrupts a well-known
high-order bit such that the pointer becomes invalid. If a pac
instruction adds a PAC to a pointer P with corrupt high-order
bits, it treats the high-order bits as though they were correct
when calculating the new PAC, and flips a well-known bit
p of the PAC if any high-order bit was corrupt. This means
that instruction sequences such as the one shown in Listing 7,
consisting of an aut instruction followed by a pac instruction,
can be used generate a valid PAC for a pointer even if the
original pointer is not valid to begin with. A writes an arbitrary
pointer P to memory (¶) and allows it to be verified. When
verification fails, autia removes the PAC, and corrupts the
high-order bit in P, writing the resulting P∗ to the destination
register (·). The subsequent pacia will add the correct PAC
for P, then flip bit p of the PAC to indicate that the input
pointer was invalid (¸). A can now flip bit p back (º) in
order to obtain the correct PAC for pointer P (»).

The PA signing gadget requires finding a matching
〈autia,pacia〉 pair operating on pointer P in the code with-
out any use of P between these instructions. In PACStack
each verification is immediately followed by a return, which
ensures that the failure is detected. Tail calls are a notable
exception. Tail calls are function calls executed before return
and optimized so that the callee directly returns to the caller
of the optimized function. For example, in Listing 8, function

1 ... ; A injects P at <ptr> ¶
2 ldr Xd, <ptr> ; Xd← P
3 autia Xd, <mod> ; Xd← P∗ ·
4 pacia Xd, <mod> ; Xd← pacia (P, <mod>)⊕ p ¸
5 str Xd, <ptr> ; <ptr> ← Xd

6 ... ; A sets <ptr> to <ptr> ⊕ p º
7 ldr Xd, <ptr> ; Xd← pacia (P, <mod>)
8 autia Xd, <mod> ; Xd← P (valid pointer) »

Listing 7: A PAC is based on the address bits. An invalid input
pointer (¶) after aut (·) can be re-signed (¸), resulting in an
output PAC with only a single bit-flip. This could be exploited
to generate valid PACs for arbitrary pointers.

1 A:
2 epilogue:
3 ...
4 ldr X28, [SP] ; load invalid aret ′i−1
5 autia LR, X28 ; LR← ret∗i Â
6 b <B> ; tail call B À
7 B:
8 prologue:
9 str X28, [SP]

10 pacia LR, X28 ; LR← areti⊕ p Ä
11 ...
12 epilogue:
13 ...
14 autia LR, X28 ; LR← ret∗i Ã
15 ret ; Á

Listing 8: Tail calls on ARM replace the optimized call at the
end of a function with a non-linking branch instruction (À).

A ends with a tail call to B using the b instructions that does
not update LR (À). The tail-called function can return (Á) to
the LR value set before the tail call (Â). PACStack limits A
to modifying the previous auth token on the stack. A could
attempt to exploit the signing gadget to trick PACStack to
accept an invalid aret ′i−1 (Ã), and subsequently load it into
LR after return. However, A cannot flip the bit p of aret ′i (Ä)
because PACStack guarantees it is immutable. The invalid
aret ′i−1 is thus always passed into autia (Ã) and so, detected
at return from B (Á). Forthcoming additions in the ARMv8.6-
A architecture will preclude such attacks in general [3].

6.3.2 Sigreturn-oriented programming

Sigreturn-oriented programming [9] is a exploitation tech-
nique in UNIX-like operating systems, including Linux, that
abuses the signal frame to take complete control of a process’s
execution state, i.e., the values of general purpose registers,
SP, program counter (PC), status flags, etc. When the kernel
delivers a signal, it suspends the process and changes the
user-space processor context such that the appropriate signal
handler is executed with the right arguments. When the signal
handler returns, the original user-space processor context is
restored. In a sigreturn attack A sets up a fake signal frame
and initiates a return from a signal that the kernel never deliv-
ered. Specifically, a program returns from the handler using
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a sigreturn system call that reads a signal frame (struct
sigcontext in Linux) from the process stack.

Although a sigreturn attack is, in principle, problematic
for PACStack (as it could allow A control of any EL0 reg-
ister, including CR), a number of defenses against sigreturn
attacks have been proposed for the Linux kernel, any of which
will protect PACStack. Bosman and Bos [9] propose placing
keyed signal canaries in the signal frame that are validated
by the kernel before performing a sigreturn, or to keep a
counter of the number of currently executing signal handlers.
However, modern Linux versions rely solely on address space
layout randomization (ASLR) [32] to make it difficult for the
attacker to trigger an unwarranted sigreturn. Fortunately
sigreturn is never called directly from program code (in fact
the GNU C library sigreturn simply returns an error value).
Instead the system call is triggered by signal trampoline code
placed either in the kernel’s virtual dynamic shared object
(vdso) or in the C library, both subject to ASLR. For our
chosen adversary model (Section 3) ASLR is not sufficient as
A can determine the contents of any readable memory in the
process memory space. However, PACStack itself, together
with coarse-grained CFI (Assumption A2), ensures that A
cannot divert control flow from program code to the signal
trampoline. Nonetheless, 64-bit ARM programs that might
call system calls directly using the svc instruction (without
going through C library system call wrappers), would not
be protected against the presence of such gadgets. We dis-
cuss a potential general solution against sigreturn attacks that
utilizes the ACS construction in Appendix B.

7 Performance Evaluation

At present, the only publicly available PA-enabled SoCs are
the Apple A12, A13, S4, and S5, none of which support PA for
3rd party code at the time of writing. To verify the correctness
of instrumentation we ran all benchmarks on the ARMv8-A
Base Platform Fixed Virtual Platform (FVP), based on Fast
Models 11.4, which supports ARMv8.3-A [2]. Because the
FVP runs the v4.14 kernel, we have used PA RFC patches7

modified to support all PA keys.

The FVP is not cycle-accurate and executes all instruc-
tions in one master cycle; therefore, it cannot be used for
performance evaluation. Based on prior evaluations of the
QARMA cipher [7], which is used as the underlying crypto-
graphic primitive in reference implementations of PA [45],
Liljestrand et al. estimate that the PAC calculations incur an
average overhead of four cycles on a 1.2GHz CPU [35]. We
employ the PA-analogue introduced by Liljestrand et al. to
estimate the run-time overhead of PACStack.

7https://lwn.net/Articles/752116/

7.1 SPEC CPU 2017

We ran benchmarks on Amazon EC2 using the SPEC CPU
2017 benchmark package8. To guarantee exclusive access to
the hardware, we used Amazon EC2 a1.metal9,10instances,
each with 16 64-bit ARMv8.2-A cores. As these CPUs do
not support PA, we instrumented benchmarks with the PA-
analogue. For comparison, we measured run-time overheads
of: 1) ShadowCallStack (a AArch64 production-ready soft-
ware shadow call stack implementation for Clang 9 [14]),
2) -mbranch-protection (Clang’s built-in PA-based return
address protection), and 3) -mstack-protector-strong
(stack canaries). We measured PACStack by instrumenting all
function entry and exit points, excluding leaf functions that do
not spill LR or the CR (this is similar to the heuristic used by
-mbranch-protection). We measured both full PACStack
and PACStack without masking (PACStack-nomask).

ShadowCallStack saves a function’s return address in a
separately-allocated shadow stack and then uses the protected
return address when performing a return. On 64-bit ARM
the X18 register is reserved to hold a reference to the shadow
stack. To perform a comparison against PACStack using the
GNU C library (glibc) we ported ShadowCallStack support
to glibc. Due to compatibility issues [52], we did not run the
perlbench benchmarks with ShadowCallStack.

Our measurements include all C SPECrate and SPECspeed
benchmarks, compiled with -O2 optimizations and flags to en-
able the measured instrumentation. The suite is self-contained,
avoiding the need to instrument system libraries. For each
benchmark, we compared the performance of the baseline
(with all evaluated instrumentations disabled) to the mea-
sured configuration. Figure 5 shows the mean overheads
(w.r.t the baseline). Table 2 shows the geometric mean of
the overheads, excluding perlbench which was incompat-
ible with ShadowCallStack. On C++ benchmarks we ob-
served overheads of 2.0% (PACStack) and 0.9% (PACStack-
nomask). Due to compatibility issues with ShadowCallStack
and -mbranch-protection, we limit our comparison to the
C benchmarks.

As expected, -mstack-protector-strong outperforms
other instrumentations (but provides the weakest protection).
In terms of added instructions, -mbranch-protection is
similar to PACStack-nomask; the performance difference is
likely due to PACStack reserving the CR register and the addi-
tional store when saving it the stack. PACStack-nomask and
ShadowCallStack have similar memory requirements (i.e., one
extra store per function call), and show similar performance
overheads. The overhead of PACStack is proportional to the
frequency of function calls; benchmarks with few function
calls are affected less than the benchmarks with frequent func-

8https://www.spec.org/cpu2017
9https://aws.amazon.com/ec2/instance-types/a1/

10Performance evaluation on a1.metal instances was not part of the
USENIX Security Artifact Evaluation process.
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Figure 5: Relative performance overhead for SPEC CPU 2017
benchmarks as mean overhead over baseline. Error bars are
95% confidence intervals.

SPECrate SPECspeed

PACStack 2.75% 3.28%
PACStack-nomask 0.86% 1.56%
ShadowCallStack 0.85% 0.77%
-mbranch-protection 0.43% 0.72%
-mstack-protector-strong 0.43% 0.25%

Table 2: Geometric mean of measured overheads.

tion calls. For instance, the 519.lbm_r benchmark involves
computations related to fluid dynamics and consists of large
nested loops with few function calls. Consequently we see
little effect on the performance of 519.lbm_r.

Based on these results, we expect the overhead for both
PACStack configurations to be a) comparable to ShadowCall-
Stack, and b) negligible on PA-capable hardware.

7.2 Real-world evaluation: NGINX
We evaluated the efficacy of PACStack in a real-world setting
using a SSL/TLS transactions per second (SSL TPS) test on
the NGINX11 open source web server software. SSL TPS
measures a web server’s capacity to create new SSL/TLS
connections back to clients. Clients send a series of HTTPS
requests, each on a new connection. The web server sends
a 0-byte response to each request. The connection is closed
after the response is received. We chose the SSL TPS test

11https://www.nginx.com/

# of Baseline PACStack-nomask PACStack
workers req./sec. σ req./sec. σ overhead req./sec. σ overhead

4 14.2k 142 13.7k 124 3.8% 13.5k 117 5.5%
8 30.7k 722 28.6k 658 7.1% 27.2k 612 12.7%

Table 3: Requests/second, standard deviation (σ) and perfor-
mance overhead for the NGINX SSL TPS tests reported for
both PACStack and PACStack-nomask.

(instead of measuring throughput) to ensure that the load on
the web server is CPU-bound, allowing us to estimate the
upper bound for PACStack’s impact on NGINX performance.

We conducted our tests on two separate Amazon EC2 A1
instances connected via elastic network interfaces with up to
10 Gbps capacity. The web server (on an a1.metal instance,
running NGINX 1.17.8 with OpenSSL 1.1.1d) and the client
(on an a1.4xlarge instance) ran the 64-bit ARM version of
Ubuntu 18.04. We configured the server to use the ECDHE-
RSA-AES256-GCM-SHA384 cipher with a 2,048-bit RSA
key for HTTPS. The client used wrk12, a modern HTTP bench-
marking tool, to generate traffic. We configured wrk in the
same way as in a test on NGINX performance conducted by
F5 Networks.13 We ran a total of 15 copies of wrk on the
client machine for 3 minutes each.

We repeated the test with four and eight NGINX worker pro-
cesses instrumented with PACStack and PACStack-nomask,
and compared the results with uninstrumented baseline perfor-
mance. In both configurations we also instrumented NGINX’s
dependencies (OpenSSL, pcre and zlib libraries). All bina-
ries were compiled with -O2 optimizations. We summarize
the results in Table 3, showing a 4–7% overhead for PAC-
Stack-nomask and 6–13% overhead for PACStack. These re-
sults are consistent with the performance overheads measures
for SPEC CPU 2017 (Section 7.1).

7.3 Compatibility testing using ConFIRM

ConFIRM is a set small micro-benchmarking suite designed
to test compatibility and relevance of CFI solutions [52]. The
suite is designed to test various corner-cases—e.g., function
pointers, setjmp/longjmp and exception handling—that often
cause compatibility issues for CFI solutions. ConFIRM is
designed for x86-based architectures and includes some tests
that are exclusive to the Microsoft Windows operating system.
Of the 18 64-bit Linux tests 11 compiled and worked on
AArch64; these included virtual and indirect function calls,
setjmp/longjmp, calling conventions, tail calls and load-time
dynamic linking. We ran these benchmarks on the FVP (to
guarantee functional equivalence to PA-capable hardware)
and confirmed that the tests passed with or without PACStack.

12https://github.com/wg/wrk (version of April 18, 2019)
13https://www.nginx.com/blog/nginx-plus-sizing-guide-

how-we-tested/
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8 Related Work

Control-flow hijacking have been known for more than two
decades [48]. Most current CFI solutions are stateless: they
validate each control-flow transfer in isolation without dis-
tinguishing among different paths in the control-flow graph
(CFG). Fully-precise static CFI [11] is the most restrictive
stateless policy possible without breaking the intended func-
tionality of the protected program. In fully-precise static CFI
the best possible policy for return instructions is to allow re-
turns within a function F to target any instruction that follows
a call to F . All stateless CFI schemes, including fully-precise
static CFI, are vulnerable to control-flow bending [11].

Stateful CFI can express policies that take previous control-
flow transfers into account. HAFIX [19] is a hardware-assisted
CFI scheme that confines function returns to active call sites.
Context-sensitive CFI [20, 28, 51] further ensures that each
control-flow transfer taken by the program is consistent with
a non-malicious trace. Despite its better precision, context-
sensitive CFI enforcement is considered impractical for real-
world adoption [1]. Hardware-assisted branch recording fea-
tures available in modern 64-bit Intel microprocessors can
be used to enable context-sensitive CFI enforcement on com-
modity hardware, but suffer from i) limited branch history
used to make CFI decisions, ii) over-approximation of the pro-
gram CFG, and iii) reliance on complex run-time monitoring.
HAFIX, on the other hand, requires changes to the processor.

As dynamic schemes, PACStack and shadow call stacks [1,
6, 13–15, 17, 18, 22–24, 29, 38, 39, 50] are not vulnerable to
control-flow bending. Stateless forward-edge CFI enforce-
ment is often combined with a shadow stack to enforce the
integrity of return addresses stored on the call stack. In fact,
the results by Carlini et al. [11] show that a shadow stack (or
equivalent mechanism) is essential for the security of CFI.
However, traditional shadow stacks incur significant perfor-
mance overhead and lead to false positives for programming
constructs that cause mismatches between calls and returns
(C++ exceptions with stack unwinding, setjmp/longjmp).
Recent designs improve performance by either leveraging a
parallel shadow stack [17], or using a dedicated register for
shadow stack addressing [10]. But since the shadow stack in
this schemes resides in the same address space as the target
application, it can be compromised if A knows its location.
A typical solution for dealing with mismatches between calls
and returns is to pop return addresses off the shadow stack
until a match is found, or the shadow stack is empty (e.g.,
binary RAD [13]). This not only increases the complexity
and run-time of the shadow stack instrumentation placed in
the function epilogue, but also sacrifices precision, e.g., it al-
lows A to redirect longjmp to any previously active call site.
This can be avoided by storing and validating both the return
address and stack pointer [15, 40, 50]. So far, only hardware-
assisted shadow stacks promise to achieve negligible overhead
without security trade-offs (e.g., Intel CET [29]).

Park et al. [42] present a micro-architectural shadow stack
implementation using the branch predictor return address
stack, a common hardware feature found in modern specula-
tive superscalar processor designs. The return address stack
is typically a circular buffer; to avoid losing stored return
addresses when the maximum capacity is reached, Park et
al. modify the return address stack to spill a portion of its
content to backup storage in main memory. A Merkle-tree
caching scheme is used to efficiently authenticate the backup
storage before it is read back to the return address stack. The
latency of spill/fill operations on backup memory is offset by
the 100% hit rate for branch prediction since return addresses
that exceed the return address stack capacity are retained.

The idea of using of MACs to protect the return address at
run-time was introduced in Cryptographic CFI (CCFI) [37]
which uses MACs to protect return addresses and other
control-flow data (e.g., function pointers and C++ vtable point-
ers). CCFI’s return address protection is similar to PA-based
return address signing [45]; both bind the return address to
the address of the function’s stack frame and thus provide
only coarse-grained resistance against pointer reuse [35]. In
contrast to PACStack, these approaches cannot prevent reuse
attacks (See Section 6.1). Independently to our work, Li et
al. [34] propose a chain structure to protect return addresses
but do not prevent the attacker from exploiting MAC colli-
sions, and require custom hardware to realize their solution.

Program Counter Encoding [16, 22, 33, 41, 44] protects
return addresses on the stack by encoding them with either
a register-resident secret key [33], a read-only key stored in
memory [16], the SP [44], or the address at which the return
address itself is stored (a.k.a. the self-address) [41]. It is effi-
cient, but relying on a secret key resident in user space makes
such encoding schemes susceptible to buffer over-reads, and
SP or self-address encoding suffer the same drawbacks as
-msign-return-address [35, 45] (Section 2.2.1).

Other prominent defenses against control-flow attacks in-
clude fine-grained code randomization [32], and code-pointer
integrity (CPI) [31]. Code randomization makes it more dif-
ficult for A to find suitable gadgets to exploit, but ineffec-
tive if A knows the program memory layout. CPI protects
code pointers by storing them in a separate safe stack, which
requires similar integrity guarantees as shadows stacks to
remain effective [21]. Roessler et al. propose a metadata-
tagged architecture to isolate stack-objects based on the stack-
depth [46]. However, similar to the SP value (Section 6.2), the
stack-depth will repeat frequently during program execution.

PACStack targets the ARM architecture, which has received
less attention compared to the x86 family of computer archi-
tectures in terms of CFI research. MoCFI [18] is a software-
based CFI approach specifically targeting ARM application
processors used in smartphones. It uses a combination of a
shadow stack, static analysis and run-time heuristics to deter-
mine the set of valid targets for control-flow transfers, but suf-
fers from the same drawbacks that plague traditional shadow
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stack schemes. CFI CaRE [39] is a CFI solution targeting
small, embedded ARM-based microcontrollers (MCUs). It
uses the ability to perform hardware-enforced isolated exe-
cution on ARMv8-M MCUs to isolate the shadow stack to
a secure processor state. The ARMv8-M [5] architecture en-
forces that calls to secure functions must target secure gate
instructions placed at the beginning of such functions. The
ARMv8.5-A architecture introduces similar branch target
indicators (BTI) [4] to ARM application processors. BTI
constitutes one way to meet the PACStack pre-requisite of
coarse-grained CFI (Section 3).

9 Discussion

9.1 Support for software exceptions
The setjmp / longjmp interface has traditionally been used
to provide exception-like functionality in C. However, modern
coding standards for C and C++ that aim to facilitate code
safety, security, and reliability consider them harmful and
forbid their use, e.g., MISRA C:2004 [26, Rule 20.7] and JSF
AV C++ [36, Rule 20]. Recall from Section 4.4 that calling
longjmp with an expired jmp_buf is undefined behavior. For
PACStack, this means that although the aretb in jmp_buf is
tied to the corresponding SP and authi, its freshness cannot be
guaranteed. A can modify jmp_buf to contain the previously
used aretb and SPb, but must also modify the stack-frame at
SPb, such that it contains the prior areti. This allows a control-
flow transfer to a previously valid setjmp return site and SP

value. To prevent reuse of expired jmp_buf buffers, longjmp
can be rewound step-by-step, i.e., conceptually performing
returns until the correct stack-frame is reached.

We plan to extend PACStack support to LLVM
libunwind14 – it does frame-by-frame unwinding of the call
stack. By validating the ACS on each stack frame unwinding,
PACStack can ensure that a fresh and valid state is reached.

As C++ exceptions also cause irregular stack unwinding
they pose a similar challenge. But C++ does finer-grained
stack unwinding to correctly destroy objects in unwound
stack frames. The LLVM libcxxabi library will, depend-
ing on configuration, use libunwind for this purpose. With
PACStack support in libunwind, we will be able to secure
both setjmp / longjmp and support C++ exception handling.

9.2 Interoperability with unprotected code
Interoperability with unprotected (uninstrumented) code is
an important deployment consideration. On one hand, PAC-
Stack-protected applications may need to interoperate with
unprotected shared libraries. On the other, unprotected appli-
cations may need to interoperate with PACStack-protected
shared libraries. The latter scenario is relevant for deployment

14https://github.com/llvm/llvm-project/tree/master/
libunwind

in mobile operating systems like Android, where multiple
stakeholders provide application binaries to consumer de-
vices. The deployment of PACStack, or any other run-time
protection mechanism, is likely to be driven by OEMs that
enable specific protection schemes for the operating system
and system applications. However, OEMs are not in control
of native code deployed as part of applications. It should
be possible for one version of the shared libraries shipped
with the operating system to remain interoperable with both
PACStack-protected, and unprotected apps.

In Section 5.1 we explain how the use of callee-saved
registers allows PACStack to remain interoperable with unpro-
tected code. Recall that because CR is a callee-saved register it
will be restored upon return. However, PACStack cannot guar-
antee that CR remains unmodified during the execution of the
unprotected code that could temporarily store its value on the
stack. To meet the security guarantees (Section 6), PACStack
instrumentation must be applied to both the application and
any shared libraries. But partial protection, e.g. PACStack-
protected shared libraries can significantly raise the bar for
the attacker, as calls into protected functions can still benefit
from return address authentication. Common shared libraries
like libc are a popular source for gadgets for run-time at-
tacks because of their size and availability. Because functions
in a PACStack-protected library validate the return address
in returns from library functions, they effectively remove a
potentially large set of reusable gadgets from A’s disposal.

10 Conclusion

ACS achieves security on-par with hardware-assisted shadow
stacks (Section 6). With PACStack, we demonstrate how the
general-purpose security PA security mechanism can realize
our design, without requiring additional hardware support
or compromising security. Other general-purpose primitives
like memory tagging and branch target indicators are being
rolled out. Creative uses of such primitives hold the promise
of significantly improving software protection.
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A Security proofs

In Section 6.2, we gave an informal analysis of the security of
ACS; here we give a more detailed proof of security, and in
particular prove that authentication token masking prevents
A from obtaining exploitable authentication token collisions.

The argument proceeds as follows: we suppose that A , after
obtaining q authentication tokens, can find a pair of inputs
(x,y) and (x,y′) whose authentication tokens HK(·, ·) collide.
This can be used to construct a distinguisher of the masks
HK(0, ·) from a random string. The structure of the authentica-
tion tags is such that this further reduces to a semantic security
game for one-time pad encryption of the masks. Then, we
show that any violation of the integrity of an ACS-protected
call stack also yields values whose authentication tokens col-
lide as described above, allowing us to bound the probability
of an integrity violation.

We summarize our notation in Table 4.
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Games
GACS
(Figure 11)

Security game for ACS integrity.

GPAC-Collision
(Figure 6)

Security game for the identification of colliding
authentication tokens.

GPAC-Distinguish
(Figure 7)

Security game for the distinguishability of HK(·, ·)
from a random oracle.

G1,G2,G3
(Figure 8)

Semantic security games for the mask HK(0, ·).

Adversary interfaces
GACS Aoracle-request Get path through the call-graph for

which A wants the final authenticated
return address pushed to the stack.

Aoracle-response Return a previously-requested authen-
ticated return address.

AACS-Violation Return to the challenger authenticated
return values that can be used to vio-
late call stack integrity.

GPAC-Collision Aoracle-request Get a value for which A wants a
masked authentication token.

Aoracle-response Return a previously-requested masked
authentication token.

Agen-collision Return to the challenger two authenti-
cated return values with colliding au-
thentication tokens.

GPAC-Distinguish Aoracle-request Get a value for which A wants an au-
thentication tag.

Aoracle-response Return a previously-requested authen-
tication token.

Adistinguish Return to the challenger a single bit
identifying whether the given tokens
were from a random oracle or HK(·, ·).

G1,G2 Bdistinguish Identify the authentication token func-
tion used to generate masked authenti-
cation tokens.

G3 Bdistinguish’ As for G1,G2, but with the inputs rep-
resented as strings, not functions.

Table 4: Notation used in Appendix A.

GA
PAC-Collision(1

λ,H,q)

K $←{0,1}λ

// Give A q masked authentication tokens

// of their choice.

for i ∈ {1, . . . ,q} do
(x,y)← Aoracle-request()

Aoracle-response (HK(x,y)⊕HK(0,y))

endfor
// A is challenged to provide inputs whose authentication tokens collide.

(x̂, ŷ, ŷ′)← Agen-collision()

if ŷ 6= ŷ′ ∧HK(x̂, ŷ) = HK(x̂, ŷ′) then
return 1

endif
return 0

Figure 6: Security game for finding colliding PACs given
masked authentication tokens.

GA
PAC-Distinguish(1

λ,H,q)

K $←{0,1}λ

// B is given values of their choice from either

// HK(·, ·) or a random oracle RO(x,y)

S0(x,y)
de f
= RO(x,y)

S1(x,y)
de f
= HK(x,y)

c $←{0,1}
for i ∈ {1, . . . ,q} do
(x,y)← Aoracle-request()

Aoracle-response (Sc(x,y))

endfor

// A is challenged to determine whether it received

// values from HK(·, ·) or the random oracle.

ĉ← Adistinguish()

if c 6= ĉ then
return 1

endif
return 0

Figure 7: Security game in which A attempts to distinguish
HK(·, ·) from a random oracle.

Theorem 1 (PAC-masking prevents collision-finding). Sup-
pose that after q queries, an adversary A can distin-
guish HK(·, ·) from a random oracle with advantage no
greater than AdvA

PAC-Distinguish(1
λ,H,q), as given in Figure 7.

Then, assuming a key-length of λ for HK(·, ·), and given ac-
cess to q masked authentication tokens, A can identify a
pair of inputs (x̂, ŷ) and (x̂, ŷ′) whose corresponding un-
masked authentication tokens collide with advantage at most
2AdvA

PAC-Distinguish(1
λ,H,q).

Proof. We begin with a collision-game GA
PAC-Collision(1

λ,H,q),
shown in Figure 6 in which the adversary is given oracle
access to the authentication token generator and then asked
to provide values x,y,y′ such that HK(x,y) = HK(x,y′).

An adversary that selects (x,y,y′) at random from
{0,1}VA_SIZE × {0,1}VA_SIZE+b × {0,1}VA_SIZE+b, such that
y 6= y′, will win with probability 2−b; A’s advantage is there-
fore

AdvA
PAC-Collision(1

λ,H,q)=P
[
GA

PAC-Collision(1
λ,H,q) = 1

]
−2−b.

We will bound this advantage by reduction to a semantic se-
curity game for the masks. We consider the following games,
shown in Figure 8, and described in Figure 9.

The first hop, from G1 to G2, is based on indistinguisha-
bility and relaxation: we suppose that HK(·, ·) can be distin-
guished from a random oracle with probability no more than
1
2 +AdvA

PAC-Distinguish(1
λ,H,q), and that the adversary is not

limited in the number of queries that can be made to the
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GB
1 (1

λ,H,q)

K $←{0,1}λ

S0(y)
de f
= RO(y)

S1(y)
de f
= HK(0,y)

T (x,y),x 6= 0,first q queries
de f
= HK(x,y)⊕HK(0,y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c $←{0,1}
ĉ← Bdistinguish (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

GB
2 (1

λ,H,q)

S0(y)
de f
= RO0(y)

S1(y)
de f
= RO1(0,y)

T (x,y),x 6= 0
de f
= RO1(x,y)⊕RO1(0,y)

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T (·, ·).

c $←{0,1}
ĉ← Bdistinguish (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

GB
3 (1

λ,H,q)

P1...2VA_SIZE ←{0, . . . ,2b−1}2b+VA_SIZE

S0
$←{0, . . . ,2b−1}2b+VA_SIZE

S1
$←{0, . . . ,2b−1}2b+VA_SIZE

T1...2VA_SIZE ← P1...2VA_SIZE ⊕S1

// The adversary is given S0 and S1 and challenged to

// determine which is used to calculate T···.

c $←{0,1}
ĉ← Bdistinguish’ (T,Sc,S1−c)

if c = ĉ then
return 1

endif
return 0

HK(·, ·)→ random oracle random oracle→ random string

Figure 8: Security games used in Theorem 1.

GB
1 (1

λ,H,q): B obtains masked authentication
tokens HK(x,y)⊕ HK(0,y) for up to q pairs
(x,y) of B’s choice, and must then distin-
guish the masks HK(0, ·) from a random ora-
cle.

GB
2 (1

λ,H,q):H
K
(·,
·)
→

ra
nd

om
or

ac
le

This is the same as the previous
game, except that HK(·, ·) is replaced by a
random oracle and B is not limited in their
number of queries. B must now distinguish
between two random oracles, one of which
is used in computing the authentication to-
kens, and one of which is independent of the
authentication tokens.

GB
3 (1

λ,H,q):

R
ef

or
m

ul
at

io
n

This is the semantic security game
for repeated one-time-pad encryptions of a
random string.

Figure 9: The game-hops used in Figure 8.

masked authentication token oracle. Then,

P[GB
1 (1

λ,H,q) = 1]≤ P[GA
2 (1

λ,H,q) = 1]

+AdvA
PAC-Distinguish(1

λ,H,q).

The second hop, from G2 to G3, is a mere reformulation of G2

such that random oracles are represented as strings, and that
rather than allowing B to request arbitrarily many authenti-
cation tokens from the challenger, we instead give B direct
access to the oracle, as represented by the sequence of strings
T1...2VA_SIZE .

The third game is a semantic security game for the one-
time pad, where A is given 2VA_SIZE encryptions of S1 and
then asked to distinguish between S1 and a random string. The
perfect secrecy of the one-time pad means that P[GB

1 (1
λ) =

1] = 1
2 and so

P[GB
1 (1

λ) = 1]≤ 1
2
+AdvA

PAC-Distinguish(1
λ,H,q). (2)

Finally, we provide a reduction from GA
PAC-Collision(1

λ,H,q)
to G1

B(1λ). Suppose A can win GA
PAC-Collision(1

λ,H,q) with
advantage AdvA

PAC-Collision(1
λ,H,q). Then, we define an ad-

versary AA for G1
B(1λ), shown in Figure 10.

This adversary wins G1
B(1λ) with probability at least 1

2 +
1
2 AdvA

PAC-Collision(1
λ,H,q), and so by (2)

AdvA
PAC-Collision(1

λ,H,q)≤ 2AdvA
PAC-Distinguish(1

λ,H,q).

If the MAC HK(·, ·) is a pseudo-random function family with
respect to K, then AdvA

PAC-Distinguish(1
λ,H,q) is negligible, and

thus so is AdvA
PAC-Collision(1

λ,H,q).

USENIX Association 30th USENIX Security Symposium    373



BA
oracle-request()

return Aoracle-request()

BA
oracle-response(x)

Aoracle-response(x)

BA
distinguish(T,S,S

′)

x,y,y′← Agen-collision(T )

if S(y)⊕S(y′) = T (x,y)⊕T (x,y′) then
return 1

else
return 0

endif

Figure 10: An adversary BA for G1 used in our black-box
reduction of GPAC-Collision to G1. Not shown is the variant
BA

distinguish’(T,S,S
′) that is identical to BA

distinguish(T,S,S
′) ex-

cept that T , S, and S′ are given in the form of strings.

With a bound on A’s probability of successfully obtain-
ing a PAC collision, we may now obtain a bound on their
probability of violating the integrity of an ACS-protected call
stack.

Theorem 2 (Security of ACS). Consider a program whose
call stack is protected by ACS, which has a call-graph C and b-
bit masked authentication tokens TK(x,y)= HK(x,y)⊕HK(0,y).
Then, an adversary with arbitrary control over memory can
violate backward-edge control-flow integrity with probability

P
[
GA

ACS(1
λ,H,C,q)

]
≤ P

[
GA

PAC-Collision(1
λ,H,q)

]
≤ 2−b +2AdvA

PAC-Distinguish(1
λ,H,q)

Proof. We begin with a security game for ACS, shown in
Figure 11.

Our goal is to provide a black-box reduction from
GA

ACS(1
λ,H,C,q) to GA

PAC-Collision(1
λ,H,q).

From line 24 of Figure 11, winning GA
ACS implies that A

has obtained colliding authentication tokens, and therefore A
can win GA

PAC-Collision with probability at least P[GA
ACS]. Sub-

stituting the bound from Theorem 1, we obtain the bound
given.

B Mitigation of sigreturn attacks

A solution for precluding sigreturn attacks against PACStack
would be to include the signal return value to the PACStack
chain via the PC value stored on the signal frame:

asigreti =

{
HK(sigreti,asigreti−1) if i > 0
HK(sigreti,aretn) if i = 0

Upon signal delivery, the kernel stores a copy of asigretn se-
curely in kernel space as a reference value. If the process

GA
ACS(1

λ,H,C,q)

1 : K $←{0,1}λ

2 : // Give A q tokens from call-graph traversals.

3 : for i ∈ {1, . . . ,q} do
4 : p1...m+1← Aoracle-request()

5 : // Is the request for a real path through the call-graph?

6 : if ∃ j : p j → p j+1 /∈ edges(C) then
7 : return 0

8 : endif
9 : authm← TK(pm,TK(pm−1, · · ·) ‖ pm−1) ‖ pm

10 : Aoracle-response(authm)

11 : endfor
12 : ptrjumper, ptrcorrect,authcorrect, tcorrect,

13 : ptradv,authadv, tadv← AACS-Violation()

14 : // The substituted masked authenticated return address must be different.

15 : if ptrcorrect = ptradv ∧authcorrect = authadv then
16 : return 0

17 : endif
18 : // Does the return pointer authenticate correctly with the adversary’s

19 : // new masked authenticated return address as the modifier?

20 : if HK(ptrjumper,authcorrect ‖ ptrcorrect)

21 : 6= HK(ptrjumper,authadv ‖ ptradv) then
22 : return 0

23 : endif
24 : // Did the adversary provide a valid masked authenticated return address?

25 : if authadv = HK(ptradv, tadv)

26 : return 1

27 : endif
28 : return 0

Figure 11: Security game for ACS with respect to a program
having call-graph C and authentication token function TK(·, ·).

was already executing a signal handler, and thus the kernel
already has a reference copy of asigretn−1 on record, it stores
asigretn−1 in the new signal frame and overwrites the secure
copy with asigretn. On sigreturn the kernel attempts to val-
idate the PC and CR values in the signal frame as though the
reference value was asigret0. If successful it performs the
signal return to sigretn and restores aretn to CR. Otherwise
the kernel assumes a return to a nested signal handler, and
retrieves sigret ′n and asigret ′n−1 from the signal frame, vali-
dates them by calculating asigret ′n = HK(sigret ′n,asigret ′n−1)
and comparing the result against the stored asigretn refer-
ence value. If successful the kernel replaces asigretn with
asigretn−1 in the secure kernel store and performs the signal
return to sigretn. If the validation fails the kernel terminates
the process. This prevents A from 1) overwriting CR, and
2) forging the PC values in signal frames. For general protec-
tion against sigreturn attacks corrupting any register stored in
the signal frame, all register values could be included in the
asigret calculation using the pacga instruction and validated
at the time of sigreturn.
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