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Abstract

We present the SLIC that achieves fine-grained location track-

ing (e.g., finding indoor walking paths) of targeted cellular

user devices in a passive manner. The attack exploits a new

side channel in modern cellular systems through a universally

available feature called carrier aggregation (CA). CA enables

higher cellular data rates by allowing multiple base stations

on different carrier frequencies to concurrently transmit to a

single user. We discover that a passive adversary can learn the

side channel — namely, the number of actively transmitting

base stations for any user of interest in the same macrocell.

We then show that a time series of this side channel can consti-

tute a highly unique fingerprint of a walking path, which can

be used to identify the path taken by a target cellular user. We

first demonstrate the collection of the new side channel and a

small-scale path identification attack in an existing LTE-A net-

work with up to three CA capability (i.e., three base stations

can be coordinated for concurrent transmission), showing the

feasibility of SLIC in the current cellular networks. We then

emulate a near-future 5G network environment with up to

nine CA capability in various multi-story buildings in our

institution. SLIC shows up to 98.4% of path-identification

accuracy among 100 different walking paths in a large office

building. Through testing in various building structures, we

confirm that the attack is effective in typical office building

environments; e.g., corridors, open spaces. We present com-

plete and partial countermeasures and discuss some practical

cell deployment suggestions for 5G networks.

1 Introduction

LTE, the global de facto standard of mobile broadband ser-

vices [1], is designed to prevent direct leakage of private

location information of its mobile user devices [2]. However,

recent studies demonstrate that adversaries can infer the lo-

cations of targeted individuals [3, 4]. Fortunately, existing

location privacy attacks in cellular systems have limitations

∗Corresponding author.

such as inferring only coarse-grained (e.g., macrocell level)

location information [3], or requiring the installation of mal-

ware on victims’ phones [4].

In this paper, we present SLIC
1, a novel location inference

attack that overcomes such limitations of the prior attacks

and accurately identifies the walking path taken by a target

user. To the best of our knowledge, SLIC is the first attack on

cellular networks shown to be effective in indoor, multi-story

building environments without requiring any malware on the

target user’s phone. SLIC exploits a new side channel in the

multi-carrier transmission (also known as carrier aggregation

or CA; see §2) — i.e., the number of actively transmitting

base stations for concurrent multi-band transmission — in

modern cellular networks.

The proposed SLIC attack relies on two crucial observa-

tions. First, cellular networks produce a specific time-series of

the above-mentioned side channel when an individual walks

a path. This pattern is path specific and is distinguishable

from the patterns observed when walking other paths. We

call such unique patterns path fingerprints. Each path exhibits

a highly unique fingerprint because the invariant physical

environment (e.g., building architecture) surrounding each

walking path affects the radio-frequency (RF) signal qual-

ity at each location on the path. As a result, if an adversary

records in advance a path fingerprint as she walks a specific

path, she can identify with high probability whether a target

user travels the same path. Second, the side channel of any

active users in a macrocell is publicly available since it is

broadcast unencrypted; see 3GPP TS 36.321 [5]. Hence, any

passively-monitoring adversary with commodity tools (e.g.,

open-source LTE tools [6]) in the same macrocell (e.g., 0.4 to

2 kilometers radius) can obtain the fingerprints, rendering our

attack highly stealthy and easily accessible. We have reported

our findings to GSMA through the coordinated vulnerability

disclosure (CVD) program and they are under review as of

September 2020.

To design and evaluate accurate location inference, we

1Stealthy Location Identification Attack exploiting Carrier Aggregation
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address three main technical challenges. First, the compar-

ison between path fingerprints is not straightforward when

applying standard techniques for comparing two time series

data. The standard dynamic time warping (DTW) technique

to compute the similarity between two fingerprints removes

the absolute values in fingerprints by normalizing them. The

problem is that the normalization of the side channel values

can also remove the physical location information of a target

user. For example, if a side channel value is seven at a cer-

tain time, it means the user is at one of the few spots where

seven cells are available for concurrent download. Normaliz-

ing this absolute value loses such critical location information.

Thus, instead, we use an absolute-value DTW technique and

preserve the location information during classification (§4).

Another technical challenge is to handle the potential noise

in the side channel. The side channel we exploit is shown to

reliably capture the number of available base stations around

a target user when the user is actively downloading (see §3

for several practical attack strategies to trigger downlink ac-

tivities of a target user). However, this may not be always

possible. The side channel may become noisy when a target

user requires fewer than the maximum available base stations

around him; e.g., only a single base station might be required

regardless of where on a path a user is located when downlink

activity is low. We address this by explicitly modeling the

limited downlink activity of a target user. To be specific, we

use a single integer-value parameter to model the maximum

number of activated secondary cells required for a user. We

then calibrate each fingerprint record with respect to this pa-

rameter and match with the target’s fingerprint (§4). We show

that with this calibration, our attack still identifies paths with

only modest degradation in attack accuracy because the cali-

brated fingerprints reliably capture the unique dead spots (i.e.,

locations with only a small number of available base stations)

in many walking paths in practice (§8).

The last challenge is that the full extent of the SLIC at-

tack cannot be evaluated in the existing cellular networks.

Although our small-scale experiment in an existing LTE-A

network with only three CA capability (§5) shows promising

results (e.g., 50.1% of path identification accuracy among

eight different outdoor paths), our attack is expected to be

most effective in a near-future cellular network (e.g., 5G) with

highly dense small-cell deployments [7] for larger downlink

bandwidth. Such highly dense small-cell networks, however,

do not yet exist as of 2020. To that end, we develop a novel Wi-

Fi-to-5G evaluation framework that translates a real-world ex-

periment with existing densely-deployed Wi-Fi access points

into the emulated 5G cellular network experiment results (§6).

We argue that this cross-technology conversion ensures a re-

alistic evaluation of dense 5G small cells because they are

often designed to be indistinguishable from the existing Wi-Fi

systems when the two systems coexist in the same frequency

band; see TR 36.889 [8] and a related whitepaper [9].

Our extensive evaluation with an emulated cellular network

with nine CA capability in multi-story buildings shows that

the SLIC is highly effective in typical office buildings (§7).

When we exhaustively search and select 100 different walking

paths in a large building, we achieve up to 98.4% of path-

identification accuracy. We extend the experiment to various

types of buildings (e.g., corridors, open spaces, shared floors)

and show that the SLIC is highly effective in the first two office

building types (§8). Additionally, we empirically confirm that

the fingerprinting mechanism is robust to minor perturbation

(e.g., transmit-power control) of RF measurements.

Finally, we provide a number of countermeasures against

the SLIC, including some suggested changes to the 3GPP

standards and two partial (but readily available) countermea-

sures (§9). We also briefly discuss cell deployment sugges-

tions for 5G networks so that the risk of location information

leakage can be considered early in the cell planning stage.

2 Carrier Aggregation and New Side Channel

In this section, we first present carrier aggregation technol-

ogy that is required to understand the SLIC attack. We then

introduce the new side channel and its real-world examples.

2.1 Carrier Aggregation for Higher Rates

Traditionally, cellular network users are served by a single

base station, called a primary cell. In 2010, to keep up with

increasing data consumption, 3GPP introduced a new feature

called carrier aggregation (CA). CA allows users to connect

to one or more additional base stations, called secondary cells,

to achieve higher data rates [10]. With CA, a user is connected

to a primary cell for control messaging as well as connected

to multiple secondary cells for downlink transmissions.

In the initial releases, 3GPP specifications supported a max-

imum of four secondary cells [11]. More recently, it has been

extended to a maximum of 31 secondary cells (including

aggregation of the unlicensed spectrum [12]). We observe

flagship phones in the market with increasing CA capabili-

ties (e.g., seven CA supported in Galaxy S20 [13] compared

to five CA in Samsung Galaxy S8 [14]). Operators around

the world deploy and extensively utilize CA with several sec-

ondary cells (e.g., three CA and four CA capabilities in Singa-

pore and South Korea, respectively). The trend of supporting

higher CA certainly exists.

Figure 1 illustrates how CA is configured and activated

for a user device.2 We divide the CA operation into three

components: configuration, activation, and transmission.

CA configuration. First, a user equipment (UE) measures the

signal strength of all nearby secondary cells and sends these

2For brevity and easier understanding, we abuse the terminology a lit-

tle and refer to the configuration and activation of secondary cells as CA

configuration and CA activation, respectively. For example, three CA con-

figuration/activation refers to two secondary cell configuration/activation in

addition to one default primary cell.
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Figure 1: A simplified illustration showing how secondary

cells are configured and activated for higher capacity.

measurement reports back to its primary cell. The primary cell

applies the secondary-cell configuration algorithm (omitted

from Figure 1; see §6.2 for more details) to determine the sec-

ondary cells that can be used for downlink transmission. The

primary cell assigns each configured secondary cell a unique

index so that they can be easily activated later for data trans-

mission (see Section 5.3.10.3(b) in 3GPP TS 36.331 [15]);

see the example in Figure 1 where four secondary cells are

assigned four indices. Note that the configuration messages

are encrypted and thus an unauthorized adversary cannot

learn the CA configuration (see Appendix A6 in 3GPP TS

36.331 [15]).

CA activation. After the secondary cells are configured for

a UE, it can be activated for downlink transmission at any

time. In the example shown in Figure 1, as the primary cell

receives some downlink traffic for the UE, it activates a subset

of the configured secondary cells. The activation is made via

a compact (8-bit or 32-bit) activation bitmap MAC control

element (MAC CE) where each bit corresponds to the con-

figured secondary cell index (see Section 6.1.3.8 in 3GPP

TS 36.321 [5]). Bits set as 1 indicates the activation of the

corresponding configured secondary cell and set as 0 indi-

cates deactivation. Note that activation bitmaps are sent to

each UE frequently (e.g., 4-8 ms) whenever the secondary

cell activation changes. The activation bitmaps are sent in

plaintext unlike the configuration messages; therefore, any

unauthorized adversary, who is in the communication range

of a primary cell, can easily learn the number of activated sec-

ondary cells for a UE simply by counting 1-bits in a bitmap.

Downlink transmission. Following the activation bitmaps,

the UE decodes the scheduling information from the control

channel and receives the downlink transmission from the

CA configuration

CA activation

UE physical location

Downlink activity in a macrocell

ü Target UE’s downlink activity

ü Other UEs’ downlink activity

Figure 2: A diagram that illustrates the logical depen-

dency between the CA operations and the UE physical lo-

cation/downlink activity.

corresponding cells, resulting in a larger aggregate data rate.

2.2 The New Side Channel

The new side channel found in the CA operation is the number

of activated secondary cells for each UE, as shown in Figure 1.

This side channel information can be easily obtained by unau-

thorized passive adversaries since it is broadcast unencrypted.

The adversary can modify open-source tools [6] and utilize

commodity software-defined radio devices [16] to decode the

control and data channel to obtain the activation bitmap.

Location dependency. Perhaps the most desired property of

this side channel for the SLIC attack is its dependency on

a target UE’s location. Figure 2 visualizes this dependency.

CA configuration exclusively depends on a target UE’s lo-

cation because it is determined by the distance from nearby

secondary cells.

CA activation is also affected by the UE location because

the activated cells are strictly a subset of the configured cells;

yet, it is also dependent on the downlink activities in the pri-

mary cell. First, it is dependent on the target UE’s downlink

activity because secondary cells are activated only when there

is a need for downlink transmission for the target UE. More-

over, CA activation can be additionally affected by the overall

load of the cellular system; e.g., the CA activation for the

target UE may vary depending on how the secondary cells

are already used for other UEs’ downlink activities.

It is imperative to ensure that CA activation is depen-

dent largely on a target UE’s location despite this multi-

dependency. In this paper, we show that it is possible in prac-

tice. First, we suppress the dependency on a target UE’s down-

link activity by triggering the target UE’s download during

the path identification; we present a few practical attack strate-

gies in Section 3. Second, we empirically show that the CA

activation in the existing LTE-A networks is strongly depen-

dent on the UE location and less on the load3 of the cellular

system; see our real-world experiments conducted on one of

the cellular networks later in this section.

Side channel and path fingerprints. Although this new side

channel shows a great potential to leak some UE location

information, the side channel itself is insufficient for user

location identification attacks. For instance, learning that a

3To test in varying system loads, we perform experiments in different

times of the day and in different days of the week.
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Figure 3: (a) Data rate changes observed in multiple walks

on the same 260-meter walking path. (b) CA configuration

(red line) and activation (grey area) changes observed in four

walks on the same path.

certain UE is being served by three secondary cells does not

leak much location information when there exist many other

locations that have three (or more) secondary cells.

Instead, we build a time series of this side channel informa-

tion and use it as a fingerprint of a walking path when there

exist different secondary cell availability along the path. To be

specific, as a user walks a certain path, the number of activated

secondary cells for the UE may change over time depending

on how secondary cells are deployed along the path. We ex-

pect unique fingerprints for different walking paths since the

deployment of secondary cells and the surrounding physical

environment can be highly unique in indoor/outdoor setting.

Real-world evidence. We briefly show the feasibility of this

side channel and the fingerprints through our small-scale ex-

periment in an LTE-A network in a metropolitan city, where

up to three CA is available (i.e., one primary cell and two

secondary cells are available). We walked a 260-meter out-

door pedestrian path fourteen times with a Sony Xperia XZ1

phone. We particularly choose two different times (i.e., 9 AM

and 8 PM) in all seven days a week to conduct experiments

when the LTE-A network experiences widely different levels

of cellular traffic load [17,18]. Figure 3(a) shows how the data

rate changes during an entire walk when we keep download-

ing files. We see that a clear pattern emerges. For example,

when a user passes by a certain spot, consistently higher data

rates are offered. This means that a user can expect a similar

downlink rate change pattern along the path and the pattern

seems to be highly independent of when he walks the path.

Figure 3(b) explains why such a clear pattern emerges. The

four figures of the CA configuration and activation changes

show a highly consistent pattern. This shows that the number

of nearby secondary cells at specific spots on the path is highly

consistent for different walks at different times. Also, most

of the available nearby secondary cells get activated when

there exist active downloads during the walks. We observe

reliable three CA activation at an average data rate of about

40 Mb/s or higher in our experiment when downloading a

large file. We also observe frequent three CA activation when

streaming popular YouTube music videos at a moderate 360p

video resolution; see more detailed evaluation in Appendix B.

The results clearly show that the side channel is real and,

more importantly, has a great potential to be used to form

consistent and unique path fingerprints. Similar observations

are found in another cellular provider; see Appendix C. More

comprehensive evaluations in multiple paths in existing LTE-

A networks are found in Section 5, and in a synthesized near-

future network in Section 7 and Section 8.

3 Threat Model

Attack goals and capabilities. A SLIC adversary aims to

identify the path taken by a target user among all the walking

paths that have been fingerprinted in advance. SLIC works for

both indoor and outdoor paths as long as they can be finger-

printed. An adversary should be able to fingerprint (e.g., walk

with her phone) the paths that are potentially taken by a target

user in advance (i.e., during the reconnaissance step (§4.1)).

During the path identification, SLIC requires minimal attack

capability of passively monitoring the scheduling channel for

a targeted UE. A commodity low-cost software-defined radio

device (e.g., USRP [16]) with open-source cellular projects

(e.g., srsLTE [6]) is sufficient (§4.2). Note that the SLIC does

not require any app installation on the target’s phone.

For the path identification, a SLIC adversary can be located

anywhere in the radio coverage of the primary cell in which

a target UE is located, where the typical radio coverage of a

primary cell is 0.4–2 kilometers.

Scope and assumptions. In this paper, we consider that our

target user travels on foot to show the feasibility of SLIC.

Faster-moving users (e.g., users on scooters or other vehicles)

are out-of-scope of this paper as they often move away from

short-range secondary cells even before they are activated for

CA. We leave attacks on fast-moving users for future work.

We also assume that our target user has some cellular down-

link activity because only then the presented side channel is

available. Note that it is common to see cellular downlink

activity while walking. With the abundance of cellular down-

link bandwidth (and the availability of unlimited data plans

in many countries [19, 20]), it has become a norm to stream

music in the form of music ‘videos’ [21,22]. Moreover, a non-

negligible portion of the population watches video content

while walking (dubbed as ‘Netflix-and-Stroll’) [23].

We consider that a SLIC adversary has some basic context

information about when her target user is on the move and

performs the path identification when the target is moving.

For example, an adversary may learn the commuting pattern

or meeting schedules via the target’s public calendar (e.g., a

public online calendar with “busy/free” marks).
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We consider a single passive adversary device within a

primary cell. In principle, with multiple passive adversary

devices in adjacent primary cells, an adversary can obtain

path fingerprints across adjacent primary cells with minor

discontinuity in side-channel measurements.

We use the Temporary Mobile Subscriber Identity (TMSI)

of the device to refer to the identity of a user. We assume

that adversaries can conduct a separate attack proposed by

Shaik et al. [3] (or a similar attack that is recently shown

to be feasible in 5G networks [24]) to link the TMSI to the

real-world identity of users.

Strategies to activate the side channel. As discussed in Sec-

tion 1 and demonstrated in Section 2.2, the side channel reli-

ably captures the number of secondary cells at each location

when a target user is utilizing the downlink bandwidth. A

SLIC adversary may have several options to achieve this:

1) The adversary can encourage a target user to begin down-

loading certain content for a couple of minutes. For ex-

ample, a link to any interesting high-volume content (e.g.,

a BBC breaking news clip) can be sent to a target user

to trigger the user’s download while walking one of the

fingerprinted paths. Additional context information about

a target user can be helpful (e.g., sending legitimate work-

related file contents). Note that it is far different from

phishing attacks (where a target user is tricked into click-

ing a link to malicious content) because the suggested

contents are completely benign and malware-free.

2) The adversary can initiate a high-volume interactive ses-

sion with a target user via emerging technologies, such as

augmented reality (AR) or virtual reality (VR) conference

calls or multi-player AR games [25, 26]. Even if a tar-

get turns off all his video/AR/VR data streams except his

voice, the adversary can still activate the target’s download

by streaming her high-volume video/AR/VR data.

Even if the above options are unavailable, an opportunistic

attack is possible.

3) The adversary can opportunistically wait until the target

starts some downlink activities. This is possible as the

adversary can keep track of the target UE’s TMSI over

time and monitor the target’s real-time downlink rates.

Note that the above strategies do not make the SLIC any less

stealthy because they are all deemed legitimate behaviors (e.g.,

sending a legitimate YouTube link, authentic work-related

files, or making AR/VR sessions with a target user).

4 Attack Design and Implementation

We begin with the overview of SLIC (§4.1) and explain

the detailed attack steps for the main path-identification at-

tack (§4.2), where a SLIC adversary is able to fingerprint all

plausible paths. We extend the main attack by considering

the case when a SLIC adversary misses fingerprinting some

plausible paths (§4.3).

labeled 

fingerprint

fingerprinting module

(1) Reconnaissance phase

adversary
fingerprint

records

“The victim is on path p” 
or 

“Unexplored path”

absolute-value DTW

comparison modulefingerprinting module 

(2) Attack phase

victim
sniffer 

calibration

module

victim’s 

fingerprint

max activated cells

reading activation bitmap 

via privileged app

reading activation bitmap via 

public scheduling channel 

(PDCCH, PDSCH)

Figure 4: System model of SLIC, which is divided into two

phases, namely the Reconnaissance and Attack phase.

4.1 Overview

SLIC is divided into the following two phases as illustrated in

Figure 4. (1) Reconnaissance phase: An adversary collects the

fingerprints of candidate paths that can be potentially taken

by the victim. Specifically, the adversary reads the activation

bitmap assigned to a device via a privileged app and obtain the

number of activated secondary cells. As the adversary walks

a path, the number of activated secondary cells may vary and

this change is recorded with the annotated ground-truth loca-

tion information to obtain a labeled fingerprint of the path.

The adversary may walk the same path several times to obtain

multiple labeled fingerprint records for higher confidence as

each walk of the same path will yield similar but slightly dif-

ferent fingerprints. (2) Attack phase: The adversary monitors

the side channel (i.e., the number of activated secondary cells)

of the target victim. Specifically, the adversary utilizes a snif-

fer tool in the primary cell that can read the activation bitmap

broadcast in the public scheduling channel (i.e., by access-

ing the Physical Downlink Control Channel (PDCCH) and

Physical Downlink Shared Channel (PDSCH)). The adversary

starts measuring the changes in the side-channel values for

a certain duration (e.g., a couple of minutes) to obtain the

victim’s fingerprint. The adversary calibrates all the labeled

fingerprints by limiting the maximum number of activated

cells to be the same as the victim’s fingerprint to match the vic-

tim’s data usage or device capabilities. She then compares the

victim’s fingerprint with all the calibrated labeled fingerprints

to identify the path taken by the victim.

4.2 Identifying Fingerprinted Paths

The adversary’s goal is to identify the path taken by a victim

user among the set of fingerprinted plausible paths. Specifi-

cally, the adversary compares the victim’s fingerprint captured

during the attack phase to a set of all labeled fingerprints col-

lected during the reconnaissance phase.

Notation. We denote f w
p in the reconnaissance phase as the

labeled fingerprint of a candidate path, p, in a walk, w. Each

fingerprint f w
p = {x1,x2, ...} is a series of non-negative integer

side-channel values. We denote the victim’s fingerprint in

the attack phase as fu to represent the identity of the path

USENIX Association 30th USENIX Security Symposium    3903
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(a) An example of calibration of labeled fingerprint (b) Resultant calibrated fingerprint

Figure 5: (a) The labeled fingerprint (orange solid line) is

calibrated to have at most four activated cells (green dotted

line) at any given point of time. (b) The resultant calibrated

fingerprint with at most four activated cells.

unknown to the adversary. Hence, the main goal of this attack

is to identify the path on which the fingerprint fu is obtained.

Fingerprinting module (in (1) Reconnaissance phase). In

the reconnaissance phase, the adversary uses her mobile

phone with an app [27] to directly access the messages re-

ceived from the primary cell. She simultaneously downloads

a large file to activate a maximum number of secondary cells

and the app reads the activation bitmap along with the config-

uration messages. By counting the number of activated cells

in the activation bitmap while walking a designated path, the

adversary obtains the labeled fingerprint of the path.

Fingerprinting module (in (2) Attack phase). In the attack

phase, the adversary obtains the fingerprints differently by

reading the public scheduling channel of the primary cell. As

the public scheduling channel is broadcast in clear by the

primary cell, the adversary can passively read the activation

bitmap information as long as she is in the reception cover-

age of the victim’s primary cell. An adversary can utilize the

open-source projects (e.g., srsLTE ( [6]) to record the entire

downlink signal for the duration (e.g., 2 minutes) of a walk,

and read the bitmaps in an offline manner. We use the Mat-

lab LTE Toolbox [28] to read the LTE samples and decode

PDCCH and PDSCH. It takes 90 milliseconds on average

to decode a PDCCH and a corresponding PDSCH (i.e., one

subframe) for a single UE. Overall, it takes about 5.6 minutes

for reading a fingerprint of a single victim UE when decoding

multiple subframes in parallel with a 32-core machine.

Calibration module. Before this comparison though, we first

calibrate all the labeled fingerprints with the maximum num-

ber of activated secondary cells observed in the victim’s fin-

gerprint. For this, we cap all the labeled fingerprints with

the maximum CA value of the victim’s fingerprint. For ex-

ample, if the maximum number of activated secondary cells

in the victim’s fingerprint is four, then we calibrate all the

labeled fingerprints to have a maximum of four activated sec-

ondary cells at any given point of time; see an example in

Figure 5(a) and 5(b). We perform this calibration to adjust

the labeled fingerprints as close to the victim’s fingerprints

in the cases of the victim’s low downlink usage or restricted

device capabilities.

Comparison module. Upon calibration, we input the cali-
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Figure 6: Illustration of absolute-value DTW. With the

absolute-value DTW, we correctly identify the two walks

on the same path; i.e., the distance between W1 and W2 in (a)

is smaller than the distance between W1 and W3 in (b).

brated labeled fingerprints and the victim’s fingerprint into

the comparison module. This module has two main tasks.

First, it computes each of the comparison distances. Second,

it selects the smallest comparison distance and outputs the

corresponding path as the identified victim’s path, p̂. That is,

we compute p̂ = arg
p

mindist( f w
p , fu).

We implement the distance function dist(·) for comparing

the distance using a modified version of DTW [29]. This

enables SLIC to adequately compare a pair of fingerprints

of the same path that vary slightly due to several reasons,

including non-identical walking speeds and patterns. It finds

the best alignment between the two fingerprints by warping or

stretching the time axis. It works by computing a cumulative

distance between each pair of side-channel values of the two

fingerprints to finally obtain DTW distance between the pair.

For example, Figure 6(a) depicts the mapping between side-

channel values of two walks, W1 and W2. It depicts that the

4th side-channel value (i.e., 5) in W2 is stretched to map with

the 4th and the 5th value in W1. The plot also depicts the

minimum cumulative distance computed for each matching

pair to finally obtain the minimum final distance of 2 (in red).

Note that, unlike the standard DTW technique where the

amplitude of the data is considered as noise, the amplitude of

our data (i.e., the number of transmitting secondary cells) is

the important side-channel information. Hence, we do not nor-

malize the amplitude of our data because, otherwise, we may

lose the most critical information in the side channel; namely,

the physical location information. We call this absolute-value

DTW. Figure 6 illustrates the absolute-value DTW mapping

between fingerprints of walk W1, W2 on the same path P1 and

W1, W3 on different paths P1 and P2. The figure depicts that the

cumulative distance computed for each pair of side-channel

values of W1, W2 does not increase due to the high similarity

in their values. This similarity is correctly reflected in the

final distance which is a low value of 2. However, the final

distance of W1 and W3 is 30 (>2) indicating the walks to be

less similar than W1, W2. Thus, W1 and W2 are correctly iden-

tified to be belonging to the same path. If the data were to be

normalized, W1 and W3 will be identified to be more similar

(as their shapes are similar) which may lead to incorrect path
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identification. As this example illustrates, SLIC utilizes the

absolute values of our fingerprints as critical information.

4.3 Handling Unexplored Paths in SLIC

We design an extension of the aforementioned SLIC attack

when the adversary misses fingerprinting some plausible paths

during the reconnaissance phase. We call such paths unex-

plored. The comparison module handles the explored paths

in the following ways. It first computes the average DTW dis-

tance between all the labeled fingerprints per path to obtain a

distance threshold. This threshold determines the average sim-

ilarity of labeled fingerprints per path. We consider the victim

to be walking an unexplored path if the minimum DTW dis-

tance between the victim’s fingerprint and labeled fingerprints

of all paths is greater than the distance threshold (+δ). If the

victim’s path is already fingerprinted, then the corresponding

path is identified as above.

5 Feasibility of SLIC in Existing LTE-A Net-

works

We first aim to show that the SLIC is feasible in an existing

LTE-A network in a metropolitan city. By showing the attack

feasibility in a cellular network with only three CA capability,

we want to discuss the promising potential of the SLIC in

emerging cellular networks with much higher CA capability.

5.1 Experiment Setup: SLIC in LTE-A

We test the LTE-A network that supports up to three CA ca-

pability (i.e., one primary cell and up to two secondary cells)

and we use two Sony Xperia XZ1 phones for the experiments.

We run MobileInsight [27] on the phones to decode LTE-A

messages, just as the adversaries would do for their reconnais-

sance step. We have walked eight non-overlapping outdoor

paths with an average distance of 260 meters and measured

their path fingerprints. We have conducted experiments for

seven days at three different times of a day (morning, after-

noon, and evening) to obtain eighteen walks per path (144

instances of walks) totaling 37 kilometers in 10 hours.

5.2 Path-Identification Results in LTE-A

We partition our dataset into the labeled fingerprints collected

during the reconnaissance phase and the victim’s fingerprints

collected during the attack phase. For the labeled fingerprints,

we use one Sony phone to collect data whereas for the victim’s

fingerprint we use another Sony phone. We consider data

collected on the five days (i.e., twelve walks per path, a total

of 96 instances) as the labeled fingerprints and in the other

two days (i.e., six walks per path, a total of 48 instances) as

the victim’s fingerprint.
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Figure 7: Accuracy of path-identification attack. The identifi-

cation accuracy increases as the number of labeled fingerprints

increases. The errorbar denotes the standard deviation.

We measure the number of configured secondary cells as

a proxy for the number of activated secondary cells due to

practical constraints in measuring activated secondary cell

at a large scale; e.g., our LTE-A providers have a per-month

total bandwidth limit for each SIM, and only a finite number

of SIMs can be purchased for academic research. In practice,

SLIC adversaries would not be bound by these constraints

because they would be able to purchase large numbers of

SIMs for the reconnaissance step. We model the number

activated secondary cells using the measured configured cells

by adding random noise to the 13% of all measured samples of

the configured cells. This is based on our observation that the

number of configured and activated secondary cells matches

by 87% in the experiment conducted over seven days (§2.2).

We randomly select a varying number of labeled finger-

prints per path ranging from 2 to 12 for all the eight paths.

We also randomly select thirty fingerprints as the victim’s

fingerprints. We iterate this process one hundred times for ten

random noisy data. Figure 7(a) shows the path-identification

accuracy of SLIC with the increasing number of labeled finger-

prints per path from 2 to 12. The overall accuracy increases

from 40.7% (for two labeled fingerprints per path) to 50.1%

(for twelve labeled fingerprints per path).

To further investigate, we analyze the similarities between

all fingerprints in all the paths in our dataset. Figure 7(b)

shows this in a correlation matrix of the eight paths. The

number in a box (i, j) represents the average of all the pairwise

DTW distance between all the fingerprints in the i-th path and

the j-th path. For the majority of the paths (i.e., path indices

3, 4, 5, 6, 7, and 8), the fingerprints measured for the same

path show the smallest DTW distances. For the other cases,

the average DTW distances between the ones measured for

the same paths are still close to the smallest.

5.3 Promising Potential of SLIC

While overall accuracy is far from ideal, the result in the

existing LTE-A system shows a promising potential, partic-

ularly considering that the fingerprints are generated with

coarse-grained side channels (i.e., only three values in a three

CA). First, the result shows that similar fingerprints are ex-

pected in two different walks on the same path. Our samples
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in Figure 7 are collected across seven days in the mornings,

afternoons, and evenings, and the fingerprints are quite con-

sistent in general. Second, two distinctive fingerprints are

expected in general when measured on different paths.

With these promising results, we envision much higher

path-identification accuracy with a finer-grained fingerprint-

ing in a cellular network with higher CA capability. In this

paper, therefore, we aim to evaluate SLIC in a near-future net-

work with densely deployed small cells. The next few sections

describe how we experiment SLIC in a near-future network.

In particular, Section 6 describes our Wi-Fi-to-5G evaluation

framework where we use an existing WiFi deployment to

emulate a densely deployed cellular network.

6 Wi-Fi-to-5G Evaluation Framework

How can we test the SLIC attack in a cellular network with a

slightly more (e.g., 7–9) CA capability — a typical near-future

5G deployment scenario? To demonstrate the SLIC attacks in

such a not-fully-deployed dense small cell cellular system, we

design and implement a Wi-Fi-to-5G evaluation framework.

Before we describe the rationale behind the design of our

framework, we briefly explain why the two typical evalua-

tion approaches, namely, early-deployment/testbed sites and

computer simulations, are inappropriate.

• Early-deployment sites? As of January 2020, there are only

some cities/countries that have deployed 5G infrastruc-

ture [30]. In addition, to the best of our knowledge, none

of the real deployment (or testbeds) has dense secondary

cell deployment at a large scale yet.

• Computer simulations? With some advanced computer

simulation tools (such as ns-3 [31], OMNeT++ [32], OP-

NET [33]), one can model and simulate various physical en-

vironments (e.g., walls, moving objects) for point-to-point

wireless channel experiments. Yet, it would be extremely

costly computationally (if not infeasible) to simulate large-

scale experiments with tens of small cells and buildings

with many walking paths, which is crucial for realistic at-

tack evaluation.

6.1 Rationale Behind Using Wi-Fi for 5G

Evaluation

The high-level idea of our 5G evaluation framework is to uti-

lize an existing, densely-deployed Wi-Fi system to evaluate

the behavior/deployment of 5G secondary cells. We argue

that this seemingly unconventional idea is indeed a sound

approach to evaluating our attacks in realistic 5G environ-

ments. The rationale behind this approach is that one of the

most promising dense secondary cell technologies, License

Assisted Access (LAA) which can aggregate unlicensed spec-

trum, is specifically designed to be indistinguishable from the

Table 1: Comparison of Wi-Fi and LAA
Layer Features Wi-Fi LAA

Frequency Band 5 GHz unlicensed 5 GHz unlicensed

Physical Max. Transmit Power 1 Watt 1 Watt

Layer Modulation OFDM OFDM

Transmit Power Control Yes Yes

Channel Access CSMA/CA Listen-Before-Talk (LBT)

Medium Contention Window Exponential increase Exponential increase

Access Transmitter Detection Beacon Signal Discovery Signal

Layer CCA slot duration 9 µsec 9 µsec

Transmission Duration 5 to 10 msec 2, 3, 8, or 10 msec

existing Wi-Fi systems for the “effective and fair coexistence”

with existing Wi-Fi systems [8, 9].

Nearly identical physical and medium-access layers. We

first illustrate how LAA is designed to be similar to the Wi-Fi

system in the physical and medium-access layers in Table 1.

First of all, the physical-layer characteristics of the two sys-

tems are nearly identical. The two systems use the same

5 GHz unlicensed frequency bands with the same maximum

transmit power of 1 Watt [8, 34] and the same OFDM sig-

nal modulation. Second, the medium-access layer of LAA is

particularly designed to behave like the Carrier Sense Multi-

ple Access/Collision Avoidance technique in the Wi-Fi stan-

dard [35]. To be specific, the LAA secondary cells follow

Listen-Before-Talk (LBT) procedure in which the cells have

to wait for the medium to be free before it can transmit on

it [36]. The two systems have the same slot time duration

and their contention windows increases exponentially (see

Section 15 in 3GPP TS 36.213 [37]). Finally, they transmit

periodic signals in a similar manner and have the maximum

transmission duration.

The indistinguishability requirement. The LAA secondary

cells operate in the same frequency as the existing Wi-Fi sys-

tems. Naturally, concerns for fair and effective coexistence

have been raised by the Wi-Fi standard community, industry,

and regulatory bodies since as early as 2015 [38, 39]. Af-

ter several years of intense discussion, the 3GPP’s solution

is to enforce strict constraints for the LAA secondary cells

and make them indistinguishable from Wi-Fi systems; that is,

from the Wi-Fi devices’ point of view, these LAA cells should

look nearly the same as another Wi-Fi system. Their design

principles are well explained in the standard document (see

Section 7 in 3GPP TR 36.889 [8]) and even explicitly used

as a performance evaluation criterion in Intel’s whitepaper on

their 4.5G systems [9]. This indistinguishable system design

and deployment lead us to believe that the future 5G LAA

secondary-cell deployment is likely to be similar to the exist-

ing Wi-Fi deployment. Hence, this constitutes the justification

of our attack evaluation in Wi-Fi networks.

6.2 Overview of Design and Implementation

Although the idea of evaluating SLIC in Wi-Fi networks may

seem straightforward, in fact, it requires a number of non-

trivial emulations of 5G physical and medium-access layers

as well as the user behavior models to obtain the accurate
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Figure 8: Wi-Fi-to-5G evaluation framework with an example

outcome at each stage. The plot represents the change in the

number of secondary cells at different stages of the evaluation

framework for a single walk on an indoor path.

side-channel information in 5G networks.

Figure 8 depicts our Wi-Fi-to-5G evaluation framework

from the collection of Wi-Fi received signal data to the fin-

gerprint. There exist three stages. In ➊, the Wi-Fi signals are

converted to 5G signals. Then the secondary cell configuration

algorithm, such as A1, A2, A4, A6 (see Section 5.5.4 in 3GPP

TS 36.331 [15]) is applied in ➋ to emulate the configuration

of secondary cells for the device. We consider the above al-

gorithms because it mainly utilizes the signal strengths from

secondary cells which we emulate using Wi-Fi APs. The

dotted blue line in Figure 8 represents the total number of

secondary cells deployed at the user location. We can see that

only some of them are actually configured by the evaluation

of the secondary cell configuration algorithms; see the solid

orange line. In ➌, the number of activated secondary cells

is determined based on the data usage to finally obtain the

fingerprint. When a user’s demand for downlink data stream

is limited to a certain extent (e.g., watching videos with the

low-resolution setting), the cellular system would not utilize

more secondary cells than needed; see the dashed grey line

in Figure 8 for the case when a target user needs only up

to four secondary cells. We present an in-depth evaluation

in Section 8.2 regarding the effects of fingerprints with the

limited downlink activities. Refer Appendix A for the details

of the three implementation steps.

6.3 Limitation in Wi-Fi-to-5G Evaluation

Framework

Our Wi-Fi-to-5G evaluation framework demonstrates realistic

emulation of SLIC in certain probable 5G deployment sce-

narios (e.g., densely deployed unlicensed small cells) but not

all possible 5G scenarios. In some 5G deployment scenarios

(e.g., millimeter waves, sub-6 GHz spectrum), one may ex-

pect different SLIC attack performance due to (1) the different

radio frequency ranges, and (2) different indoor/outdoor en-

vironments. The range of Wi-Fi APs can be shorter than the

range of some 5G cells. Hence, the activation/deactivation

of the secondary cells may happen more slowly in some 5G

deployments compared to the Wi-Fi deployment leading to a

coarser fingerprint. One can also expect different fingerprint

quality for outdoor deployments as they may consist of cells

with a higher range as compared to indoor deployments. All

these differences may affect the performance of the SLIC at-

tack, for example, the attacker may need to obtain a longer

victim’s fingerprint to identify the path.

7 Evaluation of SLIC in Emulated 5G Net-

works

In this section, we demonstrate the performance of SLIC in our

emulated 5G network with up to nine CA capability using the

technique introduced in Section 6. We first describe a detailed

experiment setup (§7.1) and present the main performance

evaluation of SLIC in two common attack cases (§7.2).

7.1 Experiment Setup for Large-Scale Mea-

surements

Apparatus. For the experiment with the Wi-Fi-to-5G evalua-

tion framework (§6), we develop an Android app on a smart-

phone that collects received signal strengths indicator (RSSI)

values of the Wi-Fi access points (operating in both 2.4 and

5 GHz). We also collect other auxiliary information including

Wi-Fi SSIDs and their operating frequencies. We further pre-

process the collected data by removing data from 2.4 GHz

band to emulate the unlicensed 5G secondary cell deployed

in the 5 GHz band [8].

Data collection. We invite four participants to walk on a

total of 46 different indoor paths, with an average distance of

56.4 meters. We collect the data using two Nexus 6 phones

running the aforementioned data collection app. The paths

include corridors and staircases of a large office building with

five floors in our institution. Walking different directions on

the same path (i.e, 1 to 2 and 2 to 1) are considered as two

different paths. We ask each participant to walk 10 times

per path, yielding a total of 460 instances of walks totaling

25.9 kilometers across the paths in five hours. The walks

are distributed between different times of day (i.e., mornings,

afternoons, and evenings) across a duration of 21 days to

demonstrate SLIC’s robustness across different times.

Path synthesis for large-scale experiments. The number of

possible distinct paths in a typical multi-story office building

may, in fact, be much higher than the number of paths we

choose to walk (i.e., forty-six). Office buildings have several

indoor intersections, entrances, exits, and staircases and, thus,

there could exist several hundred or even a thousand different
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Figure 9: A graph of path segments constructed for a large

office building.

Table 2: Number of synthesized paths for path distances
Path distance (meters) Number of synthesized paths

200-250 291

300-350 624

400-450 1,044

500-550 1,307

600-650 1,073

paths in a building when considering 1-2 minute short walks.

Walking all possible 1-2 minute paths (perhaps, multiple times

per path) in practice, therefore, would result in an extremely

labor-intensive experiment. Instead, we carefully synthesize

all possible paths in the building using the 46 short paths (or

path segments) we measure separately. The synthesized paths

represent the large number of plausible paths taken by the

victim within primary cell coverage.

For path synthesis, we construct a graph that is made of

the above forty-six short path segments as the edges. Figure 9

shows the graph for a large building we test. We superimpose

the floor plan of the building for easier interpretation. The

graph has 23 edges (46 directed edges) and 17 vertices where

every edge connecting any two vertices are collected paths.

We first construct as many distinct paths as possible by

finding all random walks without repetition (i.e., no walk on

the same segment in a path regardless of the direction). Table 2

shows the number of synthesized paths for different path

length ranges. As expected, we can create more distinct paths

for longer path lengths. When enumerating for the path length

of [500,550) meters, we can find 1,307 different paths in the

building, after which the number gradually decreases for even

longer paths due to the limited building size. Then, we obtain

fingerprints for the new synthesized paths. We randomly pick

the walks from ten collected fingerprints for each path and

form the new synthesized fingerprint by concatenating them.

7.2 Attack Evaluation

We present the main evaluation results of the SLIC, focusing

on two attack cases: (1) a SLIC adversary fingerprints all

plausible paths of a victim user, and (2) a SLIC adversary

fingerprints some plausible paths of a victim user.
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Figure 10: Path-identification accuracy of SLIC. The overall

accuracy increases with increasing path distance for a differ-

ent number of fingerprinted paths.
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Figure 11: The ROC curve when some of the victim’s paths

are unexplored. The curve shows that the adversary can

achieve high accuracy in identifying fingerprinted paths with

low false positives.

7.2.1 Attack Case 1: Fingerprinting All Plausible Paths

This attack case models a resource-rich adversary where it is

feasible to fingerprint all plausible paths of the victim within

primary cell coverage. This is, in fact, similar to our experi-

ment setup where we exhaustively search all possible indoor

paths in the large buildings as shown in Figure 9.

Figure 10 depicts the path-identification accuracy of SLIC

for varying numbers of fingerprinted paths (100, 200, and

300) with increasing path distance. We evaluate the path-

identification accuracy for varying path distance (from 200

to 650 meters). We consider nine labeled fingerprints per

path and 100 victim’s fingerprints and perform five iterations

each time by randomly choosing both labeled and victim’s

fingerprints. We consider that the victim is fully utilizing all

the available secondary cells at each location. Figure 10 in-

dicates that the accuracy increases when the victim walks

longer paths. For example, the identification accuracy of 100

fingerprinted path increases from 94% to 98.4% as the dis-

tance of the path increases from 200-250 meters to 600-650

meters. Note that we omit the data point at the path distance

of 200-250 meters for 300 fingerprinted paths because only

291 paths are available; see Table 2.

7.2.2 Attack Case 2: Fingerprinting Some Plausible

Paths

In the second attack case, we model a resource-constrained

adversary whose best effort reconnaissance may fingerprint

the majority of (but not all) plausible paths that could be

taken by a victim. Thus, a victim may walk a path that is not

fingerprinted by an adversary (or unexplored path).

In this evaluation, we randomly select 300 fingerprinted
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Figure 12: Multi-story building types: (a) corridor (e.g., of-

fice), (b) open space (e.g., library), and (c) shared floor (e.g.,

shopping mall).

paths from a total of 624 possible paths with a path distance

of 300-350 meters whereas the remaining 324 paths (i.e., 624-

300 = 324) are unexplored paths. We then evaluate for 100

victim’s fingerprint in which 80 are fingerprinted paths and

20 are unexplored paths. We perform five iterations each time

randomly choosing both labeled and victim’s fingerprints. Fig-

ure 11 shows the ROC curve for 300 fingerprinted paths with

the x-axis as the false positive rate (i.e., the ratio of unex-

plored paths falsely identified as fingerprinted paths) and the

y-axis as the true positive rate (i.e., the ratio of fingerprinted

paths correctly identified as a fingerprinted path) for varying

distance thresholds. The large area under the curve indicates

a high true positive rate for a relatively low false positive rate.

Note that care must be taken in this evaluation because

some unexplored paths may share some path segments with

the fingerprinted paths. For example, an unexplored path 6-7-

11-17 shares two path segments with a fingerprinted path 6-7-

11-15. If we use such unexplored paths and fingerprinted paths

with the shared path segments, our results can be biased due

to the artifact of path synthesis. To address this, we remove

such unexplored paths from the data set and finally obtain

only 87 unexplored paths for the experiment above.

8 How Reliable is the SLIC Attack? —

Additional Evaluations

One remaining question is whether the SLIC can reliably iden-

tify the path taken by a victim in various environments and

operating scenarios. In this section, we perform two additional

evaluations to answer: (1) whether the SLIC attack effective-

ness depends on different physical environments, particularly

various types of building structures (§8.1); and (2) whether

the SLIC attack can still identify the path when a victim UE

does not fully utilize its downlink bandwidth (§8.2). In addi-

tion, we also analyze the effect of minor perturbation of the

received radio signal indicator (RSSI) values due to environ-

ment changes and transmit power control (TPC) algorithms

in the modern wireless systems; refer Appendix D for details.

8.1 SLIC in Various Building Types

Simplified experiment setup. For these extra evaluations,

we collect fingerprints from five buildings and use them di-
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Figure 13: Path-identification accuracy in three different build-

ing types. SLIC in the corridor and open spaces results in

higher accuracy than shared floors. The errorbar denotes the

standard deviation.

rectly (i.e., not going through the path synthesis) for path

identification. The measured paths are thus longer than the

short path segments we choose for Section 7. We have walked

a total of 45 unique paths in the five buildings, collecting

10-14 fingerprints per path with an average distance of 128

meters, totaling 63 km in 12 hours.

We classify the five buildings we have walked into three

types of building structures to demonstrate the effect of build-

ing structures on the uniqueness of the paths and ultimately

on SLIC’s performance. The three types are corridors (e.g.,

offices), open spaces (e.g., libraries), and shared floors (e.g.,

malls), as illustrated in Figure 12.

To evaluate the performance of SLIC for different building

types, we vary the number of labeled fingerprints per path (for

all 45 distinct paths) from one to nine (yielding a range of 45

to 405 fingerprints). We also select 30 victim’s fingerprints

and evaluate for 100 iterations each time picking labeled and

victim’s fingerprints randomly. Figure 13 depicts the overall

identification accuracy for all building types when varying the

number of labeled fingerprints per path. The overall accuracy

increases to 92.3% with nine labeled fingerprints per path, as

depicted by the black solid curve. Figure 13 also depicts the

individual accuracy for corresponding labeled and victim’s

fingerprints collected for specific building types.

We observe that the corridors (orange dashed line) and the

open spaces (blue dotted line) yield higher accuracy com-

pared to the shared floors (green dash-dot curve). This is most

likely because the first two yield more unique fingerprints

than the latter due to their building structure. To confirm our

conjecture, we plot the probability density function for the

total number of configured cells in our dataset in Figure 14.

The plot indicates that the corridors and open spaces have

a wider distribution compared to the shared floors, meaning

the fingerprints on these buildings have a wider range for

variations in their values. Moreover, we compute the average

entropy of the fingerprints of paths for each of the building

types to check that open spaces and corridors indeed exhibit

more variation hence more unique fingerprint. The result-
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Figure 15: Path-identification accuracy when a victim requires

less than the full available bandwidth in the CA configuration.

ing average entropy confirms our conjecture with corridors,

open spaces, and shared floors each yielding 1.73, 1.67, and

1.00, respectively. Consequently, the identification accuracy

of corridors and open spaces is higher than shared floors.

8.2 SLIC with Limited Downlink Activity

We evaluate the performance of SLIC when the victim has

limited downlink data usage, thereby requiring only some of

the configured secondary cells to be activated. We also evalu-

ate across different building types. To simulate varying data

usage of the victim, we limit the maximum number of config-

ured secondary cells that can be utilized at any given point in

time by capping the fingerprint (see Figure 5 ). We calibrate

all the labeled fingerprints based on the victim’s fingerprint.

We consider nine labeled fingerprints per fingerprinted path

and evaluate for 100 iterations each time picking labeled and

victim’s fingerprints randomly.

Figure 15 depicts the identification accuracy for data usage

varying from 100% (i.e., a maximum of nine transmitting

cells) to 30% data usage (i.e., a maximum of three transmitting

cells). This yields an overall accuracy greater than 50% when

the victim’s data usage requires at least 70% of the configured

secondary cells to be activated. However, it decreases further

to only 24.2% for lesser data usage. Hence, we can conclude

that SLIC is most effective when the victim’s data usage is

high triggering most of the configured secondary cells to be

activated. We also observe that the open spaces yields higher

accuracy even at low data usage compared to corridors or

shared floors. The reason can be inferred from Figure 14

which indicates that the open spaces have lower values of

side-channel information, which are accurately captured by

the calibrated fingerprints leading to better accuracy.

9 Countermeasures

The CA side-channel we discover in this paper is fundamental

scheduling metadata of cellular system and thus an end-user

cannot remove it without the support from the operator, or,

better yet, some changes in the standard. We begin with one

countermeasure that removes the side channel completely

with the modification to the standard. We then discuss how

the operators can mitigate the attack without changing the

standard. We also discuss some cell deployment suggestions

for 5G networks.

9.1 Encrypting Side-Channel Information

This countermeasure makes the secondary cell activation in-

formation confidential to any unauthorized parties by encrypt-

ing it. In the protocol stack, the resource scheduling is done

by the Medium Access Control (MAC) layer which is below

the Packet Data Convergence Protocol (PDCP) layer that is re-

sponsible for encryption. Implementing the encryption of the

bitmap, thus, requires significant changes in the protocol stack.

Particularly, the MAC layer must be incorporated with the

encryption mechanism to protect the scheduling information.

In addition, this change may require a new symmetric key be-

tween every UE and the primary cell, which involves changes

to the existing key management schemes [2] as it is generally

advisable to have separate keys for different purposes.

9.2 Readily-Available Countermeasures

We propose two highly effective countermeasures that require

no changes to the standards.

Adding noise to the side channel. This countermeasure ex-

ploits the standard operation to make the side channel noisier,

rendering the SLIC less effective. According to the specifica-

tion (see Section 6.1.3.8 in 3GPP TS 36.321 [5]), a device

should ignore the activation of any secondary cells that are

not in the list of the configured secondary cells. When some

indices in the bitmap are used for the configured cells, the pri-

mary cell can activate any of the unused indices to add noise

to the side channel. These additional indices are ignored by

the device and thus have no effect on the scheduling of the

system; yet, these intentionally added indices are wrongly

considered as activated cells by an adversary.

Note that the amount of added noise may be limited based

on the number of configured secondary cells. If a large number
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(e.g., close to 31) of secondary cells is already configured,

then the primary cell can add only a small number of noise

secondary cells.

Changing device identifiers frequently. As we explain in

our threat model (§3), SLIC requires linking the real-world

identity to the network identity of the devices (i.e., TMSI).

A number of attacks, such as Shaik et al. [3] or Rupprecht et

al. [40], have demonstrated that such mapping of identities in

different layers is possible in 4G networks. As a countermea-

sure, thus, operators can change the TMSIs frequently (e.g.,

every connection request), making the mapping difficult in

practice. Note, however, that care must be taken when design-

ing and implementing reallocation of TMSIs as new TMSIs

can be traceable with new attack strategies; see how one can

link the changing TMSIs in the 5G network with the recent

attack by Hussain et al. [24].

9.3 SLIC-Aware Cell Planning

Proper cell planning is necessary when deploying or upgrad-

ing cellular networks. Operators decide numerous high-level

system parameters during cell planning, including the basic

cell layouts [41], frequency allocations [42, 43], inter-cell

interference management [44], etc., to achieve several oper-

ational goals [45]: improving radio coverage, maximizing

resource utilization, optimizing the system capacity, etc.

A SLIC-aware cell planning considers the risk of path iden-

tification from the early stage of cell deployment. What we

report in this paper is that high variance in the path finger-

prints makes the path-identification attacks highly effective.

The SLIC-aware cell planning would minimize the variance

in the number of nearby cells at different locations, render-

ing the SLIC highly ineffective. 5G is still at its infancy and,

thus, this new SLIC-aware planning goal can be considered

for the upcoming network deployment. Also, 5G is expected

to be much more heterogeneous (e.g., millimeter waves, sub-

6-GHz spectrum, unlicensed bands) than 4G networks and

this heterogeneity would make the SLIC-aware cell planning

optimization more viable. We leave this as future work.

10 Related Work

Location-privacy attacks exploiting cellular networks.

Recent studies demonstrated that adversaries may be able to

infer the location of targeted individuals and their traces [3,4].

The closest work to SLIC is proposed by Michalevsky et al. [4]

called PowerSpy attack that exploits the fact that mobile de-

vices experience similar power changes when traveling on the

same driving path due to the static cellular tower locations.

While PowerSpy and SLIC both utilize side-channel infor-

mation from the cellular network to infer the user’s location,

they differ significantly in the following two aspects. First,

PowerSpy requires installing malware on the victim devices,

which increases the attack cost. SLIC inherently does not have

such requirements as it can simply capture the victim’s infor-

mation by passively monitoring the cellular network. Second,

PowerSpy infers driving paths, while SLIC identifies more

fine-grained walking paths, even distinguishing across differ-

ent indoor paths.

Similarly, Shaik et al. [3] demonstrate that in LTE, an ad-

versary can determine whether a target user is in the same cell

by probing the targeted user’s applications or through silent

voice calls. Yet, the attack can only infer whether a target

is within the primary cell whereas SLIC can achieve much

fine-grained location information.

IMSI catchers [46] can be also used to track cellular users

at the cell granularity after the international mobile subscriber

identity (IMSI) of a target user is learned via a fake base

station. In contrast, SLIC does not require any fake base station

and achieves much finer-grained location inference.

Location-privacy attacks exploiting sensors. Researchers

proposed side-channel attacks exploiting sensors on a smart-

phone to infer the victim’s location. Han et al. proposes AC-

Complice which utilizes a smartphone’s accelerometer to infer

the victim’s driving routes as well as its starting point [47].

Narain et al. extends the work to also incorporate gyroscope

and magnetometer sensors and correctly identify driving paths

across 11 cities [48]. Ho et al. relies solely on the barometer

of a smartphone to track a car’s driving route [49]. However,

all of these works requires installing malware on the victim’s

phone. SLIC inherently removes such constraint, rendering its

attack more stealthy.

11 Conclusion

Mobile phone location is undoubtedly highly sensitive in-

formation. Our society has reached a strong consensus that

phone location data must be handled with extreme care; see

the heated discussion regarding contact tracing in the midst

of a pandemic. SLIC demonstrates that such highly sensitive

phone location information can be leaked to an unauthorized

adversary stealthily through benign-looking scheduling meta-

data in any modern cellular networks. Worse yet, the risk

of location information leakage is only expected to grow as

cellular networks utilize more frequency spectrum with small

cells using heterogeneous physical-layer technologies.
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A Design and Implementation of Wi-Fi-to-5G

Evaluation Framework

We first explain the three stages in the Wi-Fi-5G evaluation

framework that applies the selection algorithm on the Wi-Fi

measurements to obtain the number of configured secondary

cells (§A.1). Then, we describe the secondary cell selection

algorithm as given in the specification (§A.2) followed by its

implementation (§A.3).

A.1 Design of Wi-Fi-to-5G Evaluation Frame-

work

Figure 8 depicts the three stages in Wi-Fi-to-5G evaluation

framework.

➊ Converting Wi-Fi signals to 5G signals. Even though Wi-

Fi and 5G LAA secondary cells share many physical-layer

characteristics, there still exist some minor differences that
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need to be taken into account. For example, we measure the

Received Signal Strength Indicator (RSSI) value of the Wi-

Fi signals whereas the cellular system measures Reference

Signal Receive Power (RSRP) [50], which is a more fine-

grained measurement than RSSI. These measurements are

made on the beacons or reference signals (i.e., discovery ref-

erence signal) transmitted by the Wi-Fi AP and primary cell

respectively. However, the periodicity of the transmission of

beacons and reference signals is different. On one hand, Wi-Fi

transmits beacons approximately every 100 milliseconds [51],

whereas the reference signals can be sent every 40/80/120

milliseconds [36]. The limited periodicity of reference signals

in Wi-Fi systems leads to coarse-grain measurement. This

may degrade the quality of the side-channel information and

thus offers the lower-bound performance for SLIC.

➋ Implementing the secondary cell configuration algo-

rithms. Unlike 4.5G/5G networks, only a single access point

(AP) is assigned to a user at a time in Wi-Fi. To obtain the

set of configured secondary cells that can be aggregated for

concurrent downlink transmission, we execute the secondary

cell configuration algorithms in the specification (Section

5.5.4 in TS 36.331 [15]). The algorithm has the following

steps: (1) A primary cell assigns an initial set of secondary

cell configuration algorithms and its parameters when a UE

first connects to it; (2) the UE measures the secondary cells

based on the parameters set in (1) and sends the measurement

reports based on the configuration algorithms; (3) Based on

the report, the primary cell takes the determined actions, such

as selecting a new secondary cell, and informs the UE along

with the updated set of algorithms if required; (4) Repeat

(2)–(3).

➌ Determining activated secondary cells. In this final stage

of the evaluation framework, we determine the activated sec-

ondary cells based on the user’s downlink demand. All the

configured secondary cells will be activated if there is a back-

log in the UE’s downlink. However, if a user’s downlink

demand is limited the cellular network will activate a fewer

number of secondary cells.

A.2 Secondary Cell Selection Algorithm

We reproduce the secondary cell selection algorithm to em-

ulate the behavior observed in traces captured from the real

network. The primary cell selects the secondary cells for each

user based on the data it receives from the UE. To receive

this data, the primary cell first informs the UE about the con-

figuration parameters such as type of measurements, report-

ing period, configuration parameters, list of frequencies, etc.,

which are required by the cell selection algorithm [15]. The

UE sends measurement reports consisting of radio quality of

cells often indicated by RSRP or Reference Signal Received

Quality (RSRQ) values. The primary cell uses these reports to

select an optimal set of secondary cells, which together with

the primary cell form the serving cells.

What to measure. There are two broad categories of radio

quality measurements performed by the UE:

1) Serving and intra-frequency measurements where the UE

measures the serving cells and the neighbouring cells in

the same frequency as the serving cells. These neighbour-

ing cells are called intra-frequency neighbouring cells.

2) Inter-frequency measurements where the UE measures

cells in frequencies configured by the primary cell but not

present in the current serving cell frequencies. These cells

are known as inter-frequency neighbouring cells. The UE

measures the inter-frequency neighbouring cells during a

measurement gap configured by the primary cell. During

this gap, no transmission or reception is scheduled. This

enables the UE to switch to different bands and obtain the

signal quality of cells in these bands.

When to send the report. The measurement reports can be

sent either periodically or when a condition is triggered. We

notice from our captured network traces that the majority

of the reports are sent only when a condition is triggered.

Hence, we implement a cell selection algorithm where the

measurement report is sent by the UE only when one of the

events configured by the primary cell is triggered. We discuss

the four triggering conditions below.

1) A1 algorithm (Good-serving-cell): The serving secondary

cell radio quality becomes better than the absolute thresh-

old. On receiving this report, the primary cell maintains

the secondary cell as a serving cell.

2) A2 algorithm (Bad-serving-cell): The serving cell radio

quality becomes worse than the absolute threshold. This

is an indication of bad radio conditions for the secondary

serving cell and the primary cell will eventually remove

the secondary cell.

3) A4 algorithm (Good-inter-neighbour-cell): The inter-

frequency neighbouring cell radio quality becomes better

than the absolute threshold. This will lead to the primary

cell adding the inter-frequency neighboring cell to the list

of serving cells.

4) A6 algorithm (Good-intra-neighbour-cell): The report is

triggered if an intra-frequency cell’s radio quality becomes

offset better than the current serving secondary cell. This

will lead to the removal of the current serving secondary

cell and the addition of the better intra-frequency neigh-

bour cell into the serving set.

Configuration. Apart from the thresholds and offsets set by

the primary cell, two additional parameters are also config-

ured to avert triggering of unnecessary reports due to sudden

fluctuation in the signal strength of cells.

1) Time-to-Trigger parameter is the duration of time for

which the triggering condition needs to be met to trig-

ger a measurement report.

2) Hysteresis is a delta value which makes sure that the mea-

sured signal strength is actually better (or worse).
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Table 3: Symbol Table
Symbol Meaning

CID Cell ID

f Frequency

T hres Threshold configuration parameter

Hys Hysteresis configuration parameter

T T T Time-to-Trigger

NumServing Number of serving cells

Con f ig Configuration parameters for the triggers

TimeElapsed Time elapsed since the last measurement

A.3 Implementation

We implement a time-driven emulator that emulates the event

triggers on the UE and the secondary cell selection in the

primary cell. In the emulator, a UE measures the serving and

intra-frequency cells every 100 milliseconds and applies Algo-

rithm 1 to checks if the new measurements trigger A1, A2, or

A6 event. For inter-frequency measurement, our measurement

gap is scheduled every 5 seconds to collect inter-frequency

measurements and apply Algorithm 2 to check for A4 event.

We set intra-frequency and inter-frequency measurement pe-

riod to be 800 milliseconds and 1000 milliseconds as per the

specification [52] and hysteresis value as two based on the

observation in the real network traces. In case an event is

triggered, the measurement reports are sent back to the pri-

mary cell. The primary cell takes these measurement reports

as input for the selection algorithm and outputs the number

of configured secondary cells for the UE at that instant.

The Wi-Fi measurement consists of the Wi-Fi MAC, the

measured RSSI values, and the frequencies observed by the

smartphone every 100 milliseconds. Each MAC address is

a unique LAA cell ID, with the RSSI values emulating the

RSRP values. Finally, the frequencies of the Wi-Fi APs are

assumed to be the operating frequency of the emulated LAA

cells. The measurement reports are further divided into serv-

ing, intra-frequency, and inter-frequency neighbouring cells.

At the beginning of the emulation, we select one Wi-Fi AP

from each unique frequency to be the serving secondary cell

and the remaining as classified as intra- or inter-frequency

neighbours. We then execute our selection algorithm to up-

date the set of serving secondary cells with the configuration

parameters set to maximize UE performance.

Algorithm 1 presents the implementation of the A1, A2, A6

algorithm. The algorithm takes as input the signal quality of

serving and intra-frequency cells, denoted by Measurement,

the configuration parameters denoted as Con f ig, NumServing

which is the total number of serving cells at time t− 1 and

the time elapsed since the previous measurement, denoted as

TimeElapsed. We apply the algorithm on each of the serving

and intra-frequency cell measurements. NumServing is updated

based on the triggered events. Finally, the algorithm outputs

the NumServing at time t and the set of updated serving cells.

Algorithm 2 presents the implementation of the A4 algorithm.

Table 3 describes the symbols used in the algorithm.

Algorithm 1: Intra-Frequency Measurement Algorithm

1 Function

Intra-Frequency-Measurement-Algorithm(Con f ig ,

Measurement , NumServing , TimeElapsed):

2 [CIDServing,RSSIServing, fServing]←
getServingCell(Measurement)

3 [CIDIntra,RSSIIntra, fIntra]←
getIntraFreqCell(Measurement)

4 foreach SCell in CIDServing do

5 if RSSISCell > A1Thres+A1Hys then

6 if A1TTT ≤ 0 then

7 TRIGGER A1

8 else

9 A1TTT← A1TTT -TimeElapsed

10 end

11 else if RSSISCell < A2Thres−A2Hys then

12 if A2TTT ≤ 0 then

13 TRIGGER A2

14 DeleteServingCell(CIDSCell)
15 NumServing← NumServing−1

16 else

17 A2TTT←A2TTT -TimeElapsed

18 end

19 end

20 [RSSIMaxNeigh,CIDMaxNeigh]←
getBestIntraNeigh( fIntra, fSCell)

21 if RSSIMaxNeigh > RSSISCell +A6Off+A6Hys then

22 if A6TTT ≤ 0 then

23 TRIGGER A6

24 DeleteServingCell(CIDSCell)
25 AddServingCell(CIDMaxNeigh)

26 else

27 A6TTT←A6TTT - TimeElapsed

28 end

29 end

30 end

31 return NumServing

B CA Activation at a Low Rate

We empirically show that a low data rate application can still

trigger up to three CA. We collect fingerprints of a 250-meter

outdoor path using Sony Xperia XZ1 phone while streaming

YouTube music videos at a 360p resolution. We stream the

five most popular videos on YouTube in 2019 and 2020, re-

spectively [53] and show the percentages of one CA, two CA,

and three CA activations for all ten videos in Figure 16. We

observe an average data rate of 15Mb/s while streaming the

ten videos indicating that a moderate data rate triggers three

CA as well.

C Effect of Network Load on CA Activation

We empirically show that the CA activation is strongly depen-

dent on the UE location and less on the load of the cellular
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Algorithm 2: Inter-Frequency Measurement Algorithm

1 Function

Inter-Frequency-Measurement-Algorithm(Con f ig ,

Measurement , NumServing , TimeElapsed):

2 [CIDInter,RSSIInter, fInter]←
getInterFreqCell(Measurement)

3 fCurrent ← SelectInterFrequencyToMeasure( fInter)
4 [RSSIMaxNeigh,CIDMaxNeigh]←

getBestInterNeigh( fCurrent)
5 if RSSIMaxNeigh > A4Thres+A4Hys then

6 if A4TTT ≤ 0 then

7 TRIGGER A4

8 AddServingCell(CIDMaxNeigh)
9 NumServing← NumServing +1

10 else

11 A4TTT←A4TTT - TimeElapsed

12 end

13 end

14 return NumServing
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Figure 16: CA activation while streaming ten 360p YouTube

music videos.
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Figure 17: CA configuration and activation observed in four

walks on the same path.

system by testing on another LTE-A network in a metropolitan

city. We collect four fingerprints of a single 260-meter outdoor

pedestrian path using a Sony Xperia XZ1 phone connected to

the LTE-A network that supports up to three CA. We partic-

ularly choose three different times of the day (i.e., morning,

afternoon, and evening) across two days to reflect different

network load experienced by the LTE-A network [17,18]. We

run the MobileInsight [27] app while simultaneously down-

loading files at the maximum rate, to activate a maximum

number of secondary cells. Figure 17 shows the CA configu-

ration and activation for four walks on the same path. The plot

shows that fingerprints have a consistent pattern across differ-

ent walks at different times. This indicates that the load of the

cellular network has minimal effect on the CA activation.
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Figure 18: (a) Average DTW distance across three TPC power

levels. (b) Average DTW distance between fingerprints col-

lected with Nexus1 and other phones (Nexus2, Sony, and

Samsung).

D Perturbation in Received Signal Strengths

RSSI can vary at times due to factors such as transmit power

control (TPC), antenna properties, mobile phone models, etc.

One question, therefore, is “How reliable would the finger-

printing mechanism be when RSSI values change across

walks?” From our experiment in the Wi-Fi environment, we

show that minor perturbations in the RSSI values do not cause

any major difference in the side-channel measurement.

We show the reliability of the fingerprints in the presence of

TPC by conducting an experiment in our Wi-Fi environment

that implements the Cisco TPC algorithm [54]. Here, we con-

sider the Wi-Fi TPC algorithm to be similar to the algorithm

used by the LAA secondary cells(see §6). We retrieve the

TPC power level logs of every Wi-Fi AP deployed on a fixed

path in our building and collect the path fingerprints every

time the TPC power level changes. Specifically, we collect

ten fingerprints each when the TPC power level of a Wi-Fi AP

on the path is set as 1 (maximum power), 2 (maximum power-

3 dB), and 3 (maximum power-6 dB). We then compute the

average DTW distance between fingerprints collected when

TPC is 1 with fingerprints collected when TPC is 2, and 3 and

show it in Figure 18(a). The similar average DTW distance

across power levels indicates the fingerprints are similar even

in the presence of TPC. Thus, we empirically show that the

fingerprints are reliable and have minimum impact.

Similarly, to show the reliability of the fingerprints across

different phones, we collect five fingerprints of a fixed path

while holding four phones, namely, Sony Xperia Z5, Samsung

Galaxy S6, and two Nexus 6 phones (Nexus1 and Nexus2).

Figure 18(b) shows the average DTW distance between fin-

gerprints collected using one Nexus 6 (Nexus1) and other

phones. The plot shows similar average DTW distances be-

tween Nexus1 and the other three phones indicating the finger-

prints will be similar across different phone models and hence

do not cast a consequential influence on the fingerprint. The

aforementioned observation is not surprising because the side

channel the SLIC adversaries observe is highly aggregated in-

formation that has lost most of the rich details of the raw RSSI

measurements but contains only the coarse-grain trends. Our

attack evaluation in Section 7 shows that this coarse-grained

side channel is still highly effective for path identification.
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