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Private Blocklist Lookups with Checklist

Dmitry Kogan
Stanford University

Abstract. This paper presents Checklist, a system for private
blocklist lookups. In Checklist, a client can determine whether
a particular string appears on a server-held blocklist of strings,
without leaking its string to the server. Checklist is the first
blocklist-lookup system that (1) leaks no information about
the client’s string to the server, (2) does not require the client
to store the blocklist in its entirety, and (3) allows the server to
respond to the client’s query in time sublinear in the blocklist
size. To make this possible, we construct a new two-server
private-information-retrieval protocol that is both asymptoti-
cally and concretely faster, in terms of server-side time, than
those of prior work. We evaluate Checklist in the context of
Google’s “Safe Browsing” blocklist, which all major browsers
use to prevent web clients from visiting malware-hosting
URLs. Today, lookups to this blocklist leak partial hashes of a
subset of clients’ visited URLs to Google’s servers. We have
modified Firefox to perform Safe-Browsing blocklist lookups
via Checklist servers, which eliminates the leakage of partial
URL hashes from the Firefox client to the blocklist servers.
This privacy gain comes at the cost of increasing communica-
tion by a factor of 3.3%, and the server-side compute costs by
9.8%. Checklist reduces end-to-end server-side costs by 6.7X,
compared to what would be possible with prior state-of-the-art
two-server private information retrieval.

1 Introduction

This paper proposes a new system for private blocklist lookups.
In this setting, there is a client, which holds a private bitstring,
and a server, which holds a set of blocklisted strings. The
client wants to determine whether its string is on the server’s
blocklist, without revealing its string to the server.
This blocklist-lookup problem arises often in computer
systems:
* Web browsers check public-key certificates against block-
lists of revoked certificates [54,60,61].
* Users of Google’s Password Checkup and the “Have I Been
Pwned?” service check their passwords against a blocklist
of breached credentials [51, 62,63, 82, 84].
* Antivirus tools check the hashes of executed binaries
against blocklists of malicious software [26,57,65].
* Browsers and mail clients check URLs against Google’s
Safe Browsing blocklist of phishing sites [9, 38,43].
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A simple approach for blocklist lookups is to store the
blocklist on the server and have the client send its query string
to the server. However, the string that the client is checking
against the blocklist is often private: the client wants to hide
from the server which websites she is visiting, or which
passwords she is using, or which programs she is running.

Another approach is to store the entire blocklist on the
client [28]. Maintaining a client-side blocklist offers maximal
client privacy, since the server learns nothing about which
strings the client checks against the blocklist. The downside is
that the client must download and store the entire blocklist—
consuming scarce client-side bandwidth and storage. Chrome
uses this approach for its certificate-revocation blocklist [60].
Unfortunately, client-side resource constraints limit the size
of client-side blocklists: Chrome’s revocation blocklist (as
of May 2021) covers under 1,200 revoked certificates out of
millions of revoked certificates on the web [52], and thus
provides suboptimal protection against revoked certificates.

A hybrid approach is also possible: the client stores a
compressed version of the blocklist, which allows the client
to perform most blocklist lookups locally, at a modest storage
cost. The compressed blocklist, like a Bloom filter [11], can
return false-positive answers to blocklist queries. When the
local blocklist gives a positive answer, the client queries the
server to check whether a local positive is a true positive. The
Safe Browsing API client uses this technique. The limitation
of this strategy is that the client’s queries to the server still
leak some information about the client’s private string. In
particular, the Safe Browsing client’s queries to the server
allow the server to make a good guess at which URL the client
is visiting [9, 38,45, 70].

Existing techniques for private blocklist lookups are inad-
equate. Keeping the blocklist on the client in its entirety is
infeasible when the blocklist is large. Querying a server-side
blocklist leaks sensitive client data to the server.

This paper presents the design and implementation of
Checklist, a new privacy-respecting blocklist-lookup system.
Using Checklist is less expensive, in terms of total communi-
cation, than maintaining a client-side blocklist. And, unlike
conventional server-side blocklists, Checklist leaks nothing
about the client’s blocklist queries to the system’s servers. We
achieve this privacy property using a new high-throughput
form of two-server private information retrieval. Checklist
requires only a modest amount of server-side computation:
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in a blocklist of n entries, the amortized server-side cost is
O (\/n) work per query. Concretely, a server can answer client
queries to the three-million-entry Safe Browsing blocklist in
under half a core-millisecond per query on average. Our new
PIR scheme reduces the server-side compute costs by 6.7x,
compared with a private-blocklist scheme based on existing
PIR protocols.

To our knowledge, Checklist is the first blocklist-lookup
system that (1) leaks no information about the client’s string
to the server, (2) does not require the client to store the
blocklist in its entirety, and (3) achieves per-query server-side
computation that is sublinear in the blocklist size.

At the heart of Checklist is a new “offline/online” private-

information-retrieval scheme [12,27,69]. These schemes use
client-specific preprocessing in an offline phase to reduce the
computation required at query (online) time. On a blocklist
with n entries and with security parameter 1 =~ 128, our
scheme requires the servers to perform work O (4/n) per query,
on average. This improves the O(A+/n) per-query cost of
schemes from prior work [27] and amounts to a roughly 128-
fold concrete speedup. In addition, prior offline/online schemes
do not perform well when the blocklist/database changes often
(since even a single-entry change to the blocklist requires
rerunning the preprocessing step). By carefully structuring the
blocklist into a cascade of smaller blocklists, we demonstrate
that it is possible to reap the benefits of these fast offline/online
private-information-retrieval schemes even when the blocklist
contents change often. In particular, in a blocklist of n entries,
our scheme requires server-side computation O (logn) per
blocklist update per client, whereas a straightforward use of
offline/online private-information-retrieval schemes would
yield Q(n) time per update per client.
Limitations. First, since Checklist builds on a two-server
private-information-retrieval scheme, it requires two inde-
pendent servers to maintain replicas of the blocklist. The
system protects client privacy as long as at least one of these
two servers is honest (the other may deviate arbitrarily from
the prescribed protocol). In practice, two major certification
authorities could run the servers for certificate-revocation
blocklists. Google and Mozilla could run the servers for the
Safe-Browsing blocklist. An OS vendor and antivirus vendor,
such as Microsoft and Symantec, could each run a server for
malware blocklists. Second, while Checklist reduces server-
side CPU costs, compared with a system built on the most
communication-efficient prior two-server PIR scheme [15]
(e.g., by 6.7x when used for Safe Browsing), Checklist in-
creases the client-to-server communication (by 2.7x) relative
to a system based on this earlier PIR scheme. In applications
in which client resources are extremely scarce, Checklist may
not be appropriate. But for applications in which server-side
costs are important, Checklist will dominate. We discuss these
and other deployment considerations in Section 8.

Experimental results. We implemented our private blocklist-
lookup system in 2,481 lines of Go and 497 lines of C. In

addition, we configure the Firefox web browser to use our
private blocklist-lookup system to query the Safe Browsing
blacklist. (By default Firefox makes Safe-Browsing blocklist
queries to the server via the Safe Browsing v4 API, which leaks
a 32-bit hash of a subset of visited URLs to Google’s servers.)
Under a real browsing workload, our private-blocklisting
system requires 9.4 more servers than a non-private baseline
with the same latency and increases total communication cost
by 3.3x. We thus show that it is possible to eliminate a major
private risk in the Safe Browsing API at a manageable cost.

Contributions. The contributions of this paper are:

* A new two-server offline/online private-information-
retrieval protocol that reduces the servers’ computation by
a factor of the security parameter A4 ~ 128.

* A general technique for efficiently supporting database
updates in private-information-retrieval schemes that use
database-specific preprocessing.

* A blocklist-lookup system that uses these new private-
information-retrieval techniques to protect client privacy.

* An open-source implementation and experimental valida-
tion of Checklist applied to the Safe Browsing API. (Our
code is available on GitHub [1].)

2 Goals and overview

2.1 Problem statement

In the private-blocklist-lookup problem, there is a client and
one or more blocklist servers. The blocklist B is a set of
strings, of which each server has a copy. We assume, without
loss of generality, that the strings in the blocklist are all of
some common length ¢ (e.g., 256 bits). If the strings are
longer or shorter, we can always hash them to 256 bits using
a collision-resistant hash function, such as SHA256.
Initially, the client may download some information about
the blocklist from the servers. Later on, the client would like
to lookup strings in the blocklist: the client holds a string
X € {0, l}f and, after interaction with the servers, the client
should learn whether or not the string X is on the servers’
blocklist (i.e., whether X € B). In addition, the servers may
add and remove strings from the blocklist over time. We do
not attempt to hide the blocklist from the client, though it is
possible to do so using an extension described in Section 8.2.
The goals of such a system, stated informally, are:

* Correctness. Provided that the client and servers correctly
execute the prescribed protocol, the client should receive
correct answers to its blocklist queries, except with some
negligible failure probability.

* Privacy. In our setting, there are two blocklist servers
and as long as one of these servers executes the protocol
faithfully, an adversary controlling the network and the
other blocklist server learns nothing about the queries
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that the client makes to the blocklist (apart from the total
number of queries).

Formally, the adversarial server should be able to simulate
its view of its interaction with the client and the honest
server, given only the system’s public parameters and the
number of queries that the client makes.

Efficiency. In our setting, the two key efficiency metrics are:

e Server-side computation: The amount of computation that
the servers need to perform per query.

e Total communication: The number of bits of communica-
tion between the client and blocklist servers.

Since clients typically make many queries to the same blocklist,
we consider both of these costs as amortized over many queries
and many blocklist updates (additions and removals).

Using a client-side blocklist minimizes server-side compu-
tation, but requires communication linear in the number of
blocklist updates. Using standard private-information-retrieval
protocols [15,24,39,59] minimizes communication but re-
quires per-client server-side computation linear in the blocklist
size. Checklist minimizes the server-side computation without
the client having to download and store the entire blocklist.

2.2 Design overview

Checklist consists of two main layers: the first layer allows
private lookups to static array-like databases. The second
layer adds support for dynamic dictionaries that allow private
key-value lookups and efficient updates. We now explain the
design of each layer.

Private lookups. A straightforward way to implement private
lookups is to use private information retrieval (PIR) [15,23,24].
With standard PIR schemes, the running time of the server on
each lookup is linear in the blocklist size n. In contrast, recent
“offline/online” PIR schemes [27] reduce the server’s online
computational cost to A+/n, after the client runs a linear-time
preprocessing phase with the server. During this preprocessing
phase, the client downloads a compressed representation of
the blocklist. These offline/online PIR schemes are well suited
to our setting: the client and server can run the (relatively
expensive) preprocessing step when the client first joins Check-
list. Thereafter, the server can answer private blocklist queries
from the client in time sublinear in the blocklist length—much
faster than conventional PIR.

To instantiate this paradigm, we construct in Section 4 a
new offline/online PIR scheme that achieves a roughly 128-
fold speedup over the state of the art, in terms of server-side
computation. (Asymptotically, our new scheme reduces the
servers’ online time to roughly 4/n from A+/n, where 1 ~ 128
is the security parameter.)

As with many PIR schemes, our protocol requires two
servers, and it protects client privacy as long as at least one
server is honest.

Dynamic dictionaries. Offline/online PIR schemes allow the
server to answer client queries at a low cost after the client and

server have run a relatively expensive preprocessing phase.
One hitch in using these schemes in practice is that the client
and server have to rerun the expensive preprocessing step
whenever the server-side blocklist (database) changes. If the
blocklist changes often, then the client and server will have to
rerun the preprocessing phase frequently. The recurring cost
of the preprocessing phase may then negate any savings that
an offline/online PIR scheme would afford.

The second layer of our system, described in detail in
Section 5, reaps the efficiency benefits of offline/online PIR
schemes, even in a setting in which the blocklist changes
frequently. Our high-level approach, which follows a classic
idea from the data-structures literature [ 10] and its applications
in cryptography [20,41,68,77,81], is to divide the length-n
blocklist into O (log n) buckets, where the bth bucket contains
at most 2° entries. The efficiency gains come from the fact that
only the contents of the small buckets, for which preprocessing
is inexpensive, change often. The large buckets, for which
preprocessing is costly, change rarely. We use preexisting
techniques [23] to support key-value lookups to the database,
rather than array-like lookups.

With this strategy, the amortized cost per blocklist update
is O(log n). In contrast, a naive application of offline/online
PIR would lead to (n) amortized cost per update.

3 Background

This section summarizes the relevant background on private
information retrieval.

Notation. For a natural number n, the notation [n] refers to
the set {1,2,...,n}. All logarithms are base 2. We ignore
integrality concerns and treat expressions like /n, log n, and
m/n as integers. The expression negl(-) refers to a function
whose inverse grows faster than any fixed polynomial. For a
finite set S, the notation » & § refers to choosing r indepen-
dently and uniformly at random from the set S. For p € [0, 1],
the notation b < Bernoulli(p) refers to choosing the bit b
to be “1” with probability p and “0” with probability 1 — p.
For a bit b € {0, 1}, we use b to denote the bit 1 — b. For two
equal-length bit strings X, Y € {0, 1}¢, weuse X®Y € {0, 1}¢
to refer to their bitwise XOR.

3.1 Private information retrieval (PIR)

In a private information retrieval (PIR) system [24, 25], a
set of servers holds identical copies of an n-row database.
The client wants to fetch the ith row of the database, without
leaking the index i of its desired row to the servers. We work
in the two-server setting, in which the client interacts with
two database replicas. The system protects the client’s privacy
as long the adversary controls at most one of the two servers.

In traditional PIR schemes, the servers must take a linear
scan over the entire database in the process of answering
each client query. In the standard setting of PIR, in which the
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servers store the database in its original form, this linear-time
server-side computation is inherent [7].

Offline/online PIR. This linear-time cost on the servers is
a performance bottleneck, so recent work [12, 27, 30, 69]
constructs “offline/online” PIR schemes, which move the
servers’ linear-time computation to an offline preprocessing
phase. Offline/online PIR schemes work in two phases:

¢ In the offline phase, which takes place before the client
decides which database row it wants to fetch, the client
downloads a hint from one of the PIR servers. The hint’s
size is sublinear in the size of the full database, though
generating it still takes the server time that is at least linear
in the size of the database.

* In the online phase, which takes place once the client
decides which database row it wants to fetch, the client
uses its hint to issue a query to the PIR servers. The servers’
responses to the queries allow the client to reconstruct the
database row it is interested in, as well as to update its hint
in preparation for future queries. The total communication
and the server’s work in this step are sublinear in the
database size.

There are two benefits to using offline/online PIR schemes:

1. Lower latency. The amount of online computation that
the servers need to perform to service a client query is
sublinear in the database size, compared with linear for
standard PIR schemes. This lower online cost can translate
into lower perceived latency for the client.

2. Lower total amortized cost. Since each client can reuse a
single hint for making many online queries, the servers’
work per query is also sublinear in the database size,
compared with linear for standard PIR schemes.

3.2 Puncturable pseudorandom set

To construct our PIR schemes, we will use puncturable pseudo-
random sets [27,76], for which there are simple constructions
from any pseudorandom generator (e.g., AES-CTR).

Informally, a puncturable pseudorandom set gives a way
to describe a pseudorandom size-v/n subset S C {1,...,n}
using a short cryptographic key sk. (The set size is a tunable
parameter, but in this paper we always take the subset size
to be y/n.) Furthermore, it is possible to “puncture” the key
sk at any element i € S to get a key sk, that is a concise
description of the set S” = S\{i}. The important property of the
punctured key is that it hides the punctured element, in a strong
cryptographic sense. That is, given only skp, an adversary
cannot guess which was the punctured element with better
probability than randomly guessing an element from [n]\.S".
This notion of puncturing comes directly from the literature
on puncturable pseudorandom functions [13,16,50,56,74].

The full syntax and definitions appear in prior work [27], but
we recall the important ideas here. More formally, a punctured
pseudorandom set consists of the following algorithms, where
we leave the security parameter implicit:

* Gen(n) — sk. Generate a random puncturable set key sk.

» GenWith(n,i) — sk. Given an element i € [n], generate
a random puncturable set key sk such that the element
i € Eval(sk).

* Eval(sk) — S. Given an unpunctured key sk, output a pseu-
dorandom set S C [n] of size y/n. (Or, given a punctured
key skp, output a pseudorandom set of size yn — 1.)

* Punc(sk,i) — skp. Given a set key sk and element
i € Eval(sk), output a punctured set key sk, such that
Eval(skp) = Eval(sk)\{i}.

Constructions. Prior work [27] constructs puncturable sets
from any pseudorandom generator G: {0, 1}* — {0, 1}**
(e.g., AES in counter mode) such that: (a) the set keys are
A bits long and (b) the punctured set keys are O(Alogn)
bits long. Furthermore, the computation cost of Eval consists
almost entirely of O (y/n) invocations of the PRG.

4 PIR with faster online time

In this section, we describe our new two-server offline/online
PIR protocol. Throughout this section, we view the database
as a static array; in Section 5 we handle the case of a key-value
database that changes over time.

Compared with the best prior two-server scheme [27], ours
improves the servers’ online time and the online communi-
cation by a multiplicative factor of the security parameter A.
Since we typically take A ~ 128 in practice, this improvement
gives roughly a 128-fold improvement in communication and
online computation cost.

Specifically, on a database of n records, of length ¢ bits
each, and security parameter A, existing PIR schemes have
online communication O(A%logn + A¢) and online server
time O (A{+/n), measured in terms of main-memory reads and
evaluations of a length-doubling PRG. We bring the online
communication cost down to O (1 log n+¢) bits and the online
server-side computation time down to O(£+/n) operations
(dominated by the cost of O (v/n) AES operations and O (+/n)
random-access ¢-bit database lookups). Concretely, these
costs are modest—Iess than a kilobyte of communication and
under 150 microseconds, even for blocklists with millions of
entries.

In terms of the preprocessing phase, similarly to previous
work [27], our protocol uses A£+/n bits of communication and
requires the server to do O (A¢n) work per client.

4.1 Definition

A two-server offline/online PIR scheme for a database
D =(Dy,...,D,) of nrecords, of length ¢ bits each, consists
of the following four algorithms, where we leave the security
parameter implicit.

Hint(D) — h. The first database server uses the Hint algo-
rithm to generate a preprocessed data structure s that a
client can later use to privately query the database D. The
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Hint algorithm is randomized, and the first server must run
this algorithm once per client.

Query(h,i) — (st,qo,q1). The client uses the Query algo-
rithm to generate the PIR queries it makes to the database
servers. The algorithm takes as input the hint 4 and the
database index i € [n] that the client wants to read. The
algorithm outputs client state st and PIR queries gg and ¢,
one for each server.

Answer(D, q) — a. The servers uses Answer, on database D
and client query ¢ to produce an answer a.

Reconstruct(st, ag,a;) — (h’,D;). The client uses state
st, generated at query time, and the servers’ answers ag
and a; to produce a new hint 4" and the database record
D; € {0, 1}¢.

We sketch the correctness and privacy definitions here for

the case in which the client makes a single query. Prior work

gives the (lengthy) definitions for the multi-query setting [27].

Correctness. If an honest client interacts with honest servers,
the client recovers its desired database record. We say that
an offline/online PIR scheme is correct if, for all databases

D= (Dy,...,D,) and all i € [n], the probability
h « Hint(D)
(st,q0,q1) <« Query(h,i)
Pr|D;=D;: ag < Answer(D, q¢)

a; <« Answer(D, q)
(L, D}) « Reconstruct(st, ap,ar)

is at least 1 — negl(1), on (implicit) security parameter A.

Security. An attacker who controls either one of the two
servers learns nothing about which database record the client
is querying, even if the attacker deviates arbitrarily from
the prescribed protocol. More formally, for a database D =
(D1, ...,D,)andi € [n], define the probability distributions

h  « Hint(D) }

Viewn.,i = {h 7 (L qo,) < Query(h,i)

capturing the “view” of the first server, and

y L _ h <« Hint(D)
IWD,1,i *=1q1* (L, _q1) <« Query(h,i) |~

capturing the “view” of the second server.

An offline/online PIR scheme is secure if, for every number
of records n, record length ¢, database D, servers s € {0, 1},
and i, j € [n] the distributions Viewp ; and Viewp  ; are
computationally indistinguishable. This definition implicitly
captures security against an adversarial server that colludes
with additional clients in the system, since the adversary can
simulate the responses of the honest server to such clients.

4.2 Our scheme

Prior offline/online PIR schemes [27] natively have relatively
large correctness error: the online phase fails with relatively

large probability ~ 1/+/n. To allow the client to recover its
record of interest with overwhelming probability, the client and
server must run the online-phase protocol A times in parallel
to drive the correctness error down to (1/4/n)* = negl(1).
Our improved PIR scheme (Construction 1) is slightly more
complicated than those of prior work, but the benefit is that it
has very low (i.e., cryptographically negligible) correctness
error. Since our protocol has almost no correctness error, the
parties need not repeat the protocol A times in parallel, which
yields our A-fold performance gain.

Our main result of this section is:

Theorem. Construction 1 is a computationally secure of-
fline/online PIR scheme, assuming the security of the underly-
ing puncturable pseudorandom set. On a database of n € N
records, each of length € bits, and security parameter A € N
(used to instantiate the puncturable pseudorandom set), the
scheme has:

* offline communication A({~/n + 1) bits,

* offline time O(A¢n),

* client query time O(n) in expectation,

* online communication 2(A + 1) logn + 4¢ bits, and
e online server time O (£{+/n).

We formally analyze the correctness and security of Con-
struction 1 in the full version of this work [58]. Here, we
describe the intuition behind how the construction works.

Offline phase. In the offline phase of the protocol, the first
server samples T = A+/n puncturable pseudorandom set keys
(ski,...,sky). Then, for each ¢t € [T], the server computes
the parity of the database records indexed by the set Eval(sk;).
If the database consists of n records Dy, ..., D, € {0,1}¢,
then the 7-th parity word is: P; = © jegval(sk,) P € {0 1}¢.
The ¢ keys (ski,...,sky) along with the T parity words
(P1, ..., Pr) form the hint that the server sends to the client.
If the server uses a pseudorandom generator seeded with seed
to generate the randomness for the 7' invocations of Gen, the
hint that the client stores consists of (seed, P1, ..., Pr) and
has length A + Af+/n bits.

The key property of this hint is that with overwhelming
probability (at least 1 — 27), each database record will be
included in at least one of the parity words. That is, for every
i € [n], there exists a t € [T] such that i € Eval(sk,).

Online phase. In the online phase, the client has decided that
it wants to fetch the ith record of the database, for i € [n].

The client’s general strategy will be to obtain the parity
words of the database records indexed by sets of indices S and
S\{i}. The client will then recover the value of the database
record from the two parity words.

Our scheme uses two instantiations of this strategy. In the
first case, the client will take the set S and its parity word P
from the stored hint. In the second case, the client will choose
S to be a fresh random set that contains i. The client chooses
between the instantiations at random each time it wants to
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Construction 1 (Our offline/online PIR scheme). Parameters: database size n € N, record length ¢ € N, security parameter
A € N, T := A4/n, puncturable pseudorandom set (Gen, GenWith, Eval, Punc) construction of Section 3.2 with universe size

n and set size n.

Hint(D) — h.
e Fort e [T]:
— Sample a puncturable-set key sk, « Gen(n).
// To reduce the hint size, we can sample the

// randomness for the T invocations of Gen from a

// pseudorandom generator, whose seed we include
// in the hint.

— Set S; « Eval(sk;).

— Compute the parity word P; € {0, 1}¢ of the database
records indexed by the set S;.
That is, let P, < @cg, D).

* Output the hintas: h « ((ski, ..., skr), (P1,..

Query(h, i) — (st g0, q1).

* Sample bit 8 & Bernoulli(2(y/n — 1) /n).

s If3=0: (st’,qo,q1) < QueryCommon(h,i).
s Ifg=1: (st’,q0,q91) < QueryRare(i).

» Setst « (h,B,st’)

¢ Return (st, o0, q1)

Answer(D, q) — a.

* Parse the query g as a pair (skp, ), where sk, is a
punctured set key and r € [n].

» Compute S, < Eval(sk,) and compute the parity word
W € {0, 1}¢ of the database records indexed by this set:
» Return a «— (W, D,) € {0, 1}*¢ to the client.

Reconstruct(st, ag, a;) — (h’, D;).

* Parse the state st as (&, 3, st”).

* Parse the answers as (W, V) and (W, V).

s IfB=0:
— Parse the hint 4 as ((ski, .. .,skr), (P1,..
— Parse the state st’ as (7, Skpew)
- SetD; «— P, & Wj.
// The client updates the t-th component of the hint.
— Set sk; < skpew and P; «— Wy & D;.

// Common case
. Pr)).

- Set ' « ((ski,...,skr), (P1,..., Pr)).
s Ifp=1: // Rare case

— Parse the state st” as y € {0, 1}

- SetD; —«Woae W, 8V,.

— Set h’ « h.  // The hint is unmodified.

Return (#’, D;).

. Pr)).

QueryCommon(h,i) — (st’, qo,q1).

// The client finds a set S; in the hint that contains index i.
// The client asks the second server for the parity of the

// database records in S;\{i}.

// The client asks the first server for the parity of \n — 1
// records indexed by a freshly sampled random set.

// The client also asks each server for the value of one extra
// database record.

o Parse the hint & as ((sky, . ..,skr), (P1,..., Pr)).

e Letr € [T] be a value such that i € Eval(sk;).
(If no such value ¢ exists, abort.)

» Sample skpey < GenWith(n,i).
e Compute:

Shew < Eval(sknew) S; « Eval(sk;)
ri <& S\ {i}
skp1 < Punc(sk,, 7)

q1 < (skp1,71).

ro & Snew\{i}
skpo < Punc(sknew, )

qo < (skpo,70)

o Setst’ « (1, SKnew)-
e Return (st’, o, q1).

QueryRare(i) — (st’, qo0, q1).

// The client asks each server for the parity of the database
// records indexed by a freshly sampled random set of \ln— 1
// indices such that the symmetric difference between the
// two sets contains i and one other random index r..

// The client also asks server y for the record at index r.,.

 Sample a random bit y & {0, 1}.

» Sample skpew < GenWith(n,i).
e Compute:

Shew — Eval(skpew)
7y ¢ Snew \{i} Ty € Snew {7y}
skpy « Punc(sknew,7y)

q,y — (Skpy, 77).

skpy — Punc(sknew, f)

9y < (Skpy’ ry)

e Setst’ « y.
 Return (st’, g9, q1).
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fetch a record from the database. We set the probability of
each case such that the overall probability distribution of the
client’s queries hides the indices the client is interested in.

We now describe this in more detail.

Common case. Recall that at the start of the offline phase, the
client holds the hint it received in the offline phase, which
consists of a seed for a pseudorandom generator and a set
of T hint words (P, ..., Pr). The client’s first task is to
expand the seed into a set of puncturable pseudorandom set
keys skj, ..., skr. (These are the same keys that the server
generated in the offline phase.) Next the client searches for
a key sk, € {ski,...,sky} such that the index of the client’s
desired record i € Eval(sk;).

At this point, the client holds a set S, = Eval(sk;) of size vn,
which contains the client’s desired index i. The client also
holds the parity word P, € {0, 1} of the database records
indexed by S;. The client sends the set S;\{i} to the second
server. (To save communication, the client compresses this
set using puncturable pseudorandom sets.) The server returns
the parity word W of the database records indexed by this set
S;\{i}. The client recovers its record of interest as:

ProW, = (EBjeS,Dj) & (@jes,\{f}Dj) =D;.

For security, it is critical that each server “sees” each set
only once. Therefore, the client must not reuse the set S;
for any future queries. Therefore, the client also samples a

replacement set Sy, of /7 indices in [n], one of which is i.

The client then sends Syew \ {i} to the first server (again,
compressed using puncturable pseudorandom sets), and the
first server responds with the parity word Wy of the database
records indexed by this set. The client then replaces the set S;
in its hint with the new set Sy, and updates the corresponding
parity hint word to Ppeyw < Wo @ D;.

In this first case, the sets that the client sends to the two
servers never contain the index i of the client’s desired database
record. If the client would always use this query strategy, the
servers would learn which database records the client is
definitely not querying, effectively leaking ~ 1/(+/nIn2) bits
of information about i. The next case prevents this leakage.
Rare case. With a small probability (roughly 2/+/n), the client

must send a set containing its desired index i to each server.

The client samples a random set Sy, of v/n values in [n],
one of which is i. The client chooses a server y < {0, 1} at
random and sends it Snew \ {i} (again, compressed), along
with the index of a random element r,, ¢ Sne \{i}. To the
other server y := 1 — v, the client sends Spew \{ry} and, to
hide which server plays which role, a dummy value r5.

Each server replies with the parity word W of the database
records indexed by the set it has received. It also sends the
value of the database record D,. Now, the client can recover its
record of interest as: D; = Wo & W @ D, , since Yy € {0, 1},
this sum is equal to

(@jesnewx{f}Dj) ® (@jesnewx{ry}Dj) ®D, =D;.

To hide whether the client is in the “common case” or “rare
case,” the client sends dummy indices rg, 1 to the servers in
the common case to mimic its behavior in the rare case.

Remark (Pipelined queries). When a client makes many PIR
queries in sequence, it may want to issue a new query to the
servers before receiving the servers’ response to its previous
query. Our scheme (Construction 1) allows the client to have
any number of queries in flight at once, while still using
only a single hint. The key observation is that the client can
generate the replacement set skpe,, as soon as it issues a query.
The client can thus issue a second query immediately after
issuing the first, and a third query immediately after issuing the
second—the client just has to receive the server’s responses
in the order in which it issued its queries.

Remark. The client’s expected online query time in our con-
struction is linear in the size of the database, since the client
has to expand its set keys one by one in a random order, until
it finds a key of a set that contains the index of interest i.
As in prior offline/online PIR schemes [27], a client can use
a data structure to reduce the query time at the cost of in-
creasing its storage. Checklist uses a simple data structure
that has size linear in the database size n but that supports
constant-time queries. That is, the client stores a hash table
mapping database indices i € [n] to “set pointers” j € [Av/n]
such that i € Eval(sk;). The client lazily populates this map
whenever it evaluates set keys and invalidates entries when-
ever it discards set keys. As a compromise between storage
and query time, the map contains at most one set pointer for
each database index. Therefore, discarding a set may leave
some database indices without valid set pointers, even though
other sets in the client’s hint may still contain those indices.
At query time, if the client fails to find a set pointer for the
desired database index in the map, it falls back to exhaustively
searching through the hint. As it iterates through the hint, the
client “opportunistically” adds set pointers to the map.

5 Offline/online PIR
for dynamic dictionaries

PIR protocols typically treat the database as a static array of n
records. To fetch a record, a PIR client must then specify the
index i € [n] of the record. Our scheme of Section 4 follows
this approach as well. In contrast, Checklist, like many other
applications of PIR, needs to support dynamic databases and
key-value-style lookups. Specifically, we would like to view the
database as a list of key-value pairs ((K1, V1), ..., (Ku, Vi),
where K; € {0, 1}¥ are the keys, and V; € {0, 1}¢ are their
corresponding values. In Checklist, (i) a client should be able
to look up a value V by its key K; and (ii) a server should be
able to insert, modify, and delete key-value pairs.
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Figure 1: The database in our PIR scheme consists of many buckets, where the ith bucket can hold 27 database rows. The client holds a hint (h;)
corresponding to each non-empty bucket i. The smaller buckets change frequently, but these hints are inexpensive to recompute. The larger

buckets change infrequently, and these hints are expensive to recompute.

5.1 Existing tool: PIR by keywords

Previous work has shown how to modify standard PIR
schemes to support key-value-style databases. Specifically,
Chor, Gilboa, and Naor [23] showed that it is possible to con-
struct so-called “PIR-by-keywords” schemes from traditional
PIR-by-index schemes in a black-box way. Modern PIR con-
structions [15] support PIR-by-keywords directly. The cost of
such schemes, both in communication and server-side compu-
tation, matches the cost of standard PIR, up to low-order terms.
The black-box PIR-by-keywords techniques [23] directly ap-
ply to offline/online PIR schemes as well. Specifically, our
implementation of Checklist uses a simple PIR-by-keywords
technique, which is tailored at the preexisting design of the
Safe Browsing system. We describe this scheme in Section 6.3.

5.2 Handling changes with waterfall updates

Standard online-only PIR schemes do not need any special
machinery to meet handle database updates, since their clients
hold no state that depends on the database contents. The
servers in online-only PIR schemes can thus simply process
any changes to the database locally as they happen, and then
answer each query using the latest version of the database. In
contrast, clients in offline/online PIR schemes hold prepro-
cessed “hints” about the database, and every change in the
database invalidates these hints.

The simple solution works poorly. The simplest way to
handle database updates is to have the servers compute a new
hint relative to the latest database state after every update. The
servers then send this updated hint to the client. The problem
is that if the rate of updates is relatively high, the cost of
regenerating these hints will be prohibitive.

Specifically, if the database changes at roughly the same
rate as the client makes queries (e.g., once per hour), the client
will have to download a new hint before making each query.
In this case, the server-side costs of generating these hints will
be so large as to negate the benefit of using an offline/online
PIR scheme in the first place.

Our approach: Waterfall updates. Instead of paying the
hint-generation cost for the full database on each change, we
design a tiered update scheme, which is much more efficient.
Specifically, if there is a single database update between
each pair of client queries, the asymptotic online cost of
our scheme is still O (+/n)—the same cost as if the database

had not changed. As the frequency of updates increases, the
performance of our scheme gracefully degrades. Our design
builds on a classic idea for converting static data structures into
dynamic structures [10]. Cryptographic constructions using
this idea to handle data updates include oblivious RAMs [41],
proofs of retrievability [20, 77], searchable encryption [81],
and accumulators [68].

Our strategy is to have the servers store the database as an
array of B = logn sub-databases, which we call “buckets.”
(Here, we assume for simplicity that the number of records n
is a power of two.) The bth bucket will contain at most 2° key-
value pairs. In addition, the servers maintain a last-modified
timestamp for each bucket. Initially, the servers store the entire
database in the bottom (biggest) bucket, and all other buckets
start out empty. As the database changes, the contents of the
buckets change as well.

When a client joins the system, it fetches a hint for each
bucket. Before making a query, the client updates its locally
stored hints. To do this, the client sends to the first server the
timestamp 7 at which it received its last hint. The server then
generates a fresh hint for each bucket that was modified after 7,
and sends these new hints back to the client. To find the value
associated with key K, the client then queries each of the B
buckets in parallel for key K. If several buckets contain key K,
the client uses the value V from the smallest bucket (i.e., the
bucket that was updated most recently).

Since the underlying offline/online PIR-by-keywords
scheme supports only static databases, each time a bucket
changes, the server must regenerate from scratch a hint for this
bucket for every client. The key to achieving our cost savings
is that, as the database changes, the contents of the smallest
buckets will change frequently, but it is relatively inexpensive
for the servers to regenerate the hints for these buckets. The
contents of the larger buckets—for which hint generation is
expensive—will change relatively infrequently.

It remains to describe how the servers update the contents
of the buckets upon database changes. Let us first consider
database insertions. When the servers want to add a new
pair (K, V) to the database, the servers insert that pair into
the topmost (smallest) bucket. Such an update can cause a
bucket b to “fill up”—to contain more than 2 entries. When
this happens, the servers “flush” the contents of bucket b
down to bucket b + 1. If this flush causes bucket b + 1 to
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fill up, the servers continue flushing buckets until all buckets
are below their maximum capacity. If the bottommost bucket
overflows, the servers create a new bucket, twice the size
of the previous one. The two servers execute this process in
lockstep to ensure that their views of the database state remain
consistent throughout.

To remap an existing key K to a new value V', the servers
add the updated record (K, V’) to the topmost bucket. When,
as a result of flushing, multiple pairs with the same key end
up in the same bucket, the server keeps only the latest pair
and discards any earlier pairs.

To delete an existing key K, the servers add a pair (K, V)
to the topmost bucket, where V, € {0, l}[ is some special
value. (If the set of possible values for a key is {0, 1} in
its entirety, we can extend the bit-length of the value space
by a single bit.) When, as a result of flushing, (K, V,) ends
up in the same bucket as other pairs with the same key K,
the servers only keep the latest pair and discard any earlier
pairs. At the bottom-most bucket, the servers can discard all
remaining (K, V) pairs.

Analysis. The client needs a new hint for bucket b only each
time all of the buckets {1,...,b — 1} overflow. When this
happens, the servers flush 1 + Zf’:_]l 2¢ = 2P elements into
bucket b. Intuitively, if the server generates a new hint after
each update, then after u updates, the server has generated
u/2" hints for bucket b, each of which takes time roughly
A£2P to generate, on security parameter A. (This is because
our offline/online scheme has hint-generation time A¢n, on
security parameter A and a database of n £-bit records.)

The total hint generation time with this waterfall scheme
after u updates, on security parameter A, with B = logn
buckets, is then at most AufB = Auflog n. In contrast, if we
generate a hint for the entire database on each change using
the simple scheme, the total hint generation time is Aufn =
Aut2® (since n = 2B). That is, the waterfall scheme gives an
exponential improvement in server-side hint-generation time
over the simple scheme.

The query time of this scheme is Zle ot - \V2b) =
O(€+/n). So, we achieve an exponential improvement in hint-
generation cost at a modest (less than fourfold) increase in
online query time.

One subtlety is that in our base offline/online PIR scheme,
the length of a hint for a bucket of size 2” is roughly £ V2% . For
buckets smaller than A2, using offline-online PIR would require
more communication than just downloading the contents of
the entire bucket. We thus use a traditional “online-only" PIR
scheme for those small buckets.

6 Use case: Safe Browsing

Every major web browser today, including Chrome, Firefox,
and Safari, uses Google’s “Safe Browsing” service to warn
users before they visit potentially “unsafe” URLs. In this

context, unsafe URLSs include those that Google suspects are
hosting malware, phishing pages, or other social-engineering
content. If the user of a Safe-Browsing-enabled browser tries
to visit an unsafe URL, the browser displays a warning page
and may even prevent the user from viewing the page.

6.1 How Safe Browsing works today

At the most basic level, the Safe Browsing service maintains
a blocklist of unsafe URL prefixes. The browser checks each
URL it visits against this blocklist before rendering the page to
the client. Since the blocklist contains URL prefixes, Google
can add an entire portion of a site to the blocklist by adding
just the appropriate prefix. (In reality, there are multiple Safe
Browsing blocklists, separated by the type of threat, but that
detail is not important for our discussion.)
Two factors complicate the implementation:

* The blocklist is too large for clients to download and
store. The Safe Browsing blocklist contains roughly three
million URL prefixes. Even sending a 256-bit hash of
each blocklisted URL prefix would increase a browser’s
download size and storage footprint by more than 90MB.
This would more than double the download size of Firefox
on Android [66].

The browser cannot make a network request for every
blocklist lookup. For every webpage load, the browser
must check every page resource (image, JavaScript file,
etc.) against the Safe Browsing blocklist. If the browser
made a call to the Safe Browsing API over the network for
every blocklist lookup, the latency of page loads, as well
as the load on Google’s servers, would be tremendous.

The current Safe Browsing system (API v4) [43] addresses
both of these problems using a two-step blocklisting strategy.

Step 1: Check URLs against an approximate local blocklist.
Google ships to each Safe Browsing client a data structure
that represents an approximate and compressed version of
the Safe Browsing blocklist, similar to a Bloom filter [11, 18].
Before the browser renders a web resource, it checks the
corresponding URL against its local compressed blocklist.
This local blocklist data structure has no false negatives (it
will always correctly identify unsafe URLSs) but it has false
positives (sometimes it will flag safe URLs as unsafe). In
other words, when given a URL, the local blocklist either
replies “definitely safe” or “possibly unsafe.” Thus, whenever
the local blocklist identifies a URL as safe, the browser can
immediately render the web resource without further checks.

In practice, this local data structure is a list of 32-bit
hashes of each blocklisted URL prefix. Delta-encoding
the set [42] further reduces its size to less than SMB—
roughly 18x smaller than the list of all 256-bit hashes
of the blocklisted URL prefixes. The browser checks a
URL (e.g., http://a.b.c/1/2.html?param=1) by splitting it
into substrings (a.b.c/1/2.html?param=1,a.b.c/1/2.html,
a.b.c./1, a.b.c/, b.c/, etc.), hashing each of them, and
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checking each hash against the local blocklist.

Step 2: Eliminate false positives using an API call. Whenever
the browser encounters a possibly unsafe URL, as determined
by its local blocklist, the browser makes a call to the Safe
Browsing API over the network to determine whether the
possibly unsafe URL is truly unsafe or whether it was a false
positive in the browser’s local blocklist.

To execute this check, the browser identifies the 32-bit

hash in its local blocklist that matches the hash of the URL.

The browser then queries the Safe Browsing API for the full
256-bit hash corresponding to this 32-bit hash.

Finally, the browser hashes the URL in question down to
256 bits and checks whether this full hash matches the one
that the Safe Browsing API returned. If the hashes match, then
the browser flags the URL as unsafe. Otherwise, the browser
renders the URL as safe.

This two-step blocklisting strategy is useful for two reasons.

First, it requires much less client storage and bandwidth,

compared to downloading and storing the full blocklist locally.

Second, it adds no network traffic in the common case. The
client only queries the Safe Browsing API when there is
a false positive, which happens with probability roughly
n/2% ~ 2711 So, only one in every 2,000 or so blocklist
lookups requires making an API call.

However, as we discuss next, the current Safe Browsing
architecture leaks information about the user’s browsing
history to the Safe Browsing servers.

6.2 Safe Browsing privacy failure

Prior work [9,38,45,70] has observed that the Safe Browsing
protocol leaks information about the user’s browsing history
to the servers that run the Safe Browsing API—that is, to
Google. In particular, whenever the user visits a URL that
is on the Safe Browsing blocklist, the user’s browser sends
a 32-bit hash of this URL to Google’s Safe Browsing API
endpoint. Since Google knows which unsafe URLs correspond
to which 32-bit hashes, Google then can conclude with good

probability which potentially unsafe URL a user was visiting.

(To provide some masking for the client’s query, Firefox mixes
the client’s true query with queries for four random 32-bit
hashes. Still, the server can easily make an educated guess at
which URL triggered the client’s query.)

There is some chance (a roughly one in 2,000) that a user
queries the Safe Browsing API due to a false positive—when
the 32-bit hash of a safe URL collides with the 32-bit hash
of an unsafe URL. Even in this case, Google can identify a
small list of candidate safe URLs that the user could have
been browsing to cause the false positive.

6.3 Private Safe Browsing with Checklist

We design a private Safe-Browsing service based on Checklist,
which uses our new PIR scheme of Section 4. Our scheme
requires two non-colluding entities (e.g., CloudFlare and

Server A

Firefox Checklist
browser client proxy

Partial

Lookup

0x24C Blocklist

Checklist
PIR query

Che_cklist
Full hash clieng

0x24C1A8... state

—

Blocklist
Server B

Figure 2: Using Checklist for Safe Browsing. @ The browser checks
whether the URL'’s partial hash appears in its local blocklist. @ If
so, the browser issues a Safe Browsing API query for the full hash
corresponding to the matching partial hash. ® The Checklist client
proxy issues a PIR query for the full hash to the two Checklist servers.
® The Checklist client proxy returns the full hash of the blocklisted
URL to the browser. ® The browser warns the user if the URL hash
matches the hash of the blocklisted URL.

Google) to host copies of the blocklist, but it has the privacy
benefit of not revealing the client’s query to either server.
Our Checklist-based Safe Browsing client works largely
the same as today’s Safe Browsing client does (Figure 2). The
only difference is that when the client makes an online Safe
Browsing API call (to check whether a hit on the client’s local
compressed blocklist is a false positive), the client uses our
PIR scheme to perform the lookup. In this way, the client
can check URLSs against the Safe Browsing blocklist without
revealing any information about its URLSs to the server (beyond
the fact that the client is querying the server on some URL).
When the client visits a URL whose 32-bit hash appears
in the client’s local blocklist, the client needs to fetch the
full 256-bit SHA256 hash of the blocked URL from the Safe
Browsing servers. To do this, the client identifies the index
i € [n] of the entry in its local blocklist that caused the hit.
(Here n is the total number of entries in the local blocklist.)
The client then executes the PIR protocol of Section 4 with
the Safe Browsing servers to recover the ith 256-bit URL hash.
If the full hash from the servers matches the full hash of the
client’s URL, the browser flags the webpage as suspect. If not,
it is a false positive and the browser renders the page.
As the Safe Browsing blocklist changes, the client can fetch
updates to its local blocklist using the method of Section 5.2.
When two or more full hashes in the blocklist have the
same 32-bit prefix, the Checklist servers can lengthen the
partial hashes for the colliding entries. This way, a partial
hash on the client’s local list always maps to a single full
hash on the servers’ blocklist. Safe Browsing already supports
variable-length partial hashes.

Partial hashes as PIR-by-keywords. The client’s local list of
partial hashes essentially serves as a replacement for using a
general PIR-by-keywords transformation [23]. The downside
of this replacement is that it uses offline communication that
is linear in the number of records in the database. In Safe
Browsing, the primary purpose of the local list is to reduce
latency, bandwidth, and server computation, by allowing the
browser to respond to most queries locally. Checklist takes
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Figure 3: For a static database of three million 32-byte records, we show the query cost in server time, client time, and communication. The
figure also shows the offline cost of the new offline-online PIR scheme and its total cost (offline and online), amortized over a varying number of
queries. The offline phase of the new scheme is expensive but its per-query server-side time is lower than in prior PIR schemes.

advantage of the existence of this local list, additionally using
it to map partial hashes to their positions in the blocklist. In
principle, both for Safe Browsing and for other applications,
Checklist could use other PIR-by-keywords techniques or a
local blocklist of a different size, allowing different tradeoffs
between storage, communication, and latency.

Remaining privacy leakage. Checklist prevents the Safe Brows-
ing server from learning the partial hash of the URL that the
client is visiting. However, the fact that the client makes a
query to the server at all leaks some information to the server:
the server learns that the client visited some URL whose par-
tial hash appears on the blocklist. While this minimal leakage
is inherent to the two-part design of the Safe Browsing AP, it
may be possible to ameliorate even this risk using structured
noise queries [34].

7 Implementation and evaluation

We implement Checklist in 2,481 lines of Go and 497 lines of C.
(Our code is available on GitHub [1].) We use C for the most
performance-sensitive portions, including the puncturable
pseudorandom set (Section 3.2).

7.1 Microbenchmarks for offline-online PIR

First, we evaluate the computational and communication costs
of the new offline-online PIR protocol, compared to two pre-
vious PIR schemes. One is an information-theoretic protocol
of Chor et al. [25] (“Matrix PIR”), which uses +/n bits of
communication on an n-bit database. The second comparison
protocol is that of Boyle, Gilboa, and Ishai [15], based on
distributed point functions (“DPF”). This protocol requires
only O(log n) communication and uses only symmetric-key
cryptographic primitives. We use the optimized DPF code
of Kales [55]. We run our benchmarks on a single-machine
single-threaded setup, running on a e2-standard-4 Google
Compute Engine machine (4 vCPUs, 16 GB memory).

Static database. We begin with evaluating performance on
a static database. Figure 3 presents the servers’ and client’s

per-query CPU time and communication costs on a database of
three million 32-byte records. Since the Checklist PIR scheme
has both offline and per-query costs, the figure also presents
the amortized per-query cost as a function of the number of
queries to the static database made by the same client following
an initial offline phase. Figure 3 shows that the offline-online
PIR scheme reduces the server’s online computation time by
100x at the cost of an expensive seven-second offline phase,
which the server runs once per client. Even with this high
offline cost, for a sufficiently large number of queries, the
Checklist PIR scheme provides overall computational savings
for the server. For example, after 1,500 queries, the total
computational work of a server using Checklist PIR is two to
four times less than that of a server using the previous PIR
schemes. The Checklist PIR scheme is relatively expensive in
terms of client computation—up to 20X higher compared to
the previous PIR schemes.

Database with periodic updates. We evaluate the perfor-
mance of the waterfall updates mechanism (Section 5.2). This
experiment starts with a database consisting of three million
32-byte records. We then apply a sequence of 200 updates to
the database, where each update modifies 1% of the database
records. After each update, we compute the cost for the server
of generating an updated hint for the client. Figure 4 shows the
cost of this sequence of updates. The majority of the updates
require very little server computation, as they trigger an update
of only the smallest bucket in the waterfall scheme. We also
plot the average update cost (dashed line) in the waterfall
scheme and the cost of naively regenerating the hint from
scratch on each update (red square). The waterfall scheme
reduces the average cost by more than 45x.

Next, we evaluate the impact of using the waterfall update
scheme on the query costs. This experiment begins with a
database of n = 3x 10° records, of size 32 bytes each, and runs
through a sequence of periods. At the beginning of each period,
we apply a batch of B = 500 updates to the database, after
which the client fetches a hint update from the server, and then
performs a sequence of queries. We measure the cost to the
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Figure 4: Server-side cost of client updates. At each time step, 1%
of the three million records change. The waterfall update scheme
reduces the average update cost by more than 45X relative to a naive
solution of rerunning the offline phase on each change.

server of generating the update and responding to the queries.
We amortize the cost of each update over the queries in each
period, and we average the costs over n/ B consecutive periods,
thus essentially evaluating the long-term amortized costs of
the scheme. Figure 5 presents the amortized server costs as a
function of the number of queries made by a single client in
each period. The new PIR scheme outperforms the previous
schemes as long as the client makes a query at least every 10
periods (i.e., at least once every 5000 database changes). As
queries become more frequent, the reduced online time of our
scheme outweighs its costly hint updates.

7.2 Safe Browsing with Checklist

To evaluate the feasibility of using Checklist for Safe Browsing,
we integrate Checklist with Firefox’s Safe Browsing mecha-
nism. We avoid the need to change the core browser code by
building a proxy that implements the standard Safe Browsing
API. The proxy runs locally on the same machine as the
browser, and we redirect all of the browser’s Safe Browsing
requests to the proxy by changing the Safe Browsing server
URL in Firefox configuration. See Figure 2.

We begin by measuring the rate of updates to the Safe
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Figure 5: The amortized server compute costs of PIR queries on a
database with updates. As the number of queries between each pair
of subsequent database updates grows, the offline-online PIR scheme
achieves lower compute costs compared to previous PIR schemes.

Browsing database and the pattern of queries generated in
the course of typical web browsing. To this end, our proxy
logs all Safe-Browsing requests, forwards them to Google’s
server, and logs the responses. (For privacy, we do not log the
actual URL hashes.) This trace allows us to directly compute
the frequency of lookups. Moreover, the fact that the browser
continuously downloads updates to the list of partial hashes
allows us to compute the rate of updates to the database. We
run the proxy on our personal laptops for a typical work week,
using the instrumented browser for all browsing. The database
size is roughly three million records, and it has grown by
about 30,000 records over the course of the week. These data
are consistent with the public statistics that Google used to
publish on the Safe Browsing datasets [44]. In our trace, the
client updates its local state every 94 minutes on average and
performs an online lookup every 44 minutes on average.

We repeatedly replay our recorded one-week trace to sim-
ulate long-term usage of Checklist. On each update request
in the trace, we first use the information from the response
to update the size of the Checklist database, such that the
database size evolves as in the recording. We measure the cost
of fulfilling the same update request using Checklist, which
includes updating the list of partial hashes and updating the
client’s PIR hint. For each lookup query in the trace, we issue
a PIR query. Figure 6 shows the cumulative costs of using
Checklist with two different PIR schemes. We measure the
server costs on an e2-standard-4 Google Compute Engine ma-
chine with 16 GB of memory and the client costs on a Pixel 5
mobile phone. Offline/online PIR requires 5.5x less computa-
tion on the server and 9x more computation on the client than
DPF-based PIR. In absolute terms, the amortized computation
on the client when using Checklist with offline/online PIR is
less than 0.4 CPU-seconds per day. Offline-online PIR uses
more communication, mostly due to the cost of maintaining
the hint: it doubles the communication cost of the initial setup,
and requires 2.7x more communication than DPF-based PIR
on a running basis. Checklist with DPF-based PIR uses only
20% more communication than non-private Safe Browsing.

We also measure the amount of local storage a Checklist
client requires for its persistent state. With DPF-based PIR,
or with non-private lookups, the client stores a 4-byte partial
hash for each database record. Delta-encoding the list of
hashes [42]) further reduces the storage to fewer than 1.5
bytes per record (for a list of 3 million partial hashes). With
offline-online PIR, the Checklist client stores on average 6.8
bytes for each 32-byte database record, in order to store the
list of partial hashes and the latest hint. To reduce the query
time, the client also stores an 18-bit “set pointer” from each
database index to a set that contains it, as described at the
end of Section 4. The total storage cost for a list of 3 million
partial hashes is 25MB. As a point of reference, the download
size of the the Firefox Android package is 70MB [66], and
after installation, it uses 170MB of storage.

To measure the end-to-end throughput and latency of Check-
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Figure 6: We repeatedly replay the trace of Safe Browsing queries and updates, recorded on a seven-day user session. The server-side
computational saving of offline-online PIR comes at a cost of more communication and client computation. The measurements are of
the application-level costs of Checklist and do not include the computation and communication cost of the network stack. The client-side
computation cost of Checklist is less than 0.4 CPU-seconds per day. Discontinuities happen when buckets in the waterfall scheme overflow and
trigger a hint update for a larger bucket.

list, we set up three virtual cloud instances: a Checklist server, and query requests, as well as the size of the updates, based on
a Checklist client, and a load generator. The load generator the recorded trace. With the server under load, an additional
simulates concurrent virtual Checklist users, by producing client machine performs discrete Checklist lookups and mea-
a stream of requests to the server, each through a new TLS sures their end-to-end latency. The measured latency includes
connection. The generator sets the relative frequency of update the time it takes the client to generate the two queries, obtain

the responses from the server, and process the responses. We

_ _ compare between (i) Checklist running the new offline-online

200 L : ggﬂ“““lme PIR protocol, (.ii) Checklist ruqning the DPF—b?lsed protocol,

_ —— Non-private and (ii) Checklist doing non-private lookups. Figure 8 shows

$ a0 L that the throughput of a single Checklist server providing

g private lookups using offline-online PIR is 9.4x smaller (at

g 180 L a similar latency) than that of a server providing non-private

= lookups. A Checklist server achieves 6.7 higher throughput

120 b and a 30ms lower latency when using offline-online PIR,
compared to when running DPF-based PIR.

0 IOIK 10'0K 11|v1 lo'M Table 7 summarizes our evaluation of Safe Browsing with

Throughput (users) Checklist. We estimate that a private Safe Browsing service

using Checklist with offline-online PIR would require 9.4x

Figure 8: The performance of a Checklist server. Solid lines display more servers than a non_private service with similar latency_

the average latency, and shaded regions show the latency of the A DPF-based PIR protocol would require 6.7x more servers

95th-percentile of requests. than our offline-online protocol and would increase the latency

Table 7: Summary of costs of Safe Browsing with Checklist. For each column, we use green, yellow, and red, to indicate the least-, middle-, and
most-expensive solution. The offline-online variant offers lower compute costs and latency, while a DPF-based system is more communication
efficient. The second row presents the communication costs of a fully offline solution in which the client maintains a local copy of the blocklist.

Approach Server costs Latency Client computation Communication Client storage
Initial Running  Initial Running Initial Running
(servers per 1B users) (ms) (sec) (sec/month) (MB) (MB/month) (MB) (MB/month)
Non-private 143 91 3.1 0.5 5.0 3.0 4.3 0.2
Full list Very small — not measured 91.8 13.2 91.8 4.5
Checklist with offline-online PIR (§4) 1348 90 13.3 8.0 10.3 9.8 24.5 1.6
Checklist with DPF PIR [15] 9047 122 2.6 0.8 5.0 3.6 4.3 0.2
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by 30ms, though it would use 10x less client computation and
2.7% less bandwidth on a running basis.

8 Discussion

8.1 Deployment considerations

When is Checklist cost effective for Safe Browsing? Table 7
shows three different ways to achieve full privacy for Safe
Browsing queries: having the client maintain a full client-
side blocklist (‘“Full list”), using Checklist with a standard
PIR scheme (“DPF”), and using Checklist with our new
offline/online PIR scheme (“Offline-Online”). Which of these
three schemes will be best in practice depends on the relative
costs of server-side computation, client-side computation,
communication, and client storage.

Download full list. When communication and client storage
are relatively inexpensive, as on a powerful workstation with
a hard-wired network connection, the best Safe Browsing
solution may be to have the client keep a local copy of the entire
blocklist. Downloading the full list would require roughly
9x more communication initially and 3.7x more storage
than Checklist with offline-online PIR, but the reduction in
server-side computational cost would be significant.

Checklist with offline-online PIR. When trying to jointly mini-
mize communication and server-side computation, Checklist
with our new offline-online PIR scheme is the most appealing
approach. This point in the trade-off space may be useful for
general devices (laptops, etc.) in which it is reasonable to shift
some work to the client for the benefit of decreased server
cost. The total communication is lower than downloading the
full blocklist and the server-side computation is roughly 7x
less than would be required when using standard PIR.

Checklist with DPF PIR. Finally, when trying to minimize
client computation and storage, Checklist with DPF-based PIR
may be the best option. This configuration may be useful on
mobile devices, where client resources are especially scarce.
This approach requires the least storage (22x less than storing
the full blocklist and 5.7x less than Checklist with offline-
online PIR), at the cost of increased server-side computation.

As Table 7 shows, there is not yet one private-blocklisting
scheme that dominates the others in all dimensions. Identifying
the optimal point in this trade-off space requires measuring
the relative costs of the various computational resources.

Denial-of-service attacks. The initial hint-generation phase of
our scheme is relatively expensive—it requires 7.3 seconds of
server-side computation per client. If a single client could ask
the Safe Browsing servers to rerun the offline hint-generation
phase as frequently as the client wanted, a single client could
easily exhaust server resources, denying service to honest
clients. We envision at least two approaches to preventing this
type of denial-of-service attack: First, in some settings, clients
have long-term identities, such as when Google Chrome users

are logged into the browser with their Google accounts. In
this case, the Safe Browsing server can limit the number of
offline requests each client makes. (If the client exceeds this
limit, the servers could force it back to making non-private
queries.) Alternatively, the servers could use a proof-of-work
puzzle [6,33] to force the clients to do at least as much
work as the servers do. This approach is wasteful, both in
energy and in that it doubles the total time of the offline phase.
Nevertheless, since an honest client only requests a new full
hint very infrequently—whenever it installs the browser for
the first time—requiring several seconds of client CPU time
on initial hint generation seems feasible.

Synchronizing state. A Checklist deployment requires two
non-colluding entities to run the two Checklist servers. For
an Internet-scale deployment, we would implement each
logical Checklist server on hundreds or thousands of physical
replica servers, distributed around the world. As the blocklist
database changes, the replicas will need to download the
database updates from the main server.

When the Checklist client fetches its hint in the offline
phase, the server includes a timestamp 7 (as in Section 5.2)
indicating the database version that this hint is for. When the
client makes an online query later on, it sends this timestamp 7
along with its query. If the server’s database is newer than t,
the client and the server run the update process described
in Section 5.2. If the server’s database is older than 7, then
the server is out of date and the client must retry its query at
another replica.

Clients only update their Safe Browsing data a few times
an hour (at most), so the main Safe Browsing server needs
to push updates to the replica servers only a few times per
hour as well. Since each update involves exchanging at most a
few megabytes of data with each replica, we expect it to be
relatively easy to keep a distributed fleet of replicas up to date.

8.2 Extensions

Privacy for the server. We focus on protecting the privacy
of the client’s blocklist query but we do not attempt to hide
the full blocklist from the client. In many applications, such
as password-breach notification services [51,62,63,82,84],
hiding the blocklist from the client is important. That is, at
each interaction with the server the client should only learn
whether its string appears on the blocklist.

Freedman, Ishai, Pinkas, and Reingold [36] show that
it is possible to lift a PIR scheme like ours, with privacy
for the client only, into a PIR scheme with privacy for the
client and servers using oblivious pseudorandom functions.
Their transformation is elegant and concretely efficient. It
makes black-box use of the underlying PIR and just requires
minimal extra server-side work and no additional rounds of
communication between the client and the server. While we
have not yet implemented this extension, since server-side
privacy is not crucial for us, we expect it to be a simple and
useful extension for other applications of Checklist.
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Batching. In some applications of Checklist, a client may
want to query the blocklist on many strings at once. In this
case, the client and servers can use batch PIR schemes to
improve performance [4,48,53]. These schemes can reduce
the problem of making 7 > 1 PIR queries to a database of
size n to the problem of making roughly ¢ queries (ignoring
log factors) to a database of size n/t. When applied to our
offline/online PIR schemes with online time /n, the online
time is t\/ﬁ = v/tn, instead of the 14/ cost of ¢-fold repetition.
Since the Safe Browsing client only rarely makes multiple
PIR queries at once, we have not implemented this extension.

8.3 Future work

Single-server setting. Checklist requires two servers to main-
tain replicas of the blocklist, and client privacy holds against
adversaries that control at most one server. In practice, it can
be difficult to deploy multi-party protocols at scale, since it
requires coordination between multiple (possibly competing)
companies or organizations. An important direction for future
work would be to extend our offline/online PIR scheme to
work in the single-server setting [59], taking advantage of
recent advances in lattice-based PIR schemes [2, 3,4, 5].
Prior work [27] shows that it is possible in theory to con-
struct single-server offline/online PIR schemes with sublinear
online server time. Those schemes have two limitations that
would make them unsuitable in practice: they make extensive
use of expensive homomorphic-encryption schemes and they
do not allow the client to reuse its hint over multiple queries.
The latter property means that the total amortized server cost
per query is at least n on a database of size n, whereas the
amortized server-side cost of our scheme is roughly v/n. An
important task for future work would be to design single-server
offline/online PIR schemes with modest concrete costs that
allow a client to reuse a single hint for multiple online queries.

Weakening the trust requirements. We present a two-server
offline/online PIR scheme that protects client privacy against
a single malicious server. It would be much better if, for
any k > 1, we could construct a k-server offline/online PIR
scheme with sublinear online time that protects client privacy
against a coalition of k — 1 malicious servers.

While no such PIR scheme exists, to our knowledge, we
sketch one possible approach to constructing one here. Prior
work [27] constructs a single-server offline/online PIR scheme
with sublinear online time. In the offline phase of that scheme,
the client sends an encryption of a vector to the server, using
an additively homomorphic encryption scheme, and the server
applies a linear operation to the client’s query. We can execute
the same protocol in the k-server setting, by replacing the
additively homomorphic encryption with a k-out-of-k linear
secret-sharing scheme. That is, the client would split its query
into k pieces, send one share to each server, each server would
apply the same linear function to the client’s query, and the
client would reconstruct the response. The rest of the protocol
proceeds as in the scheme of prior work.

This gives a k-server protocol with offline communication
n*/3 bits per server and online time n%/3, with security against
adversarial coalitions of up to & — 1 servers. Unfortunately,
in this scheme, the client must rerun the offline phase after
each online query. An intriguing open question is whether we
can construct more efficient offline/online PIR schemes in the
k-server model and whether we can extend such schemes to
allow the client to reuse its hint over multiple queries.

9 Related work

Checklist follows recent work on improving the efficiency
and privacy of blocklisting systems. CRLite [61], used in
the Firefox browser today, gives a sophisticated technique
for compressing a certificate-revocation blocklist using a hi-
erarchy of Bloom filters [11]. A browser can download and
store this compressed blocklist, and can thus make fast and
private local blocklist queries to it. CRLite relies on the fact
that the servers can enumerate over the set of valid certificates
by inspecting Certificate Transparency logs. Unfortunately,
CRLite’s optimizations do not apply to our setting—in which
the set of all possible URLs is far too large to enumerate.
In addition, CRLite inherently requires total communication
linear in the size of the blocklist, whereas Checklist can have
total communication sublinear in the blocklist size. (In the
application of Checklist to Safe Browsing, the total commu-
nication is linear in the blocklist size, since the client must
download a list of partial hashes, as in Section 6.1.)

Other work has proposed ambitious, if more challenging
to deploy, approaches to certificate revocation. Revcast pro-
poses broadcasting certificate-revocation information over
FM radio [75]. Let’s Revoke [79] proposes modifying the
public-key infrastructure to facilitate revocation. Solis and
Tsudik [80] identify privacy issues with OCSP certificate
revocation checks and propose heuristic privacy protections.

A number of tech companies today maintain blocklists
of passwords that have appeared in data breaches. Users
can check their passwords against these blocklists to learn
whether they should change passwords. Recent work [51,62,
63, 82, 84] develops protocols with which users can check
their passwords against these blocklists while (1) hiding
their password from the server and (2) without the server
revealing the entire blocklist to the client. Some of these
breach-notification services [82] leak a partial hash of the
user’s password to the server [63]. Schemes using private-set-
intersection protocols [21,22,71,73] avoid this leakage, but
require the server to do online work that is linear in the database
size. Using Checklist in this setting would eliminate leakage of
the hashed password to the server and would reduce the server-
side computational cost, since our amortized lookup cost is
sublinear in the blocklist size. The downside of Checklist is
that it requires two non-colluding servers to hold replicas of
the database, whereas these existing schemes do not.

Our focus application of Checklist is to the Safe Browsing
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API. Prior work has demonstrated the privacy weaknesses of
the Safe Browsing API [9, 38], arising from the fact that the
client leaks 32-bit hashes of the URLs it visits to the server.
Apple recently started to proxy Safe Browsing requests on i0S
via Apple servers to hide the requestors’ IP addresses from
Safe Browsing service providers such Google or Tencent [17].

The private Safe Browsing system of Cui et al. [28] pro-
vides privacy to both the client and the server by having
the client store a local encrypted copy of the blocklist. The
client decrypts individual entries by running an oblivious-
pseudorandom-function evaluation protocol with the server.
We can view their approach as applying the transformation
of Freedman et al. [36], which we mention in Section 8.2, to
the simplest possible PIR scheme—storing the full blocklist
at the client. In contrast, one of the design goals of Checklist
is to avoid the cost of storing the full blocklist.

Piotrowska et al. describe a private notification service
called AnNotify [72] and discuss its application to blocklist
lookups. Unlike Checklist, AnNotify tolerates some amount of
leakage about the queries. To mitigate the remaining leakage,
AnNotify runs on top of an anonymity network such as Tor.

The core of Checklist is a new two-server offline/online
private-information-retrieval (PIR) scheme in which the
servers run in sublinear online time. While one offline/online
PIR scheme with sublinear online time appears in prior
work [27], ours reduces the online time by a factor of 1 ~ 128
and gives the first implementation of such a scheme.

Our PIR scheme builds on a long and beautiful body of work
on privacy-protecting database lookups. The literature on PIR
is vast and we will only be able to scratch the surface here.
Chor et al. [24,25] initiated the study of PIR in which the client
communicates with multiple non-colluding servers. Our PIR
scheme works in this multi-server model. Gasarch [37] gives
an excellent survey on the state of multi-server PIR as of 2004.
Recent work improves the communication cost of two-server
PIR using sophisticated coding ideas [32, 35, 85]. Under mild
assumptions, there exist two-server PIR schemes with almost
optimal communication cost [14, 15,39,47]. An orthogonal
goal is to protect against PIR server misbehavior [29,40].

Given that modern multi-server PIR schemes have very
low communication costs, the remaining task is to reduce
the server-side computational cost of multi-server PIR. On
a database of n rows, the above PIR schemes have server-
side cost Q(n). Beimel et al. [8] show that if the servers
preprocess the database, they can respond to client queries
in o(n) time. Unfortunately, the schemes of Beimel et al. [8]
are relatively expensive in terms of communication cost and
require very large amounts of server storage. Alternatively,
“batch PIR” [48,53] allows the client to fetch many records
at roughly the server-side cost of fetching a single record.
Lueks and Goldberg extend this approach to allow the servers
to answer queries from many mutually distrusting clients at
less than the cost of answering each client’s request indepen-
dently [64]. Other work relaxes the privacy guarantees of PIR

to improve performance [83]. Our work builds most directly
on offline/online PIR protocols [27, 69], in which the client
fetches some information about the database in an offline
phase to improve online performance.

Under appropriate “public-key assumptions” [31], it is
possible [19,59] to construct PIR schemes in which the client
communicates with only a single database server. Sion and
Carbunar [78] ask whether single-server PIR schemes can
ever be more efficient (in terms of total time) than the naive
PIR scheme in which the client downloads the entire database.
Olumofin and Goldberg [67] argue that modern lattice-based
protocols can indeed outperform the trivial PIR protocols.
Recent work has refined single-server lattice-based schemes
using batch-PIR techniques to get relatively efficient single-
server PIR schemes [2, 3,4, 5]. The reliance on public-key
primitives makes these schemes concretely more expensive
than the multi-server schemes we construct, but they are
invaluable in settings in which multiple servers are unavailable.

Finally, prior work has applied PIR to private media con-
sumption [46], eCommerce [49], and private messaging [5].

10 Conclusion

With Checklist, a client can check a string against a server-side
blocklist, without revealing its string to the server. Checklist
uses significantly less communication and storage than a base-
line scheme in which the client downloads and maintains
a local copy of the entire blocklist. Our new offline/online
private-information-retrieval scheme reduces the server-side
cost of Checklist compared to previous private-information-
retrieval schemes. We hope that Checklist leads to further
improvements in practical private-information-retrieval sys-
tems and that it encourages large-scale deployment of privacy-
preserving blocklist systems in major web browsers.
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