
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

M2Mon: Building an MMIO-based Security
Reference Monitor for Unmanned Vehicles

Arslan Khan and Hyungsub Kim, Purdue University; Byoungyoung Lee,
Seoul National University (SNU); Dongyan Xu, Antonio Bianchi, and

Dave (Jing) Tian, Purdue University
https://www.usenix.org/conference/usenixsecurity21/presentation/khan-arslan

M2MON: Building an MMIO-based Security Reference Monitor
for Unmanned Vehicles

Arslan Khan†, Hyubgsub Kim†, Byoungyoung Lee⇤, Dongyan Xu†, Antonio Bianchi†, Dave (Jing) Tian†

†Purdue University, {khan253, kim2956, dxu, antoniob, daveti}@purdue.edu
⇤Seoul National University (SNU), byoungyoung@snu.ac.kr

Abstract
Unmanned Vehicles (UVs) often consist of multiple Micro

Controller Units (MCUs) as peripherals to interact with the
physical world, including GPS sensors, barometers, motors,
etc. While the attack vectors for UV vary, a number of UV
attacks aim to impact the physical world either from the cy-
ber or the physical space, e.g., hijacking the mission of UVs
via malicious ground control commands or GPS spoofing.
This provides us an opportunity to build a unified and generic
security framework defending against multiple kinds of UV
attacks by monitoring the system’s I/O activities. Accordingly,
we build a security reference monitor for UVs by hooking into
the memory-mapped I/O (MMIO), namely M2MON. Instead
of building upon existing RTOS, we implement M2MON as
a microkernel running in the privileged mode intercepting
MMIOs while pushing the RTOS and applications into the
unprivileged mode. We further instantiate an MMIO firewall
using M2MON and demonstrate how to implement a secure
Extended Kalman Filter (EKF) within M2MON. Our evalua-
tion on a real-world UV system shows that M2MON incurs
an 8.85% runtime overhead. Furthermore, M2MON-based
firewall is able to defend against different cyber and physical
attacks. The M2MON microkernel contains less than 4K LoC
comparing to the 3M LoC RTOS used in our evaluation. We
believe M2MON provides the first step towards building a
trusted and practical security reference monitor for UVs.

1 Introduction

Unmanned Vehicles (UVs), such as Unmanned Aerial Vehi-
cles (UAV) and Unmanned Ground Vehicles (UGV), start to
play an important role in our daily life. For instance, Amazon
is planning to use drones for package delivery [13]. Since
these systems are in continuous interaction with the phys-
ical world, they often consist of multiple Micro Controller
Units (MCUs) as different peripheral devices, besides their
own main MCUs. For example, a UV is usually equipped
with a fail-safe module, a Wi-Fi module, a GPS module, ac-
tuators for controlling propellers, and different sensors for

attitude control (such as gyroscope, accelerometer, barometer,
telemetry radio, rangefinder, camera, etc.) [1]. These peripher-
als communicate with the main MCU using: 1) I/O registers
that are mapped directly into the memory regions of the sys-
tem, i.e. Memory Mapped I/O (MMIO), or 2) an external,
memory-mapped, bus.

Unlike traditional computer systems, attacks against UV
can happen from both the cyber and the physical worlds [23,
29, 30, 32, 54, 70]. For example, attackers can send out ma-
licious ground control commands to crash a UV [30] via
MAVLink [36], or spoof GPS to disrupt the road naviga-
tion [70] or hijack the flight mission of a UV. Existing de-
fenses range from using cryptography [12,37,60] and runtime
compartmentalization [16, 17, 29] to fingerprinting [14, 15]
and physical modeling [21, 52]. Unfortunately, these security
solutions are mainly designed with a dedicated threat model,
and none of them can prevent UV from most of the attacks, let
alone a unified security solution defending against all known
UV attacks.

We observe that a number of UV attacks aim to impact the
physical world, such as modifying the trajectory, destabilizing
the UV [30], or simply crashing a UV [29]. All these attacks
involve some form of malicious communication between dif-
ferent MCUs, thus they result in malicious I/O-level activities.
This fact provides us an opportunity to build a unified and
generic security framework defending against multiple kinds
of UV attacks by monitoring the system’s I/O.

Accordingly, we build a security reference monitor for UV
by hooking into the MMIO layer, namely M2MON. Instead
of building upon existing RTOS, we implement M2MON
as a microkernel running in the privileged mode mediating
every MMIO access from within the system while pushing the
traditional RTOS and applications into the unprivileged mode.
This design reduces the Trusted Computing Base (TCB) from
3M Lines of Code (LOC) of a commercial RTOS to less than
4K LoC of the M2MON microkernel.

Using M2MON, we further instantiate an MMIO firewall
detecting intrusions with the UV, and demonstrate how to
implement a secure Extended Kalman Filter (EKF) within

USENIX Association 30th USENIX Security Symposium 285

M2MON. We also provide a post-detection response mech-
anism within M2MON to gracefully handle attacks. We im-
plement and evaluate M2MON on a real-world UV system.
Our evaluation shows that the M2MON-based firewall is able
to defend against different UV attacks with 8.85% runtime
overhead without violating the system’s software deadlines.
We believe M2MON provides the first step towards building
a trusted and practical security reference monitor for UV.

In summary, the contributions of this paper are as follows:
• UV Attacks and Defenses Study. Our UV attacks study

encompasses various attacks on popular UV systems.
The study shows that none of the existing security solu-
tions can defend against all the attacks in the survey. In
addition, it shows that all these UV attacks demonstrate
I/O-level activities and even variances.

• M2MON Design and Implementation. Based on the
observation above, we design and implement a security
reference monitor able to mediate every MMIO access,
namely M2MON. We implement M2MON as a micro-
kernel running in the privileged mode while pushing
the traditional RTOS and applications into the unpriv-
ileged mode. We further instantiate an MMIO firewall
using M2MON and demonstrate how to implement a
secure Extended Kalman Filter and post-detection re-
sponse mechanism within M2MON.

• M2MON Evaluation. Our evaluation on a real-world
UV system demonstrates that the M2MON-based fire-
wall is able to defend against all the UV attacks men-
tioned earlier. This evaluation shows that M2MON in-
troduces a low overhead (8.85%). At the same time, the
usage of M2MON reduces the TCB from 3M LoC of a
commercial RTOS to less than 4K LoC.

To further development in this direction, we made
the source publicly available (https://github.com/
purseclab/M2MON).

2 Motivation

Our hypothesis is that for a UV attack to have a concrete
effect, it needs to introduce some I/O activities and that these
activities can be detected. These I/O activities are due to the
necessity for the attack to interact with peripheral MCUs to,
ultimately, have an impact on the physical world.

To empirically prove this hypothesis, we select a series of
UV attacks and reproduce these attacks on real-world systems,
as shown in Table 1. Except for the CAN bus masquerading
attacks, all the other attacks are tested on a 3DR IRIS+ UAV
platform [1]. Further details on the attacks can be found in
Section 6.1.

During this study, we found two previously unknown vul-
nerabilities related to the Wi-Fi module and a flight con-
trol program in the UAV, respectively. 3DR IRIS+ uses an
ESP8266 Wi-Fi module, which is a popular Wi-Fi module in

(a) Changed number of
messages sent by BCM
under the ECU attack.

(b) Changed number of
GPS messages under
the GPS attack.

(c) Changed the maxi-
mum moving average
of the GPIO access in-
terval (ms) under the ra-
dio attack.

Figure 1: Changed I/O access patterns under various attacks.

both UAVs and IoTs. However, we noticed that the ESP8266
modules do not securely conduct the Over-The-Air (OTA)
firmware update because they fail to check the integrity of
the update [41]. This enables an attacker to conduct network-
based attacks such as DNS cache poisoning [31], ARP spoof-
ing [69], and/or Man-in-the-Middle attacks (MitM) [61,62] to
flash malicious firmware to the Wi-Fi module. Once the Wi-Fi
module is compromised, using MitM attack techniques, we
conduct different attack scenarios such as flash patch attack,
gyroscope attack, and barometer attack.

3DR IRIS+ also uses ArduPilot [7], a popular flight control
program used by most UAV platforms. While studying the
effects of GPS spoofing on I/O patterns, we found that the
GPS module reports potential spoofing to the flight controller,
but ArduPilot ignores the warnings from the GPS module. 1

During our study of these UV attacks, we confirm that we
could observe unique I/O activities by monitoring the MMIO
layer. For example, the main system performs some specific
I/O accesses only during the booting phase, e.g., to set up
timers and IRQ handlers. These specific I/O accesses should
not happen again once the system is running until the timer or
IRQ override attack happens. Similarly, we observe changes
in the number of CAN messages received by the ECU under
the CAN masquerading attack as shown in Figure 1a. We
can also spot the changed pattern of I/O accesses for the GPS
spoofing attack (details: Section 6.1) in Figure 1b and for
the radio replay attack (details: Figure 6.1) in Figure 1c. In
summary, this survey demonstrates the potential of MMIO-
layer monitoring to defend against a variety of UV attacks.

While there exists work to tackle some of these attacks,
each proposed defense mechanism works only on a sub-
set of them. As summarized in Table 1 crypto-based meth-
ods [12, 37, 60] have been proposed to defend against CAN
masquerading, GPS Spoofing and radio replay. However, such
methods suffer from the overhead of heavy computations. Fur-
thermore, they don’t work well against other surveyed attacks
such as the timer attack or malicious sensors. Compartmen-
talization solutions [16, 17, 29] can detect the Timer and the
IRQ attacks but they are unable to detect other attacks such as
spoofing and masquerading. Voltage and clock skew finger-
printing [14, 15] only applies to CAN bus environment. Phys-

1We have reported our findings to the corresponding parties.

286 30th USENIX Security Symposium USENIX Association

Crypto [12, 37, 60] Compart.
[16, 17, 29]

Finger-
Printing
[14, 15]

Physical
Modeling
[21, 52]

I/O
Activity

Timer Attack [29] – ⌅ – – ⌅
IRQ Override [29] – ⌅ – – ⌅
CAN Masquerading [32] ⌅ – ⌅ – ⌅
Radio Replay [54] ⌅ – – – ⌅
Malicious Sensor [23] – – – ⌅ ⌅
Flash Patch Attack [29] – – – – ⌅
GPS Spoofing [70] ⌅ – – – ⌅
Gyroscope Attack – – – ⌅ ⌅
Barometer Attack – – – ⌅ ⌅

Table 1: Survey of existing UV attacks and defenses. We did not find any defense that can defend against all of the studied attacks. However, in
all the attacks we noticed some I/O activities involved. ⌅ shows defenses that work against some particular attacks.

ical modeling [21, 52] helps to detect anomalies from within
sensors via building a model of the physical world, predicting
the expected measurements based on histories. Unfortunately,
none of the existing solutions could defend against all UV
attacks, thus motivating the need for a generic and systematic
defense for UV.

3 Security Model

We target a variety of UV attacks as shown in Section 2. Ad-
versaries can launch these attacks simply by sending out mali-
cious commands or spoofed messages via the network. They
could also compromise a peripheral MCU (e.g., exploiting
a vulnerability within the peripheral firmware) or installing
a malicious component inside these devices. More impor-
tantly, these attacks, once compromising the UV, will impact
the physical world via changing the system behavior, which
will be reflected at the I/O level. A passive attacker staying
stealthy and quiet without impacting the system behavior is
out of the scope of our threat model.

Our Trusted Computing Base (TCB) includes the main
MCU of a UV, the Memory Protection Unit (MPU) pro-
vided by the MCU, the bootstrap code to boot up the MCU
(e.g., ARM Trusted Firmware [9]), and the code constituting
M2MON and its plugins. We also assume a secure commu-
nication channel between the system owners and M2MON,
allowing the owner to configure different security policies.
Note that the RTOS and its applications are not inside our
TCB, since our approach allows us to execute them in the
unprivileged mode. In this paper, we consider side-channel
attacks (such as timing attacks) and attacks resulting from a
malicious control program, such as Stuxnet [33], out of scope.

Devices

Task 0
Unprivileged
Mode

Privileged
Mode

Task 0 Task n

RTOS

M2MON

MMIO  
Access

Figure 2: M2MON Microkernel Design: MMIO is configured as a
privileged resource while moving the whole software stack to un-
privileged mode. M2MON runs in privileged mode while managing
the MMIO requests.

4 Design

The architecture of M2MON is shown in Figure 2. M2MON
microkernel runs in privileged mode, mediating all MMIO
accesses from different peripheral MCUs, separating itself
from the RTOS and applications, and providing an interface
to system owners for loading policies.

We start this section by explaining the design goals of
M2MON (See Section 4.1), and finally demonstrate how
we achieve these goals via trade-offs and optimizations (see
Section 4.2).

4.1 Design Goals
Due to the intrinsic constraints and requirements of an em-
bedded system environment, we need to face the follow-
ing challenges: (1) no typical protection hardware available
(e.g., MMU/IOMMU), (2) fragmentation of RTOS implemen-
tations per vendor/model (e.g., MBed, Zephyr, FreeRTOS,
ThreadX, etc.), (3) RTOS and applications running in the
privileged context together (to reduce context switches for
performance considerations), and (4) no violation of the real-

USENIX Association 30th USENIX Security Symposium 287

Type2

Frequent (high overhead)

Small

Sched IRQTasksTasksTasksTasks

Monitor

MMIO

Type1

Infrequent (low overhead)

Large

Sched IRQ Monitor

MMIO

TasksTasksTasksTasks

Type3 (M2Mon)

Moderate

Small

TasksTasksTasksSched Tasks

IRQ Monitor

MMIO

Unpriv.
mode

Priv.
mode

HW
resource

Mode
switch

TCB

SFI

Figure 3: Different possible designs for MMIO reference monitor. Type 1 monitors MMIO as a kernel service, however this does not satisfy
reference monitor requirements. Type 2 runs entire software stack in unprivileged mode at cost of performance. Type 3 (M2MON) runs most
OS stack in unprivileged mode, with I/O intensive code in privilege mode inside a sandbox.

time requirements. To tackle these challenges, while provid-
ing strong security guarantees, we derive our design goals as
follows:

G1 Complete Mediation Our monitor should be able to
mediate all MMIO accesses within the system. It has to
be non-bypassable and always invoked.

G2 Tamperproofness Our monitor needs to be tamper-
proof from threats and attacks outside the Trusted Com-
puting Base (TCB). For instance, if we assume applica-
tions are not trusted and thus outside our TCB, we need
to defend against attacks from them, as well as RTOS
since they are often coupled together.

G3 Verifiability Our monitor and the whole software TCB
have to be small, e.g., comparing to typical RTOS imple-
mentations, thus allowing manual analyses and tests for
verification.

G4 Generality Our monitor cannot depend on a specific
RTOS implementation. It should be general enough to
be applied to any existing system.

G5 Programmability Our monitor needs to provide a user
interface enabling system owners to configure the policy
and runtime behaviors as needed.

G6 Real-Time Satisfaction Our monitor could only intro-
duce a minimum runtime overhead, without violating
the real-time requirements of the system.

The first three design goals are guaranteed by using a refer-
ence monitor [6]. However, our implementation goes beyond
the reference monitor concept by considering practical de-
ployment and runtime issues. The resultant system is a small
microkernel running in privileged mode and mediating MMIO
accesses at low overhead.

4.2 M2MON Micro Kernel

We now explain M2MON design. During M2MON design,
we catered to the constraints specific to embedded systems.
Using existing techniques such as SFI [65] and hardware
extensions, we fulfilled each one of the aforementioned de-
sign goals. To evaluate our design, we ran and tested on real
hardware.
M2MON Isolation: A naive design is to implement M2MON
inside the RTOS, which runs in privileged mode and has con-
trol over all MMIO accesses, as shown in Type1 of Figure 3.

An RTOS includes a scheduler, tasks, and interrupt han-
dlers (IRQs). As we mentioned earlier, applications are often
running within a privileged context to reduce context switches.
While this design is straightforward, it inevitably leads to hav-
ing a TCB including both RTOS and applications, meaning
that a vulnerability within an application might compromise
M2MON. This design also heavily depends on the implemen-
tation of the RTOS, since M2MON is one of its components.
To reduce the TCB size and get rid of the dependency of
the RTOS implementations, we designed M2MON as a self-
contained and single-purpose microkernel, running inside the
privileged context.

Left with only two execution modes, we pushed both the
RTOS and applications into the unprivileged mode, as shown
in Type2 of Figure 3. This left the privilege execution mode
for M2MON. Since the only task of this microkernel is mediat-
ing MMIO accesses, its codebase is small enough for manual
analysis and testing, achieving the design goal G3 Verifia-
bility. Accordingly, this design supports running in different
RTOS implementations, thus achieving G4 Generality.
MMIO Isolation and Protection: Given a system memory
map, we need to identify the MMIO regions and isolate them
from other parts of the memory. Often, vendors declare mem-
ory regions associated with peripheral memory in the system
memory map, using either device tree sources or technical

288 30th USENIX Security Symposium USENIX Association

Private Peripheral Bus

External RAM

Code/Flash
SRAM

Peripherals

External Devices

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0000000

0xE0100000

0xFFFFFFFF

M1

M2

Figure 4: M2MON ARMv7-M Memory Layout. M1 and M2 are the
sub-regions allowed by ARM for MMIO.

reference manuals. However, such memory regions also have
to reside inside the specific regions defined by the architecture
specification.

For example, all ARMv7-M compliant processors (which
our experiment is based on) rely on the system memory map
as shown in Figure 4. In this map, MMIO can be mapped into
two clusters, annotated as M1 and M2. We call M as the union
on these two clusters (i.e., M = M1[M2), representing the ad-
dress range M2MON needs to protect. It is worth noting that
addresses responsible for MMIO accesses may be sparsely
populated, but all MMIO regions must reside within M.

By monitoring a superset of MMIO regions, we achieve the
design goal G1 Complete Mediation. We further configure
MPU to forbid accesses to M1 and M2 from unprivileged
mode, thus achieving G2 Tamperproofness against RTOS and
applications. Note that the MPU and the control registers can
only be configured from the privileged context. Thus, in our
design, they can only be accessed by M2MON.
Interrupt Handlers Hardening: The design described until
now still presents a major performance and security drawback.
Specifically, it cannot handle efficiently MMIO accesses com-
ing from interrupt (IRQ) handlers. Because these handlers are
running in unprivileged mode, they need two extra context
switches whenever an MMIO access happens, making them a
performance bottleneck.

To solve this issue, we need to move these handlers to the
privileged mode. One solution would be implementing these
handlers within M2MON directly. On one hand, different plat-
forms often use different IRQs, and we might end up having
to implement every IRQ handler available on the architecture
to support different SoCs. On the other, the RTOS used by a
UV already implements all the necessary handlers. For these
reasons, we decided to reuse the IRQ handlers provided by
the RTOS and move them back to the privileged mode to
avoid duplication and improve performance.

Note that these handlers need to access the MMIO as well

1: int hrt_tim_isr() __attribute__((irqbox));
2: int hrt_tim_isr() {
3: volatile unsigned * CR1_ADDR = 0x40012c00;
4: uint32_t status = getreg32(CR1_ADDR);
5: putreg32(~status, CR1_ADDR);

...

1: int hrt_tim_isr() __attribute__((irqbox));
2: int hrt_tim_isr() {
3: volatile unsigned * CR1_ADDR = 0x40012c00;
4: uint32_t status = *CR1_ADDR;
5: *CR1_ADDR = ~status;

...

Figure 5: M2MON MMIO Detection using static analysis. Walking
use-def chains we can find if a particular pointer is created using a
hard-coded address. For all such pointers, we replace direct access
with a call to our monitor gateway.

and could contain vulnerabilities due to their complexities.
Therefore, instead of reusing their code directly, we designed
a sandbox mechanism for these handlers.

Our sandboxing mechanism uses a compilation-time analy-
sis of the handlers’ code and Software Fault Isolation (SFI)
techniques. In this way, we can ensure that IRQ handlers can-
not bypass M2MON monitoring and, at the same time, that
their data-flow and control-flow integrity cannot be subverted,
as shown in Type3 configuration in Figure 3.
Complete Mediation Reassurance: As mentioned above,
M2MON needs to identify all MMIO accesses within an IRQ
handler. To this aim, we observe that it is common for RTOS
to rely on hard-coded address values to access MMIO, be-
cause such addresses are dictated by the hardware specifica-
tion and cannot change. Particularly, the offset of registers
within devices are given by 3rd-party manufacturers, whereas
the base address of the device is selected by SoC manufactur-
ers and cannot be changed if an MMU is not available.

Therefore, at compile-time, we perform use-def analysis [5]
on the IRQ handlers source code, using the hard-coded MMIO
addresses to locate all the instructions accessing MMIO.
When an instruction is detected accessing MMIO addresses, it
is replaced with a call to the M2MON monitor gateway. The
M2MON monitor will take care of performing the original
memory access, while, at the same time, enforcing the needed
security policies. Figure 5 shows an example of how M2MON
enforces such mediation in ArduPilot.
Data-Flow Integrity:

To sandbox the execution of interrupt handlers, we enforce
the following policy: all data access from interrupt handlers
should be restricted within the handler itself. In other words,
interrupt handlers’ code, although it runs in privileged mode
should not be able to interfere with M2MON code.

To achieve this property, we analyze the memory layout of
the target board (i.e., PixHawk FMU Board in our experiment)
and mask all direct/indirect memory accesses to stay within
the handlers. More specifically, Figure 6 shows the memory
layout on PixHawk FMU Board. It has two RAM chips in-

USENIX Association 30th USENIX Security Symposium 289

Read/Write
Access

Userspace Data

0x10000000

0x20000000

0x08004000

0x08004000
+ 1008K

0x10000000
+ 64K

Code

Interrupt &
Userspace

Data

0x20000000
+ 192K

Monitor Data

No Access
(SFI)

No Access
(MPU)

Read/Write
Access

.mon

Read/Write
Access

Read/Write
Access

Read/Write
Access

No Access
(SFI)

Read/Write
Access

Read/Exec
Access

Read/Exec
Access

Read/Exec
Access

Monitor
Memory View

Interrupt
Memory View

Userspace
Memory View

Figure 6: Memory Layouts fabricated using SFI and MPU. Each col-
umn shows the view for particular components in system. .mon is the
section reserved for monitor. Each section shows which mechanism
is used for isolation.

1: int dmainterrupt(int) __attribute__((irqbox));
2: int dmainterrupt(int irqno){
3: struct dma_chan * = &gdma[irqno];
4: int *channel = dma_chan->channel;
5: ...

1: int dmainterrupt(int) __attribute__((irqbox));
2: int dmainterrupt(int irqno){
3: struct dma_chan * = &gdma[irqno];
4: dma_chan &= ~(1<<28);
5: int *channel = dma_chan->channel;
6: ...

Figure 7: M2MON Data Flow Integrity for M2MON monitor. All
indirect accesses are instrumented so that the 28th bit is clear, ensur-
ing sandbox cannot access 0x10000000 - 0x1FFFFFFF.

stalled, Closely Coupled SRAM (CCSRAM) at 0x10000000 of
size 64KB and an SRAM at 0x20000000 of size 192KB. We
keep M2MON related data in a special section called .mon at
start of CCSRAM, and further move interrupt handler related
data to SRAM. Since the SRAM address range spans from
0x20000000 to 0x20030000, we only need a logical AND
with the address to clear bit 28 ensuring that interrupt handlers
cannot access CCSRAM. Figure 7 shows an example of this
application.
Control-Flow Integrity: To sandbox the execution of interrupt
handlers we also need to sandbox their control flow. Specifi-
cally, we enforce the following policy: All instructions exe-
cuted from interrupt handlers should belong to the interrupt
handler itself. In other words, interrupt handlers’ code, al-
though it runs in privileged mode, should not be able to jump
to M2MON code.

To achieve this property, during compilation, we apply
Control-Flow Integrity (CFI) [2] techniques to these handlers.
Figure 8 summarizes our approach. Traditionally, CFI is de-
fined in terms of forward control (caller to callee branches,
such as function calls) flow and backward control flow (callee

<timerISR>:
0 : pushLR
1 : push {fp}
2 : add fp, sp, #4
3 : sub sp, sp, #8
...
...
8 : bl <schedTimer>
9 : mov r3, r0
...
...
13: popLR
14: bx lr

<schedTimer>:
0 : pushLR
1 : push {fp}
...
...
...
...
13: popLR
14: bx lr

FPLR

Increasing Addressees timerISR
Function
Stackframe

Local
Vars

schedTimer
Function
Stackframe

Forward
Edge

Backwards
Edge

Interrupt Handler
accessible RAM

Interrupt Handler
Stack
Monitor
Memory

Shadow Stack

SP

යඹ

LR LR LRFPLocal
Vars LR

pushLR:
0 : ldr r12, =0x100000; Load Shadow SP
1 : ldr r0, [r12]
2 : sub r0, r0, #4 ;Make Space for LR
3 : str r0, [r12] ;Update Shadow SP
4 : str lr, [r0] ;Save LR in Shadow

;Stack

popLR:
0 : ldr r12, =0x100000; Load SSP Addr
1 : ldr r0, [r12] ; Load SSP
2 : ldr lr, [r0] ;Load Safe LR
3 : add r0, r0, #4 ;Restore SSP
4 : str r0, [r12]

Figure 8: Example function branch with forward and backward
control flow integrity in place. pushLR code snippet saves current
LR on safe stack, while popLR restores from current safe stack
pointer.

to caller branches, such as return from function instructions).
Our approach needs to take care of both forward and back-
ward control flow.

To prevent forward control flow violations, we do not allow
indirect branching using function pointers from handlers. For
example, given any indirect branch/jump, we unroll it with
all the potential targets (i.e., enumerating all potential targets
using switch like statements), enabling branch verification at
compile time.

To prevent backward control flow violations, we use a
shadow stack [63]. Since only M2MON monitor can access
its own data region (since we enforce Data-Flow Integrity, as
explained in the previous section), we place the shadow stack
in the monitor data section. We further modify the function
epilogues and prologues used by the interrupt handlers to save
the return address on entry and enforce the safe return address
saved on the shadow stack on return.

It is worth noting that one may use SFI for all software
modules (such as schedulers and tasks) and run them in privi-
leged mode. However, besides bloating the TCB, employing
SFI over all the system modules requires a large amount of
code instrumentation, which would raise severe performance
issues. For instance, in a system running the ArduPilot con-
trol software with NuttX RTOS, we measured 21,836 indirect
references.

Conversely, the indirect references present in interrupt han-
dlers are only 48. For this reason, by running only the inter-
rupt handlers in privileged mode and applying SFI during
compilation time only to their code, the speed overhead is
minimal. This design choice allows us to achieve the design
choice G6 real-time satisfaction without compromising secu-
rity guarantees. This solution can be applied to any compiler
framework, independently of the RTOS implementation, thus
also achieving G4 Generality.

To further reduce the overhead of MMIO accesses from

290 30th USENIX Security Symposium USENIX Association

the unprivileged mode, we leverage some key observations to
group multiple MMIO accesses into a single syscall, reducing
extra context switches. These optimizations help us achieve
G6 real-time satisfaction.

In particular, we notice that it is common to observe the
following three MMIO accesses to the same MMIO address
in order: read, modify, and write, composing a Read-Modify-
Write (RMW) operation. RMW operations are commonly
used to perform stateful interactions with peripherals, read-
ing the state of the device, modifying the state, and finally
updating the device state. Some devices export information as
bitfields to users, and manipulating such bitfields also requires
RMW operations. To coalesce these multiple MMIO requests,
we design special syscalls that perform an RMW operation
entirely. These syscalls are examples of flight controller code,
which exercise such patterns, e.g., interrupt enabling/disabling
routines, etc.

A similar case is communicating with other devices over
external buses such as I2C and SPI, following a well-defined
protocol. We call each transaction of such communication a
bus transfer. After bus arbitration, data transfer starts through
message packets using MMIO. A message packet could be
as small as a byte depending on the bus payload capacity. As
such, to transfer four bytes, four separated syscalls might be
needed thus incurring extra context switches. We note that the
sequence of operation is always the same (as it is defined by
the bus protocol) and can be grouped into one syscall, taking
in the device ID and the data to be transferred over the bus.
For this reason, we design the SPI_filter_transaction
syscall to transfer data over SPI, taking, as arguments, the
Device ID for the device we want to communicate with, and
two buffers for sending and receiving data together with their
corresponding lengths.
Hooks and Policy Enforcement:

To allow end-users to customize M2MON and load policies
during both compile-time and runtime, we design a set of user
interfaces enabling both low-level API-based programming
and high-level command-line-based management. This user
interface achieves the G5 Programmability design goal.

In particular, the low-level API-based programming in-
terface allows owners to register and monitor actions upon
certain I/O accesses for a given device. The device can be
wither memory mapped (MMIO) or installed behind a bus
(e.g., SPI).

The API consists of the following four functions:

typedef void (*EXEC)(uint size, bool is_write,
uint32_t value);

void register_action(uint addr, EXEC exec);

typedef void (*EXEC_SPI)(uint8_t *data);
void register_action_spi(uint device_id,

EXEC_SPI exec, bool egress);

typedef void (*EXEC_SYNC_CALL)(uintptr_t parm1,
uintptr_t parm2, uintptr_t parm3);

void register_sync_call(uint call_id,EXEC_SYNC_CALL exec);

void sync_call(uint32_t call_id, uintptr_t parm1,
uintptr_t parm2, uintptr_t parm3);

In register_action, addr determines the MMIO address
to monitor, while exec is a callback function pointer invoked
on each access. Inside the exec callback, size tells about the
bit width of an access, is_write indicates whether the access
is read or write, and value is the value to be written, which is
only used in the case of write access (i.e., is_write is true).

Similar to register_action for MMIO addresses, we
design different APIs for a variety of buses to intercept the
bus accesses. For instance, system owners can register an SPI
filter using register_action_action, where device_id is
the address of the device on SPI bus 2 for which data transfers
will be monitored, egress selects the path of filtering (i.e.,
Egress monitors all data transfers from CPU to device over
the bus, and Ingress monitors data transfers from device to
CPU over the bus.), and exec is the callback invoked on each
data transfer over the bus.

Lastly, to register synchronous callbacks in M2MON we
also provide the API: register_sync_call. Unlike pre-
vious hooks which are only called on relevant MMIO ac-
cess, synchronous callbacks can be triggered on demand. To
achieve this, we provide sync_call. User can call sync_-
call with the relevant callback’s id and parameters to trig-
ger the service. This is similar to syscall machinery. In
register_sync_call, call_id determines the id for the
synchronous call, whereas exec is the callback invoked when
sync_call is invoked with the call_id used to register this
call. In sync_call, parm1, parm2, parm3 are used to pass
arguments to the relevant callback.

5 Implementations

We start with how we build the M2MON microkernel as a
generic security reference monitor, followed by the MMIO-
based firewall built upon M2MON and secure Kalman Filter
implementations within M2MON. Both the firewall and the
KF plugin are “applications” of M2MON and applied to our
evaluation to demonstrate their usefulness and effectiveness.

5.1 M2MON Microkernel
To build M2MON, we use Minion [29] as the starting point.
We modify the NuttX kernel to push the RTOS into the unpriv-
ileged mode while leaving the privileged mode for M2MON.
To access an MMIO address, the unprivileged mode uses a
supervisor call (SVC) to trap into the privileged mode, and
M2MON checks the access against existing policies if any.
For privileged mode, exception handlers are running inside
a sandbox enforced by DFI and CFI, and M2MON mediates
every MMIO access from them as well. As Figure 6 shows,
Cortex-M can possibly have 0.5G distinct MMIO addresses.

2Chip Select for SPI Devices

USENIX Association 30th USENIX Security Symposium 291

Due to the scarcity of available memory and performance
reasons, we implement a hash map to index different policies
and rules quickly. We also port both NuttX and ArduPilot to
GCC 6.3.1 for mature plug-in support.

To move user code into M2MON, we create a cus-
tom compiler attribute that users can annotate code with.
To implement different SFI mechanisms within GCC, we
wrote three passes, pass_sanitize, pass_safe_stack and
pass_epi_prologue_fixup. We schedule our passes as
early as possible so that we can take the full benefit from
the subsequent optimization passes. pass_sanitize detects
all MMIO operations using the algorithm described in Sec-
tion 4.2. It ensures no direct MMIO accesses inside the sand-
boxed code, instruments all indirect references for DFI, and
guarantees no indirect forward edges (branching using func-
tion pointer) in the code. This pass is scheduled right af-
ter the SSA (Static Single Assignment) pass and uses the
alias analyses provided by GCC. However, alias analysis re-
sulted in high false positives. Since GIMPLE 3 is machine-
independent, we used two RTL 4 passes to implement safe
stacks. pass_safe_stack is scheduled right after GIMPLE
to RTL expansion passes, e.g., pass_expand. pass_safe_-
stack adds instructions at function entry and exit for safe
stack upkeep. This is done before GCC generate the epi-
logue and prologue (pass_pro_epi_fixup). Since pass_-
pro_epi_fixup is scheduled after pass_safe_stack, we
schedule another pass, pass_epi_prologue_fixup, to re-
move any manipulation to the link register (register used
to save return address in ARM architecture) by compiler-
generated function epilogue and prologue.

During the initial evaluation we found out that even though
the regular control loop is CPU intensive, the startup phase
of the firmware is I/O intensive. Monitoring I/O during the
startup caused a significant latency in the initialization time.
To overcome this latency, we delay the enforcement of the
MMIO monitoring till the startup phase completes. Note that
this workaround does not violate our security guarantees,
because remote attackers cannot change the configurations
during the initialization by modifying the flash memory with-
out a USB flash programmer, which requires physical access
to the drone.

5.2 Access Pattern Based Firewall
One key observation we make is to leverage the MMIO access
patterns as “fingerprints” of peripheral MCUs. Comparing
to other domains, the MMIO access pattern is fairly stable
in a UAV environment. In fact, a UAV control program usu-
ally sets up its device configuration before the main control
starts. Once inside the control loop, the program often follows
the same flow, e.g., reading from sensor data registers, pro-

3Language independent C-like IR used internally by GCC.
4Register Transfer Language, a LISP-like machine-dependent IR used by

GCC.

Task 1

EKF
Filter

Raw
Values

EKF
Fused Value

acl_reg 0xF
E10002C

❶

⓶
⓵

⓷
❷

❸

Task 2 Task nTask 2

Scheduler Driver Lib

Devices/MMIO

Figure 9: Retrofitting EKF module (left) and firewall (right). For
EKF: 1) EKF module reads raw values from the sensor 2) processes
them 2) and 3) provides a parameterized system call to update filters.
For firewall: 1) Control loop issues an I/O requests 2) M2MON
evaluates the request based on registered rules 3) If allowed the
MMIO transaction is processed.

cessing the input, and then writing back to actuator registers.
During each loop, for each peripheral, only a limited number
of MMIO addresses are accessed for data retrieval. Conse-
quently, each device demonstrates a “fixed” MMIO access
pattern under normal executions, and this pattern is repeated
during every loop.

To get these MMIO patterns from the system, we use
M2MON to log each MMIO access with a timestamp and
extract patterns from these logs. An MMIO access pattern can
reflect both spatial and temporal characteristics. Specifically,
we consider three different features revealed by a pattern:
access list, access chain, and access frequency.

We define the access list as an allowlist containing all the
MMIO addresses used to access a device during normal ex-
ecutions. Access to the addresses within the access list is
mandatory to operate a peripheral correctly, and each periph-
eral MCU has its own access list.

To capture the internal connections among different MMIO
accesses, we also consider access chains. An access chain
represents the ordering in which different MMIO accesses
happen and is encoded as a directed graph, where each node
represents a unique MMIO address and a directed edge be-
tween two nodes stands for a possible MMIO access sequence.
This graph essentially captures the characteristics of certain
protocols communicating with a peripheral MCU. MMIO
profiler can automate the detection of this MMIO access se-
quence and code generation to enforce the access chains.

Access frequency records the inter-access time for a par-
ticular MMIO address or MMIO region, given a peripheral.
Because of the real-time and deterministic nature of UAV
control software, we expect all the features to show stable
statistics under normal conditions.

Once learned the access pattern given an MMIO address,

292 30th USENIX Security Symposium USENIX Association

we can generate C-based policies or rules automatically using
our own Domain Specific Language (DSL) compiler, which
enforce the access pattern for this MMIO address. Listing 1
shows the generated code for barometer sensor. These poli-
cies use the hooks provided by M2MON and compile to-
gether with M2MON during compilation time. More specifi-
cally callbacks can be registered against particular MMIO ad-
dresses using register_action and register_action_-
spi as described in Section 4.2.
Listing 1: Generated C code for barometer sensor MMIO model

void BARO_filter(unsigned char * send) {
static unsigned char

lastTrans = INIT_VALUE;
switch (lastTrans) {
case MEASURE_CMD:
if (send[0] != READ_CMD)
trigger_failsafe();

break;
case RESET_CMD:
if (send[0] != READ_CMD)
trigger_failsafe();

break;
case READ_CMD:
if (send[0] != MEASURE_CMD ||

send[0] != RESET_CMD)
trigger_failsafe();

break;
case INIT_VALUE:
break;

}
lastTrans = send[0];

}

Furthermore, for the online registration of new rules, we im-
plement Command Line Interface (CLI) rules. These are ba-
sically callbacks with pre-defined behavior, parameterized
with the MMIO address. On receiving command this pre-
defined callback is registered based on the input address using
register_action. For CLI we assume a secure commu-
nication channel. A system owner can issue the following
commands:

sh> BLOC_register 0xE000E014
sh> FREQ_register 0xE000E014 3000

BLOC_register restricts access to a specified address (e.g.,
0xE000E014). Once the address is added M2MON denies all
access to that address. FREQ_register registers the maxi-
mum access frequency for an MMIO address. For instance,
0xE000E014 is the address being monitored, and 3000 is the
moving average of inter-access frequency.

Figure 9 shows the workflow of M2MON as an access
pattern-based firewall. M2MON microkernel monitors the
MMIO accesses from peripheral MCUs to detect anomalies
based on the previously obtained “fingerprints.” As we will
see in Section 6, UAV attacks modify the MMIO access pat-
tern in different ways. Our approach aims at finding these
anomalies in MMIO access patterns.

5.3 Securing Kalman Filter
Kalman filtering [27] is an estimation technique that observes
different sensor values over time to estimate some unknown
variables. With basic Kalman filtering, we can only model
linear systems, however, an extension to Kalman filters known
as Extended Kalman Filter (EKF) can estimate non-linear sys-
tems as well. EKF is extensively used in control systems for
sensor fusion. Sensor fusion is the process of getting values
of some physical attribute from different sources. In case one
of the values obtained from the sensor is malicious or faulty,
the value computed by the EKF could still be correct since it
can infer the correct value based on past values and on values
acquired by other sensors.

In current UAV implementations, the EKF is implemented
as part of the RTOS. However, as we have shown in Sec-
tion 4.2, the RTOS is typically not secure given the sorry state
of affairs in embedded security. For example, using what we
explained in Table 2, we can trivially show that we can use
the Flash Patch and Breakpoint unit to compromise the RTOS
and bypass any check performed by the EKF.

To tackle this problem, we implement the EKF inside
M2MON. Therefore, it runs separately from the RTOS and it
is affected by its vulnerabilities. At the same time, M2MON
guarantees that the EKF implementation can work efficiently
(i.e., with low overhead) and safely (due to the usage of SFI).

Figure 9 shows how we implement the EKF module in-
side M2MON. Using register_action and register_-
action_spi, as described in Section 4.2, the user can record
previous measurements of some particular sensor. To regis-
ter a filter, the user can register a synchronous callback using
register_sync_call, which can be invoked from userspace
using sync_call. For instance, the hook for EKF check is
registered using the following piece of code:

register_sync_call(EKF_UPDATE_ID, doEKFUpdate);

5.4 Post-Detection Response
M2MON-APF and M2MON-EKF can detect malicious activ-
ities in the system. However, once we have diagnosed such
activities, we need to take defensive action. Essentially, for
the continued operation of UAV, we cannot use the peripheral
under attack. This situation is similar to a peripheral mal-
function. We can use Fail-Safes to handle such scenarios. A
fail-safe [50, 66] is a design feature of control systems that
mitigates the effects of malfunctioning components. A control
program can have multiple fail-safes designed around the mal-
functioning peripheral. For instance, ArduPilot has multiple
fail-safes such as Radio fail-safe, EKF fail-safe, GCS fail-safe,
etc. Each fail-safe’s behavior is dictated by the malfunction-
ing peripheral. For instance, if a radio receiver malfunctions
in a UAV, the radio fail-safe response could be to return to the
home, as doing so does not require the radio link.

USENIX Association 30th USENIX Security Symposium 293

Upon attack detection, we can leverage the relevant fail-
safe to continue operation by considering the peripheral under
attack as malfunctioning. However, utilizing the fail-safe re-
quires trusting the control program. Unfortunately, the control
program is outside the TCB according to our design, since we
want a minimal TCB size. In the balance of both security and
usability at the same time, we design and implement a two-
step Post-Detection response in M2MON, where the first step
is triggering the typical fail-safe operation provided by the
control program, and the second step is to start an Emergency
response. Emergency response is a platform-specific attack
response completely implemented within M2MON and is
independent of any component outside M2MON. For UAVs,
we choose deploying a parachute as our emergency response.

The design consideration of this 2-step post-detection re-
sponse is two-folded. As we mentioned earlier, control pro-
grams usually implement different fail-safe operations to deal
with malfunctioning peripherals. While we still do not trust
control programs, triggering them in the first step is benefi-
cial when the attack detected is a false alarm or the control
program can execute the fail-safe correctly. Consequently,
we only need to implement minimum code within M2MON
to reuse the fail-safe operations of control programs instead
of implementing all of them inside M2MON. Meanwhile,
we continue monitoring the MMIO activities. If we still de-
tect the attack after triggering the fail-safe operation of the
control program, we infer that the control program didn’t re-
spond. Hence, we need to rely on the emergency response
from within M2MON. Thanks to the privilege separation be-
tween M2MON and RTOS in our design, we can achieve
secure emergency response handling without the need for
another MCU by executing it within M2MON.

We modify the control program and move the fail-safe
trigger functions inside M2MON. Similarly, users can use
register_sync_call API to register a fail-safe. Existing
userspace code can invoke the fail-safe using sync_call.
Furthermore, We build our emergency response using the
SATS-MINI system. SATS-MINI is an external peripheral
used to deploy parachutes for UAVs for a safe landing. The
SATS-MINI takes in an input signal of two ms wide pulse
as a trigger signal from the main UAV system. This signal
causes the SATS-MINI to deploy the parachute. Since we do
not want any dependency on components outside M2MON,
we write the code to generate the signal inside M2MON. The
code consists of the routine to trigger the signal and drivers for
relevant peripherals (such as timer and GPIO). Due to logistic
constraints, we did not test with an actual parachute, but our
implementation adheres to the SATS-MINI specifications.
Furthermore, we verified the required signals using a digital
oscilloscope. We provide an API emergency_response to
trigger the emergency response signal.

6 Evaluation

We evaluate M2MON using the 3DR IRIS+ UAV platform
explained in Section 2 aiming to answer two questions:

• Effectiveness: how effectively M2MON can defend
against known and new attacks, and reduce the TCB
size.

• Overhead: how much overhead M2MON introduces
with respect to real-time constraints, micro-benchmarks,
storage, and SFI instrumentation.

Throughout this section, M2MON refers to the M2MON
microkernel. M2MON-APF refers to the access pattern-based
firewall using M2MON. M2MON-EKF refers to EKF imple-
mentation on top of M2MON.

6.1 Security Evaluation
To verify the effectiveness of M2MON, we choose eight at-
tacks out of the nine attacks that we surveyed in Table 1, and
we can defend against all the eight attacks using M2MON.
We do not include ECU attacks [32] in our evaluation be-
cause these attacks do not apply to our UAV platform. As
shown in Table 2, we are able to defend these attacks using
different detection features provided by the firewall and the
EKF. Based on the nature of attacks, we categorize them into
two categories: 1) Signal Spoofing Attacks, where the attacker
attacks the UV by spoofing signals such as GPS, Radio, etc. 2)
Code Compromise Attacks, where the attack payload includes
running code on the flight controller. For each attack, we list
the target MMIO activity and the details of the post-detection
response. Furthermore, we discuss the possibility of circum-
vention of M2MON’s defenses for each attack as well. In the
case of the eighth attack, we cite existing research [3,4,39,47]
to show the EKF’s efficacy against such physical sensor at-
tacks (such as acoustic attacks [53]). In this section, we briefly
explain a few of the case studies.
Case Study: Timer Attack (case 1). ARM Cortex-M series
have the System Tick Timer (SysTick) which generates in-
terrupt requests periodically to support multi-tasking. RTOS
configures this period by writing to the SysTick reload value
register STK_LOAD. To conduct the timer attack, attackers as-
sign a larger value than the original value for the STK_LOAD
using existing vulnerabilities found in NuttX [29], degrad-
ing the responsiveness of the real-time processes because the
scheduler would then work based on the slower clock. As a
result, a UAV would demonstrate unstable positions, drop its
altitude, and eventually crash [29].

To detect the attack, we can add the address of STK_LOAD to
the access list (blocklist) of M2MON. Since the RTOS writes
the STK_LOAD only once during the bootstrapping, if attackers
update the value of STK_LOAD after initialization, M2MON
detects and denies the write operation against the STK_LOAD.
Post-Detection Response: Since the defense avoids the attack,
we don’t need to trigger any post-detection response.

294 30th USENIX Security Symposium USENIX Association

Case ID Attack Detection Feature MMIO Register/Address Attack Type
1 Timer Attack Access List Timer Load Register Code Execution
2 IRQ Override Access List Vector Table Offset Register Code Execution
3 Radio Replay Access Frequency GPIO Status Register Signal Spoofing
4 Flash Patch Attack Access List FPB Control Register Code Execution
5 GPS Spoofing Access Frequency UART Data Register Signal Spoofing
6 Gyroscope Attack Access List Device ID 1 Command (SPI) Code Execution
7 Barometer Attack Access Chain Device ID 3 Command (SPI) Code Execution
8 Malicious Sensor values Kalman Filtering Data registers related to sensor values Signal Spoofing

Table 2: Attack cases used to evaluate the effectiveness of M2MON-based firewall and the usage of M2MON-based Kalman filter.

Rule Circumvention: In this case we block access to I/O ad-
dress essential to the attack, so even an attacker who is aware
of M2MON defense will not be able to conduct this attack.
Case Study: GPS Spoofing (case 5). This attack allows
an attacker to hijack and control a UAV by sending out
spoofing GPS signals. Our GPS spoofing method follows
a common setup [58, 70]. We used GPS-SDR-SIM [44] with
HackRF One [20]. During our attack, we found the GPS
module (u-blox NEO-7N [59]) cannot detect our GPS spoof-
ing attack 5. Previous GPS spoofing detection mechanisms
[26, 49, 67] have utilized the Ephemeris and Almanac GPS
packets as the criterion. These packets contain the location
and orbital information about GPS satellites.

To detect the GPS spoofing attacks, we count the number of
Ephemeris messages with a window of three minutes. Dur-
ing our five-hour long MMIO profiling on our UAV platform,
we found that the GPS module receives a maximum of eight
Ephemeris messages within three minutes under normal op-
erations. However, under GPS spoofing attacks, we noticed
the received number of Ephemeris messages is increased by
fake GPS signals (minimum 12 and average 14).

To implement such a complex policy within M2MON, we
use register_action to register a rule against the UART 4
data register, which is used by the GPS module to communi-
cate with the main MCU. Using this we can infer the number
of Ephemeris messages received and use the platform timer
to measure the message frequency.
Post-Detection Response: Since the drone cannot reliably
continue navigation without a GPS module, on detecting this
attack we trigger the emergency response (See Section 5.4)
to prevent UAVs from getting hijacked.
Rule Circumvention: Attackers can decrease the number of
fake GPS satellites to evade such detection mechanism. To
verify our detection method, we decreased the number of
satellites and noticed that the attackers need to spoof a larger
number of fake satellites than the number of benign satellites.
For instance, nine fake GPS satellites were required to spoof
a location of our UAV platform while it received GPS signals
from eight benign satellites. Further, we also counted the
Ephemeris messages with the nine fake GPS satellites. We

5The specification of the GPS module mentions that the spoofing detec-
tion cannot detect all types of attacks.

noticed that our UAV platform receives a minimum of 10
(and average 13) Ephemeris messages. Accordingly, even
if the attackers conduct stealthy GPS spoofing attacks by
decreasing the number of fake GPS satellites, we could still
detect GPS spoofing attacks using the expected maximum
frequency of Ephemeris messages (e.g., eight) given a period
time of operations (e.g., three minutes).
Case Study: Barometer Attack (case 7). This attack ma-
liciously modifies the altitude value measured by a drone,
thus influencing its altitude. Specifically, after compromis-
ing the ESP8266 Wi-Fi module, attackers can use special
commands, such as Direct Comms SPI/I2C commands [8], to
trigger actions in a barometer sensor. The platform used in our
experiments uses the ms5611 barometer sensor [18]. It mea-
sures both temperature values and pressure values to calculate
altitude values. According to the datasheet of ms5611 [18],
the sensor requires 10 ms to correctly report the measurement.

However, under the attack, the attackers can trigger read
command to disrupt the ongoing measurement and destabi-
lize the drone. However, this disturbance is transient, and the
drone recovers in the next control loop iteration. To crash
the drone, the attacker needs to continually trigger read com-
mands. Figure 10 shows the result of triggering unsolicited
operations using Direct Comms commands [8]. To defend
against such an attack, we can infer the protocol between
ArduPilot and ms5611. Figure 11 shows the inferred model.
This model can be loaded in M2MON to enforce correct op-
erations.
Post-Detection Response: If the flight control software de-
viates from this behavior M2MON would have to continue
operation without the sensor value. This is similar to Ardupi-
lot’s EKF fail-safe. In the case of detection, we utilize this
fail-safe as described in Section 5.4.
Rule Circumvention: To launch this attack, the attacker needs
to repeatedly trigger the read command to disrupt the normal
operation. However, since the barometer driver exhibits a
deterministic pattern, any additional operation will break the
pattern. Hence, an M2MON-aware attacker can only take a
legal transition to evade detection, thus eliminating the attack.
Case Study: Flash Patch Attack (case 4). After compromis-
ing the ESP8266 Wi-Fi module, attackers can execute arbi-
trary code on a UAV using the Flash Patch and Breakpoint

USENIX Association 30th USENIX Security Symposium 295

%HJLQ�DWWDFN

(a) Pressure values under the at-
tack.

%HJLQ�DWWDFN

(b) Temperature values under
the attack.

%HJLQ�DWWDFN

(c) Altitude values under the at-
tack.

%HJLQ�DWWDFN

(d) Rate of climb values under the
attack.

Figure 10: The changed sensor values under the barometer sensor
attack (i.e., case 7).

(FPB) [10] unit supported since ARMv7-M. Since the FPB
can replace instructions during the CPU execution, it is often
used to patch the firmware on the fly. To launch the attack,
adversaries use NuttShell (NSH) [42] over the compromised
channel to execute memory read and write commands (mb,
mh, and mw) remotely.

Attackers can replace a function call with an infinite loop by
using the FPB. This can lead to disrupting the operation, even
crashing the drone. This attack does not yield any memory
access violation because the NSH has permission to access the
FPB unit. Accordingly, previous defense methods [16,17,29]
cannot detect or defend it. Using M2MON, we can restrict the
access to the FPB by blocking the access to registers related
to the FPB (e.g., FP_CTRL).
Post-Detection Response: Since the defense avoids the attack,
we don’t need to trigger any post-detection response.
Rule Circumvention: In this case, we block access to I/O ad-
dress essential to the attack, so even an attacker who is aware
of M2MON defense will not be able to conduct this attack.
Case Study: Radio Controller Replay Attack (case 3).
This attack records and replays commands over the radio
channel with malicious intent. Our RC replay attack uses
HackRF One [20] with GNU radio to record and replay the
control signals against the FrySky receiver. We conducted
replay on throttle update, arming, and disarming commands.

The RC receiver and Pixhawk 1 board communicate via a
GPIO port. During the attack, we observed that the frequency
of I/O accesses to the GPIO port increased, as shown in Fig-
ure 1c. For a window of 10 accesses, the maximum moving
average of the GPIO access interval was 222.1 ms under nor-
mal conditions and 122 ms under the attack. We infer higher
I/O activity results because both GCS and the attacker are
sending messages at the same time. Furthermore, we note that

Measuring
Temperature

: Legal transition
: Illegal transition

Computing
Altitude

Measuring
Pressure

read

read

get_temperature

get_pressure

read

: Operation in sensor
: Operation in Ardupilot

Figure 11: State diagram describing how the ms5611 barometer sen-
sor operates. To obtain the barometer values, it periodically conducts
the state transitions. The solid black arrows indicate legitimate state
transitions and the red dotted arrow represents an illegal self state
transition under the barometer sensor attack.

the RC transmitter continuously sends control signals (such
as roll, pitch, throttle) to the UAV regardless of user activity.

Since the activity on the radio channel is independent of
the user activity, we use the moving access frequency of the
GPIO Output Data register to detect this attack. If the average
goes below 200 ms, we conclude an attack is in progress.
Post-Detection Response: Once the radio channel is detected
to be under attack, we cannot reliably continue its usage.
To continue operations, we can return to the initial position
without relying on RC commands. This situation is similar
to ArduPilot’s radio fail-safe. Consequently, we utilize this
fail-safe as described in Section 5.4.
Rule Circumvention: M2MON-aware attackers can try to con-
duct this attack while staying over the threshold of 200 ms.
We observed that the moving average for a shorter dura-
tion of RC replay attacks deviates less from the expected
value. More concretely, attacks under two seconds do not ex-
hibit detectable variations. Hence, the attackers might freely
change the attitude of the controller during those two sec-
onds. Although we could not 100% defend against the RC
replay attack, M2MON severely limits the replay attack time.
M2MON was successfully able to detect RC replay attacks
longer than three seconds.

6.2 Performance Evaluation
Real-Time Benchmarks To verify that M2MON is able to
satisfy real-time constraints, we use the ArduPilot test suite
for UAV flight controllers. This test suite contains a set of
tasks, together with their soft deadlines and periods. For in-
stance, the throttle_loop task, responsible for controlling
the throttle of motors, has a deadline of 8µs and a period of
75µs. Each task runs once after a period and should finish exe-
cuting within the deadline to satisfy the real-time constraints.
The deadlines of these tasks vary from 50µs to 550µs. To get
a precise measurement, we disable the preemption of real-

296 30th USENIX Security Symposium USENIX Association

1

10

100

1000

rc_
loop

throttle
_loop

update_GPS

update_optic
al_

flo
w

update_batt
_co

mpass

read
_au

x_
sw

itc
hes

arm
motors

ch
eck

auto_trim

update_altit
ude

run_nav
_updates

update_thr_a
ve

rage

three_hz_loop

co
mpass_

acc
umulate

barometer_acc
umulate

update_notify

one_hz_l
oop

ekf_
ch

eck

lan
dingge

ar_update

lost_
ve

hicle
_ch

eck

gcs_
ch

eck_input

gcs_
send_heartb

eat

gcs_
send_deferre

d

gcs_
data_str

eam
_send

update_mount

ten_hz_logg
ing_

loop

fift
y_

hz_
logg

ing_
loop

full_
rate_loggin

g_loop

perf_
update

read
_rece

ive
r_rss

i

rpm_update

frs
ky_

telemetry
_send

epm_update

Clean M2MON M2MON - EKF

M2MON-APF Deadline

Figure 12: Log-based average execution time of soft real-time tasks w/ and w/o M2MON over 100 runs.

time tasks. Figure 12 shows the log-based average runtime
of different tasks, in comparison with the soft deadlines, and
w/ and w/o M2MON. Compared to the baseline, M2MON
introduces 8.85% overhead in average and, it does not violate
any soft deadlines except for one_hz_loop, which misses its
deadline in all cases including the baseline. In other words,
we found that this test fails to meet its deadline even in an
unmodified system. We investigated this issue and found that
this task was sensitive to the UAV’s configuration. For our
benchmarking, we used the default configuration provided by
ArduPilot. Implementing EKF using M2MON incurs an over-
head of 10.25%, whereas access pattern-based filter resulted
in 16.59% overhead.

Some tasks, such as gcs_send_deffered result in a lower
runtime with M2MON, because they consume work generated
by other tasks which are slowed down because of M2MON.
We suspect that this slow down results in fewer messages
generated for such consumer tasks, which in turn complete
their job faster.
Micro-Benchmarks The core of M2MON runtime is I/O
handling. As mentioned in Section 4.2, MMIO accesses and
external bus accesses are handled differently inside M2MON.
A single MMIO transaction incurs a latency of 28µs, out of
which the hashing incurs a latency of 24µs. Similarly, one
transaction over an external bus incurs an overhead of 13µs.
External bus access is faster due to the fact that there are fewer
distinct device IDs on buses, unlike distinct MMIO addresses.
Thus instead of hashing, we used jump tables to dispatch any
rules on external buses based on the device ID. Even though
user-supplied rules are not part of M2MON, based on our
security experiments, the barometer access chain checking
incurred an overhead of 6µs and the access list checking incurs
an overhead of 4µs.
Storage Overhead All of M2MON data is kept inside a
custom ELF section, named .mon. M2MON incurs a stor-
age overhead of 2,560 bytes. M2MON-APF incurs an over-
head of 18,976 bytes. M2MON-EKF incurs an overhead of
around 3,584 bytes. M2MON-APF incurs the highest over-
head, which was mainly due to M2MON-APF’s hash map.

TCB LoC
NuttX RTOS 3,114,206
M2MON 3,422
M2MON-APF 3,775 (M2MON + 353)
M2MON-EKF 4,027 (M2MON + 605)
M2MON-PDR 4,069 (M2MON + 647)

Table 3: LoC Comparison between the NuttX RTOS, M2MON mi-
crokernel, M2MON-APF, M2MON-EKF and M2MON-PDR (Post-
Detection Response).

For this reason, we suggest keeping the hash map as small
as possible without collisions. For our evaluation, we used a
4,096 element hash map, where each element requires 4 bytes.
In all configurations, the shadow stack is also stored in the
.mon section.
Instrumentation Overhead M2MON instrumentation in-
curs an overall overhead of 0.04% increase in code size. This
is because interrupts handlers are a very small part of the
RTOS. Considering only the interrupt handlers, we increase
their size of 30.14%. These numbers show that running SFI
on interrupt handlers yields in trivial overhead.
TCB Reduction Due to the simple nature of the M2MON
microkernel, we were able to drastically reduce the TCB run-
ning in our test device. Specifically, the 3DR IRIS+ UAV
used in our experiments originally run the entire NuttX RTOS
(3,114,206 LoC) in the privileged mode. On the contrary,
using our approach it only needs to run the M2MON micro-
kernel in the privileged mode, which is composed of 3,775
LoC, as shown in Table 3. The M2MON-based firewall and
Extended Kalman filter implementations add an extra 353 and
605 LoC, respectively. Implementing post-detection response
requires additional 647 LoC. We do not include the board
support package in our line count.
Scalability Test M2MON targets low-end embedded systems.
Low processing power limits the functionality of M2MON.
We use M2MON-APF to demonstrate the scalability of
M2MON, with access control rules as our target rules. The-
oretically speaking, we can incur as much overhead as the
slack time available in the system. Slack time is the difference

USENIX Association 30th USENIX Security Symposium 297

0

200

400

600

800

0 64 65 69 74 79 84 89 94

(a) Scaling for update_batt_-
compass task

0

100

200

300

0 64 65 69 74 79 84 89 94

(b) Scaling for rc_loop task

0

50

100

150

200

0 64 65 69 74 79 84 89 94

(c) Scaling for throttle_loop
task

0

20

40

60

80

0 64 65 69 74 79 84 89 94

(d) Scaling for auto_trim task

Figure 13: Runtime for various tasks under stress testing. We ob-
serve different scalability for different tasks, based on the usage of
I/O and slack time available. The x-axis is number of rules, while
y-axis is time in milliseconds.

between the deadline and worst-case execution time (WCET)
of a task. Since ArduPilot is a soft real-time system, we use
the average execution time in place of WCET.

Figure 13 shows the execution times of different tasks
against a different number of rules. Due to hashing, we see a
constant overhead for up to 64 rules. Afterward, in general,
we see an exponential increase in overhead. The variability in
the execution times is due to asynchronous interrupt handlers.
Each task misses its deadline based on two factors 1) the
number of I/O accesses and 2) slack time available. For exam-
ple, update_batt_compass start missing its deadline near
80 rules, whereas auto_trim task does not miss its deadline
even after more than 90 rules.

In conclusion, M2MON can process a reasonable amount
of work within the system constraints. For our evaluation, we
had fewer than 20 rules for all of the case studies, covering
all known attacks. We might also need more rules to defend
against other attacks and even future ones. However, M2MON
cannot execute overly complicated rules, such as statistical
machine learning methods, without violating the deadlines.
Multiple solutions can be adapted to tackle this limitation.
For example, users can add a co-processor on board to pro-
cess these rules. Another option could be processing rules
asynchronously, such that we can process the data in later
epochs. Lastly, we can log this data to non-volatile storage
for post-mortem analysis.

7 Discussion

Rule Circumvention: Attackers aware of the enforced poli-
cies might try to mimic the regular pattern to evade detec-
tion. These attacks are also known as mimicry attacks. For a
mimicry attacker, we have two types of enforced policies: 1)
deterministic (case 1, 2, 4, 6, and 7 in Table 2), e.g., access con-

trol and access patterns, and 2) statistical (case 3, 5, and 8 in
Table 2), e.g., access frequency and Kalman filtering. For de-
terministic policies, attacks have to perform forbidden MMIO
patterns. Hence, they cannot evade detection. For statistical
policies, like any statistical method, we cannot guarantee that
attackers cannot circumvent the enforced policies. However,
M2MON severely limits the freedom of the attacker (RC at-
tack, GPS Spoofing attack) or even eliminating the attack
(FPB attack, IRQ Override attack), as shown in Section 6.1.
Normal Operations vs. Exceptions Currently, we profile
I/O accesses on normal/benign runs of the UV program for
the firewall. This comes with the inherent limitations of dy-
namic analysis, i.e. it is hard to guarantee full coverage of
source code. However, due to the deterministic behavior of
control programs, we are able to retrieve information about
the normal operations of UV which is sufficient for most func-
tionality of UV. For instance, we triggered all flight modes
and fail-safe modes6 in ArduPilot. As a result, except for
the MMIO associated with the RC channel (i.e., GPIO), the
MMIO access patterns were the same as the patterns under
the normal operation. This is because the fail-safe modes just
change the flight mode. In addition, the flight modes do not
change any operation of peripheral MCUs. However, when
the drone is disarmed (not flying), it temporarily masks GPIO
interrupts. In terms of exceptional behavior, the firewall would
regard it as malicious behavior, since it has not seen it in the
benign run. Currently, the solution to this problem is to use
the return-to-home feature in IRIS 3DR to cater for excep-
tions. We can complement our dynamic analysis to facilitate
programmable exception handling.
M2MON Adaptability: M2MON’s design is generic and
runs on any system providing privilege separation and MPU.
Both of these features are readily available on most MCUs.
However, adapting M2MON to a new platform requires some
engineering effort. This effort depends on 1) the RTOS and
2) the Flight Control Software.

For 1), we have to run the RTOS in userspace. Most RTOS
can run in both single privilege execution and privilege sepa-
ration execution, based on configuration. Users can leverage
such support to achieve this task. Furthermore, with wider
adoption, this effort would diminish. For instance, even for
M2MON, we were able to use the existing implementation
of userspace NuttX from Minion [29]. Secondly, to run code
from outside the TCB in privilege mode, we provide a custom
compiler attribute. Annotating functions with this attribute
instruments the code with required checks.

For 2), we have to get the I/O patterns from the software. To
this end, we provide scripts to extract the access patterns from
MMIO access logs. Furthermore, we provide high-level APIs
to bind rules to a specific MMIO address. This helps bridge
the semantic gap and ease the adaptability for M2MON.
Allowlist vs. Blocklist. We use a blocklist-based approach

6ArduCopter 3.3 supports 15 flight modes and 4 fail-safe modes [7].

298 30th USENIX Security Symposium USENIX Association

in the firewall to list the MMIO addresses that attacks often
exploit and trigger certain access control, defending all known
attacks. We could also implement an allowlist for MMIO
addresses e.g., only allowing access to the addresses within
the list and rejecting others by default. We could even leverage
the MMIO profiles to extract the access pattern for a given
address and register a rule/policy for this address to enforce
access control. While the blocklist-based approach saves us
the policy storage overhead provided that only a few MMIO
addresses are the attacking target (and it is usually true), the
allowlist method could defend against unanticipated attacks in
the price of both runtime and storage overhead. This trade-off
depends on the threat model and the specific UV environment.
Why not TrustZone? ARM TrustZone is used to partition
a system into secure and non-secure worlds. The extension
provides support for programming the bus dynamically us-
ing TrustZone controllers [11], which helps configure system
memory space into secure and non-secure memory at runtime.
In our survey, however, we found that most vendors do not
support extensions for TrustZone at the bus level [43, 45, 46].
Using such design would break the G1 Complete Mediation
of M2MON. Even if the support does exist at the bus-fabric
level, they might not use the appropriate controllers to enable
dynamic programming of the system memory map. There-
fore, users are stuck with the vendor-supplied configuration,
which often consists of only a couple of secure devices and
leaves most resources for the non-secure world. Furthermore,
TrustZone for ARM microcontroller profiles is relatively new
and not pervasive.
Static Analysis Limitations. M2MON uses static analysis
for software fault isolation. However current implementation
is unable to find MMIO accesses not local to the translation
unit. This is because our pass runs on a single translation
unit, and symbols not internal to the file cannot be determined
at compile-time, hence a user can escape the sandbox using
MMIO pointers with external linkage. However, this can be
solved by using a Link Time Optimization Pass (LTO) [19].
During our implementation, we found that such a pattern is
not used to define MMIO pointers in ArduPilot.

8 Related work

Malicious Peripherals & Defenses in Traditional Do-
mains: Different peripheral attacks have been demonstrated
in past. Google Project Zero showed how full mac Wi-Fi chips
can be compromised, which led to eventually resulting in com-
promising Android and iOS [55]. Existing work has shown
how USB devices can be used to attack file systems [64], ex-
ploit direct memory access (DMA) [51], eavesdrop [40] and
masquerading [22]. BleedingBit [24] enables unauthenticated
devices to attack host CPUs by exploiting vulnerabilities in
Bluetooth chip-sets. To cater to this problem several solu-
tions have been proposed. LBM [56] provides provisions for
eBPF filter firewall in different device stacks to monitor/filter

data transmitted on those devices. USBFilter [57] and USB-
Firewall [25] are solutions available for Linux and FreeBSD
to defend against malicious USB devices. SeCloak [34] and
Ditio [38] leverage ARM TrustZone to provide peripheral
control securely. Unfortunately, none of these defenses could
be applied to UV directly due to its unique settings and chal-
lenges.
Attacks & Defenses in Embedded Systems. Besides all
the attacks impacting different peripheral MCUs mentioned
in Table 1, attackers can also trick sensors to provide mali-
cious values to the control loop. Targeted Electro-Magnetic
Interference (EMI) has been shown to confuse sensors to
provide wrong values [48]. Sound waves can disrupt gy-
roscope sensors [53]. To defend against these attacks, both
compiler-based and system-based solutions have been pro-
posed. Epoxy [17] automatically identifies all sensitive in-
struction and increases software privilege level to enforce
hardware security mechanisms. However, this scheme is not
feasible for real-time systems. MINION [29] has tried to par-
tition the memory into as many clusters as available MPU
regions, but it suffers from the limited number of regions avail-
able on MCUs. ACES [16] creates sandbox based on static
and dynamic behavior to restrict memory access and code
flow according to the least privilege policy. But the moderate
overhead imposes hurdles for real-time constraints. Compared
to these defenses, M2MON achieves balances between both
security and performance.
I/O Kernels: Different microkernels for the sake of I/O have
been created in past. Wimpy kernels [71] utilized virtualiza-
tion extensions to move device drivers outside the operating
system. Unlike driver domains [68], bus-related code is kept
in the OS, while any services required by the bus driver are
probed and verified by the wimpy kernel. VIPER [35] pro-
vides a firmware authentication protocol to mitigate proxy
attacks during firmware attestation. NoHype [28] removes the
virtualization layer by statically assigning devices to virtual
machines, removing the monitor from the virtualization stack.
Even though there is existing work on I/O Kernels, nearly all
such kernels target server systems resulting in high overheads
not suitable for UVs.

9 Conclusion

In this paper, we survey different UV attacks and observe
their unique I/O activities at the MMIO level. We design and
implement a security reference monitor namely M2MON, a
microkernel with less than 4K LoC mediating every MMIO
access within the UV. We further implement an MMIO access
pattern-based firewall and Kalman filter using M2MON, and
demonstrate its effectiveness against a number of UV attacks
while introducing minimal overhead. M2MON is the first step
towards building a trusted and practical security reference
monitor for UV.

USENIX Association 30th USENIX Security Symposium 299

Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments. This work was supported in part by ONR under Grants
N00014-20-1-2128 and N00014-17-1-2045. Any opinions,
findings, and conclusions in this paper are those of the au-
thors and do not necessarily reflect the views of the ONR.
This material is also based on research sponsored by DARPA
under contract number N6600120C4031. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

References

[1] 3DR. 3dr iris+. http://3dr.com/support/
articles/207358106/iris.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[3] Chuadhry Mujeeb Ahmed, Martin Ochoa, Jianying
Zhou, Aditya P Mathur, Rizwan Qadeer, Carlos Murguia,
and Justin Ruths. Noiseprint: Attack detection using
sensor and process noise fingerprint in cyber physical
systems. In Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pages
483–497, 2018.

[4] Chuadhry Mujeeb Ahmed, Jianying Zhou, and Aditya P
Mathur. Noise matters: Using sensor and process noise
fingerprint to detect stealthy cyber attacks and authenti-
cate sensors in cps. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 566–
581, 2018.

[5] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Com-
pilers, principles, techniques. Addison wesley, 7(8):9,
1986.

[6] James P Anderson. Computer security technology plan-
ning study. Technical report, Anderson (James P) and
Co Fort Washington PA, 1972.

[7] ArduPilot. Ardupilot. http://ardupilot.org/.

[8] ArduPilot. Direct comms module. https://tinyurl.
com/735giodv.

[9] ARM. Arm trusted firmware. https://github.com/
ARM-software/arm-trusted-firmware.

[10] ARM. Cortex-m3 revision r2p0. https://tinyurl.
com/1hrh4s6t.

[11] ARM. Trustzone® address space controller (tzc-380)
revision: r0p0. https://tinyurl.com/2abykb3y.

[12] Brian C Barker, John W Betz, John E Clark, Jeffrey T
Correia, James T Gillis, Steven Lazar, Kaysi A Rehborn,
and John R Straton III. Overview of the gps m code
signal. Technical report, MITRE CORP BEDFORD
MA, 2006.

[13] BBC. Amazon prime air. https://tinyurl.com/
2x933hgx.

[14] Kyong-Tak Cho and Kang G. Shin. Fingerprinting
electronic control units for vehicle intrusion detection.
In 25th USENIX Security Symposium, pages 911–927,
2016.

[15] Kyong-Tak Cho and Kang G Shin. Viden: Attacker
identification on in-vehicle networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1109–1123. ACM,
2017.

[16] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh
Bagchi, and Mathias Payer. ACES: Automatic compart-
ments for embedded systems. In 27th USENIX Security
Symposium, pages 65–82, 2018.

[17] Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting bare-
metal embedded systems with privilege overlays. In
Security and Privacy (SP), 2017 IEEE Symposium on,
pages 289–303. IEEE, 2017.

[18] TE Connectivity. Ms5611-01ba03 datasheet. https:
//tinyurl.com/1ohhie02.

[19] GNU. Linker plugins. https://tinyurl.com/
yaf0yx0k.

[20] greatscottgadgets. Hackrf one. https:
//greatscottgadgets.com/hackrf.

[21] Dina Hadžiosmanović, Robin Sommer, Emmanuele
Zambon, and Pieter H Hartel. Through the eye of the plc:
semantic security monitoring for industrial processes.
In Proceedings of the 30th Annual Computer Security
Applications Conference, pages 126–135. ACM, 2014.

[22] Hak5. Usb rubber ducky. https://shop.hak5.org/
products/usb-rubber-ducky-deluxe.

[23] Vinay M Igure, Sean A Laughter, and Ronald D
Williams. Security issues in scada networks. computers
& security, 25(7):498–506, 2006.

300 30th USENIX Security Symposium USENIX Association

[24] Armis Inc. Bleeding bit. https://armis.com/
bleedingbit/.

[25] Peter C Johnson, Sergey Bratus, and Sean W Smith. Pro-
tecting against malicious bits on the wire: automatically
generating a usb protocol parser for a production kernel.
In Proceedings of the 33rd Annual Computer Security
Applications Conference, pages 528–541. ACM, 2017.

[26] Aleksandar Jovanovic, Cyril Botteron, and Pierre-Andre
Fariné. Multi-test detection and protection algo-
rithm against spoofing attacks on gnss receivers. In
2014 IEEE/ION Position, Location and Navigation
Symposium-PLANS 2014, pages 1258–1271. IEEE,
2014.

[27] Simon J Julier and Jeffrey K Uhlmann. Unscented filter-
ing and nonlinear estimation. Proceedings of the IEEE,
92(3):401–422, 2004.

[28] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B
Lee. Nohype: virtualized cloud infrastructure without
the virtualization. In Proceedings of the 37th annual in-
ternational symposium on Computer architecture, pages
350–361, 2010.

[29] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhong-
shu Gu, Byoungyoung Lee, Xiangyu Zhang, and
Dongyan Xu. Securing real-time microcontroller sys-
tems through customized memory view switching. In
Network and Distributed Systems Security Symp.(NDSS),
2018.

[30] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan
Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan
Deng, and Dongyan Xu. Rvfuzzer: finding input vali-
dation bugs in robotic vehicles through control-guided
testing. In 28th USENIX Security Symposium, pages
425–442, 2019.

[31] Amit Klein, Haya Shulman, and Michael Waidner.
Internet-wide study of dns cache injections. In IEEE
INFOCOM 2017-IEEE Conference on Computer Com-
munications, pages 1–9. IEEE, 2017.

[32] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Stephen Checkoway, Da-
mon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. Experimental security analysis of a
modern automobile. In 2010 IEEE Symposium on Secu-
rity and Privacy, pages 447–462. IEEE, 2010.

[33] Ralph Langner. Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51, 2011.

[34] Matthew Lentz, Rijurekha Sen, Peter Druschel, and
Bobby Bhattacharjee. Secloak: Arm trustzone-based
mobile peripheral control. In Proceedings of the 16th

Annual International Conference on Mobile Systems,
Applications, and Services, pages 1–13. ACM, 2018.

[35] Yanlin Li, Jonathan M McCune, and Adrian Perrig.
Viper: verifying the integrity of peripherals’ firmware.
In Proceedings of the 18th ACM conference on Com-
puter and communications security, pages 3–16, 2011.

[36] Mavlink. Mavlink version. https://mavlink.io/en/
guide/mavlink_version.html.

[37] Mavlink. Message signing over rc. https://mavlink.
io/en/guide/message_signing.html.

[38] Saeed Mirzamohammadi, Justin A Chen, Ardalan Amiri
Sani, Sharad Mehrotra, and Gene Tsudik. Ditio: Trust-
worthy auditing of sensor activities in mobile & iot de-
vices. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, page 28. ACM,
2017.

[39] Shoei Nashimoto, Daisuke Suzuki, Takeshi Sugawara,
and Kazuo Sakiyama. Sensor con-fusion: Defeating
kalman filter in signal injection attack. In Proceedings
of the 2018 on Asia Conference on Computer and Com-
munications Security, pages 511–524, 2018.

[40] Matthias Neugschwandtner, Anton Beitler, and Anil Kur-
mus. A transparent defense against usb eavesdropping
attacks. In Proceedings of the 9th European Workshop
on System Security, page 6. ACM, 2016.

[41] Dennis K Nilsson and Ulf E Larson. Secure firmware
updates over the air in intelligent vehicles. In ICC
Workshops-2008 IEEE International Conference on
Communications Workshops, pages 380–384. IEEE,
2008.

[42] NuttX. Nuutx kernel. https://nuttx.apache.org/.

[43] OP-TEE. Raspberry pi trustzone implementation.
https://tinyurl.com/1bnf0vic.

[44] osqzss. Gps-sdr-sim project. https://github.com/
osqzss/gps-sdr-sim.

[45] Paparazziuav. Trustzone implmentation in parrot
bebop drone. https://wiki.paparazziuav.org/
wiki/Bebop.

[46] Parrot. Parrot ar drone trustzone implmentation. https:
//tinyurl.com/1rw2f3dz.

[47] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bau-
man, Alvaro Cardenas, and Zhiqiang Lin. SAVIOR:
Securing autonomous vehicles with robust physical in-
variants. In 29th USENIX Security Symposium, 2020.

USENIX Association 30th USENIX Security Symposium 301

[48] William A Radasky, Carl E Baum, and Manuem W Wik.
Introduction to the special issue on high-power elec-
tromagnetics (hpem) and intentional electromagnetic
interference (iemi). IEEE Transactions on Electromag-
netic Compatibility, 46(3):314–321, 2004.

[49] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan
Capkun. Spree: a spoofing resistant gps receiver. In Pro-
ceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, pages 348–360.
ACM, 2016.

[50] Paul H Riley. Failsafe electronic control systems, Jan-
uary 12 1988. US Patent 4,718,229.

[51] Russ Sevinsky. Funderbolt: Adventures in thunderbolt
dma attacks. Black Hat USA, 2013.

[52] Yasser Shoukry, Paul Martin, Yair Yona, Suhas Dig-
gavi, and Mani Srivastava. Pycra: Physical challenge-
response authentication for active sensors under spoof-
ing attacks. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 1004–1015. ACM, 2015.

[53] Yunmok Son, Hocheol Shin, Dongkwan Kim,
Youngseok Park, Juhwan Noh, Kibum Choi, Jungwoo
Choi, and Yongdae Kim. Rocking drones with
intentional sound noise on gyroscopic sensors. In 24th
USENIX Security Symposium, pages 881–896, 2015.

[54] Paul Syverson. A taxonomy of replay attacks. Technical
report, NAVAL RESEARCH LAB WASHINGTON DC,
1994.

[55] Google Project Zero Team. Over the air: Exploit-
ing broadcom’s wi-fi stack. https://tinyurl.com/
1bvwtgyv.

[56] Dave Jing Tian, Grant Hernandez, Joseph I Choi,
Vanessa Frost, Peter C Johnson, and Kevin RB Butler.
Lbm: A security framework for peripherals within the
linux kernel. In LBM: A Security Framework for Periph-
erals within the Linux Kernel. IEEE, 2019.

[57] Dave (Jing) Tian, Nolen Scaife, Adam Bates, Kevin But-
ler, and Patrick Traynor. Making USB great again with
USBFILTER. In 25th USENIX Security Symposium,
pages 415–430, 2016.

[58] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne
Rasmussen, and Srdjan Capkun. On the requirements for
successful gps spoofing attacks. In Proceedings of the
18th ACM conference on Computer and communications
security, pages 75–86, 2011.

[59] ublox. Neo-7 u-blox 7 gnss modules ubx-13003830 r07.
https://tinyurl.com/oub09a48.

[60] Anthony Van Herrewege, Dave Singelee, and Ingrid
Verbauwhede. Canauth-a simple, backward compati-
ble broadcast authentication protocol for can bus. In
ECRYPT Workshop on Lightweight Cryptography, vol-
ume 2011, 2011.

[61] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in wpa2. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1313–1328. ACM,
2017.

[62] Mathy Vanhoef and Frank Piessens. Release the kraken:
New kracks in the 802.11 standard. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 299–314. ACM, 2018.

[63] Stack Shield Vendicator. A stack smashing technique
protection tool for linux. World Wide Web, http://www.
angelfire. com/sk/stackshield/info. html, 2000.

[64] Common Vulnerabilities and Exposures. Cve-2015-
0096. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-0096.

[65] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In Proceedings of the fourteenth ACM symposium
on Operating systems principles, pages 203–216, 1993.

[66] Kevin Warwick and Ming T Tham. Failsafe Control
Systems: Applications and Emergency Management.
Springer Science & Business Media, 2012.

[67] Hengqing Wen, Peter Yih-Ru Huang, John Dyer, Andy
Archinal, and John Fagan. Countermeasures for gps
signal spoofing. In ION GNSS, volume 5, pages 13–16,
2005.

[68] XEN. Driver domains in xen. https://wiki.
xenproject.org/wiki/Driver_Domain.

[69] Yi Yang, K McLaughlin, T Littler, S Sezer, Eul Gyu
Im, ZQ Yao, B Pranggono, and HF Wang. Man-in-
the-middle attack test-bed investigating cyber-security
vulnerabilities in smart grid scada systems. ., 2012.

[70] Kexiong Curtis Zeng, Shinan Liu, Yuanchao Shu, Dong
Wang, Haoyu Li, Yanzhi Dou, Gang Wang, and Yal-
ing Yang. All your gps are belong to us: Towards
stealthy manipulation of road navigation systems. In
27th USENIX Security Symposium, pages 1527–1544,
2018.

[71] Zongwei Zhou, Miao Yu, and Virgil D Gligor. Danc-
ing with giants: Wimpy kernels for on-demand isolated
i/o. In 2014 IEEE Symposium on Security and Privacy,
pages 308–323. IEEE, 2014.

302 30th USENIX Security Symposium USENIX Association

