
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

A11y and Privacy don’t have to be mutually exclusive:
Constraining Accessibility Service Misuse on Android

Jie Huang, Michael Backes, and Sven Bugiel,
CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity21/presentation/huang

A11y and Privacy don’t have to be mutually exclusive:
Constraining Accessibility Service Misuse on Android

Jie Huang, Michael Backes, and Sven Bugiel

CISPA Helmholtz Center for Information Security
{jie.huang, backes, bugiel}@cispa.saarland

Abstract
Accessibility features of Android are crucial in assisting peo-
ple with disabilities or impairment to navigate their devices.
However, the same, powerful features are commonly misused
by shady apps for malevolent purposes, such as stealing data
from other apps. Unfortunately, existing defenses do not allow
apps to protect themselves and at the same time to be fully
inclusive to users with accessibility needs.

To enhance the privacy protection of the user while preserv-
ing the accessibility features for assistive apps, we introduce
an extension to Android’s accessibility framework. Our de-
sign is based on a study of how accessibility features are used
in 95 existing accessibility apps of different types (malware,
utility, and a11y). Based on those insights, we propose to
model the usage of the accessibility framework as a pipeline
of code modules, which are all sandboxed on the system-side.
By policing the data flows of those modules, we achieve a
more fine-grained control over the access to accessibility fea-
tures and the way they are used in apps, allowing a balance
between accessibility functionality for dependent users and
reduced privacy risks. We demonstrate the feasibility of our
solution by migrating two real-world apps to our privacy-
enhanced accessibility framework.

1 Introduction

Accessibility features, also known as a11y services1, are
meant to assist people with disabilities or impairment in us-
ing their computer systems. Android includes an accessibility
framework since Android v1.6 that allows authorized third
party apps to act as a11y apps, such as a screen reader app or
alternative navigation via voice commands and head gestures.

Since accessibility apps necessarily have to be exempted
to a certain extent from the usual isolation between apps,
access to the accessibility framework is restricted with a ded-
icated permission (BIND_ACCESSIBILITY_SERVICE). Only

1 a11y is the abbreviation of accessibility.

after obtaining this permission from the user, apps can re-
trieve information from the accessibility framework about
other apps or send events to other apps (e.g., UI interactions).
However, this permission is coarse-grained and very powerful.
Once an app is granted access to the accessibility framework,
it has the privilege of accessing private data from all other
apps, including sensitive data normally protected by other
permissions or user entered data, or to mimic human users’
actions (like button clicks). According to Google’s guidelines,
the accessibility features are supposed to be used only by
a11y apps that help disabled and impaired users to operate
their devices and apps. Despite this guidelines, there exist
a lot of apps that use those powerful features for their own
purposes, for example, automatization of tedious user actions
(e.g., easy uninstallation of apps via injected button clicks
that navigate the Settings app) or auto-filling of credentials
by password manager apps. Given the power of accessibility
apps and the wide range of usage of the accessibility features,
it is correct to assume that not all apps use this power appro-
priately [18] and currently the accessibility framework comes
with an inherent threat to the users’ privacy. Even worse, var-
ious samples of malicious apps [1, 3, 4] have already been
reported to utilize the accessibility features to monitor and
mimic user interactions with third-party apps in order to steal
sensitive data, like user credentials or bank information, and
also academic research [22, 29] has highlighted the risks of
a11y features.

What should be clear by today is that the current restrictions
to access the accessibility framework are not sufficient to
protect user data and defend against malicious intents. The
burden to establish any defense today rests on the shoulders
of the app developers that might fall victim to misuse of a11y
features. App developers can pro-actively exempt components
or UI elements of their apps from being monitored by the
accessibility framework in an effort to protect sensitive data
or prevent misuse of UI elements. Unfortunately, not only
do many app developers abstain from those defenses [34],
but even worse, those defenses defeat the very purpose of
the accessibility services. For example, an app developer of

USENIX Association 30th USENIX Security Symposium 3631

a mobile banking app that exempts the input field for the
account number to avoid leakage via a11y services would also
exclude screen readers or voice command apps from reading
back or writing that number. What is needed to not make
accessibility and privacy mutually exclusive is an accessibility
framework that supports a more fine-grained control over how
its features can be used.

In this work, we propose an extension to Android’s default
accessibility framework that enables configuration of a more
fine-grained control over how accessibility features are used
by accessibility apps. We start by investigating the integration
and usage of the accessibility framework in 95 real-world
apps that are either benign a11y apps, apps repurposing a11y
features (e.g., automatization), or malware abusing accessibil-
ity features in order to better understand what kind of policy
enforcement such a solution has to provide and which po-
tential limits exist. Our results exhibit a clear tendency of
how malware is currently misusing the accessibility features.
However, our results also raise the challenge that malicious
behavior and benign behavior are not distinguishable at the
API boundary (e.g., which accessibility data and features are
being accessed) and that a suitable solution has to control the
data flows within accessibility apps.

Noticing parallels between our setting and that of IoT and
augmented reality apps, we take inspiration from the ideas of
data processing pipelines for AR apps [28] and of quarantined
code modules with opaque data handles for IoT apps [21].
Transferring those ideas to our problem setting for a11y, acces-
sibility apps access certain information from the framework
and process them in a particular way, or they trigger certain ac-
cessibility actions as reaction to certain triggers. For example,
a screen reader accesses text information and outputs an audio
stream, or a virtual mouse app tracks eye movement and clicks
buttons. The key idea of our solution is to make the single
steps in such processing pipelines explicit and sandbox them
in least-privileged service components. Accessibility apps
then build their pipelines by chaining those services together
and orchestrate their interactions. We enforce policies at their
input/output boundaries to govern to which data and features
each module has access. By keeping the overall pipeline in
mind, those policies control how data can propagate within
a single pipeline—sources to sinks—or under which circum-
stances a pipeline can trigger (accessibility) actions.

Although our study of existing malware and a11y apps indi-
cates that a policy that universally maximizes functionality for
benign apps while simultaneously eliminating the potential
for misuse seems unlikely, our solution allows configuration
of a trade-off between functionality and protection according
to users’ needs (e.g., disabling accessibility features that are
not necessary for the desired a11y apps). This is a clear benefit
over stock Android’s all-or-nothing protection against misuse
of the accessibility framework. Since our design only changes
the public APIs of the default accessibility framework (e.g.,
apps needs to register and orchestrate their modules), only

Figure 1: Accessibility Communication Channel

developers of a11y apps need to adapt their code to the new
setting but no other app developers are affected. We demon-
strate this by porting two open-source accessibility apps to
our enhanced accessibility framework.

Contributions. We make the following contributions:
1) Systematization of accessibility service integration. We
study the actual usage of accessibility features in real-world
benign, utility2, and malware apps. Our results reveal patterns
and behaviors how the accessibility API is misused. We be-
lieve those results contribute to a deeper understanding of
how a11y features are being (mis-)used and can help future
work in creating better defenses against a11y attacks.
2) Privacy-enhanced accessibility framework. Based on the re-
sults of our systematization, we propose a privacy-enhanced
accessibility framework. Privacy here means that data re-
trieved via the accessibility framework should not leak with-
out authorization and that all accessibility actions should be
authorized or triggered by the user or at most be inefficiently
misused. Our framework separates a11y logic of apps into
sandboxed code modules and allows enforcement of privacy
policies at the input/output boundary of those modules. This
enables a more fine-grained control over how accessibility
features are used, how data propagates in the pipelines formed
by those modules, and, hence, offers a more effective protec-
tion against misuse of the accessibility framework than stock
Android.
3) Real-world app migration and evaluation. We migrate
two real-world open-source accessibility apps to our privacy-
enhanced framework to demonstrate how our framework
provides better protection in those cases. Further, micro-
benchmarks show that the performance overhead imposed
by our solution is acceptable.

2 Android Accessibility Service

We provide technical background knowledge on the accessi-
bility framework in Android and building accessibility apps.

2 We refer in the context of this paper to apps that repurpose the a11y features
for user desired but by Google unintended use-cases as utility apps.

3632 30th USENIX Security Symposium USENIX Association

Figure 2: Example for explicitly authorizing an Accessibility-
Service, here of the 1Password app, in the system settings

2.1 Accessibility Service Overview

Android supports accessibility features since API level 4
through its Accessibility Framework [11]. Figure 1 provides
an overview of how the framework works. The accessibility
framework acts as an intermediary between applications and
accessibility (or a11y) apps. It monitors relevant events within
applications and forwards them to accessibility apps, which
in turn can use the framework to retrieve certain information
(e.g., UI content) from those applications or inject events into
those applications (e.g., inserting text or clicking a button).
AccessibilityService is the key component

for an accessibility app to use the accessibility [7]
features. Each accessibility app has to register an
AccessibilityService to listen for accessibility
events. Through onAccessibilityEvent() callbacks,
the app receives accessibility events that are wrapped as
AccessibilityEvent objects. The app can then perform
custom logic to consume and react to those events. For
instance, a screen reader could read aloud a button descrip-
tion that was contained in a received event for a user’s
UI interaction. To register the AccessibilityService
in the system, the developer of the accessibility app
should declare it as such in the AndroidManifest.xml
of the app. To ensure that only the system’s accessibil-
ity framework can bind to this service of the app, the
service declaration should require the system permission
android.permission.BIND_ACCESSIBILITY_SERVICE
from any caller. Since no third party app can successfully
request this permission, the accessibility app is ensured that
any caller to the AccessibilityService is the system.
Lastly, since access to the accessibility framework is highly
critical for user privacy, Android requires the user to explicitly
grant this access via the Settings app. Figure 2 gives an
example of this explicit activation for the 1Password app in
the system setting. Only after those steps, the accessibility
app is able to assist the user (or attack them and other apps).

1 public class MyAccessibilityService extends AccessibilityService {
2 @Override
3 public void onAccessibilityEvent(AccessibilityEvent event) {
4
5 // global action: back to home screen
6 performGlobalAction(AccessibilityService.GLOBAL_ACTION_HOME);
7 // global action: show activity history
8 performGlobalAction(AccessibilityService.GLOBAL_ACTION_RECENTS);
9

10 AccessibilityNodeInfo node = event.getSource();
11 if (isTargetButton(node)) {
12 // local action: click the target button
13 node.performAction(AccessibilityNodeInfo.ACTION_CLICK);
14 } else if (isTargetEditText(node)) {
15 // local action: input string "android" to an EditText
16 Bundle arguments = new Bundle();
17 arguments.putCharSequence(
18 AccessibilityNodeInfo.ACTION_ARGUMENT_SET_TEXT_CHARSEQUENCE,
19 "android");
20 node.performAction(AccessibilityNodeInfo.ACTION_SET_TEXT, arguments);
21 }
22 }
23 }

Listing 1: Code example for using the accessibility service

2.2 Accessibility Communication Channel

Lastly, we have to zoom in to the communication
channel between an AccessibilityService and the
accessibility framework. Accessibility objects, such as
AccessibilityEvent, AccessibilityNodeInfo, or
AccessibilityWindowInfo, carry other apps’ sensitive
data, e.g., screen text, to enable the AccessibilityService
in doing its intended job, e.g., reading screen text aloud.
However, the accessibility app can also invoke global or node
actions. Listing 1 provides a toy AccessibilityService to
illustrate this. Global actions are not targeting any specific
app and include, for instance, invoking the device’s home
button or opening the recents screen (or recent task list
screen) showing recently accessed apps (see Lines 6 and 8 in
Listing 1). Node actions target a particular element in another
app, for instance, a button or text field (see Lines 13 and 20).

Sensitive data exposure via accessibility features:
To be able to provide assistive functionality, an
AccessibilityService is very powerful and can ac-
cess a great amount of sensitive data within other apps.
Different from sensitive data that is usually protected by
Android’s permission model and UID-based sandboxing from
unauthorized access by apps, the accessibility framework can
easily leak such protected data across application boundaries
to an accessibility app. For example, an accessibility app
without READ_CONTACTS permission can still get contact
information stored in the Contacts app through reading the
text fields in AccessibilityEvents from the Contacts app.

To inform the accessibility framework and the
user about which events an AccessibilityService
is interested in, the developer can specify an
AccessibilityServiceInfo [8] that lists the capa-
bilities and accessible AccessibilityEvents. Thus,
the AccessibilityServiceInfo informs about which
data is exposed to an AccessibilityService and
what the service could do. For example, by limiting the
packageNames attribute of AccessibilityServiceInfo
to com.android.settings, the service will only receive

USENIX Association 30th USENIX Security Symposium 3633

events for the Settings app. This configuration can be set
either statically as meta-data inside an xml file or dynamically
at runtime through the setServiceInfo interface of the
accessibility framework. However, this configuration relies
on the incentives of accessibility app developers.

Developers of other applications can further communicate
to an AccessibilityService that certain UI elements are
not important for accessibility. This is in two different ways
fallible: first, every app developer has to become active and,
second, this forces app developers to choose between writ-
ing an app that is protected or that is inclusive. Moreover,
this is merely an indication by the app developer and an
AccessibilityService can decide to ignore this attribute
and operate on all UI elements in a targeted app [10].

3 Study of Accessibility Service Usage

Considering the high privileges of an accessibility service and
the diverse ways to use it—for a11y as intended, as a user-
desired utility, or for malevolent purposes—we are interested
in how real-world apps make use of this service and whether
there exist distinguishing features in the usage patterns be-
tween a11y, utility, and malicious apps. Prior work [18] eval-
uated the usage of accessibility services in normal3 apps
based on natural language processing of the app descriptions.
This approach highly relies on the accurate (and honest) de-
veloper documentation. A missing, ambiguous, or dishonest
description could hide the actual usage of the accessibility
features from the results. To gain a more comprehensive and
reliable understanding of the usage of accessibility features,
we base our study of accessibility (mis-)usage directly on
the apps’ code, including utility and malware samples. By
collecting each sample app’s access to the accessibility frame-
work and then comparing the integration between each app’s
components and their accessibility services, we discover pat-
terns how accessibility apps actually make use of the a11y
framework and we gain an overview how accessibility can
undermine the users’ privacy in practice.

In the remainder of this section, we look at the different
ways how an AccessibilityService is configured (e.g.,
which events are being subscribed), which APIs are being
used, and which behavioral patterns can be detected in ac-
cessibility apps. The key question we want to answer is if
the different types of accessibility apps—a11y, utility, and
malware—are distinguishable in their configuration, API
access, or use of accessibility services?

3.1 Accessibility App Sample Set

We differentiate between three classes of accessibility apps:
malicious, utility, and a11y.

3 Here normal refers to apps in official markets.

Table 1: Accessibility service configuration in sample apps

Attribute #M (57) #U (36) #A (8)

events from all apps1 49 (86%) 24 (67%) 8 (100%)
canRetrieveWindowContent 42 (74%) 30 (83%) 6 (75%)

∪ 57 (100%) 34 (94%) 8 (100%)
∩ 34 (60%) 20 (56%) 6 (75%)

M: Malware; U: Utility; A: A11y
1 Service does not define an allowlist of package names

Malicious apps take advantage of accessibility service to
attack users, e.g., logging sensitive user input, mounting phish-
ing attacks, stealing private data from other apps, or surrep-
titiously granting permissions and installing apps. To col-
lect a representative and timely set of malicious apps for
our investigation, we turn to renown malware repositories
on GitHub. From GitHub, we collected 608 reported An-
droid malware samples from top ranking malware reposito-
ries [12, 27, 38, 39]. After filtering out samples without an
AccessibilityService, we obtained 55 malicious accessi-
bility app samples (57 AccessibilityService implemen-
tations).

In contrast, a11y apps use specific accessibility features
to assist people with disabilities or impairments. The use of
the accessibility service in those apps meets the intended
purpose by Google. For example, a screen reader app reads
aloud the text label on a touched button to assist users with
visual impairments in using the device. By keyword search
on Google Play, we gathered 5 a11y sample apps. Lastly,
utility apps are neither typical assistive apps nor malicious.
They ignore Google’s accessibility developer guide [11] by
using accessibility features for user-desired functionality be-
yond supporting people with disabilities, such as optimizing
user experience (e.g., automatization of tedious tasks or pass-
word auto-fill). Google once announced to remove apps that
use accessibility features for purposes other than the intended
way [2], but this ban was paused after Google realized the pop-
ularity of accessibility features in supporting non-accessibility
functionality. We crawled 2,751 top Google Play apps in De-
cember 2018 and found 36 accessibility apps of this kind,
which we use as our utility app samples. To check that both
the utility and a11y apps are not malware in disguise, we scan
those two sample sets with VirusTotal [41].One app, Avira,
was reported as malware by VirusTotal. Considering it was
flagged by only 1 of 60 engines, we conservatively removed it
from our set but did not think this significant enough to report
to Google Play. Our non-malicious app sets finally consist of
5 a11y apps with 8 AccessibilityService and 35 utility
apps with 36 AccessibilityService.

In total, we collected 95 accessibility app samples (101
AccessibilityService implementations) for our investiga-
tion.

3634 30th USENIX Security Symposium USENIX Association

Table 2: Allowlisted package names in service config-
urations. No a11y app configured an allowlist.

Package #M (8) #U (12)

com.android.settings 0 5
com.android.packageinstaller 0 2

browser* 0 3
communication* 2 1

shopping* 2 0
transportation* 2 0

tool* 2 0
self* 6 3

M: Malware; U: Utility; *: Category of apps since multiple
packages of this type are monitored

3.2 Accessibility Service Configuration

As introduced in Section 2.2, app developers can con-
trol the capabilities and types of events that their
AccessibilityService will receive by customizing
the AccessibilityServiceInfo configuration. This
configuration provides a statement about which sensi-
tive data from other apps is potentially exposed to the
AccessibilityService via the accessibility framework.
Among the different available configuration attributes,
packageNames and canRetrieveWindowContent
effectively constrain the accessibility app’s access
to other apps. Attribute packageNames allow-lists
the source packages for AccessibilityEvents the
AccessibilityService will receive. If this attribute is not
set, the AccessibilityService will receive events from all
other packages. If developed with least privilege principle
in mind and if applicable, the AccessibilityService
should specify all the necessary source app packages here.
The attribute canRetrieveWindowContent controls if the
accessibility app can access the window content of other apps,
including sensitive data contained within those windows.
Obviously, this access to window content is a great way to
steal data.

We compare the accessibility service configurations for
those two highly sensitive attributes within our app samples
to understand the extent of sensitive data to which different
accessibility apps have access to. Since this configuration can
be set both statically and dynamically, we extract the static
configuration file from the apps and combine this with runtime
information from tracing the setServiceInfo system API.
Table 1 shows the number of packages that do not declare
a package name (i.e., monitor broadly) and that are able to
inspect the window content of other apps. The results show
that all malware and a11y apps in our sample set monitor
broadly, i.e., every malware and a11y app is at least able to
inspect window content or receive events of all other apps,
while 34 (60%) of the malware and 6 (75%) of the a11y
services can do both. While this is intuitive, given the nature

of those apps, also 34 (94%) of the utility services make
use of those features, where 20 (56%) utility services use
both features. For those services that specified an allowlist
of package names, we also check the package name details.
Of all malware apps, 8 services set an allowlist and receive
only events from listed packages, while 12 utility services set
an allowlist. None of the 8 a11y services set an allowlist and
all of them monitor broadly. The distribution of the (types
of) allow-listed packages by the malicious and utility apps
can be found in Table 2. Those results show that while utility
apps listen primarily to events from system apps, like settings,
installer, or browser, malware targets specifically packages in
certain categories, such as communication or shopping.

Summary: From those results, we conclude that the
currently available constraints on accessibility service
do not prevent the risk of abuse of a11y features, since
all app types, including legitimate accessibility apps,
configure a broad monitoring. Further, the similarity
between the configurations makes it hard to distinguish
purely on the configurations between a targeted attack
and compliance to the least privilege principle.

3.3 Accessibility API Usage

Since the accessibility service configuration does not show
a distinguishable pattern between different app types, we
further investigated the accessibility framework API usage
within accessibility services. After a review of the accessibil-
ity framework documentation, we categorize the accessibility
API into three categories: 1) retrieve information, 2) perform
node action, and 3) perform global action. Retrieve informa-
tion APIs refer to interfaces that request information about
other apps, including on-screen text, window position and so
on. Perform node action API refers to interfaces that perform
an action on a specified UI element (node), e.g., clicking a
button. Perform global action API refers to interfaces for is-
suing a global operation, like clicking the "home" button or
showing the recent task list.

Based on this categorization, we analyzed the types of ac-
cessibility APIs that are used in our sample apps and with
which goal they were used by the apps (i.e., scenario). To
this end, we manually interacted with the app UI and pin-
pointed possible usages based on the service descriptions and
hints of UI elements. Since malicious apps by nature might
mislead the user in those descriptions, we further collected
accessibility-related behavior descriptions from technical re-
ports by malware analysts and reverse engineers. For each
discovered usage scenario, we manually inspected one app in
depth through either reverse engineering or source code anal-
ysis where possible to find patterns how accessibility services
are integrated into their apps.

In the end, we found four common patterns for the usage
of accessibility methods:

USENIX Association 30th USENIX Security Symposium 3635

Table 3: Patterns of accessibility API Usage

Patterns
Scenario P1 P2 P3 P4

M
al

ic
io

us

Content Eavesdropping 3 7 7 7
Phishing 3 7 7 7
Process Persistence 3 7 7 7
Silent Installation 7 3 3 7
Silent Privilege Elevation 7 3 3 7
E-Banking Fraud 7 3 3 7

U
til

ity

Fingerprint Gesture 3 7 7 7
App Locker 3 7 7 7
App Usage Tracing 3 7 7 7
Browser Usage Tracing 3 7 7 7
TextView Mapping 3 7 7 7
Notification Replay 3 7 7 7
Smart Reply 3 7 7 7
Auto Permission Grant 7 3 7 7
Password Auto Fill 7 3 7 7
Web Control 7 3 3 7
(Un)Installation Protection 3 7 7 7
Auto Uninstallation 7 3 7 7
Deep Clean 7 3 3 7
Battery Save 7 3 7 7
Global Menu 7 7 7 3

A
11

y

Screen Reader 3 7 7 7
Speech to Text 3 7 7 7
Facial Access 7 3 3 7
Gesture Access 7 3 3 7
Voice Access 7 3 3 7
Switch Access 7 3 3 7

3: uses pattern; 7: does not use pattern

Pattern P1: retrieve information =⇒ accessibility app op-
eration. The accessibility apps digest the retrieved informa-
tion about other apps locally, but do not trigger any glob-
al/local accessibility action. For example, a screen reader app
gathers screen texts and then processes this information in a
separate TextToSpeech component to read it aloud.

Pattern P2: retrieve information =⇒ node action. Here,
first a node is selected based on information retrieved from the
accessibility framework (e.g., locating a specific button) and
then an action is triggered on that specific node (e.g., clicking).
For instance, a facial access app that allows controlling the
device via facial and head gestures can perform a click on a
button to which the users points with such a gesture.

Pattern P3: retrieve information =⇒ global action. Differ-
ent from pattern P2, information gathered from the accessi-
bility framework about another app is used to trigger a global
action. One typical scenario is a switch access app that cap-
tures the "home" key event from an external keyboard and
then performs the global action to go back to the home screen.

Pattern P4: accessibility app operation =⇒ global action.

In this pattern, the app triggers a global action purely based on
app-internal results but without first retrieving any informa-
tion about other apps from the accessibility framework. For
instance, a soft key mapping is one example for this pattern.

Summary: Table 3 shows the mapping between usage
scenarios and the integration patterns for different types
of apps. From those results, we can see that scenarios
from different categories can have the same API in-
tegration pattern. For instance, silent app installation,
deep clean, and voice access share patterns P2 and P3.
This makes a static detection of accessibility API mis-
use based on the integration pattern infeasible. Thus,
also heuristics based on which APIs are being used—a
common technique for malware detection—cannot suffi-
ciently distinguish the different app types purely based
on the observed API usage patterns.

3.4 Complete Accessibility Pipelines

Table 3 shows the high-level API-based patterns for interact-
ing with the accessibility framework, which contain both re-
trieving data (Patterns 1,2,3) and triggering actions (Patterns
2, 3, 4). Since different app types cannot be distinguished at
that abstract level, we now take app-specific contexts around
those patterns into consideration and zoom in to apps to in-
vestigate the various events that trigger access to the acces-
sibility framework, how data retrieved from the accessibility
framework is used, and to which sinks such data flows. For
simplicity, we call those app-specific combinations of triggers
and usage the apps’ accessibility pipelines. By comparing
the pipelines of malicious applications and benign applica-
tions of the accessibility framework, we can pinpoint further
similarities and differences between different app categories.
The results of investigating the accessibility pipelines for dif-
ferent app types and scenarios are summarized in Table 4.
We explain this table in the following, when we discuss the
similarities and differences between malicious apps and a11y
apps after comparing their triggers and intentions.

Similarities: 1) Although the triggers of the two app cate-
gories vary a lot, the commonality is that all apps determine
trigger events themselves. Here, target app operation means
that an app that is monitored with the help of the accessi-
bility framework performs a specific operation (e.g., comes
to foreground on screen), while in the remaining triggers
the accessibility app reacts to specific stimuli from the user
(e.g., finger or facial gestures) or it reacts to arbitrary cus-
tom logic (e.g., auto-start when service is registered). In any
case, evaluation whether a trigger condition is met resides en-
tirely within the apps. 2) We found that 2 out of 4 prominent
intended operations in a11y apps overlap with the intended
operations in malicious apps: voice access provides voice
controlled text editing support, which overlaps with the text
input in malware that mimics user interactions in e-banking

3636 30th USENIX Security Symposium USENIX Association

Table 4: Accessibility pipelines for different app types and scenario

Scenario Trigger Intention

M
al

ic
io

us
Content Eavesdropping Auto enabled Send to remote
Phishing Target app operation Load a phishing page
Process Persistence Target app operation Back home
Silent Installation Ad Click Click specific buttons in specific app
Silent Privilege Elevation Auto enabled Click specific buttons in specific app
E-Banking Fraud Auto enabled Text input & click specific button in specific app

A
11

y

Screen Reader Finger Select Read text aloud
Speech to Text Auto enabled Enable shortcut button
Facial Access Camera detection Screen navigation
Gesture Access Finger gesture Screen navigation
Voice Access Microphone detection Screen navigation & text editing
Switch Access Hardware Keyboard Screen navigation & text editing

fraud; and facial access provides screen navigation through a
camera-based mouse that performs button clicks, which are
also used by malware for, e.g., silent package installation and
granting permissions. 3) Although the intentions of screen
reader, voice access, and content eavesdropping are not the
same, all of them require raw data processing within the app.
Hence, the raw data usage is opaque without precise data flow
analysis and constraints. This also affects utility apps. For
instance, McAfee Safe Family transmits user web and app
usage tracking data to their server to support multi-device
parental control—behavior that uses the accessibility frame-
work similarly to content eavesdropping malware.

Differences: 1) We noticed that although some apps from
different categories share the same intentions, a11y apps usu-
ally require more powerful accessibility functions. For ex-
ample, the silent installation scenario requires clicking spe-
cific buttons in the settings app, while facial access supports
users in clicking any button in any app on screen for nav-
igation. That means, in fact, malicious apps can be easily
over-privileged without raising immediate suspicion. 2) Both
benign and malicious apps require raw content processing
within other components of the apps, but their final data des-
tinations are different. For example, we found audio as data
sink for screen reader, UI as the destination for voice ac-
cess text editing, and network interface as sink for malicious
content eavesdropping. 3) By comparing the triggers of the
pipelines, we found that malicious apps are more likely to
perform operations silently or against users’ intentions. Three
of the malicious pipelines are auto enabled after accessibil-
ity service activation. No user involvement is needed. The
other three triggers react to specific user operations on itself
or third-party apps (similar to a11y apps), however, the reac-
tion violates the users’ expectations (e.g., a phishing page is
shown). In contrast, triggers in benign apps are more likely to
be user-explicit and the corresponding reactions are always in
conformity with user intentions. For example, switch access
clicks the same buttons as silent installation, but this click
action is explicitly triggered by the user through a keyboard

press.

Summary: The fact that a11y apps need a more general
access to accessibility features (e.g., being able to press
any button in any app) prevents a simple least-privilege
policy on access to the accessibility framework in order
to constrain misuse of accessibility features. Further,
the comparison shows that the pipelines of different
app categories share similar triggers and actions, thus,
like API patterns (see Section 3.3), differentiation of app
types purely on only concrete triggers or concrete actions
is not feasible. The crucial difference between the app
categories that we find is that driven by the category of
the app, the complete pipeline is distinguishable when
being able to detect the combination of which trigger
lead to which action or data leak. For instance, a screen
reader has full access to all screen content but only needs
the audio API as a data sink to read discovered texts
and labels. Or, a facial access app needs to click an
arbitrary position that was determined from the user’s
head movement in the camera feed. Unfortunately, all
apps evaluate their trigger conditions themselves and the
accessibility pipelines in stock Android are opaque to
any fine-grained enforcement of control and data flows.

This leads us to our key insight for our solutions.

4 Key Idea and Threat Model

From our study, we learned that benign accessibility apps dis-
tinguished themselves from malicious ones through different
data destinations in combination with explicit user-consented
node actions, both of which are dependent on the purpose of
the a11y app. Benign accessibility apps usually gather user in-
tentions through either on-device sensors or peripherals. Then
they take advantage of accessibility features to either perform
specified UI operation based on user intention (e.g., clicking a
button) or collect necessary user-requested information from

USENIX Association 30th USENIX Security Symposium 3637

the application framework and other apps. These gathered sen-
sitive information may finally be consumed by components
that provide feedback to the user (e.g., audio output). Thus,
we define privacy in the context of our work as data retrieved
via the accessibility framework should not leak without user
authorization and all node actions should be authorized or
triggered by the user or at most be inefficiently misused.

In consideration of those insights, a potential privacy-
enhanced accessibility framework should 1) associate the
UI operations by an AccessibilityService with user in-
tentions to avoid (covert) malicious node actions or at least
withhold crucial information for efficient, malevolent node ac-
tions; and 2) prevent the on-screen information of apps that is
gathered by an AccessibilityService from being misused
by malicious accessibility apps (e.g., unauthorized leakage of
sensitive information). To illustrate, consider Figures 3 and 4.
The accessibility app in Figure 3 acting as a supposed screen
reader can consume textual information from the accessibility
framework as input and can write arbitrary output streams to
audio sinks. To avoid the screen information from leaking or
the app from issuing malicious node actions, it should not be
allowed to issue node clicks or use any other output channel
(i.e., least-privilege). Thus, it can work as intended as a screen
reader while preventing sensitive data leakage or surreptitious
interactions with other apps. Similarly, the accessibility ser-
vice in Figure 4, acting as a facial access app, can receive
arbitrary input from other components of the accessibility app
(e.g., results of processing video data or motion sense API for
gesture recognition), but should only issue clicks “blindly” to
certain UI elements or global events. That means the coordi-
nates for button clicks should come from the video processing
component, which in turn can only consume camera feeds,
but the app should not be able to analyze the screen content
otherwise. Then, since then the app cannot efficiently explore
other apps’ UI since it lacks feedback about screen hierarchy,
misusing accessibility features for maliciously installing apps
or granting permissions is impeded.

Key idea: The key idea of our solution, whose implemen-
tation we present in the following Section 5, is 1) to treat the
accessibility pipeline of accessibility apps as a sequence of
steps, such as trigger detection, local processing, and output
streams or node actions; and 2) to redesign the accessibility
framework such that those steps are made explicit and each
step’s privileges and I/O can be individually governed by a
least-privilege privacy policy, however, the content of each
step is treated as a blackbox. By keeping the overall pipeline
in mind when authoring the privacy policy, we establish a con-
trol over the possible data flows of accessibility apps. With
a suitable policy that allows benign flows to proceed while
preventing potentially malicious flows, privacy protection and
enabling accessibility services do not need to be mutually
exclusive anymore.

Threat model: We assume that an accessibility app is ma-
licious, meaning that all code, even when divided into indi-

Figure 3: Example sandboxing for screen reader

Figure 4: Example sandboxing for facial access

vidual sandboxed steps, can collaboratively still be malicious
and steps be tailored to each other to use their individual
access rights and I/O to implement an attack (i.e., unautho-
rized action via the accessibility framework or leakage of data
obtained via the accessibility framework). Picking up the ex-
ample in Figure 4, although the video processing component
cannot inspect the screen content anymore to detect buttons,
it could send hard-coded coordinates for click events that are
independent of the camera feed in order to trigger clicks at
coordinates desired by the attacker. We discuss the efficiency
of our solution under this threat model in Section 7.

5 Privacy-Enhanced Accessibility Frame-
work

In the following, we present the design concepts and imple-
mentation to realize our idea for constraining misuse of the
accessibility framework.

5.1 Overview and Design Concepts
The key idea in our solution is that we treat the accessibility
pipeline as a sequence of connected, individual steps and ap-
ply flow constrains to control the data flows along the pipeline
to prevent unauthorized data leaks or actions. We categorize
the steps of those pipelines into three types of code modules
that are chained (see Figure 5): a frontend module (optional)
to gather user intentions (e.g., from sensors or peripherals),
an accessibility module to perform UI operations or retrieve
sensitive information via the accessibility framework, and
a backend module (optional) that creates the output of the
pipeline (e.g., audio or text output). Those types have been di-
rectly derived from our previous observations about how a11y
apps operate and we find them sufficient to implement the ac-

3638 30th USENIX Security Symposium USENIX Association

Accessibility App

A
cc

es
si

bi
li

ty
 P

ip
el

in
e

Other Components

Accessibility
 Module

Backend
Module

Frontend
Module

Camera
Voice
Keyboard
...

Speech
Textview
...

Accessibility
Service

Figure 5: Accessibility pipeline with sandboxed modules.

cessibility pipelines with minimum-function, least-privilege
steps. Although such a logical pipeline exists in real accessi-
bility apps, clearly distinguishable modules do not necessarily
exist in current apps and their logic is commonly mixed to-
gether in app components. We demonstrate in Section 6 how
accessibility apps can be retrofitted to our solution. To prevent
misuse of the accessibility API in this pipeline, we transfer
design concepts for privilege separation and information flow
control to our solution. In particular, we found strong parallels
to opacified computation for IoT apps [21] and to recognizers
in augmented reality data processing pipelines [28].

Privilege separation: We implement privilege separation
of the involved modules, a common practice in other areas
of privacy protection on Android, such as constraining third
party libraries [26,35,37]. By default, all code running within
the same app sandbox (i.e., under the same UID in Android)
would share the same privileges. Thus, to privilege-separate
untrusted code, it is moved into a separate sandbox in form
of another UID under which it executes with a distinct set of
permissions and access rights. This establishes a clear bound-
ary between sandboxed (or quarantined [21]) code modules
and allows access control at the process boundaries. Further,
it allows control over the interactions between modules that
are in separate sandboxes. We transfer this idea to the ac-
cessibility framework by composing the pipeline of actual,
distinguishable code modules in their own sandboxes. Thus,
we can control to which resources or APIs each module has
access and designating each module for a certain step in the
pipeline makes the overall process more transparent. No mod-
ule by itself should have enough privileges to conduct the
malicious operation. For instance, if a backend module of a
text-to-speech app has to produce audio output, we allow this
module to only access Android’s audio API but not leak any
data to the filesystem, other modules, or network sockets.

Information flow control: To build the pipeline, modules
must interact with each other in a coordinated fashion. For
instance, an accessibility module could accept screen coor-
dinates as input and will output the on-screen information

of the node (reference to UI element) at this particular lo-
cation, which another module might receive to operate on
(e.g., read out text elements of the UI element). One way to
build these pipelines would be with direct IPC connections
between modules. However, this would necessitate that the
I/O interfaces of modules are tailored to each other, which
would make the setup inflexible (e.g., if a frontend module
could provide data to several kinds of accessibility modules)
at no apparent security benefit. Instead, in our design, com-
ponents of the accessibility app that are outside the pipeline
connect modules and orchestrate the pipeline (e.g., forward
the data between modules), which only requires each module
to expose their own IPC interfaces to those app components
via newly introduced I/O functions.This creates the risk that
private data can leak to the components of the accessibility
app that are not sandboxed or that those components can mod-
ify or counterfeit data exchanged between modules. To solve
this problem, we take inspiration from opaque handles [21]:
hidden references to raw data that are associated with a taint
label and that can only be dereferenced within a sandboxed
module. By only releasing handles to the orchestrating com-
ponents outside the pipeline we prevent leakage of potentially
private data to code that is not sandboxed and protect the
integrity of that data from modifications by code outside the
pipeline. By tainting the handles with the tag of the code
module that output the data and checking those taints when
handles are given as input to another module, we can ensure
the authenticity of the received data and, further, can enforce
simple flow constraints that govern how the modules have
to be chained together. Originally [21], the taint labels also
propagate to the taint label sets of module sandboxes and
are forwarded to outgoing handles. That was necessary, since
multiple flows might converge at a module and the context of
the sandbox and of its outgoing data need to be distinguish-
able. Our design is simpler, since we have only a single flow
in the pipeline and hence do not need to keep taint sets on
sandboxes. Moreover, in contrast to the original work, we no-
ticed that in some pipelines non-privacy-critical data could be
released to the host app to allow, for instance, customizations
(see Section 6.2 for such a scenario). Thus, our policy sup-
ports specifying that raw data can be released to components
outside the pipeline by dereferencing the handle. To ensure
the integrity and origin of all data, our solution allows only
handles to be passed as input arguments to other modules.

Recognizers: Lastly, we borrow the concept of recogniz-
ers used to limit sensitive data sharing in augmented reality
data processing pipelines [28]: in place of getting raw video
data, augmented reality apps subscribe to the output of cer-
tain trustworthy video processors (e.g., object recognizers)
and only receive the minimal amount of data necessary for
their operation. We noticed a similar setting in accessibility
apps. Accessibility apps can depend on a pre-processing of
raw data from sensors or peripherals, e.g., the camera. For

USENIX Association 30th USENIX Security Symposium 3639

instance, a facial mouse detects with the camera the user’s
head movements and gestures, and maps this to screen coordi-
nates and click events. This would be done in our solution in
the frontend modules (see Section 6.2). Although our threat
model assumes all modules can be malicious and the output
of the frontend module is generally not trustworthy, it is not
unreasonable to assume that also scenarios exist in which the
frontend module could be pre-installed or be coming from
a trusted source, similar to recognizers in AR data pipelines
that move common pre-processing to trusted system-provided
component. A crucial benefit of a trusted frontend module in
accessibility pipelines is that it provides a trusted source for
detecting user intentions. In our design, we use this concept of
recognizers by recording the outputs of frontend modules and
later comparing them against the parameters of node actions.
If the frontend is a trusted recognizers, this allows verification
of node actions and to link user intentions with node actions.

5.2 Implementation

Figure 6 gives an overview of our implemented solution. We
extend Android with a new service PASManagerService and
its corresponding UI application PASServer. PASManagerSer-
vice is the core component in our implementation. It provides
accessibility apps with a new set of APIs to orchestrate their
accessibility pipelines. It works as a central accessibility event
dispatcher that bridges between Android’s original accessi-
bility system service AccessibilityManagerService and
the accessibility modules of client apps, i.e., client apps that
want to make use of a11y features use our PASManagerSer-
vice instead of the default AccessibilityManagerService.
The PASManagerService itself is a system-side client (AMS-
Bridge) to the AccessibilityManagerService. We imple-
ment the flow control for accessibility pipelines within the
InfoFlowController of the PASManagerService.

In the following, we will first introduce the details of the
system-side PASManagerService, PASServer, and their com-
ponents (Section 5.2.1). Then the new accessibility APIs and
client-side integration will be introduced (Section 5.2.2).

5.2.1 System-Side Components

PASManagerService consists of three key components: Com-
municationManager, AMSBridge and InfoFlowController.

CommunicationManager is the IPC communication hub
between host apps, the modules in their pipelines, the
AccessibilityManagerService (via the AMSBridge), and
a new settings app PASServer. We use the standard Android
proxy-stub concept for Binder IPC, where every client to
the CommunicationManager uses a PASManager to call the
CommunicationManager and to receive callbacks from Com-
municationManager.

The host app and its modules also exchange data via the
CommunicationManager with each other. If the host app and

accessibility features

AccessibilityManagerService

PA
S
M

an
ag

er
S
er

vi
ce

A
M

S
B
ri

dg
eInfoFlowController

PipelineFilter

ActionFilter

TextFilter

System Side

PASServer

CommunicationManager

Client Side

PASManager

P
ip

el
in

e

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
F

ro
nt

en
d

Sa
nd

bo
x

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

PA
S
M

an
ag

er
A
S
Li

st
en

er
A

cc
es

si
bi

li
ty

 S
an

db
ox

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
B

ac
ke

nd
 S

an
db

ox

H
os

t
C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

H
os

t A
pp

IPC

Figure 6: Privacy-enhanced Accessibility Framework

its modules could communicate directly with each other, this
would necessitate that all opaque handles are set as part of
the IPC communication (e.g., within Binder). This would be
a very invasive change to a fundamental component of An-
droid. By prohibiting direct communication between the host
app and its modules as part of the modules’ sandboxes, using
a custom permission4 unavailable to third party apps, and
ensuring policies that prevent modules from leaking data to
locations readable by the host app or other modules (e.g., SD
card), we force modules and their host app to communicate
via CommunicationManager with each other. Hence, while
modules can be chained together, this solution ensures that
they can only be chained through the CommunicationMan-
ager as a channel controlled by our framework. This places
CommunicationManager in the position of a reference moni-
tor to enforce information flow control (see further down).

Accessibility modules additionally need to communi-
cate with the AccessibilityManagerService to make
use of accessibility features. Instead of direct access
to the AccessibilityManagerService, the Communica-
tionManager together with the AMSBridge bridges this
communication. They provide to the accessibility mod-
ule in a new manager class ASListener as much of the
vanilla AccessibilityManagerService API as possible
in order to reduce the effort of migrating apps from
the original framework to our solution. In turn, AMS-
Bridge is registered as an event listener to the origi-
nal AccessibilityManagerService and dispatches these
events to registered modules or forwards requested actions

4 A future version of our solution could also use new SELinux types.

3640 30th USENIX Security Symposium USENIX Association

from the modules to the AccessibilityManagerService.
This puts AMSBridge into a great position to enforce access
control on the accessibility features used by modules.

Lastly, PASServer is a new settings app for our solution to
assist users with accessibility feature management. Users can
en-/disable a pipeline or (de-)activate the centralized accessi-
bility service through this app.

InfoFlowController realizes flow constraints on the com-
munication passing through the CommunicationManager. It
implements three types of flow constrains: PipelineFilter,
ActionFilter and TextFilter. PipelineFilter implements the
opaque handles and taint-based flow control. It maintains a
set of unique identities for all modules as well as the host
apps, and it keeps a mapping between module outputs and
their handles and taints (i.e., identity of module that created
the output). Thus, when a module sends an output to the host
app, the data will be replaced by a new handle and the data be
stored in PipelineFilter. The host app cannot use the handle
to modify the referenced data. Every time the host app sends
a handle to a module as input and the corresponding data is
supposed to come from a specific other module as output,
PipelineFilter uses the stored taint to validate this claim or
otherwise abort the release of the data as input to the receiving
module. Similarly, it releases raw data to the host app if the
policy allows this and the host app requests dereferencing
a handle. However, only a handle can be passed as input to
another module, hence, integrity and origin of released data is
always ensured when being further processed in the pipeline.

TextFilter implements a similar control but for textual
elements within AccessibilityNodeInfos returned from
AMSBridge to modules. It replaces the plain text with a ran-
dom UUID before sending the node info back to the host app.
This UUID and plain text pair is stored in a map in TextFilter
and only on input to an authorized module TextFilter releases
this text. Thus, if AccessibilityNodeInfos is released to
a module, TextFilter can decide whether that module is au-
thorized to also receive textual content that could be privacy
sensitive. Modules that are not in need of such information,
e.g., because they only need the node for information about
screen layout, can thus operate with lower-privileges. This
can be easily applied to other content besides textual infor-
mation, however, we have not encountered the need to hide
other content yet.

ActionFilter validates the user intentions for action events
when the frontend module is trusted, i.e., is a trusted recog-
nizer component. ActionFilter records the output of frontend
modules, e.g., the coordinate of a UI element that the user
wants to click. Once AMSBridge receives a call to perform an
action from a module, it asks ActionFilter to validate if the
target UI conforms to the user intention recorded before. If
the frontend module is trusted, a successful validation links
the action to the user intention. Thus, a pipeline with a trusted
frontend module is hindered in issuing actions that were not
authorized (triggered) by the user. If the frontend module is

not trusted, ActionFilter cannot help, since the frontend mod-
ule and the accessibility module could be colluding to issue
malicious actions.

5.2.2 Client-Side Integration

Modules are started by the PASManagerService very simi-
larly to regular app sandboxes and their launch establishes
a bi-directional communication between a module’s pro-
cess and the PASManagerService. When PASManagerService
launches a module’s application sandbox, it already receives
a Binder reference to this process from Android, which al-
lows PASManagerService to send messages to the module.
After the module’s application sandbox has been started and
the module’s code been loaded, it requests a Binder refer-
ence to the PASManagerService, which is encapsulated in
a PASManager and allows it to send messages to PASMan-
agerService. With this two Binder references a bi-directional
communication is established. Modules that make use of ac-
cessibility features additionally register an ASListener with
PASManagerService through which they can receive accessi-
bility events and issue actions. The host app also has a PAS-
Manager that allows it to issue commands to PASManagerSer-
vice, e.g., invoke modules and pass/receive data handles via
CommunicationManager.

For a full-fledged implementation, we envision that accessi-
bility apps carry their modules as payload (separate dex files)
and register them during installation in the privacy-enhanced
framework, similar to how prior works proposed sandboxing
third party libraries [26, 37]. Alternatively, modules could be
provided as standalone packages on a market and accessibility
apps declare which ones should be retrieved and installed into
the pipeline of the app, similar to emerging app-in-app ecosys-
tems [13,32]. In any case, the host app declares the modules in
its manifest, where it also states their required privileges and
the flow policy, which can hence be inspected and approved
(e.g., by the user during app installation). For our prototypical
implementation, we create the module sandboxes as dedicated
apps as a fixed part of our modified Android image in order to
test functional correctness and evaluate our solution in terms
of performance overhead (see next Section 6).

6 Evaluation

In this section, we take two open-source accessibility apps,
TalkBack [23] and EVA Facial Mouse [16], as examples to
test the performance of our solution and show how to enhance
the privacy protection in accessibility services.

6.1 Case Study: TalkBack
We use Google’s official screen reader app for visually im-
paired users, TalkBack, to evaluate the protection of on-screen
text against leakage. This app has been installed more than

USENIX Association 30th USENIX Security Symposium 3641

Figure 7: Screen Reader accessibility pipeline

5 billion times according to Google Play (see Table 7 in Ap-
pendix A). TalkBack is a complex app containing multiple
modules and multiple preference settings. We focus on its
core module—touch-based screen reader with default settings.
The accessibility pipeline for this module can be seen in Fig-
ure 7: the app has an accessibility module and a text-to-speech
backend module. Once the user touches the screen, accessibil-
ity module collects the textual information about the touched
node from the accessibility framework. That information is
passed to the text-to-speech component that reads the text
aloud via Android’s TTS service.

Migration: We build the accessibility module by moving
the touch detection logic, which includes accessibility event
processing and cursor controls, to an accessibility module
in the pipeline. When a touch event is detected, the module
outputs the textual information about the UI element at the
touch coordinates. Similarly, we establish the backend module
here by moving TalkBack’s original text-to-speech code to a
backend module and exposing the necessary interfaces like
isSpeaking(), speak(String) and shutdown() to the host app.
To orchestrate this pipeline from the host app, we replace
the original local calls in the host app with calls to the API
exposed by the two modules (i.e., callbacks for text output
from the accessibility module and calls to, e.g., speak()). Thus,
the host app can forward the text from the touch detection to
the text-to-speech logic, each executing in their own sandbox.
We made 3k+ LOC changes on a code base 27k+ LOC for
this migration.

Privacy enhancement: In our design, all modules and host
app are running in their own sandbox with distinct permission
sets. The accessibility module has the privilege to receive
touch events but nothing else, thus, it is unable to scavenge
through another app’s screen content and leak it. The backend
text-to-speech module can only access the TTS API of An-
droid to play the result of the text processing, but cannot leak
the text to another sink (e.g., network socket or filesystem).
Neither module has the privilege to issue node actions, e.g.,
pressing buttons in an unauthorized way. By only releasing
handles for the output of the accessibility module to the host
app, the host app cannot inspect the textual content, which
might be privacy-sensitive. Using flow control on those han-
dles, we ensure that the backend module only receives data
as input that was generated by the accessibility module.

Figure 8: Facial Mouse accessibility pipeline

6.2 Case Study: EVA Facial Mouse

We use EVA Facial Mouse app to confirm the feasibility of
restricting the misuse of node actions. The app provides a
virtual mouse that is controlled by facial movements, e.g., if
the user cannot use their hands. The accessibility pipeline in
Figure 8 contains a frontend that uses the camera to capture
user intentions and an accessibility module to perform user-
intended clicks. The frontend module has access to the device
camera and when it detects a head gesture that indicates a
click, the coordinates of the virtual mouse on screen will be
output. Based on the coordinates, the accessibility module
can retrieve the target node from the accessibility framework
and perform the actual click on this node.

Migration: We put the app’s original camera-tracing code
to the frontend module and expose necessary callback inter-
faces, like onMouseEvent(location, click), to the host app. We
also allow the necessary accessibility features for node de-
tection based on coordinates and performing click actions
on nodes to the accessibility module. As for TalkBack, we
replace the original calls to the camera and accessibility fea-
tures inside the host app with calls and callbacks to/from the
two modules, such that the host app orchestrates the pipeline
and forwards data between the modules. The frontend module
traces the user’s head movements and outputs the correspond-
ing mouse tracing events, i.e., coordinates of the mouse cursor.
To maintain the look and feel of a mouse cursor the host app
can in this case dereference the handle to the coordinates data
to draw a mouse cursor on screen and also easily allow the
user to customize the cursor (e.g., size, color). When a click
event is detected by the frontend, the host app invokes the ac-
cessibility module with the coordinates for which to retrieve
the UI element and to which to issue a click. We changed 1k+
LOC on a code base 9k+ LOC for this app.

Privacy enhancement: Again, the modules and host app
are in separate sandboxes with distinct permission sets. The
frontend module has access to the camera, but nothing else.
The accessibility module can retrieve nodes from the accessi-
bility framework based on screen coordinates and issue click
actions to those nodes. Applying the text filter to the node
infos released to the accessibility module, we prevent that
this module learns the content of the UI element (e.g., button
label or content of a text view). Further, neither module can
investigate the screen content and hence produce targeted
clicks, e.g., to navigate the settings app without user approval

3642 30th USENIX Security Symposium USENIX Association

Table 5: Performance test results
Application Original (ms) Migrated (ms) ∆

TalkBack 10.75±1.35 18.55±2.26 7.80 (73%)
EVA Facial Mouse 15.60±1.26 29.50±3.55 13.90 (89%)

Intervals for 95% confidence

to grant permissions or install new apps silently. However, the
modules could issue node actions "blindly" and without feed-
back, e.g., the coordinates are hard-coded in either module,
which could succeed in navigating the device surreptitiously
when the coordinates fit to the current screen-size and the
device screen was in a well-known state (e.g., home screen).
A countermeasure to this would rely on our Action Filter,
i.e., assuming that the frontend module is trusted and that the
coordinates output by this module can be validated against the
coordinates of a node when the accessibility module issues a
node action. In that case, forging or manipulating coordinates
would not succeed.

Further, it should be noted that this app could misuse the
camera permission to spy on user input. The trace of cursor
coordinates and click events allows the app to monitor where
on screen the user clicked. While our solution prevents the
app (concretely, the accessibility module) from misusing the
accessibility framework to learn and leak the information
about clicked UI elements, the app can use side-channels to
infer this information independently of the accessibility fea-
tures. For instance, if the host app has a valid assumption
about the screen content (e.g., an onscreen keyboard), coordi-
nate trace together with click events would allow the host app
to derive which input the user gave (e.g., mapping coordinates
with click to the screen position of keys of the soft-keyboard).
However, this is purely an abuse of the camera permission and
not of the accessibility framework. Although being outside of
our threat model, our solution could offer a potential solution
in this concrete case as well by moving the cursor rendering
to a module that cannot leak the derived information and only
releasing non-dereferencable handles to the host app.

6.3 Performance Overhead
Our framework is deployed on Android v8.1 on a Pixel 2XL
device. We use the two migrated apps to estimate the per-
formance impact of our framework. We utilize microbench-
marking to measure the overhead. Since the runtime of an
accessibility operation is affected by complex user interfaces
(e.g., time to find a specific node), we develop a dedicated
test app with only one TextView and one Button. Thus, our
measurements approximate the upper bound for the overhead,
since we minimize the runtime for common operations and
thus give more weight to the overhead. We run the test 20
times for the original and migrated versions of the TalkBack
and Facial Mouse app. Table 5 summarizes the results.

TalkBack Result: We measure the time the screen reader

module needs to read the TextView text aloud after a user
touched on it. We start the measurement as soon as a touch
event is detected. The measurement completes when the text-
to-speech’s speak instruction is executed. The average over-
head for the migrated app is 7.80ms or about 73%.

EVA Facial Mouse Result: We measure the time from
click generation in the frontend module until the onClick()
callback of the target button is triggered. The result shows
that the induced overhead is 13.90ms or about 89%.

Summary: Although the relative overhead is high, we want
to a) note again that this is an upper bound since our test app
optimizes the common operations and weights the overhead
higher and b) point out that those affected operations occur
in many cases with low frequency and the absolute overhead
in our measurements is well below the average human per-
ceptible latency. Thus, while overhead due to the additional
IPC between modules and host app was expected, we think
the overall overhead is still in an acceptable range.

7 Discussion

7.1 Limits and challenges
Sandboxing the modules in the pipelines and controlling to
which APIs (sources and sinks) they have access together
with the opaque, tainted handles for data exchanged between
modules provides control over data flows in the same fash-
ion as in similar solution in IoT settings [21]. Thus, we are
facing some similar challenges as well as new challenges in
protecting the users’ privacy.

Indistinguishable data flows: Like other solutions, we treat
the modules as blackboxes and control the data flows to and
from modules. But we cannot control how the modules gener-
ate their outputs, and we have only limited means to control
the exchanged data (e.g., text filters). As a result, if the data
flows including sources and sinks are indistinguishable be-
tween a11y and malware apps, our solution can likely not
prevent unauthorized leakage—although, we did not find an
example in our study of malicious accessibility apps where
this was case, as shown in Section 3.

Authorized node actions: Further, we face the additional re-
quirement that not only the unwanted leakage of data should
be prevented but also unauthorized node actions. The chal-
lenge is to connect a node action with a user action. Our
current solution tries to validate the parameters of actions
(i.e., action filter) but at least limits the effectiveness of ma-
licious node actions by limiting the data on which actions
are based (e.g., preventing the reconnaissance of the screen
content, see Section 6.2).

Off-device processing: Accessibility apps can depend on
off-device services, for instance, for image or audio pro-
cessing. As for other information flow control solutions,
like [19, 21, 25], the device boundary is a hard boundary for

USENIX Association 30th USENIX Security Symposium 3643

our enforcement. However, by strengthening the sandbox (see
below) our solution can provide control over the network
destinations (e.g., URL) to which modules can connect and,
hence, ensure that only trusted, user-approved services are
used as part of the pipeline.

Side-channels: We cannot exclude side-channels that can be
used by modules to secretly exchange data or that modules
use to conduct reconnaissance (e.g. [15]).

Summary: While the ideal result would be to prevent all
potential leakage of private data and all malicious node actions
as described in Section 3.4 while at the same time upholding
all benign, legitimate a11y app functionality, there currently
exist potential cases in which malware and a11y apps are not
distinguishable for our policies. However, compared to stock
Android’s all-or-nothing protection, our solution provides a
trade-off where required assistive apps can function while
the potential for misuse of accessibility features is drastically
reduced. For instance, a user that requires a facial mouse
and allows the corresponding policy might still fall victim to
"blindly" injected click events but none of the other malware
could operate as usual, such as e-banking fraud and content
eavesdropping.

7.2 Strengthening the sandbox and IFC
An obvious improvement to our solution would be better in-
formation flow control along the entire data flow even within
sandboxes. This could help to validate that node actions in-
deed depend on input generated by user actions or that leaked
data does not depend on private data. On Android, taint track-
ing [19, 25, 40] techniques have been proposed to this end.
Unfortunately, taint tracking suffers from a hard to defend
reference monitoring. A malicious app can always win by
dropping the taint (e.g., native code, indirect control flows)
and currently these solutions would only apply to curious-but-
honest modules. Further, we currently consider every module
to be used only in one pipeline, which makes the information
flow control between modules (e.g., the tainting of the han-
dles) and the non-interference within a single module trivial.
A more advanced scenario could allow the re-use of modules
in different, simultaneously executing pipelines (e.g., re-using
pre-installed modules) and in that case an integration of dis-
tributed information flow control (e.g., [33] or [21]) would be
necessary to ensure non-interference.

Our sandboxes rely on the stock Android mechanisms (i.e.,
UIDs with permissions). However, those only provide a very
coarse-grained access control to the application framework
or filesystem. Since the way how we start modules from the
PASManagerService resembles the procedure how virtualized
apps are started [13], we could integrate "module virtualiza-
tion" in the future where the PASManagerService takes the
role of the broker and puts modules into an isolated process
(the least privileged execution environment that stock Android

supports). Similarly, frameworks [24] for more fine-grained
and context-sensitive access control policies could be inte-
grated to provide better control over the functionality and data
each module can access from the Android API.

7.3 User approval

In our current prototype, we assume that the user approves the
policies via the PASServer app or writes custom policies that
satisfy their individual privacy preferences via this app. We
are aware that the history of permission prompts on Android
has shown that users are not capable of this and that there
is ongoing research into improving the user experience (e.g.,
seminal work by Porter Felt et al. [20]). Since the user in our
solution even has to approve flows and the goal of this work
is to show that a11y and privacy protection do not have to
be mutually exclusive per se, we defer the question of how
to improve the user experience in approving or configuring
policies in our solution to future work.

7.4 Threats to Validity

We specifically looked for collections of malware samples in
actively maintained, popular GitHub projects. However, we
cannot guarantee that those collections are the most repre-
sentative ones for malicious accessibility apps. Further, we
searched for supposedly benign a11y and utility apps by key-
word search among the top apps on Google Play. Thus, we
think our collection of utility apps is representative. Unfor-
tunately, the number of a11y apps is limited and many of
the top apps are written by Google. Thus, there might be a
bias in our collection of a11y apps towards Google’s software
engineering practices.

7.5 Utility apps

Our solution reduces the chances for misuse of the accessi-
bility API while preserving the functionality of a11y apps.
However, utility apps might depend on pipelines that differ
from those of a11y apps when providing innovative usages
of the accessibility framework. For example, password man-
agers take advantage of it to fill-in passwords. Since this is
an abuse of the accessibility features, Google introduced the
auto-fill framework [9] as an alternative to support password
managers. However, for cases in which no alternative frame-
work or API exists in Android, it remains an open question
how to support those utility apps while maintaining a high
level of privacy protection or whether those use-cases can be
generally implemented in accessibility pipelines as well. For
instance, the pipeline for a utility app that automates tedious
user actions through sequences of automated button clicks
might not be distinguishable enough from malware secretly
navigating user interfaces.

3644 30th USENIX Security Symposium USENIX Association

7.6 Other attacks and privacy issues

Apart from the attacks we analyzed in Section 3, other attacks
might leverage the accessibility framework as a building block
or stepping stone. For instance, the accessibility API might
be used for reconnaissance. A typical example is a phishing
attack, in which a malicious app uses the accessibility frame-
work to monitor the name of the foreground activity and time
the launch a phishing activity. However, in such cases, the ac-
cessibility framework is often just the path of least resistance
to gather information and alternatives exist (e.g., foreground
activities can also be identified via side-channels [15]), thus
we did not separately study and evaluate those attacks in our
work. Further, our defense relies on proper policies, thus, if
the user is involved in setting and granting them, we exclude
attacks against the user from our threat model, such as decep-
tive overlays [22, 42].

Lastly, there exist apps to support impaired or disabled
users via crowdsourcing instead of relying on the accessibility
framework. For example, camera-based assistive apps to sup-
port visually impaired users. Those apps outsource the users’
questions, e.g., about their physical surroundings, to volun-
teers with whom the users have to share sensitive information,
such as photo or video stream. Prior work [6] investigated the
privacy concerns raised in using camera-based assistive apps
under different scenarios. Their results confirm the request
by dependent users for privacy protection in using assistive
technologies, which we take as further motivation for our re-
search although those particular cases of sharing camera data
with volunteers are not covered by our work. Similarly, other
data stealing attacks, such as taking screenshots or recording
audio that do not rely on the accessibility framework are out
of scope of what we can defend against.

8 Related Work

We briefly present and compare related works to our work on
enhancing the privacy of Android’s accessibility framework.

Security and privacy concerns from accessibility frame-
works. Already in 2013, Kraunelis et al. [31] demonstrated
a malware that utilizes Android’s accessibility framework.
Jang et al. [29] studied the security of assistive technologies
and identified multiple vulnerabilities on four popular plat-
forms. Their result shows that the trade-off between security,
compatibility, and usability is the root cause of these vulner-
abilities. Kalysch et al. [30] assessed the weakness of a11y
features and proposed corresponding developer side counter-
measures. Diao et al. [18] evaluated Android’s accessibility
APIs with an analysis of the framework as well as a large-
scale app analysis. Their result reveals the intrinsic shortcom-
ings in Android’s current design and confirms the broad mis-
use of the accessibility APIs. Fratantonio et al. [22] present
attacks when combining Android’s SYSTEM_ALERT_WINDOW
and BIND_ACCESSIBILITY_SERVICE permissions, thus, fur-

ther highlighting the shortcomings in privacy protection of
the a11y framework. Follow-up work [42] demonstrated the
usage of these permissions by malicious apps. Those works
highlight the existing privacy concerns in the accessibility
framework, but did not create an appropriate defense. Our
solution is the first work that not only looks in-depth into
accessibility API usage by different types of real-world apps
but also proposes a system side privacy enhancement.

Defenses against malicious accessibility apps. Naseri et
al. [34] proposed a developer side defense against eavesdrop-
ping through accessibility features. In their work, multiple
tools are implemented to detect apps that are vulnerable to
eavesdropping, to automatically fix discovered vulnerabilities,
and to notify users of potential accessibility service misuse.
Unfortunately, this solution requires every developers’ effort
and makes accessibility and privacy an "either-or" choice that
sacrifices the user experience of people with impairment for
privacy gains. Different from it, our approach provides a better
balance between privacy and user experience.

Process-based privilege separation on Android. A few solu-
tions separate sensitive or untrusted components into isolated
processes to mitigate privacy violations. Works focusing on
advertisement libraries [26, 35, 37] demonstrated different
solutions to isolate said libraries from their host apps and
privilege separate them. Roesner et al. [36] sandboxed un-
trusted UI components in isolated processes to support secure
UI embedding. Davidson et al. [17] provided a dedicated
WebView service app to protect host apps from untrusted web
content. Starting with Android O, Google officially put the
WebView renderer into an isolated process [5]. Other works
privilege separate entire apps, e.g., Backes et al. [13] create
a virtualized environment for untrusted apps and, similarly,
Bianchi et al. [14] demonstrated an approach that sandboxes
an untrusted app inside a separate non-privileged context to
enforce privacy and security policies. Our work transfer those
concepts to the accessibility framework by sandboxing the
code modules that form an accessibility pipeline.

Information flow control in IoT applications. Closest to
our work is FlowFence [21], which introduced information
flow control for IoT apps to prevent unwanted data leakage. It
introduced the concepts of quarantined modules and opaque
handles that we also used in our implementation. In contrast
to FlowFence, our flows are very simple and linear. For in-
stance, in FlowFence multiple flows might converge on the
same module, necessesitating taint sets for modules, and mod-
ules can set custom taints on output to prevent their data from
reaching certains sinks. Our modules only consume output
from a single predecessor module within a short pipeline for
which the user sets the policy. Thus, while we could support
the same taint arithmetic and taint sets as FlowFence, this is
currently not necessary and simplifies our setup, avoiding the
issue of overtainting module sandboxes. On the other hand,
our solution has to additionally deal with the problem of au-
thorizing actions by modules. We addressed this by adopting

USENIX Association 30th USENIX Security Symposium 3645

the concept of recognizers [28] and using data flow control to
limit the information needed for (effective) malicious actions.

9 Conclusion

Android’s accessibility framework is a powerful service in-
tended to allow assistive apps in supporting impaired and
disabled users in navigating their devices. Unfortunately, the
service is also a popular building block for utility and malev-
olent apps that do not apply accessibility features as origi-
nally intended and might violate the users’ privacy. Existing
defenses in stock Android force users and app developers
to choose between inclusiveness and privacy protection. To
improve on this situation, we propose a privacy-enhanced
accessibility framework forward. By representing a11y logic
as pipelines, sandboxing every code module in a pipeline,
and enforcing flow contraints, our solution allows a more
fine-grained control over accessibility features and reduces
the attack surface while upholding functionality of a11y apps.
We showcase the feasibility of our solution by migrating two
a11y apps. We also discuss shortcomings of our approach
and hope this work will raise further interest into building
solutions that protect a particular dependent user group.

Acknowledgments

We thank our anonymous reviewers for their insightful com-
ments and suggestions which have helped us improve our
paper.

References

[1] Android trojan steals money from paypal accounts even
with 2fa on. https://www.welivesecurity.com/
2018/12/11/android-trojan-steals-money-
paypal-accounts-2fa/. Accessed: 2021-02-22.

[2] Google pauses removal of apps that want to use acces-
sibility services. https://www.zdnet.com/article/
google-pauses-crackdown-of-accessibility-
api-apps/. Accessed: 2021-02-22.

[3] Mobile malware continues to plague users in official
app stores. https://securityintelligence.com/
anubis-strikes-again-mobile-malware-
continues-to-plague-users-in-official-
app-stores/. Accessed: 2021-02-22.

[4] Skygofree — a hollywood-style mobile spy.
https://www.kaspersky.com/blog/skygofree-
smart-trojan/20717/. Accessed: 2021-02-22.

[5] What’s new in webview security. https:
//android-developers.googleblog.com/2017/

06/whats-new-in-webview-security.html. Ac-
cessed: 2021-02-22.

[6] Taslima Akter, Bryan Dosono, Tousif Ahmed, Apu Ka-
padia, and Bryan Semaan. "i am uncomfortable sharing
what i can’t see": Privacy concerns of the visually im-
paired with camera based assistive applications. 2020.

[7] Android Developer Docs. Accessibilityservice. https:
//developer.android.com/reference/android/
accessibilityservice/AccessibilityService.
Accessed: 2021-02-22.

[8] Android Developer Docs. Accessibilityservi-
ceinfo. https://developer.android.com/
reference/android/accessibilityservice/
AccessibilityServiceInfo. Accessed: 2021-02-22.

[9] Android Developer Docs. Autofill framework.
https://developer.android.com/guide/topics/
text/autofill. Accessed: 2021-02-22.

[10] Android Developer Docs. View: At-
tribute importantforaccessibility. https:
//developer.android.com/reference/
android/view/View.html#attr_android:
importantForAccessibility. Accessed: 2021-
02-22.

[11] Android Developer Guide. Build more accessi-
ble apps. https://developer.android.com/guide/
topics/ui/accessibility. Accessed: 2021-02-22.

[12] ashishb. android-malware. https://github.com/
ashishb/android-malware.

[13] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged app sandboxing for stock android. In 24th
USENIX Security Symposium (SEC’15), 2015.

[14] Antonio Bianchi, Yanick Fratantonio, Christopher
Kruegel, and Giovanni Vigna. Njas: Sandboxing un-
modified applications in non-rooted devices running
stock android. In 5th ACM CCS Workshop on Security
and Privacy in Mobile Devices (SPSM’15), 2015.

[15] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. Peek-
ing into your app without actually seeing it: Ui state
inference and novel android attacks. In 23rd USENIX
Security Symposium (SEC’14), 2014.

[16] cmauri. Camera based mouse emulator for android.
https://github.com/cmauri/eva_facial_mouse.

[17] Drew Davidson, Yaohui Chen, Franklin George, Long
Lu, and Somesh Jha. Secure integration of web con-
tent and applications on commodity mobile operating

3646 30th USENIX Security Symposium USENIX Association

https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://github.com/ashishb/android-malware
https://github.com/ashishb/android-malware
https://github.com/cmauri/eva_facial_mouse

systems. In 12th ACM Symposium on Information,
Computer and Communication Security (ASIACCS’17),
2017.

[18] Wenrui Diao, Yue Zhang, Li Zhang, Zhou Li, Feng-
hao Xu, Xiaorui Pan, Xiangyu Liu, Jian Weng, Kehuan
Zhang, and XiaoFeng Wang. Kindness is a risky busi-
ness: On the usage of the accessibility apis in android. In
22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019.

[19] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
droid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):1–29, 2014.

[20] Adrienne Porter Felt, Serge Egelman, Matthew Finifter,
Devdatta Akhawe, and David Wagner. How to ask for
permission. In 7th USENIX Workshop on Hot Topics in
Security (HotSec 12), 2012.

[21] Earlence Fernandes, Justin Paupore, Amir Rahmati,
Daniel Simionato, Mauro Conti, and Atul Prakash.
Flowfence: Practical data protection for emerging iot
application frameworks. In 25th USENIX Security Sym-
posium (SEC’16), 2016.

[22] Yanick Fratantonio, Chenxiong Qian, Simon P Chung,
and Wenke Lee. Cloak and dagger: from two permis-
sions to complete control of the ui feedback loop. In
38th IEEE Symposium on Security and Privacy (SP’17),
2017.

[23] Google. Talkback app. https://github.com/
google/talkback.

[24] Stephan Heuser, Adwait Nadkarni, William Enck, and
Ahmad-Reza Sadeghi. ASM: A programmable interface
for extending android security. In 23rd USENIX Security
Symposium (SEC’14), 2014.

[25] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These aren’t the droids
you’re looking for: retrofitting android to protect data
from imperious applications. In 18th ACM Conference
on Computer and Communication Security (CCS’11),
2011.

[26] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael
Backes. The art of app compartmentalization: Compiler-
based library privilege separation on stock android. In
24th ACM Conference on Computer and Communica-
tion Security (CCS’17), 2017.

[27] hxp2k6. Android-malwares. https://github.com/
hxp2k6/Android-Malwares.

[28] Suman Jana, David Molnar, Alexander Moshchuk, Alan
Dunn, Benjamin Livshits, Helen J Wang, and Eyal Ofek.
Enabling fine-grained permissions for augmented reality
applications with recognizers. In 22nd Usenix Security
Symposium (SEC’13), 2013.

[29] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei
Wang, and Wenke Lee. A11y attacks: Exploiting acces-
sibility in operating systems. In 21st ACM Conference
on Computer and Communication Security (CCS’14),
2014.

[30] Anatoli Kalysch, Davide Bove, and Tilo Müller. How
android’s ui security is undermined by accessibility. In
2nd Reversing and Offensive-oriented Trends Sympo-
sium, 2018.

[31] Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu,
and Wei Zhao. On malware leveraging the android ac-
cessibility framework. In International Conference on
Mobile and Ubiquitous Systems: Computing, Network-
ing, and Services. Springer, 2013.

[32] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing
Liao, Xiaofeng Wang, and Xueqiang Wang. Demysti-
fying resource management risks in emerging mobile
app-in-app ecosystems. In 27th ACM Conference on
Computer and Communication Security (CCS’20), 2020.

[33] Adwait Nadkarni, Benjamin Andow, William Enck, and
Somesh Jha. Practical DIFC enforcement on android.
In 25th USENIX Security Symposium (SEC’16), 2016.

[34] Mohammad Naseri, Nataniel P Borges, Andreas Zeller,
and Romain Rouvoy. Accessileaks: Investigating pri-
vacy leaks exposed by the android accessibility ser-
vice. Proceedings on Privacy Enhancing Technologies,
2019(2):291–305, 2019.

[35] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and
David Wagner. Addroid: Privilege separation for appli-
cations and advertisers in android. In 7th ACM Sym-
posium on Information, Computer and Communication
Security (ASIACCS’12), 2012.

[36] Franziska Roesner and Tadayoshi Kohno. Securing
embedded user interfaces: Android and beyond. In 22nd
Usenix Security Symposium (SEC’13), 2013.

[37] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Ad-
split: Separating smartphone advertising from applica-
tions. In 21st Usenix Security Symposium (SEC’12),
2012.

[38] sk3ptre. Androidmalware_2018. https://
github.com/sk3ptre/AndroidMalware_2018.

USENIX Association 30th USENIX Security Symposium 3647

https://github.com/google/talkback
https://github.com/google/talkback
https://github.com/hxp2k6/Android-Malwares
https://github.com/hxp2k6/Android-Malwares
https://github.com/sk3ptre/AndroidMalware_2018
https://github.com/sk3ptre/AndroidMalware_2018

[39] sk3ptre. Androidmalware_2019. https://
github.com/sk3ptre/AndroidMalware_2019.

[40] Mingshen Sun, Tao Wei, and John CS Lui. Taintart: A
practical multi-level information-flow tracking system
for android runtime. In 23rd ACM Conference on Com-
puter and Communication Security (CCS’16), 2016.

[41] Virus Total. Api scripts. https://
support.virustotal.com/hc/en-us/articles/
115002146469-API-scripts. Accessed: 2021-02-22.

[42] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wil-
son, Tianyin Xu, Ennan Zhai, Yong Li, and Yunhao Liu.
Understanding and detecting overlay-based android mal-
ware at market scales. In 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
2019.

A App Sample Sets

Table 6: Utility App Sample Set (Google Play)

Package #Installed
com.amazon.tahoe 1,000,000+
com.antivirus 100,000,000+
com.antivirus.tablet 10,000,000+
com.apusapps.emo_launcher 100,000+
com.apusapps.launcher 100,000,000+
com.avast.android.cleaner 10,000,000+
com.avast.android.mobilesecurity 100,000,000+
com.avg.cleaner 50,000,000+
com.bitdefender.security 5,000,000+
com.bitspice.automate 500,000+
com.cleanmaster.mguard 1,000,000,000+
com.eset.ems2.gp 10,000,000+
com.eset.parental 100,000+
com.gau.go.launcherex 100,000,000+
com.italia.autovelox.autoveloxfissiemoibli 1,000,000+
com.kaspersky.safekids 500,000+
com.kms.free 50,000,000+
com.ksmobile.launcher 100,000,000+
com.lastpass.lpandroid 5,000,000+
com.lionmobi.battery 50,000,000+
com.mcafee.security.safefamily 100,000+
com.microsoft.launcher 10,000,000+
com.oneapp.max.cleaner.booster 10,000,000+
com.piriform.ccleaner 50,000,000+
com.pleco.chinesesystem 1,000,000+
com.server.auditor.ssh.client 500,000+
com.teslacoilsw.launcher 50,000,000+
com.wsandroid.suite 10,000,000+
dreamy.earth.theme.natural.launcher 1,000,000+
galaxy.iphone.hd.wallpaper.live.screen.lock 10,000,000+
ginlemon.flowerfree 10,000,000+
mobi.infolife.appbackup 10,000,000+
org.malwarebytes.antimalware 10,000,000+
panda.keyboard.emoji.theme 100,000,000+
red.love.rose.theme.valentine.launcher 1,000,000+

Table 7: A11y App Sample Set (Google Play)

Package #Installed
com.google.android.marvin.talkback 5,000,000,000+
com.sesame.phone_nougat 10,000+
com.crea_si.eviacam.service 1,000,000+
com.google.audio.hearing.visualization.accessibility.scribe 50,000,000+
com.google.android.apps.accessibility.voiceaccess 1,000,000+

Table 8: Malicious App Sample Set (Github)
MD5 Classification (VirusTotal-Alibaba)

007ae04ac52f17d5d637f2c41658f824 TrojanSpy:Android/Banker.a30eb151
03e5d8ece783245b28cb97373e739842 Trojan:Android/Agent.3fc9b0c7
042f2f3a0df4aef0460d1ee74f1df033 Backdoor:Android/Agent.8f28ba9e
09b60aa78291e7ef8b0ddfc261afb9f9 TrojanDropper:Android/Skeeyah.a026644f
10f8097ef0db6adbed3b314055491ca4 Trojan:Android/Rootnik.efbca116
1512c3fa688ca107784b3c93cd9f3526 TrojanDropper:Android/Hqwar.657ae279
18a3c09ce58b3db05cf248730adb6bd0 TrojanDropper:Android/Hqwar.9e0b0668
2254002370c03cf14c3eabb27b3b826d TrojanBanker:Android/Anubis.58e63764
2f07c9b2a67104f8bc08d831c8922b6a TrojanBanker:Android/Riltok.32dfd36e
31ba565fcc1060ad848769e0b5b70444 Trojan:Android/Agent.4c52deda
39fca709b416d8da592de3a3f714dce8 Trojan:Android/Skygofree.355eb294
3b07862da0b78632d8e4486444adbbfd Backdoor:Android/Agent.3ebcdecc
3ffedf4759a001417084c64db48b549a TrojanSpy:Android/AndroRAT.afe389c9
4aea3ec301b3c0e6d813795ca7e191bb TrojanSpy:Android/Donot.60880405
519018ecfc50c0cf6cd0c88cc41b2a69 TrojanSpy:Android/ZooPark.436e912a
51f388f9ca606812d7fb4d5330e42ce7 TrojanBanker:Android/Anubis.75cc2361
55366b684ce62ab7954c74269868cd91 Trojan:Android/Ztorg.6ff5f73b
5cc953f25deeff951c38a5c118a81fe9 Trojan:Android/Agent.008476da
63a56f3867ef4b4a3cf469e81496aee7 TrojanDropper:Android/Agent.ac60e49b
647f6b2503205dd1f1da5ea490b6c71f Trojan:Android/Rootnik.977d3960
64e374807d87102cfc27489a91f8a13d AdWare:Android/Batmob.cbf4dda9
6a3ae5a916bc109e0186b40093084a78 Backdoor:Android/Agent.63d66ab9
6c39197bb2c2fd5fc9253ed18467d0d7 Backdoor:Android/Brata.7b8ffc88
70a937b2504b3ad6c623581424c7e53d Trojan:Android/Skygofree.f9b277e6
71b80c162001f9d2f4872f2efb7431fe TrojanSpy:Android/AndroRAT.a2734e43
75f1117cabc55999e783a9fd370302f3 TrojanBanker:Android/Banker.4650457b
880540d10cca559f68db96314f206225 Trojan:Android/Rootnik.1fce124c
8a266e277c61ffd6afa3d15b8691b9fb Backdoor:Android/Agent.48e611ae
8a9540fa5541054074d1efdc7729da43 Backdoor:Android/Lucbot.5aac9302
8d1f5637dc0bc76064d6f3283482a7c5 Trojan:Android/Agent.7c517cfb
8df5b22cabc10423533884da7648e982 TrojanBanker:Android/Asacub.3fc31d6b
91f0daa8cb837a9d3e815da8db999a08 TrojanSpy:Android/Banker.35c71d45
957ce53315496083a43c6765f5ed9e42 TrojanSpy:Android/AndroRAT.d9b0b7c8
9ae53ef2a4f2d40b06cc85e5c3778f48 Trojan:Android/Agent.14c930cd
a287a434a0d40833d3ebf5808950b858 Trojan:Android/Skygofree.639ce6ec
a2a921c0e8a9171300a805c5b1df78b8 TrojanSpy:Android/Banker.f9398502
a384a27681df0ed1732d4346f6c52d0a TrojanBanker:Android/Generic.ba1d86be
a44a9811db4f7d39cac0765a5e1621ac Trojan:Android/Agent.34c921b3
a8a8479dab8fbdee1fb058b8de97e89b Trojan:Android/Agent.a87db02a
a962759a71f899a9bbe4d27790e91b00 Backdoor:Android/Lucbot.69116e3e
a97eb28853eeeecffb749bf49b68af55 TrojanSpy:Android/AndroRAT.6fd591ab
ac613a7dee1ee8c47321403ab8fa1372 Trojan:Android/Agent.f483d3f4
ac67f1b22d6c7812003609de284a9ad9 TrojanDropper:Android/Hqwar.20f8d210
ac92258ff3395137dd590af36ca2d8c9 Trojan:Android/Agent.c1ade2d1
c148c63c974e2312d8f847d07242a86b TrojanBanker:Android/Anubis.65b2e27e
c580e7807fbd18106d2659af3cc58f8d AdWare:Android/Gibdy.2f426bf5
cdf10316664d181749a8ba90a3c07454 TrojanSpy:Android/Donot.d27afe4a
d0641eb22198c346af6c22284fca38a6 TrojanBanker:Android/Riltok.b7c88ed6
d3f53bcf02ede4adda304fc7f03a2000 TrojanSpy:Android/Donot.ecf77e96
d6ef4e16701b218f54a2a999af47d1b4 TrojanBanker:Android/Banker.a4cbd698
dc74daf70afc181471f41fd910a0dec0 TrojanDropper:Android/Hqwar.ef5f2c4a
e105b0fd0eadc5db26bf979e4e96007c Trojan:Android/Rootnik.1c8d7a29
e4187a74e6bef1a8cd30116500ed10f8 TrojanBanker:Android/Banker.3457c734
ef8493089deecbef6e459434ec7fee0b TrojanDropper:Android/Hqwar.04dcccff
ffacd0a770aa4faa261c903f3d2993a2 TrojanBanker:Android/Banker.522c0eb4

3648 30th USENIX Security Symposium USENIX Association

https://github.com/sk3ptre/AndroidMalware_2019
https://github.com/sk3ptre/AndroidMalware_2019
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts
https://support.virustotal.com/hc/en-us/articles/115002146469-API-scripts

	Introduction
	Android Accessibility Service
	Accessibility Service Overview
	Accessibility Communication Channel

	Study of Accessibility Service Usage
	Accessibility App Sample Set
	Accessibility Service Configuration
	Accessibility API Usage
	Complete Accessibility Pipelines

	Key Idea and Threat Model
	Privacy-Enhanced Accessibility Framework
	Overview and Design Concepts
	Implementation
	System-Side Components
	Client-Side Integration

	Evaluation
	Case Study: TalkBack
	Case Study: EVA Facial Mouse
	Performance Overhead

	Discussion
	Limits and challenges
	Strengthening the sandbox and IFC
	User approval
	Threats to Validity
	Utility apps
	Other attacks and privacy issues

	Related Work
	Conclusion
	App Sample Sets

