
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Assessing Browser-level Defense against
IDN-based Phishing

Hang Hu, Virginia Tech; Steve T.K. Jan, University of Illinois at Urbana-Champaign/
Virginia Tech; Yang Wang and Gang Wang, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity21/presentation/hu-hang

Assessing Browser-level Defense against IDN-based Phishing

Hang Hu*2, Steve T.K. Jan*1,2, Yang Wang1, Gang Wang1

1University of Illinois at Urbana-Champaign 2Virginia Tech
{hanghu, tekang}@vt.edu, {yvw, gangw}@illinois.edu

Abstract
Internationalized Domain Names (IDN) allow people around
the world to use their native languages for domain names.
Unfortunately, because characters from different languages
can look like each other, IDNs have been used to imperson-
ate popular domains for phishing, i.e., IDN homograph. To
mitigate this risk, browsers have recently introduced defense
policies. However, it is not yet well understood regarding how
these policies are constructed and how effective they are.

In this paper, we present an empirical analysis of browser
IDN policies, and a user study to understand user perception
of homograph IDNs. We focus on 5 major web browsers
(Chrome, Firefox, Safari, Microsoft Edge, and IE), and 2 mo-
bile browsers (Android Chrome and iOS Safari) and analyze
their current and historical versions released from January
2015 to April 2020. By treating each browser instance as a
black box, we develop an automated tool to test the browser
policies with over 9,000 testing cases. We find that all the
tested browsers have weaknesses in their rules, leaving oppor-
tunities for attackers to craft homograph IDNs to impersonate
target websites while bypassing browsers’ defense. In addi-
tion, a browser’s defense is not always getting stricter over
time. For example, we observe Chrome has reversed its rules
to re-allow certain homograph IDNs. Finally, our user study
shows that the homograph IDNs that can bypass browsers’
defense are still highly deceptive to users. Overall, our results
suggest the need to improve the current defense against IDN
homograph.

1 Introduction

The Internet is progressively globalizing, and yet for a long
time, most Internet domain names were restricted to English
characters (in combination with hyphen and digits) [43]. To
allow people around the world to use their native languages
for domain names, Internationalized Domain Names (IDN)

*Co-first authors with equal contribution.

were introduced and standardized in 2003 [28], which support
Unicode characters from a variety of languages.

As more IDNs are registered, a growing concern is that
IDN can be used to impersonate other domain names for
phishing purposes. This is because different characters from
different languages can look like each other. For example, the
Latin character “a” looks similar to the Cyrillic character “a”.
As a result, attackers can register a domain name apple.com
with the Cyrillic “a” to impersonate the official website of
Apple. This is also called homograph attack [25]. Researchers
have analyzed real-world DNS records and found homograph
IDNs created for phishing [8, 35, 37, 61].

To mitigate the risk, browsers have designed defense
strategies to detect and warn users about homograph IDNs.
Commonly, browsers implement rules to detect homograph
IDNs that are likely impersonating other legitimate domain
names [18]. Once detected, browsers will no longer display
the Unicode, but display their Punycode version. Punycode
code is initially designed to translate IDNs to ASCII Compat-
ible Encoding so that they can be recognized by legacy proto-
cols and systems. For example, the Punycode for apple.com
with the Cyrillic “a” is “xn--pple-43d.com”. By display-
ing this Punycode in the address bar, browser vendors try to
protect users from deception.

In this paper, we want to systematically assess the browser-
level defense against homograph IDNs. We seek to answer
three classes of research questions:

• First, what policies do major browser vendors implement
to prevent IDN homographs, and how well do browser
vendors enforce the claimed policies?

• Second, are there ways to systematically bypass existing
policies to create homograph IDNs?

• Third, how well can end users recognize homograph IDNs?
Are homograph IDNs blocked by browsers more or less
deceptive than those that bypass existing defenses?

Empirical Tests. To answer the first two questions, we
focus on five major web browsers (Chrome, Firefox, Safari,

USENIX Association 30th USENIX Security Symposium 3739

Microsoft Edge, and IE), and two mobile browsers (Android
Chrome and iOS Safari). We analyze their current and his-
torical versions released from January 2015 to April 2020.
We treat each browser version as a “black box”. Then we
construct more than 9,000 testing cases to examine 1) the
browser’s enforcement of known IDN policies; and 2) possi-
ble ways to bypass existing policies. To run a large number of
tests over various browsers and platforms, we build a tool to in-
strument browsers to load testing IDNs while video-recording
browsers’ reactions. Based on the recorded videos, we auto-
matically analyze how browsers handle different IDNs.

Our analysis has several key findings. First, all the browsers
have failed to detect certain types of homograph IDNs, with
a failure rate ranging from 20.62% to 44.46% Chrome has
implemented the strictest rules compared with other browsers.
Second, we show that it is possible to craft homograph IDNs
by exploiting the exceptions and blind spots of existing rules.
Several evasion methods are very effective, such as imperson-
ating less “popular” but critical websites (e.g., .gov, .org),
using extensive confusable characters and neglected Unicode
blocks (e.g., “Latin Extended-A”), and using whole-script
confusables (i.e., all the characters in a domain name are re-
placed by look-alike characters from a single script). Third,
although Chrome has strengthened its defense over time, we
find that certain rules have been recently revoked, allowing
corresponding homograph IDNs to be displayed again. In
addition, browsers such as Firefox have not updated their
defense policies for years.

To examine whether (and how) the weaknesses in existing
IDN policies are exploited in practice, we analyzed 300 mil-
lion DNS records. We identified 900,000 real-world IDNs and
found 1,855 are homograph IDNs that impersonate popular
domain names. By loading these homograph IDNs against
recent browsers, we showed that the best performing Chrome
identified 64.1% of them (i.e., displaying Punycode), while
Safari and Firefox only identified 9.7% and 6.1%.

User Study. To answer the third question, we run a user
study where participants examine a series of website screen-
shots. The domain names of the webpages are a mixture of
real domain names and homograph IDNs (including those that
are blocked by Chrome and those that can bypass Chrome).
We study users’ ability to judge the authenticity of the domain
names under mild priming. Our study shows that users are
significantly better at identifying real domain names (94.6%
success rate) than identifying homograph IDNs. For exam-
ple, participants only have a success rate of 48.5% on IDNs
blocked by Chrome. In addition, we find homograph IDNs
blocked by Chrome are indeed more deceptive than those not
blocked. Even so, the homograph IDNs that Chrome missed
can still deceive users for 45.8% of the time, posing a nontriv-
ial risk. Finally, we show that users’ education level, comput-
ing background, age, and gender have a significant correlation
with their performance in judging domain authenticity, while
website popularity and category are not significant factors.

Contributions. In summary, our key contributions are:

• First, we systematically test browser-level defenses against
homograph IDNs. We show all of the tested browsers have
weaknesses in their policies and implementations, making
it possible for homograph IDNs to bypass the defense.

• Second, we develop a tool to automatically perform black-
box testing on browser IDN policies across browser ver-
sions and platforms. The tool can be used to monitor and
test future browsers.

• Third, we perform a user study to examine user perception
of homograph IDNs, and demonstrate the need to enhance
the current defense against IDN-based phishing. We have
disclosed our findings to related browser vendors.

2 Background

We start by briefly introducing the background of internation-
alized domain names (IDN) and the related phishing risk.

Internationalized Domain Name (IDN). A domain
name is an identification string for Internet hosts or services.
Through the Domain Name System (DNS), a user-readable
domain name can be mapped to its corresponding IP address.
Originally, domain name only allowed ASCII (English) let-
ters, digits and hyphens [43]. In 2003, Internationalized Do-
main Name (IDN) was introduced to allow people, especially
non-English speakers, to use characters from their native lan-
guages to create domain names [28]. The new specification
supports Unicode characters, which cover more than 143,000
characters from a variety of languages (154 scripts, divided
into 308 blocks) [66].

Punycode. The challenge of using IDN is that non-ASCII
characters are not supported everywhere. To maintain compat-
ibility with existing protocols and systems, there needs to be
a way to convert IDNs to ASCII Compatible Encoding (ACE)
strings. The standardized mechanism is called International-
izing Domain Names in Applications (IDNA) [10, 56]. IDNA
converts Unicode labels to an ASCII Compatible Encoding
(ACE) label which is also called Punycode. Punycode always
starts with “xn--”. For example, Unicode string “bücher.de”
is mapped to Punycode “xn--bcher-kva.de.” IDNA has
been adopted by browsers and email clients to support IDNs.
Before sending a DNS query for IDN, the domain name is
usually translated to its Punycode first to ensure the success
of the DNS resolving.

Homograph IDN and Phishing. IDN has been used for
phishing because characters from different languages may
look like each other. For example, ASCII “a” (U+0061) looks
very similar to Cyrillic “a” (U+0430). An attacker thus can
use the Cyrillic “a” to construct an IDN to spoof legitimate do-
main names that contain the ASCII “a”, which is called homo-
graph attack [25]. Existing works have performed real-world

3740 30th USENIX Security Symposium USENIX Association

Records Count
DNS records 347,014,213
Unique domain names 143,482,491
Unique IDNs 916,805
Homograph IDNs 1,855

Table 1: Analysis results of .com DNS zone file.

measurements and found homograph IDNs that impersonate
popular domain names [8, 35, 37, 61].

3 IDN Usage in the Wild

To provide the contexts of IDN usage and motivate our prob-
lem, we first empirically analyze the DNS zone files. Through
the analysis, we aim to identify real-world homograph IDNs
that impersonate popular domain names. Then we test these
homograph IDNs against recent browsers to illustrate the
problems of browser-level defenses.

Dataset. We obtained the access to the “.com” zone file
from Verisign Labs1 in January 2020. “.com” is a top-level
domain (TLD) where most commercial websites are regis-
tered, and is one of the most popular TLDs. We choose .com
to illustrate the problem, and the same analysis methodology
can be applied to other TLDs too. As shown in Table 1, there
are 347 million DNS records in the zone file. Among them,
there are 143 million unique domain names. For each domain
name, we check whether it contains any character outside of
the ASCII table.

In total, we find 916,805 IDNs. While the percentage is not
high (0.64% of all .com domain names), the absolute number
of IDNs is still nearly 1 million. We observe that most IDNs
come from East Asia and Europe, which is consistent with that
of a prior study [37]. We also find script mixing is common.
Out of the 916,805 IDNs, 315,671 (34.4%) domain names
have script mixing.

Homograph IDNs. To identify homograph IDNs, we fol-
low a common detection method: 1) we select the domain
names from Alexa top 10,000 domains [1] as the imper-
sonation target; 2) We search for homograph candidates us-
ing a database of look-alike characters (e.g., “a” (U+0061)
looks like “a” (U+0430)). We use a comprehensive homo-
graph database from recent work [61]. This database covers
look-alike characters across all Unicode blocks that can be
displayed by browsers. To detect homograph IDNs, we re-
cursively replace the characters in the target domain name
with their look-alike characters (while keeping the TLD un-
changed), and then search the modified domain name in our
IDN list. Recursive character replacement means we would
replace multiple characters in the domain name if there are
candidate look-alike characters. If the modified domain name
is in the list, we consider it as a homograph IDN.

1Verisign Labs have made their datasets open to researchers: https:
//www.verisign.com/en_US/company-information/verisign-labs

In total, we identified 1,855 homograph IDNs that
impersonate 674 popular domain names. The top five
most impersonated targets were amazon.com, google.com,
paypal.com, canva.com, and gmail.com. For example,
xn--gmal-spa.com (gmaìl.com) impersonates gmail.com.

Testing Homograph IDNs against Browsers. Consid-
ering the potential risk of homograph IDNs, browsers have
implemented defense mechanisms. For example, when users
visit a homograph IDN, the browser will no longer display the
Unicode in the address bar. Instead, the corresponding Puny-
code is displayed to protect users from potential deception. To
understand the efficacy of browsers’ IDN policies, we tested
the 1,855 real-world homograph IDNs by displaying them in
the recent Chrome 81.0, Safari 13.0, and Firefox 75.0. Dis-
playing a Punycode means browsers can successfully detect
and block the homograph IDN.

We find that Chrome displays Punycode for 1,189 homo-
graph IDNs (64.1%); Safari and Firefox only display Pun-
ycode for 180 (9.7%) and 113 (6.1%) of them. Chrome’s
defense is stronger than that of Safari and Firefox. But even
so, Chrome has missed 35.9% of the homograph IDNs (more
than one third).

Note that our finding is slightly different from an earlier
study from 2018 [37] which showed Chrome’s defense was
effective against homograph IDNs discovered at that time
(100% detection rate). Our results indicate that attackers have
already exploited new ways to construct homograph IDNs to
bypass existing browser policies.

4 Testing IDN Policies in Browsers

To understand the reasons behind the above observation, we
want to take a closer look into the major browsers’ IDN de-
fense policies, and build testing cases to systematically eval-
uate them. This current section (Section 4) will be focused
on browser policies and constructing test cases. In Section 5,
we will present our testing results on the latest browsers and
their historical versions, and examine the longitudinal browser
policy changes.

4.1 Browsers’ IDN Policies

To understand how major browsers handle IDNs, we first
select a set of popular browsers based on their current and his-
torical market shares [46, 60, 69]. We choose Chrome, Safari,
Firefox, IE, and Windows Edge to analyze their publicly-
available documentations and compare their claimed IDN
policies. Table 2 summarizes representative policies. Dif-
ferent browsers may share the same high-level policies (e.g.,
prohibiting script mixing) but implement them differently
(e.g., by defining different mixing rules). Below, we discuss
each browser’s policies in detail.

USENIX Association 30th USENIX Security Symposium 3741

Policy Chr. Fir. Saf. IE Edge
P1: Unicode script mix (blocked) X X X
P2: Unicode script mix (allowed) X X X X
P3: Skeleton rule (top domain) X X
P4: Confusable chars (blocked) X X
P5: Whole-script + allowed TLD X X X
P6: Unicode script (allowed) X

Table 2: The claimed policies of different browsers based on
public documentations.

Chrome. For Chrome, we focus on the main policies re-
lated to IDN homograph and omit those related to IDNA
implementations [18]. First, Chrome defines policies to al-
low and disallow certain characters from different Unicode
scripts to be mixed in a single domain name (P1 and P2).
For example, Latin, Cyrillic or Greek characters cannot be
mixed with each other. This is to prevent homograph IDNs
such as “apple.com” where Cyrillic “a” (U+0430) is used
to mix with other Latin characters. Latin characters in the
ASCII range can be mixed only with Chinese, Japanese and
Korean; Han can be mixed with Japanese and Korean. Such
script mixing is allowed because these blocks rarely contain
look-alike characters.

Second, Chrome will compare the “skeleton” of the IDN
with top domain names2 (and domain names recently visited
by the user). The skeleton is computed, for example, by re-
moving diacritic marks (googlé.com with “é” replaced by
“e”). This rule is called skeleton rule (P3). Using the skeleton
rule, googlé.com will be flagged due to its high similarity
with the popular domain name google.com.

Third, if an IDN contains mixed scripts and also confus-
able characters or dangerous patterns, Chrome will display
Punycode (P4). For example, this rule disallows U+0585 (Ar-
menian Small Letter Oh “o”) and U+0581 (Armenian Small
Letter Co “g”) to be next to Latin due to their similarity to the
Latin letters o and g.

Finally, P5 is used on domain names of whole-script con-
fusables. Whole-script confusable means the domain name
does not have mixing characters from different scripts. In-
stead, all the characters are from a single script but they look
similar with ASCII letters. In this case, Chrome will check if
the TLD is allowable. For example, attackers can construct
www.apple.com (xn--80ak6aa92e.com) where the domain
name only contains Cyrillic characters. In this case, since
TLD “.com” is not Cyrillic, it will be flagged by this rule.

Firefox. Firefox’s policies [45], as shown in Table 2, are
different from those of Chrome. For example, Firefox does
not have the skeleton rule to compare the IDN with popu-
lar domain names. Before 2012, Firefox only allowed IDNs
with certain TLDs to be displayed in Unicode. However, as
ICANN continues to release new TLDs, this approach be-
comes burdensome because Firefox has to constantly update

2Chrome has a hard-coded list of top domain names. According to the
source code of Chromium, there are 5001 top domain names on the list.

the list. After 2012, Firefox added the mixing script rules.
The idea is similar to that of Chrome, but the rules define dif-
ferent allowed/disallowed script combinations. For example,
Firefox allows “Latin + Han + Hiragana,” “Latin + Han +
Bopomofo,” “Latin + Han + Hangul,” and “Latin + any single
other Recommended/Aspirational scripts except Cyrillic or
Greek.”

Safari. Based on a security update in 2016 [5], Safari main-
tains a list of allowed scripts. Any IDNs containing scripts
that are not on the allowed will be displayed in Punycode.
This is an aggressive policy since it excludes the entire Uni-
code blocks such as Cherokee, Cyrillic, and Greek that might
contain Latin look-alike characters. The goal is to prevent
homograph IDNs such as “apple.com” (where Cyrillic “a”
(U+0430) is used).

Internet Explorer (IE). IE only allows ASCII characters
to be mixed with a predefined set of scripts that are unlikely
to have confusable characters [41].

Microsoft Edge. Edge has two generations. For the legacy
Edge (based on EdgeHTML), we cannot find any public doc-
umentations on their IDN policies. The new generation of
Edge is based on Chromium. We assume Edge Chromium
has the same policy as Chrome (as marked in Table 2) and
will run experiments in Section 5 to validate this assumption.

User Configurations. Certain browsers allow user config-
urations. For example, Firefox allows users to disable IDN
altogether and always display Punycode [17]. For IE, user-
configured “accept language” can affect the IDN display. For
example, if an IDN contains characters that are not part of the
“accept language,” IE will display the Punycode [41].

4.2 Building Testing Cases

Next, we design testing cases to systematically evaluate
browsers’ IDN policies. We focus on two main aspects: 1)
we design cases to test the implementation correctness of
the rules in the claimed policies; 2) we design cases that are
likely to bypass known policies. We seek to test a number of
browsers (of different versions, across different platforms) to
understand how the policy implementations evolve over time.

As shown in Table 3, we develop 10 categories of testing
cases. For each category, we construct about 1,000 testing
IDNs3. After generating the IDNs, we then remove the live
domains to 1) avoid disruptions to these live domains; 2) to
improve the speed and stability of large-scale testing (i.e., live
domains take a much longer time to resolve and display). We
have verified that all browsers will execute the same policies

3When constructing IDNs for a given category, we try to identify all the
relevant Unicode blocks, and then randomly sample the same number of
characters from each block. Sometimes, we do not get exactly 1,000 IDNs
because 1,000 cannot be divided evenly by the number of related Unicode
blocks or there are not enough qualified characters.

3742 30th USENIX Security Symposium USENIX Association

Category Description Policy Example IDNs # Testing IDNs
Test-1 Mixing Latin, Cyrillic and Greek characters P1 1,000
Test-2 Mixing Latin any other Unicode blocks P2 1,442
Test-3 Whole-script-confusables and TLD P5 997
Test-4 “Dangerous” patterns and Unicode confusables P4 1,090
Test-5 Skeleton rules (top-ranked domains) P3 978
Test-6 ASCII look-alikes P6 166
Test-7 Extended confusable characters P4 493
Test-8 Skeleton rules (low-ranked domains) P3 1,600
Test-9 Full-substitution of all characters in a domain name P1 873
Test-10 Mixing extension blocks of Latin, Cyrillic and Greek P1 880
Total 9,519

Table 3: Testing cases and their related browser policies (the list of browser policies is in Table 2).

regardless of whether the domain is live or not. We in total
obtain 9,519 IDNs as testing cases.

Testing the Claimed Policies Directly. As shown in Ta-
ble 3, categories 1–6 are designed to directly test the claimed
policies to examine if they are implemented correctly. Each
testing category is mapped to a policy in Table 2. We do not
plan to test user configurations since they depend on user pref-
erence. These testing cases are focused on testing the claimed
rules instead of aiming for high-quality impersonations.

• Category 1. Most browsers do not allow the mixing be-
tween Latin, Cyrillic and Greek characters (P1). To test
this rule, we construct IDNs that consist of mixing char-
acters randomly sampled from Latin, Cyrillic, and Greek
Unicode blocks (17 blocks in total). We randomly sample 2
characters from each of the 17 Unicode blocks to generate
the 1,000 mixing-script IDNS (covering 4 types of combi-
nation: Latin + Cyrillic, Latin + Greek, Cyrillic + Greek,
Latin + Cyrillic + Greek).

• Category 2. Chrome and Firefox claim to allow Latin char-
acters to be mixed with Chinese, Japanese and Korean
(CJK) characters (P2). However, it is not clear if other com-
binations are allowed. We construct IDNs that mix Basic
Latin and 172 other non-CJK Unicode blocks. By randomly
sampling 3 characters per block, we mix them to generate
1,442 testing IDNs.

• Category 3. This category is designed for whole-script
confusable domain names, i.e., all the characters are from a
single look-alike script without any mixing (P5). To test this
rule, we construct 997 IDNs using whole-script confusables
from Cyrillic as domain names combined with non-Cyrillic
TLDs (3 ASCII TLDs .com, .net, .org and 2 IDN TLDs
.{fõ(é⌥, .5N).

• Category 4. Chrome claims that if the IDN matches some
dangerous patterns, it will display Punycode. The danger-
ous patterns include certain Japanese characters that can
be mistaken as slashes, certain Katakana and Hiragana
characters that look like each other. It is also not allowed
to use U+0307 (dot above) after ‘i’, ‘j’, ‘l’ or dotless ‘i’

(U+0131). We construct 1,090 testing cases to cover all the
documented rules.

• Category 5. This category is used to test the skeleton rule
(P3). Chrome checks whether the domain name looks like
one of the top-ranked domains, after mapping each charac-
ter to its spoofing skeleton. Chrome uses Unicode official
confusable table [65] and 31 additional confusable pairs to
map a spoofing character to its ASCII skeleton. We use the
same confusable pairs to construct 978 homograph IDNs.

• Category 6. Safari claims to only allow scripts that do not
have ASCII look-alikes (P6). For this category, we ran-
domly pick characters from Cyrillic, Greek and Cherokee
Unicode blocks (without any mixing) to form 166 IDNs.

Testing to Bypass the Claimed Policies. Next, we as-
sume all the claimed policies are correctly implemented. Un-
der this assumption, we construct IDNs that are likely to
bypass existing policies. For these testing cases, we explicitly
construct homograph IDNs that impersonate target domains.

• Category 7. Given the possibility that the Unicode con-
fusable table used by browsers is incomplete, we test to
use a more comprehensive confusable database provided
by researchers [61]. We generate 493 homograph IDNs to
impersonate 200 domains sampled from Alexa top 10K [1].

• Category 8. The skeleton rule is currently applied to 5K
popular domain names. However, many important web-
sites are not necessarily “popular” (e.g., based on traffic
volume). For example, websites of governments, military
agencies, educational institutions, regional hospitals, and
other organizations may have a high phishing value but
are not necessarily ranked to the top. To explore this idea,
we construct homograph IDNs for .gov, .mil, .edu, .org
and .net target domain names4 that are not in the top 5K
domain list.

• Category 9. In this category, we test whole-script confus-
ables beyond Cyrillic. We use extended sets of confusable
4Registering .gov, .mil, and .edu domain names requires additional

verification. However, anecdotal evidence shows such verification can be
abused or bypassed by attackers to obtain these domain names [32]. Domain
names under .org and .net are open to the public for registrations.

USENIX Association 30th USENIX Security Symposium 3743

scripts to construct homograph IDNs without mixing. We
randomly sample 200 target domains from Chrome’s top
domain list, and generate up to 5 all-substitution homo-
graph domains for each target domain. We also keep the
original TLDs unchanged.

• Category 10. Most browsers prohibit the mixing between
Latin, Cyrillic and Greek. However, each script has multi-
ple Unicode blocks, and it is not clear we can mix different
blocks under the same script. For example, Latin has at
least 9 blocks including Basic Latin, Latin Extended-A to
E (5 blocks), IPA Extensions, Latin Extended Additional,
and Latin-1 Supplement. We want to understand, for in-
stance, if Latin Extended-A and Latin Extended-B can be
mixed. We construct 880 IDNs using characters within
Latin look-alike Unicode blocks. All the IDNS are homo-
graph domains impersonating 200 domain names randomly
sampled from Alexa top 1 million list [1].

Biases and Limitations. Our testing cases are designed
to identify the problems with existing IDN policies. Certain
policies are designed at the Unicode block level (P1, P2, P6).
From each related block, we randomly select a few characters
and exhaustively test their combinations. As such, the testing
result is representative because these policies make decisions
at the block level. For policies that are concerning the charac-
ter level (e.g., P3, skeleton rule), we randomly sample popular
target domains and search for confusable characters. This
does not guarantee completeness (we do not cover all target
domain names). Exhaustive testing at the character level is
difficult to finish within a reasonable amount of time.

Note that for test categories 1–4, and 6, the character re-
placement does not attempt to use look-alike characters since
the policies are about allowable Unicode blocks. Categories
5 and 7–10 use look-alike characters. Due to the space limit,
we make the list of testing IDNs available under this link5.

5 Measurement Methods and Results

With the testing cases, we present our empirical experiments
on major browsers and their historical versions to understand
the effectiveness of IDN policies. We test historical versions
for two reasons. First, it helps us to understand how different
policies and their implementations evolve over time. Sec-
ond, many users and organizations are still using outdated
browsers [6] – their IDN policies are worth investigating.

We design experiments to answer four key questions. First,
how well do browsers enforce known IDN policies? Sec-
ond, how effective are existing policies in detecting homo-
graph IDNs that impersonate target domains? Third, how are
browser defenses changing over time?

5https://github.com/stevetkjan/IDN_Testing/blob/master/
testcases.xlsx

Desktop (Total # of Versions) Version Range
Chrome (21) 43.0 – 81.0
Firefox (15) 54.0 – 75.0
Safari (4) 10.0 – 13.0
Edge Legacy (4) 15.0 – 18.0
Edge Chromium (2) 80.0 – 81.0
IE (4) 8.0 – 11.0
Mobile (Total # of Versions) Version Range
Android Chrome (7) 5.0 – 9.0
iOS Safari (13) 10.2 – 13.2

Table 4: Tested browsers and their versions.

5.1 Testing Platform and Methods

Browser Versions. We performed the experiments during
April – May in 2020. The browser versions are shown in Ta-
ble 4. We have primarily focused on Chrome, Safari, Firefox
and Microsoft Edge. Note that Microsoft has stopped IE at
its last version at v11.0 in 2016 [42], and continued with the
new Microsoft Edge browser. For completeness (and consid-
ering users may use outdated browsers [6]), we have tested
the legacy versions of IE too. For mobile browsers, we have
tested Android Chrome and iOS Safari across their latest and
historical versions.

Regarding the historical versions, we did not start from a
browser’s first version because most browsers did not support
internationalized domain names in the beginning. Without
IDN support, there is no point to test IDN defense policies.

Testing Method. We run black-box testing on each
browser. By loading the testing cases (i.e., IDNs), we examine
whether the browser displays the Unicode or the Punycode.
We control the browser to load the testing IDNs sequentially,
and record a video to capture the screenshots of the browser.
We choose to record a video (continuously) instead of taking
screenshot images one by one to speed up the testing. An-
other advantage of screen recording is that it works across
browsers and platforms. To help with the post-analysis of the
recorded videos, we choose to load a special delimiter URL
“http://aaaaaa---{index}” into the address bar between
two consecutive testing IDNs. This index field is the index
number of the next IDN to be tested. Using this delimiter,
we can accurately split video frames and map them to the
corresponding IDN (based on the index number).

In order to fully automate the tests, a key challenge is
to configure the right environment for the browsers. For ex-
ample, we need different desktop platforms (e.g., Windows,
Linux) and mobile platforms (e.g., Android, iOS) to run the
tests. In order to test historical versions, we need the right
legacy OS versions to support outdated browsers. To solve
this problem, we used a cloud-based testing framework called
LambdaTest [34]. LambdaTest provides remote Selenium for
desktop browsers and Appium for mobile browsers that can
be controlled by our scripts via APIs. Before each test, we
first specify the operating system name and the version via

3744 30th USENIX Security Symposium USENIX Association

a configuration file, and LambdaTest will automatically set
up the testing virtual machine (VM) in the cloud. Our scripts
then remotely control the browser running in the VM to load
the list of IDN URLs one by one while recording the screen.

Video Analysis. The video analysis aims to determine
whether a given IDN is displayed as Unicode (allowed) or
Punycode (blocked) by the browser. First, we slice the video
frames and map them to the specific IDN. As mentioned
before, between two consecutive IDNs, we have loaded a
delimiter. For example, delimiter “aaaaaa---b16” means
the next video frames should be mapped to testing case #16
in category 2 (based on “b”). After slicing the video frames,
we remove duplicated images based on perceptual hash (or
phash) [3]. Given an image, we first crop the image to focus
on the browser address bar. Then we apply OCR (Optical
Character Recognition) to extract the URL in text format from
the image. We use Google’s Tesseract OCR tool [19] which
is known to have a good performance. If the extracted URL
starts with “xn--”, then we determine it is a Punycode. We
have taken extra steps to improve the accuracy of ORC, e.g.,
by converting images into black and white, and improving
the image resolution. To ensure the reliability of Punycode
identification, we randomly sampled 100 images for each
browser for manual validation. Across these browsers, we had
a 0% false negative rate and a false positive rate below 2%.
Our code is available here6.

Extended Testing vs. Simplified Testing. We divide the
testing into two phases. First, we run an extended test using
all 9,519 testing cases on the latest versions of the browsers.
Our goal is to understand the effectiveness of the current IDN
policies. This test covers Chrome 81.0, Firefox 75.0, Safari
13.0, Edge Chromium 81.0, Android Chrome 9.0, and iOS
Safari 13.2. This test does not cover IE or Edge Legacy since
Microsoft has chosen Edge Chromium over the other two
(we consider IE and Edge Legacy as historical browsers).
Second, for all other historical versions, we run a simplified
test considering the scalability requirement for covering a
large number of browsers versions on different platforms. We
sample about 10% of the testing cases for each category. For
certain categories, the sampling rates are slightly higher than
10% in order to cover all the relevant Unicode blocks. This
test covers 1,027 IDNs in total.

Additional Validations on IDN Policy Execution. To
ensure the validity of the testing results, we have performed
further sanity checks on IDN policy executions. First, we
confirm that IDN policies are hard-coded in the client side, i.e.,
the policies are executed without querying any remote servers.
We confirm this by manually reading the Chromium code and
running browsers in a sandbox to analyze the network traffic.
This ensures the testing results do not depend on external
services (e.g., remote blacklists). Second, by monitoring the

6https://github.com/stevetkjan/IDN_Testing

Chrome Firefox Safari Edge
Unicode 1,963 4,233 4,085 1,963
Failure Rate 20.62% 44.46% 42.91% 20.62%

Table 5: Testing results of the latest browsers. In total, 9,519
IDNs are tested per browser. We report the number of IDNS
displayed as Unicode (i.e., IDNs that browsers fail to block).

network traffic, we find that IND policies are triggered (e.g.,
displaying Punycode) before the browser queries DNS. This
ensures we can test the IDN policies without using resolvable
domain names. Third, browsers will display the Punycode
after an IDN policy is triggered7. Chrome is the only browser
that has an additional warning page for “look-alike URLs” [9].
This warning only applies to IDNs that look like a predefined
set of popular domain names (P3 “skeleton-rule”). We will
further discuss this warning mechanism later in Section 7.

5.2 Results: Desktop Browsers
We start with the latest versions of desktop browsers. In Ta-
ble 5, we report a failure rate which is the ratio of IDNs that
are displayed as Unicode over all the tested IDNs. Display-
ing Unicode indicates that the browser has failed to block
the IDN. In Figure 1, we show the failure rate for each test-
ing category. Note that the failure rate has slightly different
meanings for categories 1–6 and 7-10. For categories 1–6, it
means the browser does not fully execute the claimed policies,
which gives attackers the opportunity to create homograph
IDNs. For categories 7-10, since all the testing IDNs are al-
ready homograph IDNs, the failure rate indicates risks more
directly.

Chrome and Edge (Chromium). The first observation is
Chrome and Edge have identical numbers in both Table 5 and
Figure 1. This indicates Edge has the same polices as Chrome
due to the use of Chromium. As such, we use Chrome as an
example to discuss them together.

Table 5 shows that Chrome has the strictest policies com-
pared to Firefox and Safari. Only 1,963 out of 9,519 IDNs
(20.62%) are displayed in Unicode by Chrome. Noticeably,
Chrome (and all other browsers) has a failure rate of 0% under
category-1 (Figure 1). It means browsers enforced the rule to
prevent the mixing of Latin, Cyrillic or Greek characters.

However, for the other nine categories, Chrome’s failure
rate is non-zero. The result of categories 2–6 suggests that
Chrome does not fully enforce the rules as claimed. Category-
3 has the highest failure rate (85.3%). It turns out that Chrome
allows whole-script confusables from Cyrillic to be combined
with common TLDs such as .com and .net. The other 14.7%
IDNs in category-3 are blocked because they have triggered
other rules (e.g.skeleton rule). The results in categories 4 and

7Note that other types of domain squatting (e.g., typo-squatting [4],
combo-squatting [29]) do not trigger such Punycode displaying since these
squatting domains do not use Unicode characters.

USENIX Association 30th USENIX Security Symposium 3745

 0

 0.2

 0.4

 0.6

 0.8

 1

Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10

F
a

ilu
re

 R
a

te

Safari
Firefox

Chrome
Edge

Figure 1: Failure rates of the 10 testing categories for the latest version of four browsers.

6 indicate Chrome does not fully cover Unicode confusables
in the Unicode documentation and all the ASCII look-alike
scripts. Category-5 has a failure rate of 13.3% (skeleton rule),
indicating the skeleton comparison cannot perfectly capture
all the confusable characters in the top domains.

For categories 7–10, the results confirm that our strategies
to bypass Chrome policies are largely successful. In category-
7, by using a more extensive confusable character table, we
can cause more failures to the skeleton rule. In category-8, we
focus on target domain names that are not in the top domain
list (e.g., those under .edu, .gov, .mil, .org, and .net), and
Chrome fails to capture 40% of the homograph IDNs. Certain
Unicode blocks are consistently missed. For example, when
using confusable characters from the “Latin Extended-A” to
impersonate these domain names, the failure rate is 100%.
For categories 9 and 10, while the failure rates are lower, the
results still indicate there are exceptions in the current mixing
rule. For example, full-Substitution with “Latin Extended-A”
causes a 100% failure rate, followed by a full-Substitution
with “Cyrillic.” Also, certain blocks within the Latin can be
mixed without alerting Chrome (e.g., mixing “Latin Extended-
A” and “Latin-1 Supplement”).

Safari. Safari has a failure rate of 42.91% overall. Com-
pared to Chrome, Safari does not implement as many rules.
For the rule that Safari did implement (e.g., the rule corre-
sponds to category-6), Safari does not make any mistakes.
In addition, Safari blocks all the IDNs in category-1 (mix-
ing script) and category-3 (whole-script Cyrillic). This is
because Safari’s allowed scripts have already excluded Latin
look-alike scripts such as Greek and Cyrillic. Even so, it is
still feasible to create homograph IDNs to bypass Safari. As
shown in Figure 1, Safari has a failure rate over 60% on the
homograph IDNS in categories 7, 8 and 9.

Firefox. Firefox has a higher failure rate of 44.46% among
tested browsers. In particular, Firefox does not implement
the skeleton rule, and thus the corresponding testing cases
(categories 5, 7, 8) all have relatively higher failure rates.

Case Studies. So far, we have discovered several strate-
gies to bypass existing IDN policies. Some of the strategies
are more useful than others to craft high-quality homograph
IDNs. To illustrate the differences, in Table 6, we present
example homograph IDNs crafted for Chrome, based on the
mistakes Chrome made in each category (except for category-

Category Example IDNs to Bypass Chrome
Test-2
Test-3
Test-4
Test-5
Test-6
Test-7
Test-8
Test-9
Test-10

Table 6: Example homograph IDNs that can bypass Chrome’s
policies to be displayed in Unicode.

1 where Chrome has no failure). We find that it is easy to craft
homograph IDNs for categories 3, 5, 7 and 8. For category-4,
most of the dangerous patterns are mimicking non-English
letters and symbols (such as slash). This limits the ability
to generate homograph IDNs. For category-6, although we
have found a large number of individual characters from dif-
ferent Unicode scripts missed by Chrome, it is not easy to
craft high-quality homograph IDNs due to other rules (e.g.,
non-mixing rules, skeleton rules). For categories 9 and 10,
although we can easily find homograph IDNs, the IDNs need
to be whole-script (i.e., all the characters need to be replaced),
and thus might sacrifice the quality of impersonation. Overall,
the exception rules identified for categories 3, 5, 7 and 8 are
the most effective ways to craft homograph IDNs.

5.3 Results: Mobile Browsers

We perform the same analysis on the mobile browsers includ-
ing Android Chrome and iOS Safari. After analyzing their
latest and historical versions, we find that the results are ex-
actly the same as the corresponding web versions (Chrome
and Safari). As such, we use “Chrome” and “Safari” to rep-
resent both the web and mobile versions. Note that mobile
browsers present additional challenges for users to recognize
web domain names due to the limited screen size. Some mo-
bile browsers would only display part of the URLs or even
hide the whole URLs in the address bar [38,39], which height-
ens the security risks. The user interface (UI) design, however,
is beyond the scope of this paper.

3746 30th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Jan
15

Jul
15

Jan
16

Jul
16

Jan
17

Jul
17

Jan
18

Jul
18

Jan
19

Jul
19

Jan
20

Jul
20

F
a

ilu
re

 R
a

te
Safari

Firefox
Chrome

Edge

(a) Testing categories 1–6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Jan
15

Jul
15

Jan
16

Jul
16

Jan
17

Jul
17

Jan
18

Jul
18

Jan
19

Jul
19

Jan
20

Jul
20

F
a

ilu
re

 R
a

te

Safari
Firefox

Chrome
Edge

(b) Testing categories 7–10

Figure 2: Failure rates over time for different browser versions from January 2015 to April 2020.

5.4 Browser Policy Changes Over Time

Next, we analyze the historical browser versions to understand
how their IDN policies change over time. Given a browser,
we sort all its versions by the release dates. Then we select the
most updated version for each quarter (4 quarters per year) to
report their failure rates. As shown in Figure 2, we break down
the results for categories 1–6 (Figure 2(a)) and categories
7–10 (Figure 2(b)) since their failure rates have different
meanings. We have merged the curve for Edge Chromium
and Edge Legacy since their release times do not overlap. We
have also tested IE, but all the testing cases are displayed as
Punycode. As such, we omit IE from Figure 2 for brevity.

Overall, most browsers follow a similar trend. First, the
failure rates were initially at 0% because the browser did not
support IDN yet in the early versions. All the testing IDNs are
displayed as Punycode. These include Chrome browsers be-
fore version 51.0 (released in June 2016), Firefox browsers be-
fore version 61.0 (released in June 2018), and Edge browsers
before 80.0 (released in February 2020). Second, once the
browser started to support IDNs, the failure rates immediately
jumped to a high level due to a lack of defense policies. Third,
for browsers such as Chrome and Safari, their failure rates
were gradually decreasing afterward as browsers added new
IDN policies. For example, starting in March 2017, Chrome
had a series of updates that significantly decreased the failure
rate (mostly for categories 2, 5, 8, 9, and 10). In comparison,
Firefox’s failure rate has stayed at a similar level, indicating
fewer or no updates of its IDN policies. As mentioned be-
fore, Edge changed to use Chromium in early 2020, and has
followed Chrome’s IDN policies since then.

One interesting observation (see Figure 2(b)) is that
Chrome’s failure rate went higher at the end of 2019, indi-
cating certain policies were revoked. A further inspection
shows the blocking decisions on many testing cases in cate-
gories 5, 7 and 8 were reversed — the new Chrome version
re-allowed certain homograph IDNs to be displayed as Uni-
code. These re-allowed homograph IDNs contain characters
from three main Unicode blocks: “Latin Extended-A,” “Latin
Extended-B,” and “Latin-1 Supplement”. Homograph IDNs

such as aŕmy.mil, yaĺe.edu, uchìcago.edu, canoń.com,
and babblę.com can be displayed in the updated Chrome
even though they were blocked by earlier versions. The rea-
sons behind this are not clear. We have checked the Chromium
commit histories but did not find the information that can
explain the reasons behind these changes. If they were not
implementation errors, one possible explanation is that block-
ing these characters might hurt legitimate domain names with
such characters.

6 User Study

We have shown that web browsers cannot block all the homo-
graph IDNs. Next, we present a user study to examine how
end users perceive the homograph IDNs in web browsing.
In particular, we want to compare the homograph IDNs that
browsers (e.g., Chrome) block and those that can bypass exist-
ing policies. We focus on Chrome in this user study because
Chrome has the strictest policies compared to other browsers.
Our study aims to answer three research questions:

• RQ1: Would users fall for homograph IDNs (i.e., incor-
rectly treating them as the real domain names)?

• RQ2: Would users have different rates of detecting IDNs
that are blocked vs. not blocked by Chrome?

• RQ3: What factors are associated with users’ rates of de-
tecting IDNs? (association rather than causality)

6.1 Study Design
To answer these questions, we conducted an online experi-
ment via Amazon Mechanical Turk (MTurk). Our study was
approved by the IRB. The participation of the study was
anonymous and voluntary. We also did not collect any per-
sonal identifiable information (PII) from the participants. Par-
ticipants can choose to withdraw their data at anytime.

We presented the study as a generic survey on web brows-
ing. We did not mention “security” or “phishing” in the study
description to avoid priming users. Before the study started,
we gave participants a short tutorial to explain what “domain

USENIX Association 30th USENIX Security Symposium 3747

name” and “browser address bar” are to ensure they can under-
stand our terminology in the study. Upon finishing the study,
we debriefed the participants by providing detailed explana-
tions for the specific purpose of the study, and information on
how homograph IDN is used for phishing8.

Each participant was asked to browse a series of screen-
shots of website landing pages. As shown in Figure 3, a
screenshot contains both the address bar9 and the real landing
page. Some of these screenshots impersonated domain names
with homograph IDNs (e.g., www.bankofamerl,ca.com in
Figure 3), while the rest showed the real domain names. To
see whether people can detect homograph IDNs, for each
screenshot, we asked the participant a question about the au-
thenticity of the website.

A key challenge was to determine how to phrase the ques-
tion to the participants. At a high-level, we need to make sure
users are making decisions based on the controlled informa-
tion (e.g., whether the domain name is a homograph IDN).
This means we need to draw users’ attention to the address
bar. At the same time, we also wish to avoid over-priming
users which will likely make the study unrealistic. In practice,
users are often caught off-guard by phishing websites when
they are not paying attention. Thus over-priming users could
over-estimate users’ ability to detect security threats [59].

Pilot Studies. To explore the design space, we have con-
ducted 4 pilot studies with 77 participants. We refer interested
readers to Appendix-A for details. Here, we only briefly sum-
marize our findings, and describe our final chosen design. The
primary goal of the four pilot studies is to examine different
priming levels. We use bankofamerica.com as an example:

At the low priming level, we showed the screenshot and
asked “is the website the real bankofamerica.com?” We
tried to avoid priming users to focus on the address bar.

At the medium priming level, we asked “is the domain name
in the browser address bar bankofamerica.com?” By explic-
itly mentioning the address bar, we cued users to examine the
address bar.

At the high priming level, we drew users’ attention
to the domain name even more by placing the homo-
graph domain name directly in the question. We asked “is
bankofamerl,ca.com the same as bankofamerica.com?”
We essentially asked the users to compare the two domain
names side-by-side.

We also tested two different designs for the answering
options. The first design is to use binary answers: participants
can choose one from “Yes,” “No,” or “I can’t tell.” The second
design is to use 5-point Likert scale answer options.

8After our study, we received messages from participants who thanked us
for educating them about homograph IDNs.

9In the address bar of the screenshots, we always displayed the Unicode
version of the homograph IDNs to examine how users perceive them and to
fairly compare homograph IDNs missed by Chrome with the blocked ones.
We wanted to understand whether the missed IDNs are more or less difficult
to detect by users compared with the blocked ones in the Unicode format.

Figure 3: An example screenshot, which always shows the
real webpage. The address bar was artificially added to display
either the real domain name or a homograph IDN in Unicode
(in this case, www.bankofamerl,ca.com). Right below the
screenshot, we asked “Is the domain name in the browser
address bar bankofamerica.com?” Participants can choose
one of three answers: “Yes,” “No,” “I can’t tell.”

Final Design. After comparing the results of the pilot
studies, we decided to choose the medium priming level and
binary answer (plus “I can’t tell”) as the final design. We
asked “is the domain name in the browser address bar [the
real domain name]?”. Participants can choose one of three
answers: “Yes,” “No,” “I can’t tell.” This is based on two
reasons. First, we did not observe a need to use a 5-point
Likert scale as the trend was the same for both conditions
and using the Likert scale can complicate the tasks. People
might also interpret the five levels differently. Instead, a binary
answer (plus “I can’t tell”) can reduce the ambiguity. Second,
the medium priming level (i.e., mildly cuing users to check
the address bar) is more suitable since our research questions
are about domain names. The pilot studies show that users
had a higher accuracy to label the domain authenticity under
a higher priming level (see Appendix-A). While we use the
medium priming level for our main study, the other pilot study
results can serve as the lower/upper bounds of detection rates.

6.2 Main User Study
After determining the study design, we now introduce the
setups of the main user study.

Websites. For the main user study, we use a diverse set
of 90 websites. Out of the 90 target websites, 45 were from
the Chromium top domain list (i.e., “popular”), and the other
45 were not on the list (i.e., “unpopular”). We select these
websites from five common website categories (18 websites
per category): “Shopping,” “Banking,” “Social Networking,”
“Education,” and “Government & Military.”

For each target website, we can choose to display the real
domain name in the address bar of the screenshot (“Real”). We
can also choose to display the homograph IDN to impersonate
it. We consider two types of homograph IDNs: one IDN that

3748 30th USENIX Security Symposium USENIX Association

can be blocked by the latest Chrome (IDN-Block), and another
IDN that can bypass Chrome’s policy (IDN-Pass).

Out of the 90 websites, we set the ratio of “Real”, “IDN-
Block”, and “IND-Pass” to be roughly 1:1:2. We included
more IND-Pass domains because IDNs that can bypass
Chrome’s policies are less understood and studied. We cov-
ered more IDN-pass domains to better study this category.
More specifically, we randomly chose 23 of the 90 websites
to display the real domain names (“Real”), and select another
23 websites to display homograph IDNs that can be blocked
by Chrome (“IDN-Block”). For the remaining 44 websites,
we crafted homograph IDNs that would bypass Chrome’s
policies (“IDN-Pass”). A complete list of the websites and
domain names is available here10.

Factors. In addition to website category and popularity,
we also considered other factors such as people’s demograph-
ics (e.g., age range, gender identity) and computing/Internet
experiences (e.g., years of using web browsers, computing
background). These questions are available under this link11.

Study Process. In April 2020, we conducted a study on
MTurk. Each participant examined 30 websites. More specifi-
cally, we divided the 90 websites into 3 blocks (each block
has 30 websites). In each block, the mixture ratio of “Real”,
“IDN-Block”, and “IND-Pass” was still roughly 1:1:2. We
randomly assigned each participant to one of the three blocks
(each participant can work on one block only). Once the block
was assigned, we presented a random order of the 30 sites in
the block to the participant.

To ensure the reliability of results, we randomly selected
one attention check question and inserted it in a random posi-
tion in the task/question list. We have two attention questions
to choose from. 1) “Is the domain name shown in the browser
address bar a social networking website?” The screenshot
shows the webpage of the Bank of America. 2) “Is the domain
name shown in the browser address bar a hospital website?”
The screenshot shows the webpage of Facebook. Both ques-
tions have the obvious answer “No.” The attention questions
were designed to help us filter out participants who did not
look at the domain names or webpages and simply answered
the subsequent question randomly. We also did not want the
attention questions to prime the participants to pay more atten-
tion than they would otherwise. We found that these questions
helped filter out several non-attentive participants.

To attract serious workers on MTurk, we used commonly
applied filters: we recruited U.S workers who have an ap-
proval rate greater than 90%, and have completed more than
50 approved tasks. Each participant was compensated $1 for
their time. The participants took 8 minutes on average to
complete the study. The compensation was about $8 per hour.

10https://github.com/stevetkjan/IDN_Testing/blob/master/
websites.xlsx

11https://github.com/stevetkjan/IDN_Testing/blob/master/
Questions-IDN.pdf

Domain Type Yes No I can’t tell
Real 1,565 (94.6%) 86 (5.2%) 4 (0.2%)
IDN-Block 807 (48.8%) 803 (48.5%) 45 (2.7%)
IDN-Pass 1,353 (42.3%) 1,768 (55.2%) 79 (2.5%)

Table 7: Correct answer rates in the main study (6,510 an-
swers): 94.6%, 48.5%, 55.2% for real, IDN-Block, IDN-Pass.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
U

se
rs

 (
%

)

Labeling Accuracy per User

Figure 4: Cumulative distribution function (CDF) of labeling
accuracy for each user.

Each worker can only participate in the study once. Pilot
study participants were not allowed to take part in the main
study, which had a total of 325 participants. After removing
incomplete submissions and those who failed the attention
check, we had 217 valid participants with 6,510 answers.

6.3 Overall Results
Table 7 shows the overall results of the main study. The results
were consistent with the pilot studies. When the domain name
was real, 94.6% of the answers were correct (by answering
“YES”). In comparison, when the domain name was homo-
graph IDN, only 55.2% of the answers were correct under
IDN-Pass, followed by 48.5% under IDN-Block.

This result answers RQ1: our participants fell for a large
percentage of homograph IDNs. We also examined how well
individual participants correctly labeled the authenticity of
websites based on the domain names. Figure 4 shows the
cumulative distribution function (CDF) of each participant’s
labeling accuracy (based on the 30 websites the user has
examined). All participants had an accuracy above 20%, and a
small portion (15%) of them had a 100% accuracy. However,
about half of the participants had an accuracy below 60%.
Overall, the results suggest that the majority of users will
struggle in correctly identifying homograph IDNs.

To answer RQ2, we then performed pair-wise comparisons
between these three conditions using Chi-square tests with
a Bonferroni correction (the adjusted p value threshold is
.01). We found that the differences among these conditions
were statistically significant: the correct answer rates for Real
vs. IDN-Block (c2 = 859.3, p < 0.001), Real vs. IDN-Pass
(c2 = 782.7, p < 0.001) and IDN-Block vs. IDN-Pass (c2 =
19.6, p < 0.001). Comparing IDN-Block and IDN-Pass, we
found that homograph IDNs blocked by Chrome were more
deceptive (lower correct answer rate) than those not blocked.

USENIX Association 30th USENIX Security Symposium 3749

Variable Coefficient P-Value
Domain Type: base = IDN-Block
IDN-Pass 0.884 0.006
Real 3.441 <0.001

Website Category: base = Banking
Education 0.415 0.199
Government & Military 0.301 0.287
Shopping 0.465 0.109
Social networking 0.496 0.088

Website Popularity: base = Popular
Unpopular -0.289 0.288

Browser experience: base = Short (<= 3 Yr)
Long (> 3 Yr) 0.450 0.001

Computer background: base = NO
YES -0.371 <0.001

Gender: base = Female
Gender: Male 0.235 <0.001

Age: base = Younger (<= 39)
Age: Older (> 39) 0.133 0.044

Education: base = Lower (< Bachelor’s)
Higher Edu (Bachelor’s or higher) -0.823 <0.001

Table 8: Logistic regression results: using website and user
factors to predict whether the authenticity of a website domain
name was correctly labeled by a user.

However, it is alarming that 45% of un-blocked domain
names (IDN-pass) were mistaken by our participants as real
sites. Thus, they pose a substantial issue as about half of the
times people fell for homograph IDNs not caught by Chrome.

6.4 Regression Analysis
To answer RQ3, we further analyzed the factors associated
with user performance in detecting IDNs. We used the dataset
of 6,510 answers and conducted logistic regression analyses
in R to predict a binary outcome: whether the authenticity of
a website domain name was correctly labeled by a user (i.e.,
correct answers for Real and IDN-Block/Pass are “Yes” and
“No,” respectively). Table 8 shows the regression results.

Predictor Variables. The independent variables or pre-
dictors were all categorical variables, including the domain
type, website category and popularity as well as people’s de-
mographics and computing experience.

We had three predictors related to websites. First, the do-
main types included Real, IDN-Pass and IDN-Block. We
used IDN-Block as the baseline. Second, we had five website
categories and hypothesized that the website category may
affect users’ judgment of the website authenticity. For exam-
ple, users might be more likely to check the authenticity of
banking websites than education websites. As such, we used
banking websites as the baseline. Third, for website popular-
ity, we hypothesized that users may perform better on popular
websites since they might be more familiar with those. Thus,
we used popular websites as the baseline.

We had five predictors related to users. First, for users’
years of experience using web browsers, we converted this
variable to a binary variable: “short” and “long” using 3-year
as a threshold. We chose this threshold by examining the sign
of the regression coefficients of the original levels and found
that 3-year was the level where the sign changed. To sim-
plify our analysis, we applied this method in converting other
user-related multi-level ordinal predictors to binary variables.
We hypothesized that users with a long experience with web
browsing may perform better in detecting IDNs. The second
and third variables were users’ computing background and
gender identity. The fourth variable was age level, and we
used a threshold of 39 to divide users into younger and older
categories. The last user variable is education level, and we
used “Bachelor’s degree” to divide users into two levels.

Result Interpretation. As shown in Table 8, several fac-
tors were significantly correlated with users’ performance
in detecting IDNs. These results answer RQ3. Overall, we
found that domain types and user-related factors were signifi-
cantly associated with users’ performance whereas website
category and popularity were not. As a reference, in Figure 5,
we further illustrate the raw percentage of correct answers for
factors that have statistical significance.

First, the domain type results imply that participants were
significantly more likely to label the real domains and IDN-
Pass domains correctly compared to the baseline (IDN-Block).
The result is consistent with that in Table 7. More specifically,
Real has a b estimate of 31.23, which means the odds of
labeling real domains correctly is exp(3.441) = 31.23 times
of that of labeling IDN-Block correctly. Similarly, the odds
of labeling IDN-Pass correctly is exp(0.884) = 2.42 times of
that of labeling IDN-Block correctly. These results further
confirm that Chrome indeed blocked the homograph IDNs
that are more deceptive to users than IDNs that were not
blocked (IDN-Pass). This does not necessarily mean IDN-
Pass is safe for users. As discussed in Section 6.3, homograph
IDNs that bypassed Chrome policies are also highly deceptive.
Unlike domain type, website category and popularity were not
found to be significantly associated with user performance.

Second, we found several user factors were significantly
correlated with correctly labeling the website authenticity. For
example, the odds of correct labeling for users with a longer
(3-year) web browsing experience is exp(0.450) = 1.59 times
of that of users with a shorter experience. Similarly, users’
frequency of visiting the five categories of sites were also
significantly and positively correlated with user performance.
Male participants did better in correctly labeling the domain
names. However, as shown in Figure 5(c), the performance
difference between male and female participants was rather
small (but statistically significant). Older participants seemed
to perform better than their younger counterparts. Again the
difference was small but statistically significant.

Third, perhaps counter-intuitively, computing background
and educational level were also significantly correlated with

3750 30th USENIX Security Symposium USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Real IDN-Pass IDN-Block

R
a
tio

 o
f
C

o
rr

e
ct

 A
n
sw

e
rs

(a) Domain Type

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

PNTA Yes No

(b) Computing Background

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Male Female

(c) Gender

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Younger Older

(d) Age

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Short Long

(e) Browser Experience

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Lower Higher

(f) Education Level

Figure 5: The percentages of correct answers for different groups. We include the factors that have statistical significance in
Table 8. “PNTA” under computing background stands for “Prefer not to answer.”

user performance albeit negatively. As shown in Figure 5(b),
the differences were relatively small (but statistically signif-
icant). Users with a higher educational level or computing
background seemed to perform worse. While we do not know
the reason, one plausible explanation could be that they were
overly confident about their knowledge/skills and overlooked
the IDNs. Future research can investigate the reason(s).

Limitations of The User Study. Our user study has many
limitations. First, there is an inherent limitation for conduct-
ing the study online via MTurk since we cannot guarantee
our participants always paid attention to our questions. How-
ever, recent studies show that MTurk workers are at least as
attentive as subject pool participants [23]. Furthermore, our
inclusion of attention questions ameliorated this concern. Fu-
ture work could consider using eye-tracking to further address
this limitation. Second, there were still differences between
our study setup and real-world web browsing. In particular, we
showed a screenshot of a target website, and thus participants
cannot interact with the websites. The non-interactive screen-
shots helped to protect users and also allowed us to focus on
the domain names rather than other user strategies. We also
reminded our participants to pay attention to domain names,
while in practice, users are likely to make more mistakes if
they are not reminded (per the results of pilot studies). The
point is that even though we primed them, they still cannot
identify a significant percentage of homograph IDNs. This
suggests we need to provide more countermeasures to help
users. Finally, our user study only examines user perception
of the authenticity of websites (domain names), which is only
the first step in web phishing. Future work can study how
IDNs affect their follow-up actions such as login.

7 Discussion

IDN Homograph in Email and Social Network Services.
Email systems and social network platforms are also popular
channels to disseminate phishing messages. In these applica-
tions, IDN homograph can be used to deceive users too. We
briefly investigated popular email and social network services
regarding their IDN policies. Our overall observation was that

most services had not established effective IDN policies. Due
to space limit, we only briefly summarize our findings.

For email services, we looked into Gmail, iCloud and Out-
look. As of May 2020, we tested to see if homograph IDNs
(that impersonate popular domain names) can be displayed on
email clients in Unicode. For this test, we need to register the
homograph IDNs and set up the DNS records. We registered
3 IDNs. The first IDN is “y©úzåôìß⇥r.com”. This domain
name represents a legitimate usage of IDN and it does not
violate any known IDN policies. We use this IDN to test if the
email clients support IDN. The second IDN is “googı̄e.com”.
This IDN impersonates “google.com”. This IDN represents
homograph IDNs that can bypass browser defense. The third
IDN is “þaidu.com”. This IDN impersonates “baidu.com”.
This IDN represents homograph IDNs that can be detected
by browser policies (e.g., by Chrome). We use those IDNs
as email domain names and send emails to our own accounts
under popular email services. We then examine if the sender
email address will be displayed as Unicode. For email clients
that supported IDN, we found the homograph IDNs were con-
sistently displayed in Unicode. For example, Gmail (web and
mobile) and iCloud (mobile) supported IDN and displayed
homograph IDNs in Unicode in the email sender addresses.
This means attackers can use homograph IDNs to impersonate
trusted senders. This observation is true even for a homograph
IDN that is blocked by web browsers. The results suggest that
email clients have not yet established effective policies to
address homograph IDNs.

For social network applications, we examined how homo-
graph IDNs are displayed in messages and posts. As of May
2020, we tested Facebook, Twitter, Messenger, iMessage, and
Whatsapp with homograph IDN URLs that impersonate popu-
lar brands. We found that almost all of them displayed homo-
graph IDNs in Unicode, except for Facebook (which displayed
Punycode). The result again suggests that most social network
applications do not have IDN defense policies.

Intent of IDN Homograph. Our measurement shows that
homograph IDNs exist in practice and can bypass browser-
level defenses (Section 3). We did not further analyze the
“intent” of homograph IDN registrations because the browser

USENIX Association 30th USENIX Security Symposium 3751

policies focus on the impersonation behavior rather than the
intent. According to prior studies, many homograph IDNs
are registered by opportunistic domain squatters who seek
to sell the domain name to the target brand for profits [37].
Concrete evidence also shows homograph IDNs are often
used for phishing and abuse [15, 37, 54]. We defer the more
in-depth analysis of the registrants’ intent to future work.

Countermeasures. Our results suggest the need to im-
prove the defense against homograph IDNs. We discuss the
improvement strategies from two aspects: homograph IDN
detection, and user warnings.

To improve homograph IDN detection, one way is to add
new rules to address the failure cases discovered by our ex-
periments. For example, browsers such as Chrome can extend
the list of target domains (e.g., for skeleton rule), use a more
comprehensive confusable table (instead of the standard Uni-
code confusable table), and increase the number of prohibited
Unicode blocks. Even so, it is difficult for the rules to guar-
antee completeness. For example, the skeleton rule matches
the IDNs against a list of top domain names which do not
cover all the domains. To extend the list (e.g., to cover all
the domains), the immediate challenge is efficiency. Consid-
ering the browsers’ need to make decisions in real-time, it
is costly to check the visual similarity between the IDN and
hundreds of millions of domain names. Improving the scala-
bility of the skeleton matching is an open challenge for future
work. In addition, stricter policy may also hurt legitimate
IDNs that have mixed Unicode characters. As mentioned in
Section 3, script mixing is also common among legitimate
domains (34.4% of the IDNs have script mixing). As such, to
add new script-mixing rules, browser vendors must carefully
assess their impact on legitimate IDNs.

In addition to browsers, another line of defense is domain
registrars. Since domain registrars do not have to approve
domain registration in a real-time, it is more feasible for do-
main registrars to run an extensive visual comparison against
existing domain names before a (homograph) IDN can be reg-
istered. Certain domain registrars already have some prelimi-
nary rules in place (e.g., mostly to prevent script mixing) [2].

Related to IDN homograph detection, a key question is
how to communicate the detection decision to end users (i.e.,
user warnings). For example, besides showing the Punycode,
Chrome also shows a warning page to ask users: “Did you
mean [the real domain name]?” with a short explanation
of the reason for showing the warning [9]. Such a warning
page is not yet available in other browsers. Future research
can examine the effectiveness of such warnings, and further
explore the warning design space. Note that user warnings
still depend on accurate detection methods — if the browser
misses the detection of a homograph IDN, the warning page
may not be triggered.

Finally, browsers may take a more extreme approach by
disabling IDNs by default. For users who can benefit from
the support of IDNs (e.g, users speaking certain languages),

browsers can prompt users to enable the IDN support for a
small set of related Unicode scripts.

Responsible Disclosure. We have reported our findings
to the corresponding bug/security teams of Chrome, Safari
and Firefox. Microsoft IE uses Chromium, and thus is also
covered. Chrome and Firefox have started to investigate and
address the reported issues. Safari’s team has not responded.

8 Related Work

Domain Squatting. Domain squatting generally refers to
the behavior of registering Internet domains with the names
similar to existing brands and trademarks. While most do-
main squatting activities are driven by profits (i.e., to sell the
domain name to the target brand for a high price), some of
the squatting domain names are found to be used for phishing
or distributing malware [21, 47, 64]. To mimic a target brand,
squatting domain names can be generated by creating a typo
(i.e., typo squatting) [4, 44, 62], flipping a bit (i.e., bit squat-
ting) [47], or using a hyphen to connect related keywords (i.e.,
combo-squatting) [29]. Another strategy is to register look-
alike domain names of popular brands under newly released
TLDs [20,21,30,52]. A recent work shows that such imperson-
ation also occurred in TLS certificates [58]. Our work focuses
on IDN homograph, which is a form of web homograph via
character substitution [25]. Although IDN homograph is not
necessarily the most prevalent domain squatting method (e.g.,
combo-squatting is more prevalent [64]), empirical results
show that IDNs can be used to construct highly deceptive
phishing websites [35, 37, 74]).

IDN Homograph. Prior works have looked into IDN ho-
mograph by conducting empirical measurements. Researchers
find that many of the IDNs are owned by domain squat-
ters [35, 37] while some IDNs are used for phishing and
abuse [15, 37, 54]. A related project shows that most users
do not have the knowledge of internationalized domain
names [8], which helps to explain why IDNs can be deceptive.
Compared to prior work [8, 35, 37, 61], our novelty comes
from the detailed analysis of browser-level defense, and the
discovered weaknesses of current IDN policies.

Phishing. Our work is related to the broad topic of phish-
ing. A large body of prior work has looked into phishing
emails and studied different detection methods [12, 14, 16,
26, 40, 53, 67]. Unlike generic spam emails [55, 70], phishing
emails can be highly targeted and thus are more difficult to de-
tect [24]. To deceive victims, attackers can spoof a trusted do-
main name as the sender email address [7, 27] or directly use
squatting domain names [31,33]. Our work is more closely re-
lated to phishing websites, which are usually the landing pages
of the URLs in phishing emails [11, 22, 48, 50, 51, 68, 71–73].
A recent project looks into the end-to-end life cycle of phish-

3752 30th USENIX Security Symposium USENIX Association

ing attacks by jointly analyzing phishing URLs, websites, and
phishing emails [49].

Security Indicators on URLs. Researchers have exam-
ined how users perceive and react to different URL presenta-
tions in browsers under security contexts. Most studies have
reported negative results. For example, a recent study shows
HTTPS Extended Validation (EV) certificate has little impact
on users’ security behavior [63]. In addition, prior work shows
that domain name highlighting has limited effectiveness in
warning users about malicious URLs [13, 36]. A closely re-
lated project looks into how different URL obfuscation meth-
ods (including IND homograph) affect users’ ability to judge
the authenticity of URLs [57]. The overall results are consis-
tent with ours, showing that users have difficulties to correctly
recognize obfuscated URLs. Compared with [57], our user
study further examines the differences in users’ perceptions
of homograph IDNs blocked by browsers and those that can
bypass existing defenses. In addition, our results highlight the
need to improve the detection of IDN homograph, which is
the prerequisite for effective user warning.

9 Conclusion

In this paper, we present a detailed analysis of browsers’ de-
fense policies against IDN homograph. Using more than
9,000 testing cases, we measure the effectiveness of IDN
policies in existing web and mobile browsers and their histori-
cal versions from 2015 to 2020. We show that browsers’ IDN
policies are not yet effective to detect homograph IDNs. Our
user studies show that the homograph IDNs that can bypass
browsers’ defense are still highly deceptive to users. Overall,
the results highlight the need to improve the defense policies.

Acknowledgment

We would like to thank our shepherd Nick Nikiforakis and
anonymous reviewers for their constructive comments and
suggestions. This work was supported in part by NSF grants
CNS-2030521, CNS-1717028 and CNS-1652497.

References

[1] Alexa top 1 million websites. https://www.alexa.com/
topsites.

[2] Idn registration rules of verisign, 2020. https:
//www.verisign.com/en_US/channel-resources/
domain-registry-products/idn/idn-policy/
registration-rules/index.xhtml.

[3] Perceptual hash, 2020. https://www.phash.org/.

[4] Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Niki-
forakis. Seven months’ worth of mistakes: A longitudinal study
of typosquatting abuse. In Proc. of NDSS, 2015.

[5] Apple. About safari international domain name sup-
port, 2016. https://support.apple.com/kb/TA22996?
locale=en_US&viewlocale=en_US.

[6] Patricia Callejo, Rubén Cuevas, and Áangel Cuevas. An Ad-
driven measurement technique for monitoring the browser mar-
ketplace. IEEE Access, 7, 2019.

[7] Jianjun Chen, Vern Paxson, and Jian Jiang. Composition
kills: A case study of email sender authentication. In Proc. of
USENIX Security, 2020.

[8] Daiki Chiba, Ayako Akiyama Hasegawa, Takashi Koide, Yuta
Sawabe, Shigeki Goto, and Mitsuaki Akiyama. Domainscouter:
Understanding the risks of deceptive IDNs. In Proc. of RAID,
2019.

[9] Catalin Cimpanu. Google chrome to get warnings for
lookalike urls, 2019. https://www.zdnet.com/article/
google-chrome-to-get-warnings.

[10] Adam Costello. Punycode: A bootstring encoding of uni-
code for internationalized domain names in applications
(IDNA). RFC 3492, 2003. https://tools.ietf.org/
html/rfc3492.

[11] Qian Cui, Guy-Vincent Jourdan, Gregor V. Bochmann, Russell
Couturier, and Iosif-Viorel Onut. Tracking phishing attacks
over time. In Proc. of WWW, 2017.

[12] Prateek Dewan, Anand Kashyap, and Ponnurangam Ku-
maraguru. Analyzing social and stylometric features to identify
spear phishing emails. In Proc. of eCrime, 2014.

[13] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing
works. In Proc. of CHI, 2006.

[14] Sevtap Duman, Kubra Kalkan-Cakmakci, Manuel Egele,
William K. Robertson, and Engin Kirda. Emailprofiler:
Spearphishing filtering with header and stylometric features of
emails. In Proc. of COMPSAC, 2016.

[15] Yahia Elsayed and Ahmed Shosha. Large scale detection of
IDN domain name masquerading. In Proc. of eCrime, 2018.

[16] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to
detect phishing emails. In Proc. of WWW, 2007.

[17] Mattias Geniar. Show idn punycode in firefox to
avoid phishing urls, 2018. https://ma.ttias.be/
show-idn-punycode-firefox-avoid-phishing-urls/.

[18] Google. Internationalized domain names (IDN) in google
chrome, 2020. https://chromium.googlesource.com/
chromium/src/+/master/docs/idn.md.

[19] Google. Tesseract orc, 2020. https://opensource.google/
projects/tesseract.

[20] Tristan Halvorson, Matthew F. Der, Ian Foster, Stefan Savage,
Lawrence K. Saul, and Geoffrey M. Voelker. From .academy
to .zone: An analysis of the new tld land rush. In Proc. of IMC,
2015.

[21] Tristan Halvorson, Kirill Levchenko, Stefan Savage, and Ge-
offrey M. Voelker. Xxxtortion? inferring registration intent in
the .xxx tld. In Proc. of WWW, 2014.

[22] Xiao Han, Nizar Kheir, and Davide Balzarotti. Phisheye: Live
monitoring of sandboxed phishing kits. In Proc. of CCS, 2016.

USENIX Association 30th USENIX Security Symposium 3753

[23] D.J. Hauser and N. Schwarz. Attentive turkers: Mturk partici-
pants perform better on online attention checks than do subject
pool participants. Behavior Research Methods, 48:400–407,
2016.

[24] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson, and
David Wagner. Detecting credential spearphishing in enterprise
settings. In Proc. of USENIX Security, 2017.

[25] Tobias Holgers, David E. Watson, and Steven D. Gribble. Cut-
ting through the confusion: A measurement study of homo-
graph attacks. In Proc. of USENIX ATC, 2006.

[26] Jason Hong. The state of phishing attacks. Communications
of the ACM, 55(1), 2012.

[27] Hang Hu and Gang Wang. End-to-end measurements of email
spoofing attacks. In Proc. of USENIX Security, 2018.

[28] IETF.org. Internationalizing domain names in applications
(IDNA), 2003. https://tools.ietf.org/html/rfc3490.

[29] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever,
Yizheng Chen, Rosa Romero-Gómez, Nikolaos Pitropakis,
Nick Nikiforakis, and Manos Antonakakis. Hiding in plain
sight: A longitudinal study of combosquatting abuse. In Proc.
of CCS, 2017.

[30] Maciej Korczynski, Maarten Wullink, Samaneh Tajal-
izadehkhoob, Giovane C. M. Moura, Arman Noroozian, Drew
Bagley, and Cristian Hesselman. Cybercrime after the sunrise:
A statistical analysis of dns abuse in new gtlds. In Proc. of
Asia CCS, 2018.

[31] Viktor Krammer. Phishing defense against IDN address spoof-
ing attacks. In Proc. of PST, 2006.

[32] Brian Krebs. It’s way too easy to get a .gov domain
name, 2019. https://krebsonsecurity.com/2019/11/
its-way-too-easy-to-get-a-gov-domain-name/.

[33] Ponnurangam Kumaraguru, Yong Rhee, Alessandro Acquisti,
Lorrie Faith Cranor, Jason Hong, and Elizabeth Nunge. Pro-
tecting people from phishing: The design and evaluation of an
embedded training email system. In Proc. of CHI, 2007.

[34] LambdaTest. Lambdatest: Cross browser testing cloud, 2020.
https://www.lambdatest.com/.

[35] Victor Le Pochat, Tom Van Goethem, and Wouter Joosen.
Funny accents: Exploring genuine interest in internationalized
domain names. In Proc. of PAM, 2019.

[36] Eric Lin, Saul Greenberg, Eileah Trotter, David Ma, and John
Aycock. Does domain highlighting help people identify phish-
ing sites? In Proc. of CHI, 2011.

[37] Baojun Liu, Chaoyi Lu, Zhou Li, Ying Liu, Hai-Xin Duan,
Shuang Hao, and Zaifeng Zhang. A reexamination of interna-
tionalized domain names: The good, the bad and the ugly. In
Proc. of DSN, 2018.

[38] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Niki-
forakis. Time does not heal all wounds: A longitudinal analysis
of security-mechanism support in mobile browsers. In Proc.
of NDSS, 2019.

[39] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Niki-
forakis. Hindsight: Understanding the evolution of ui vulnera-
bilities in mobile browsers. In Proc. of CCS, 2017.

[40] D. Kevin McGrath and Minaxi Gupta. Behind phishing: An
examination of phisher modi operandi. In Proc. of LEET, 2008.

[41] Microsoft. Changes to IDN in IE7 to now allow mixing of
scripts, 2006.
https://docs.microsoft.com/en-us/archive/blogs/
ie/changes-to-idn-in-ie7-to.

[42] Microsoft. Lifecycle FAQ - Internet explorer and Edge, 2016.
https://docs.microsoft.com/en-us/lifecycle/faq/
internet-explorer-microsoft-edge.

[43] Paul Mockapetris. Domain names - concepts and facili-
ties. RFC 1034, 1987. https://tools.ietf.org/html/
rfc1034.

[44] Tyler Moore and Benjamin Edelman. Measuring the perpetra-
tors and funders of typosquatting. In International Conference
on Financial Cryptography and Data Security, 2010.

[45] Mozilla. Firefox IDN display algorithm, 2017. https://
wiki.mozilla.org/IDN_Display_Algorithm.

[46] NetMarketShare. Browser market share, 2020. https://
netmarketshare.com/browser-market-share.aspx.

[47] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven
Desmet, Frank Piessens, and Wouter Joosen. Bitsquatting:
Exploiting bit-flips for fun, or profit? In Proc. of WWW, 2013.

[48] Adam Oest, Yenganeh Safaei, Penghui Zhang, Brad Wardman,
Kevin Tyers, Yan Shoshitaishvili, Adam Doupé, and Gail-Joon
Ahn. Phishtime: Continuous longitudinal measurement of the
effectiveness of anti-phishing blacklists. In Proc. of USENIX
Security, 2020.

[49] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub
Burgis, Ali Zand, Kurt Thomas, Adam Doupé, and Gail-Joon
Ahn. Sunrise to sunset: Analyzing the end-to-end life cycle and
effectiveness of phishing attacks at scale. In Proc. of USENIX
Security, 2020.

[50] Peng Peng, Chao Xu, Luke Quinn, Hang Hu, Bimal Viswanath,
and Gang Wang. What happens after you leak your password:
Understanding credential sharing on phishing sites. In Proc.
of Asia CCS, 2019.

[51] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Open-
ing the blackbox of virustotal: Analyzing online phishing scan
engines. In Proc. of IMC, 2019.

[52] Shahrooz Pouryousef, Muhammad Daniyal Dar, Suleman Ah-
mad, Phillipa Gill, and Rishab Nithyanand. Extortion or ex-
pansion? an investigation into the costs and consequences of
icann’s gtld experiments. In Proc. of PAM, 2020.

[53] Pawan Prakash, Manish Kumar, Ramana Rao Kompella, and
Minaxi Gupta. Phishnet: Predictive blacklisting to detect phish-
ing attacks. In Proc. of INFOCOM, 2010.

[54] F. Quinkert, T. Lauinger, W. Robertson, E. Kirda, and T. Holz.
It’s not what it looks like: Measuring attacks and defensive
registrations of homograph domains. In Proc. of CNS, 2019.

[55] Anirudh Ramachandran, Nick Feamster, and Santosh Vempala.
Filtering spam with behavioral blacklisting. In Proc. of CCS,
2007.

[56] P. Resnick and P. Hoffman. Mapping characters for interna-
tionalized domain names in applications (IDNA). RFC 5895,
2008. https://tools.ietf.org/html/rfc5895.

3754 30th USENIX Security Symposium USENIX Association

[57] Joshua Reynolds, Deepak Kumar, Zane Ma, Rohan Subrama-
nian, Meishan Wu, Martin Shelton, Joshua Mason, Emily Stark,
and Michael Bailey. Measuring identity confusion with uni-
form resource locators. In Proc. of CHI, 2020.

[58] Richard Roberts, Yaelle Goldschlag, Rachel Walter, Taejoong
Chung, Alan Mislove, and Dave Levin. You are who you
appear to be: A longitudinal study of domain impersonation in
tls certificates. In Proc. of CCS, 2019.

[59] Stuart Schechter, Rachna Dhamija, Andy Ozment, and Ian C
Fischer. The emperor’s new security indicators an evaluation
of website authentication and the effect of role playing on
usability studies. In Proc. of IEEE SP, 2007.

[60] StatCounter. Browser market share worldwide, 2020. https:
//gs.statcounter.com/browser-market-share.

[61] Hiroaki Suzuki, Daiki Chiba, Yoshiro Yoneya, Tatsuya Mori,
and Shigeki Goto. Shamfinder: An automated framework for
detecting IDN homographs. In Proc. of IMC, 2019.

[62] Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring,
Mark Felegyhazi, and Chris Kanich. The long "Taile" of ty-
posquatting domain names. In Proc. of USENIX Security,
2014.

[63] Christopher Thompson, Martin Shelton, Emily Stark, Maxim-
ilian Walker, Emily Schechter, and Adrienne Porter Felt. The
web’s identity crisis: Understanding the effectiveness of web-
site identity indicators. In Proc. of USENIX Security, 2019.

[64] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang
Wang. Needle in a haystack: Tracking down elite phishing
domains in the wild. In Proc. of IMC, 2018.

[65] Unicode.org. Unicode confusables, 2015.
https://www.unicode.org/Public/security/8.0.0/
confusables.txt.

[66] Unicode.org. Unicode 13.0.0, 2020. https://unicode.org/
versions/Unicode13.0.0/.

[67] Amber van der Heijden and Luca Allodi. Cognitive triaging of
phishing attacks. In Proc. of USENIX Security, 2019.

[68] Javier Vargas, Alejandro Correa Bahnsen, Sergio Villegas, and
Daniel Ingevaldson. Knowing your enemies: leveraging data
analysis to expose phishing patterns against a major us financial
institution. In Proc. of eCrime, 2016.

[69] W3Counter. Browser & platform market share, 2020. https:
//www.w3counter.com/globalstats.php.

[70] Jingguo Wang, Tejaswini Herath, Rui Chen, Arun Vishwanath,
and H. Raghav Rao. Research article phishing susceptibility:
An investigation into the processing of a targeted spear phish-
ing email. IEEE Transactions on Professional Communication,
55(4):345–362, 2012.

[71] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale
automatic classification of phishing pages. In Proc. of NDSS,
2010.

[72] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong.
Phinding Phish: Evaluating Anti-Phishing Tools. In Proc. of
NDSS, 2007.

[73] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a
content-based approach to detecting phishing web sites. In
Proc. of WWW, 2007.

[74] Xudong Zheng. Phishing with unicode domains, 2017. https:
//www.xudongz.com/blog/2017/idn-phishing/.

Appendix-A: Pilot Studies

To explore the design space, we conducted 4 pilot studies to
experiment with different design choices, as shown in Table 9.
We framed the questions slightly differently in each pilot
study to prime users to focus on the domain names. Below,
we use bankofamerica.com as an example website.

In pilot study 1, we presented users with the screenshot and
asked: “is the domain name shown in the browser address bar
bankofamerica.com?” By explicitly mentioning the address
bar, we cued users to examine the address bar.

In pilot study 2, we asked the same question albeit with
5-point Likert scale answer options: “1 - I’m very confident it
is,” “2 - I’m somewhat confident it is,” “3 - I can’t tell,” “4 -
I’m somewhat confident it is not,” and “5 - I’m very confident
it is not.” We tested it to see whether having finer-grained
answers would help differentiate conditions (e.g., detection
rates of IDNs that are blocked vs. not blocked by Chrome).

In pilot study 3, we tried to avoid priming users to focus
on the address bar. We just asked “is the website the real
bankofamerica.com?” We tested this version because in
practice users might not pay attention to the address bar when
browsing the web. This should give us a lower bound estimate
of people’s IDN detection rate.

In pilot study 4, we drew users’ attention to the domain
name even more by placing the homograph domain name
directly in the question. We asked “is bankofamerl,ca.com
the same as bankofamerica.com?” We essentially asked the
users to compare the two domain names side-by-side. We
tested this version because it should give us an upper bound
estimate of people’s IDN detection rate.

Website Selection. We select diverse websites from five
common website categories: “Shopping,” “Banking,” “Social
Networking,” “Education” and “Government & Military.” For
each category, we selected two sets of domains: popular and
unpopular domains. The popular domains were randomly
selected from the Chromium top domain list (3 domains per
set). In total, we selected 5⇥2⇥3 = 30 domain names.

For each target domain, we then generated two homograph
IDNs: one IDN that can be blocked by the latest Chrome (IDN-
Block), and the other IDN can bypass Chrome’s policy (IDN-
Pass). Thus, for each target domain, we had three choices:
IDN-block, IDN-pass, and the real domain name.

Pilot Study Results. In April 2020, we conducted the
four pilot studies on MTurk. Each participant examined 30
websites. For each website, we randomly chose to display the
real, IDN-Block, or IDN-Pass domain name. Each participant
can only participate in one of the pilot studies and for only
once. Each participant was compensated $1 for their time.

USENIX Association 30th USENIX Security Symposium 3755

Study Experimental Setups Error Rate # Participants
Question Priming Answer Real IDN-Block IDN-Pass (# Answers)

Pilot 1 “Is the domain name shown in the browser
address bar [target domain x]?” Medium Binary 8.75% 46.25% 31.07% 20 (600)

Pilot 2 “Is the domain name shown in the browser
address bar [target domain x]?” Medium Likert

Scale 1.98%⇤ 53.29%⇤ 39.85%⇤ 19 (570)

Pilot 3 “Is the website the real [target domain x]?” Light Binary 16.67% 55.56% 50.79% 18 (540)

Pilot 4 “Is [homograph domain name] the same as
[target domain x]?” Heavy Binary 8.75% 22.5% 16.43% 20 (600)

Table 9: Pilot study set up and their results. *Note that for pilot study 2, we used a five-point Likert scale. We regard the first two
points (i.e., “very confident” and “somewhat confident”) as the “yes” answer to calculate the error rate. All other pilot studies
used the binary answers of “yes” and “no” plus “I can’t tell.”

To attract serious workers on MTurk, we used commonly
applied filters: we recruited U.S. workers who have an ap-
proval rate greater than 90%, and have completed more than
50 approved tasks. For each pilot study, we recruited 18 –
20 participants. In total, we had 77 participants with 2,310
answers (domain names).

In Table 9, we show the error rate for the questions in each
study. More specifically, if participants answered “Yes”, it
means they believed the site was the real site. As such, for
real websites, answering “Yes” is correct; for IDN websites,
answering “Yes” is incorrect. Note that for pilot study 2 where
we used a 5-point Likert scale, we considered the first two
answers as “YES.” Across the four studies, we have two con-
sistent observations. First, participants performed well when
they are presented with the real domain names. Across the
four pilot studies, users’ error rates are between 1.98% to
16.67%. Second, when displaying homograph IDNs (either
IDN-Block or IDN-Pass), there was a large percentage of
wrong answers (i.e., a high error rate). For example, when
showing IDN-pass, 16.43% – 50.79% of the times users mis-
took it as the real domain name.

After comparing the results of the pilot studies, we decided
to choose the setting of Pilot-1 as our main study for the
following reasons. First, comparing Pilot-1 and Pilot-2, we
did not observe a need to use a 5-point Likert scale as the trend
was the same for both conditions and using the Likert scale
can complicate the tasks. People might also interpret the five
levels differently. Instead, a binary answer (plus “I can’t tell”)
can reduce the ambiguity. Pilot-3 did not prime users to check
the domain names in the address bar. Table 9 shows users were
more likely to make mistakes as we expected (a lower bound
of detection rate). Given that our goal was to test the impact of
homograph IDNs, we wanted to examine whether people can
identify homograph IDNs when they looked at the domain
names. As such the setting of Pilot-3 was not adopted. Pilot-4
represented the other extreme by over-priming users: forcing
users to compare the displayed domain names with the real

Demographics # Participants
Gender
Male 139
Female 78

Age
18-29 75
30-39 83
40-49 36
50 or above 23
Education Level
High school graduate or less 18
Some college or two-year associate degree 42
Bachelor’s degree 114
Some graduate school 11
Master’s or professional degree 29
Ph.D. 3
Browser Use History
Less than a year 2
1-3 years 8
3-5 years 25
More than 5 years 182
Computing Background
Yes 81
No 130
Prefer not to answer 6

Table 10: Demographic information of participants of the
main user study (N=217). We only include participants who
passed the attention check.

domain names. Table 9 shows that users had an lower error
rate as we expected (performance upper bound). However,
Pilot-4’s setting is too unrealistic as we cannot expect users
to do this when browsing the Internet.

Appendix-B: Main Study Information

Table 10 shows the demographic information of participants.

3756 30th USENIX Security Symposium USENIX Association

