
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

PrivateDrop: Practical Privacy-Preserving
Authentication for Apple AirDrop

Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert, TU Darmstadt

https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich

PrivateDrop: Practical Privacy-Preserving Authentication for Apple AirDrop

Alexander Heinrich Matthias Hollick Thomas Schneider
Milan Stute Christian Weinert

Technical University of Darmstadt, Germany

Abstract
Apple’s offline file-sharing service AirDrop is integrated into
more than 1.5 billion end-user devices worldwide. We dis-
covered two design flaws in the underlying protocol that
allow attackers to learn the phone numbers and email ad-
dresses of both sender and receiver devices. As a reme-
diation, we study the applicability of private set intersec-
tion (PSI) to mutual authentication, which is similar to contact
discovery in mobile messengers. We propose a novel opti-
mized PSI-based protocol called PrivateDrop that addresses
the specific challenges of offline resource-constrained op-
eration and integrates seamlessly into the current AirDrop
protocol stack. Using our native PrivateDrop implementa-
tion for iOS and macOS, we experimentally demonstrate
that PrivateDrop preserves AirDrop’s exemplary user experi-
ence with an authentication delay well below one second. We
responsibly disclosed our findings to Apple and open-sourced
our PrivateDrop implementation.

1 Introduction
Apple AirDrop is a file-sharing service integrated into more
than 1.5 billion end-user devices worldwide [5], includ-
ing iPhone, iPad, and Mac systems, and has been in oper-
ation since 2011. AirDrop runs fully offline and only uses a
direct Wi-Fi connection in combination with Bluetooth Low
Energy (BLE) between two devices. We discovered two se-
vere privacy vulnerabilities in the underlying authentication
protocol. In particular, the flaws allow an adversary to learn
contact identifiers (i.e., phone numbers and email addresses)
of nearby AirDrop senders and receivers. The flaws originate
from the exchange of hash values of such contact identifiers
during the discovery process, which can be easily reversed
using brute-force or dictionary attacks [35, 42, 66].

Challenge. During authentication, two AirDrop devices
run a form of contact discovery where they determine if they
are mutual contacts, i.e., whether or not they have stored each
others’ contact information in their address book [92]. A
connection is only deemed authentic if the result is positive.

Privacy-preserving contact discovery is commonly ad-
dressed via private set intersection (PSI) in the litera-
ture (e.g., [55, 59]). PSI protocols, in general, are crypto-
graphic protocols that allow two interacting parties to securely
compute the intersection of their respective input sets without
leaking any additional data. PSI is already deployed in the real
world, e.g., for compromised credential checking in Google’s
browser Chrome [93] in a business-to-consumer (B2C) con-
text and for calculating ad conversion rates with Google in
a business-to-business (B2B) context [51]. In a consumer-
to-consumer (C2C) context, PSI has been proposed for pre-
venting cheating in online gaming [20] and most recently for
contact tracing in light of the COVID-19 pandemic (e.g., [94]).
With our work, we aim to facilitate the deployment of PSI in
a C2C context for mutual authentication.

However, the AirDrop scenario poses a unique set of chal-
lenges: a solution needs to (a) run completely offline without
any third-party server support, (b) consider malicious parties
that lie about their address book entries or own contact iden-
tifiers, (c) run on mobile devices with restricted energy and
computational resources, and (d) preserve the user experience
by not adding noticeable authentication delays.

Our contributions. We study the applicability of PSI to
realize private mutual authentication for AirDrop. For this,
we first systematically explore all possible design options
and available building blocks from the literature. Our final
solution, called PrivateDrop, is based on a Diffie-Hellman-
style PSI protocol [53], which is even secure in the presence of
malicious actors that actively try to extract sensitive informa-
tion. We apply a two-way variant of [53] and optimize online
performance by minimizing the number of communication
rounds and by allowing to precompute expensive operations,
e.g., when the device charges overnight. To accommodate
malicious inputs, especially attackers lying about their contact
identifiers, we propose to use signed PSI inputs [21, 31, 33]
that complement AirDrop’s current validation records and can
be issued using Apple’s existing certification infrastructure.

Furthermore, we integrate PrivateDrop into the origi-
nal AirDrop protocol stack, including the BLE-based discov-

USENIX Association 30th USENIX Security Symposium 3577

ery mechanism as well as the HTTPS-based authentication
phase. We implement both the original AirDrop protocol and
our PrivateDrop extension in native code for iOS and macOS,
which we open-sourced on GitHub [45].

Finally, in an extensive performance evaluation, we demon-
strate that PrivateDrop incurs only negligible overhead in
practice. In particular, we experimentally show that the au-
thentication delay stays well below 1 s even for large address
books with > 10k entries, which humans perceive as an “im-
mediate response” [22]. In realistic scenarios, the delay even
stays below 500 ms—only a 2× increase compared to the au-
thentication delay in the original insecure AirDrop protocol.

We disclosed both vulnerabilities and our proposed miti-
gation to the Apple Product Security team and are awaiting
their feedback. We summarize our contributions as follows:

(a) We discover and disclose two distinct design flaws in
the AirDrop authentication protocol that enable an at-
tacker to learn contact identifiers (phone numbers and
email addresses) of nearby devices.

(b) We propose PrivateDrop, a new PSI-based mutual au-
thentication protocol that integrates seamlessly into the
current AirDrop protocol stack. Our design is based on
a Diffie-Hellman-style PSI protocol [53] and protects
against malicious adversaries as well as inputs.

(c) We re-implement the original AirDrop protocol stack,
integrate our PSI-based protocol for iOS and macOS,
and open-source our code [45].

(d) We experimentally show that PrivateDrop provides im-
mediate responses [22] with < 1s authentication delay.

Outline. Our paper is structured as follows: We first de-
scribe the currently deployed AirDrop protocol (§ 2) and dis-
cuss the vulnerabilities we discovered (§ 3). Then, we present
our novel PSI-based mutual authentication protocol (§ 4).
We furthermore describe our implementation (§ 5), followed
by our extensive experimental evaluation (§ 6). Finally, we
discuss related work (§ 7) before concluding (§ 8).

2 Background: Apple AirDrop
Apple’s file-sharing service AirDrop is integrated in all cur-
rent iOS and macOS devices. It runs completely offline using
a proprietary Wi-Fi link-layer called Apple Wireless Direct
Link (AWDL) [90] in combination with Bluetooth Low En-
ergy (BLE). As there exists no official documentation of the
involved protocol stack, we describe AirDrop based on the re-
verse engineering of [92]. In particular, we first define contact
identifiers and discuss the available discoverability settings.
Then, we describe the complete technical protocol flow and
explain the authentication process as presented in [92].

2.1 Contact Identifiers and the Address Book
Each iOS or macOS device has an address book that is ac-
cessible through the Contacts application. This address book
contains several contact entries that in turn consist of multiple

objects such as name or contact information. AirDrop lever-
ages the user’s own contact identifiers and their address book
entries for authentication purposes. In particular, AirDrop
uses phone numbers and email addresses to identify a contact.
This is possible as every Apple account (often referred to
as Apple ID or iCloud account) has at least one such con-
tact identifier assigned to it. Apple uses verification emails
and SMS to verify the ownership of the email address or
phone number, respectively, thus assuring the correctness of
the identifiers.

Within the context of this paper, we will only deal with
contact identifiers, i.e., phone numbers and email addresses,
and disregard the notion of “contacts” that might—in turn—
consist of multiple identifiers. We assume there exists a
device-local unambiguous mapping for contact identifiers
to contact list entries. We use the term address book (AB) to
refer to the set of contact identifiers of all contact entries in the
device’s contact list. Note that the AB is controlled by the user
and not verified by Apple. In addition, the user’s own contact
identifiers (IDs) are the Apple-verified phone numbers and
email addresses that are assigned to the user’s Apple account.
We use the notation c to refer to an address book entry and ID
to refer to an Apple-verified contact identifier.

2.2 Device Discoverability
When opening the sharing pane on an iOS device, nearby de-
vices appear in the user interface if they are discoverable [10].
In particular, receiver devices can be discovered by everybody
or by contacts only, which is the default setting. In either
case, an AirDrop sender will attempt to perform a mutual au-
thentication handshake with a responding receiver. Note that
the issues addressed in our paper (i.e., the leakage of contact
identifiers of sender and receiver during the authentication
process) affect both settings.

2.3 Full Protocol Workflow
The AirDrop protocol allows a sender to transmit a file or link
to a receiver. It consists of the three phases discovery, authen-
tication, and data transfer, which we explain based on [92]
and depict in Fig. 1: (a) When the sender opens the sharing
pane, it starts emitting BLE advertisements that contain a
truncated hash for each contact identifier. A receiver com-
pares the sender’s hashed contact identifiers with entries in
their address book. The receiver activates their AWDL inter-
face if at least one contact match was found in contacts-only
mode or if it is discoverable by everyone. The sender then
proceeds by searching for AirDrop services with DNS ser-
vice discovery (DNS-SD) via the AWDL interface. (b) For
each discovered service, the sender initiates an authentica-
tion procedure via an HTTPS Discover request that we detail
in § 2.4. If the authentication procedure completes success-
fully, the receiver’s identity is displayed in the sender’s user
interface. (c) Finally, the sender selects the receiver and sends
two subsequent requests: The Ask request contains metadata

3578 30th USENIX Security Symposium USENIX Association

Sender S Receiver R

regularly
perform
BLE scans

if in everyone
mode or contact
identifier hash
matches,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisementwith S’s hashed identifiers (short)

HTTPS POST /Discover
with S’s validation record

HTTPS POST /Ask
with S’s validation record

HTTPS POST /Upload
with file

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

HTTPS 200 OK
with R’s validation record

For every service
discovered, start
HTTPS discovery

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

Receiver appears
in sharing pane
(as contact if R’s
validation record
is valid)

HTTPS 200 OK

Start file transfer

TLS teardown

TLS teardown
HTTPS 200 OK

if S’s validation
record is valid,
include own
validation record
in response

(1c) Ask for service AirDrop

Service information
Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTICATION

(3) DATA TRANSFER

Figure 1: AirDrop protocol (simplified version from [92]). The
orange message parts leak the sender’s and receiver’s contact identi-
fiers, as discussed in § 3.3 and § 3.4, respectively.

about the file, including a thumbnail. The receiver sends their
decision on whether to receive the full file. Upon a positive
response, the sender continues to transfer the complete file in
an Upload request or aborts the transaction otherwise.

2.4 Mutual Authentication
An authenticated connection can only be established between
users with an Apple ID who are present in each others’ address
books. In order to authenticate, a device needs to prove that it
has registered a certain contact identifier IDi such as phone
number or email address associated with its Apple ID, while
the verifying device checks whether IDi is an address book
entry. Authentication involves multiple Apple-signed certifi-
cates and a chain of Apple-run certificate authorities (CAs).
In particular, AirDrop uses a device-specific certificate σUUID
and a validation record VRσ, which are both signed by Apple.
The devices retrieve them both from Apple once the user logs
in to their iCloud account. They can then be used offline in
any subsequent AirDrop transaction.

The certificate σUUID contains an account-specific univer-
sally unique identifier (UUID).1 The certificate is used as a
client or server certificate (depending on the role) in the TLS
connection. As the UUID in the certificate does not link
any contact identifiers, AirDrop uses an Apple-signed Ap-
ple ID validation record (VRσ). The validation record con-
tains the UUID from the TLS certificate and all contact iden-
tifiers SHA-256(ID1) , . . . ,SHA-256(IDm) that are registered
with the user’s Apple ID in hashed form. Also, VRσ includes a
signature and the certificate of the signing CA σVR.2 Formally,
we define VRσ as follows:

VR = (UUID,SHA-256(ID1) , . . . ,SHA-256(IDm)) (1)
VRσ = (VR,sign(σVR,VR) ,σVR) , (2)

where sign(σVR,VR) is the signature of VR for certifi-
cate σVR. During authentication, AirDrop (a) verifies the
signature on the received validation record, (b) verifies that
the UUID in the certificate matches the one in the validation
record, and (c) computes the SHA-256 hash over each normal-
ized3 address book entry and compares them with the hashes
contained in the validation record. Authentication succeeds
if all checks pass. If authentication fails on the receiver side,
the receiver aborts the connection. However, if authentication
fails on the sender side, AirDrop continues the transaction but
treats the connection as unauthenticated and the peer as a non-
contact. AirDrop shows contacts with their name and picture
from the address book in the user interface. Non-contacts are
displayed using the device name without a picture instead.

3 Contact Identifier Leakage in AirDrop
We discovered two design flaws in the AirDrop protocol that
allow an adversary to learn the contact identifiers (both phone
numbers and email addresses) of nearby Apple devices. The
two flaws originate from AirDrop’s authentication handshake,
where hashed contact identifiers are exchanged as part of Ap-
ple’s validation record. First, we define the threat model and
discuss that cryptographic hash functions cannot hide their
inputs (called preimages) when the input space is small or
predictable, such as for phone numbers or email addresses.
Second, we explain where and to what extent AirDrop devices
are vulnerable to contact identifier leakage. We responsibly
disclosed our findings to Apple (cf. § 8). A subset of the
issues presented in the following was independently reported
in [25]. However, that report does not address hashed email
addresses and receiver leakage (cf. § 3.4), and was published
one month after our disclosure with Apple. Moreover, there
are no signs that [25] followed responsible disclosure.

1As an addition to [92], we found that the UUID is not device-specific
but equal for all devices using the same Apple account.

2We hide the fact that VRσ contains the complete certificate chain up
to Apple’s root CA [92] to keep our description short and concise.

3Phone numbers are hashed in a normalized digit-only form, e.g., the
string “+1 (234) 567-8901” is hashed as “12345678901”.

USENIX Association 30th USENIX Security Symposium 3579

3.1 Threat Model
In this paper, we consider an adversary that wants to learn
contact identifiers (phone numbers and email addresses) from
non-contact AirDrop devices in proximity. They might then
use these identifiers for fraudulent activities such as (spear)
phishing attacks or making a profit by selling personal data.

Specifically, the adversary must be in physical proximity
of its targets (similar to [88]) and have access to a device with
an off-the-shelf Wi-Fi card to communicate via AWDL [89].
We assume that the adversary has full control over the wire-
less channel and can, e.g., mount machine-in-the-middle at-
tacks [92]. The adversary may lie about its address book (AB)
entries and arbitrarily deviate from the protocol description,
but cannot break Apple’s contact identifier ownership verifi-
cation (cf. § 2.1), i.e., the adversary is unable to forge valid
certificates for arbitrary contact identifiers (IDs).

We assume that Apple is trustworthy as it acts as a certifi-
cate authority (cf. § 2.4) and learns the contact identifiers, but
not the address book entries, from all of its users through the
ownership verification process.

3.2 Recovering Hashed Contact Identifiers
Hashing is insufficient to hide phone numbers or email ad-
dresses as the input space is small/predictable [35, 42, 66].

Phone numbers. Recovering the preimage of a hashed
phone number can be achieved using brute force because the
phone number space is relatively small. For example, a US
phone number contains an area code followed by 7 digits.
Given this small search space (107), it is feasible to check all
possible phone numbers on a PC within seconds.

More precisely, a recent work [42] studied three different
approaches for efficiently reversing phone number hashes:
lookups in large-scale key-value stores, brute-force attacks,
and optimized rainbow-table constructions. The authors also
modeled a worldwide database of valid mobile phone number
prefixes that revealed vast differences in terms of phone num-
ber structure between countries and, therefore, the size of the
search space (e.g., in Austria, the search space is in the order
of 1010 compared to 107 in the US). Each of the investigated
reversal methods was able to reverse SHA-1 hashes with an
amortized runtime in the order of milliseconds (e.g., 52 ms
for the optimized rainbow-table construction). These results
are directly applicable to estimate the effort required for an
attacker to recover a phone number from the hashes leaked
in AirDrop (cf. § 3.3 and § 3.4). However, since AirDrop
uses SHA-256 instead of SHA-1, the runtime and storage re-
quirements stated in [42] likely increase by around factors 3×
and 1.6×, respectively [49].

Email addresses. Recovering the preimage of a hashed
email address is less trivial but possible via dictionary attacks
that check common email formats such as first.lastname@{
gmail.com,yahoo.com,...}. Alternatively, an attacker could
generate an email lookup table from data breaches [48] or use
an online lookup service for hashed email addresses [34].

3.3 Contact Identifier Leakage of Sender
During the AirDrop authentication handshake, the sender al-
ways discloses their own contact identifiers as part of the ini-
tial HTTPS POST /Discover message (cf. Fig. 1). A malicious
receiver can therefore learn all (hashed) contact identifiers
of the sender without requiring any prior knowledge of their
target. To obtain these identifiers, an attacker simply needs
to wait (e.g., at a public hot spot) until a target device scans
for AirDrop receivers, i.e., the user opens the AirDrop sharing
pane. The target device will freely send a discover message
to any AirDrop receiver found during the previous DNS-SD
service lookup. Therefore, an attacker can learn the target’s
validation record without any authentication by simply an-
nouncing an AirDrop service via multicast DNS (mDNS).
After collecting the validation record, the attacker can recover
the hashed contact identifiers offline.

3.4 Contact Identifier Leakage of Receiver
AirDrop receivers present their contact identifiers in
the HTTPS 200 OK response to the discover message if they
know any of the sender’s contact identifiers included in the val-
idation record (cf. Fig. 1). A malicious sender can thus learn
all contact identifiers without requiring any prior knowledge
of the receiver if the receiver knows the sender. Importantly,
the malicious sender does not have to know the receiver: A
popular person within a certain context (e.g., the manager of
a company) can exploit this design flaw to learn all contact
identifiers of other people who have the popular person in
their address book (e.g., employees of the company).

4 PrivateDrop: PSI-based Mutual
Authentication for AirDrop

In the following, we describe how PSI can be applied to real-
ize PrivateDrop, our private mutual authentication protocol
for AirDrop that protects against both attacks described in § 3.

In general, given sender S and receiver R with verified con-
tact identifiers and size-constrained address books (IDsS, ABS)
and (IDsR, ABR), respectively, a privacy-preserving mutual
authentication protocol must ensure that S and R learn at most
those contact identifiers of the other party that they already
have in their address book, i.e., S learns at most ABS∩ IDsR

and R learns at most ABR∩ IDsS.4

Private set intersection (PSI) protocols are cryptographic
protocols that securely compute the intersection A∩B for two
parties with respective private input sets A and B. For the
remainder of this paper, we denote the party obtaining the in-
tersection result as PSI receiver and the respective other party
as PSI sender.5 Importantly, with PSI, no elements outside
the intersection, i.e., from (A∪B)\ (A∩B), are leaked.

4During AirDrop authentication, S learns IDsR if IDsS ∩ABR 6= /0 and R
learns IDsS unconditionally, resulting in the vulnerabilites described in § 3.

5There also exist PSI protocols where both parties can be receivers, but
this property is not required for our authentication purposes.

3580 30th USENIX Security Symposium USENIX Association

To instantiate PrivateDrop, we first fix our requirements
for the authentication protocol, explore the different design
options when applying PSI, choose a suitable PSI protocol
from the literature, adapt and optimize it for our use case, and
seamlessly integrate it into AirDrop.

4.1 Requirements
Our primary goal is to prevent both attacks described in § 3
by protecting contact identifiers (Apple-verified phone num-
bers and email addresses assigned to a user’s Apple account,
cf. § 2.1) and validation records (Apple-signed lists of hashed
contact identifiers, cf. § 2.4). Concretely, in terms of function-
ality and privacy for the AirDrop authentication, we want to
simultaneously achieve the following properties:

(a) Disclose validation records only if both parties are mu-
tual contacts. If both parties are mutual contacts, they
already know at least one contact identifier of the respec-
tive other party. Thus, the hash values enclosed in the
validation records do not leak personal information via
brute-force or dictionary attacks (cf. § 3.2).

(b) In the validation records, disclose only those contact
identifiers that the other party already knows. Even
though mutual contacts already know at least one con-
tact identifier of the respective other party, the validation
records contain hash values of all registered identifiers.
Thus, the hash values of contact identifiers not known to
the respective other party leak additional personal infor-
mation via brute-force or dictionary attacks (cf. § 3.2).

We use A knows B as a shorthand for A has one of B’s verified
contact identifiers (IDsB) in their size-constrained (cf. § 4.5)
address book (ABA), or formally: ABA∩ IDsB 6= /0.

In terms of performance, we want to minimize computa-
tion as well as communication overhead. This is important to
achieve a low energy consumption for battery-driven mobile
devices and to deliver a great user experience with immediate
responses. Since AirDrop is primarily used on mobile de-
vices, which might be offline from time to time, our solution
must be fully decentralized and cannot involve an external
server. Furthermore, we have to consider that parties might
act maliciously, i.e., may try to apply arbitrary strategies with
the intent to extract personal information.

4.2 Design Options and Final Design
We now describe how to apply PSI to realize private mu-
tual authentication for AirDrop, considering the requirements
defined in § 4.1. The main task is to replace the insecure ex-
change of hash values that happens in the original authentica-
tion phase as a result of sending validation records (cf. § 2.4).

Our high-level idea summarized in Fig. 2 is to have two
consecutive PSI executions. The first execution ensures
the AirDrop sender knows the receiver, the second that
the AirDrop receiver knows the sender. Afterward, as each
party is assured that it is stored in the respective other party’s

AirDrop Sender S AirDrop Receiver R

ABS
−−−−−−−−−−→ PSI

(DO2)

IDsR
←−−−−−−−−−−

Z=ABS∩IDsR
−−−−−−−−−−→
Z 6= /0⇒ SSS knows RRR

IDsS
−−−−−−−−−−→

Z=IDsS∩ABR
←−−−−−−−−−−

PSI
(DO3)

ABR
←−−−−−−−−−−

Z 6= /0⇒ RRR knows SSS

Figure 2: PrivateDrop’s PSI-based mutual authentication protocol
for AirDrop. The PSI protocols are instantiated using DO2 (green)
and DO3 (orange), cf. § 4.2. Inputs are the parties’ contact identi-
fiers (IDs) and address books (AB).

Table 1: Available design options (DO) to use PSI for private mu-
tual authentication in AirDrop. Possible inputs are contact iden-
tifiers (IDs) and address books (AB). The parties can act as PSI
sender (PSI S) or PSI receiver (PSI R).

Design Option DO1 DO2 DO3 DO4

Role of AirDrop Sender PSI S PSI S PSI R PSI R
Input of AirDrop Sender IDs AB IDs AB

Role of AirDrop Receiver PSI R PSI R PSI S PSI S
Input of AirDrop Receiver AB IDs AB IDs

address book, it is safe for them to reveal their contact identi-
fiers and validation records. In the following, we detail how to
configure the PSI executions to achieve the described outcome
by systematically analyzing all possible design options.

The design options (DOs) listed in Tab. 1 differ in
(a) the PSI inputs for the AirDrop sender and receiver, i.e.,
contact identifiers and address books, (b) the roles the parties
take in PSI, and (c) the order in which the DOs are executed.

Note that we exclude combinations where both parties input
their contact identifiers since the intersection will always be
empty. Likewise, we do not consider both parties using their
address book as input, since this variant (formalized in [32]
as private contact discovery between two users) yields the
parties’ common contacts (i.e., finds “friends of friends” [12])
but does not determine whether they are mutual contacts.

Regarding the assignment of the PSI roles and the execution
order, we can exclude further combinations. As both AirDrop
sender and receiver must be assured of being mutual contacts,
each must act as PSI receiver once. In the authentication pro-
cess, the AirDrop sender should be the first to reveal informa-
tion as otherwise malicious senders could easily extract such
information from a large number of innocent receivers by trig-
gering the authentication process. Therefore, the options must
be chained such that the AirDrop receiver acts as PSI receiver
first (DO1 or DO2) and as sender second (DO3 or DO4). In
the following, we discuss the two remaining possibilities.

DO1→→→ DO4. Here, the PSI sender has their contact iden-
tifiers as input, whereas the PSI receiver has their address
book as input. As a result, each party is assured that the other
party is one of its contacts. This is the exact semantic as

USENIX Association 30th USENIX Security Symposium 3581

in the original (insecure) authentication protocol. However,
since malicious AirDrop receivers do not necessarily abort
after receiving an empty result set in the first PSI execution,
AirDrop senders have no proof that the receivers know them
before revealing their contact identifiers. Since we strictly
want to avoid this information leakage (cf. § 3.3), we dis-
card DO1→ DO4.

DO2→→→ DO3. Here, the PSI sender has their address book
as input, whereas the PSI receiver has their contact identifiers
as input. At the end of the authentication process, each party
can be assured that it is stored in the respective other party’s
address book. Thus, the AirDrop sender can safely share their
contact identifiers that appeared in the outcome of the DO3
execution since the other party already has them stored.

In conclusion, by executing DO2→ DO3 in that particular
order (as visualized in Fig. 2), we can fulfill the functional
and privacy requirements defined in § 4.1, and prevent our
attacks described in § 3.

4.3 Choice of PSI Protocol
Now that we fixed in which order two PSI protocols have
to be run, we need to find instantiations. In the literature,
many two-party PSI protocols are proposed that could be ap-
plied (cf. § 7.2). Especially, a sub-category of PSI protocols
specializes in unbalanced set sizes, where one party has a
much larger input set than the other [26, 27, 55, 59, 82]. The
protocols [26, 27] are based on homomorphic encryption with
communication linear in the size of the smaller set, but they
are computationally expensive. The fastest unbalanced PSI
protocols for mobile clients [55, 59, 82] shift most public-
key operations to an input-independent precomputation phase
and send an encrypted and compressed representation of the
larger input set ahead of time to achieve fast online runtimes.
Moreover, the protocols of [55] provide security against mali-
cious PSI receivers but only work for semi-honest senders.

However, even though we deal with unbalanced sets, here,
the size of the larger input set is determined by the maxi-
mum number of address book entries. The size of address
books can be reasonably assumed to be well below 100 k
and is not in the order of hundreds of millions as consid-
ered for unbalanced PSI. Thus, protocols based entirely on
public-key encryption (which are extremely inefficient at a
large scale) can achieve practical performance. In our setting,
both parties are not constrained by business incentives or se-
vere legal consequences to behave semi-honestly. Therefore,
we must choose a protocol with security against a malicious
sender and receiver. Furthermore, AirDrop is a protocol that
is performed ad-hoc with random communication partners
such that distributing encrypted databases in advance is not
possible. Finally, we aim at providing industry-grade imple-
mentations for integration into Apple’s ecosystem. Therefore,
we need a simple protocol that does not require complex li-
braries for oblivious transfer or garbled circuits as needed in
the most efficient protocols of [55, 59].

AirDrop/PSI Sender S AirDrop/PSI Receiver R
Input: AB = {c1, . . . ,cn} Input: IDs = {ID1, . . . , IDm}
Output: ⊥ Output: AB∩ IDs

k,r $← Zq For i = 1 to m:

hi = H(IDi), αi
$← Zq,

yi = hαi
iFor i = 1 to m:

(y1,...,ym)←−−−−−−−−−−
zi = yk

i , ai = yr
i

c = H(y1,z1,a1, . . . ,ym,zm,am)
p = r+ k · c (z1, . . . ,zm)

(a1, . . . ,am), p−−−−−−−−−−→ c = H(y1,z1,a1, . . . ,ym,zm,am)
For j = 1 to n: For i = 1 to m:

u j = H(H(c j),H(c j)
k) Abort if yp

i 6= ai · zc
i

vi = H(hi,z
1/αi
i)

{u1,...,un}−−−−−−−−−−→ output {IDi ∈ IDs|∃ j : u j = vi}

Figure 3: Maliciously secure PSI protocol of [53] applied
to DO2 (cf. § 4.2). The non-interactive zero-knowledge AND-proof
of knowledge is marked in blue [16, 37, 85].

The PSI Protocol of [53]. Considering all requirements,
we resort to a public key-based PSI protocol proposed
by Jarecki and Liu [53]. This Diffie-Hellman-style proto-
col extends the work of Baldi et al. [13] by adding malicious
security via zero-knowledge proofs.6 The required public key
operations can be efficiently instantiated with elliptic curve
cryptography, for which there exist industry-grade libraries
such as MIRACL [68] and built-in operating system capabili-
ties (Apple CryptoKit [7] in iOS and macOS).

In Fig. 3, we summarize the PSI protocol of [53] ap-
plied to our use case. Specifically, we show the application
to DO2 (cf. § 4.2). The application to DO3 works analo-
gously with the same type of inputs (address book AB for PSI
sender, identifiers IDs for PSI receiver), but the assignment
of AirDrop sender/receiver to PSI sender/receiver is swapped.

For simplicity, H in our description denotes a hash function
that maps either one or multiple bit strings or group elements
to a short bit string of fixed length or an element in a multi-
plicative group of prime order q. The respective input and
output domains are clear from the context. We instantiate H
with the SHA-2 family [69] in our implementation (cf. § 5.2).

Informally, the protocol works as follows: (a) the PSI re-
ceiver hashes its input elements IDi with a collision-resistant
hash function H to group elements, encrypts the hash val-
ues hi with random keys αi, and sends the resulting values yi
to the PSI sender; (b) the PSI sender additionally encrypts the
received elements with a random secret key k and sends the re-
sults zi to the receiver; (c) the PSI receiver “removes” its own
keys αi such that it obliviously obtains the encryption of its
inputs under the sender’s key k; and finally (d) the PSI sender
sends hashed encryptions u j of its own input elements c j
in random order to the receiver, who then can compare the

6More precisely, malicious security is proven for an adaptive PSI func-
tionality, where the receiver makes a series of adaptive queries instead of
inputting its set as a whole. However, as the authors argue, any efficient
adversary is committed to all its inputs at the execution time, and thus the
adaptive functionality can be assumed to be equivalent to regular PSI [13].

3582 30th USENIX Security Symposium USENIX Association

values to determine the intersection. Following the PSI pro-
tocol of [76], the bitlength l of the values u j can be reduced
to λ+ 2log2(n), where λ is the statistical security parame-
ter (which we set to λ = 40 in our implementation), and n is
an upper bound on the number of address book entries each
party has. This yields negligible failure probability 2−λ.

To achieve malicious security, the protocol utilizes a zero-
knowledge proof of knowledge that makes sure the PSI sender
knows and uses the same key k for computing all values zi.
This requires a so-called AND proof over the individual expo-
nentiations. For an efficient and straight-forward instantiation,
we choose Schnorr’s DLOG proof [85] and apply the Fiat-
Shamir heuristic [16, 37] to turn it into a non-interactive
version (in the random oracle model), which does not require
additional communication rounds (cf. blue part in Fig. 3).

The protocol in Fig. 3 leaks some information via the num-
ber of inputs. For example, one can learn whether an AirDrop
sender is popular from the number of address book entries.
To prevent such leakage, we pad the input sets with dummy
elements to a globally fixed upper bound. For example, it
is reasonable to limit the number of address book entries
to n = 10k and the number of contact identifiers to m = 10.
In § 6, we assess the practical performance implications of
such limits by conducting experiments with variable m and n.

4.4 Optimizing PSI for PrivateDrop
When integrating the PSI protocol of Fig. 3 into AirDrop, we
apply several performance improvements.

Precomputation. First, it is possible for the PSI sender to
generate the key k and compute the values ui ahead of time.
This can be done, e.g., overnight when the device is charging.
It is only necessary to update the precomputed values as ad-
dress book entries change. Since AB is the bigger input set,
this removes the largest computation bottleneck from the pro-
tocol execution. Likewise, the PSI receiver can precompute
the values yi, which change seldomly. Similar precomputation
techniques were proposed for passively secure DH-style PSI
in [59, 82], and with security against malicious clients in [55].
The security of our protocol follows from the security of
the protocol of [53]. Concretely, the simulation-based proof
of [53] applies equally, as the parties’ views remain identical.

Reusage. Moreover, it is possible to reuse the precom-
puted values across sessions. In previous works [55, 59, 82]
that consider large-scale databases as input sets, the precom-
puted values are reused by encoding and distributing them
in probabilistic data structures like Bloom or Cuckoo filters
against which OPRF evaluations are checked.

From a standalone perspective, this allows for user tracking,
but in AirDrop, users can already be tracked via the UUID
in the TLS certificate used for establishing the protocol com-
munication channel (cf. § 2.4). Avoiding user tracking in the
entire AirDrop execution is an important area for future work.
However, reusing precomputed encryptions of address book
entries over longer periods of time allows tracking changes

in the contact composition, i.e., how many contacts were
added or removed since the last protocol execution. Even
if no changes occur, this leaks some information, e.g., no
new person was met or no person was “unfriended”. In case
this leakage should be avoided, fresh encryptions should be
precomputed and never be reused.

Round Complexity. In terms of round complexity, it is
possible to bundle the last two messages from the PSI sender
to the receiver without changing the receiver’s view. Thus,
the PSI protocol consists of only one round, and the PSI
receiver may ignore the received values ui in case the zero-
knowledge proof verification fails.

Furthermore, we optimize the sequential yet independent
execution of DO2 and DO3. For this, we bundle the second
message of DO2 with the first message of DO3. In total,
both protocol executions require sending three messages, thus
two rounds. Importantly, directly including the first DO3
message in the last DO2 message does not negatively impact
the AirDrop sender in case of engaging with a malicious re-
ceiver. This is because in a sequential execution, the AirDrop
sender gets no response at the end of DO2. Also, a mali-
cious AirDrop receiver cannot learn any additional private
information from receiving encryptions of hashed contact
identifiers. Moreover, since the AirDrop receiver gets no
response at the end of DO3 and the sender’s inputs can be ver-
ified (cf. § 4.5), malicious behavior exploiting the sequential
execution of the online phases can only influence correctness,
but not input privacy.

Note that instead of our proposed three message protocol,
it would be possible to further parallelize computation with
a fully symmetric execution of DO2 and DO3. This would
require sending four messages but can still be done in two
rounds. However, to prevent malicious senders from causing
unnecessary work for innocent receivers (denial-of-service
attacks), we require the sender to first process the receiver’s
inputs and reveal its encrypted address book entries before
starting the computation (cf. § 4.2). Moreover, the poten-
tial gain in overall efficiency via additional parallelization is
negligible, since the constant overhead caused by one commu-
nication round (≈ 100ms, cf. Fig. 8) is larger than the entire
online computation (< 50ms even for m = 10 IDs, cf. Fig. 7).

4.5 Countering Privacy Attacks
The security properties of the PSI protocol in Fig. 3 pre-
vent malicious parties from learning private information even
when arbitrarily deviating from the protocol definition. How-
ever, malicious parties might tamper with the protocol inputs,
which cannot be prevented by the protocol itself since this is
an attack on the ideal functionality of set intersection. We now
discuss the impact of such attacks and how to counter them
by leveraging Apple’s existing certification infrastructure.

Malicious Sender. A malicious AirDrop sender could try
to obtain sensitive contact information of, e.g., VIPs by in-
cluding a VIP’s publicly known email address in their address

USENIX Association 30th USENIX Security Symposium 3583

book. The PSI protocol then yields a match, and the vulnera-
ble hash values of all contact identifiers of the VIP are sent in
subsequent steps of the AirDrop protocol (including, e.g., the
hashed phone number).

To prevent this attack, we modify the AirDrop protocol flow
to release only hashed contact identifiers (in the validation
record) for which a match in the PSI protocol was found. This
requires a change to the current AirDrop validation record,
which contains all contact identifiers, cf. Eqs. (1) and (2)
on p. 3. In particular, we create individual validation records
for each of the user’s m contact identifiers IDi as follows:

VRi = (UUID,SHA-256(IDi)) , ∀i ∈ 1, . . . ,m (3)
VRσ,i = (VRi,sign(σVR,VRi) ,σVR) . (4)

This yields a scalable solution as creating and distributing the
validation records is a one-time cost, and the number of IDs
per user m is expected to be small (e.g., m = 10).

Malicious Receiver. A malicious AirDrop receiver who
knows the sender could try to trick the sender into believing
they are mutual contacts by using contact identifiers that are
stored in the sender’s address book with high probability (e.g.,
emergency phone numbers). Moreover, with the same ap-
proach, a malicious AirDrop receiver can test whether the
sender knows a specific person. To prevent such attacks,
we propose to have the encrypted contact identifiers signed
by Apple. The resulting protocol is then closely related to au-
thorized PSI (APSI) [31, 33] and PSI with certified sets [21].

Similarly to the individual validation records in Eq. (4), we
introduce Apple-signed certificates that contain the UUID and
the precomputed values yi for the user’s contact identifiers:

Yi = (UUID,yi) , ∀i ∈ 1, . . . ,m (5)
Yσ,i = (Yi,sign(σVR,Yi) ,σVR) . (6)

PrivateDrop verifies that the UUID in Eq. (5) equals the one
in the TLS certificate to prevent reuse by another party, thus,
mitigating replay and machine-in-the-middle attacks. As
with Eq. (4), this is a lightweight addition that does not re-
quire major changes in the existing infrastructure. The keys αi
can still be chosen on the client device. Only a simple zero-
knowledge protocol must be run with Apple to make sure yi
is actually an encryption of a legitimately hashed contact
identifier and the client device is in possession of the keys αi.
This can again be efficiently instantiated with Schnorr’s pro-
tocol [85] and the Fiat-Shamir heuristic [16, 37] (cf. § 4.3).
Alternatively, Apple could choose the keys αi and hand them
to client devices together with signed values Yσ,i.

Brute-force. Finally, either party could try to guess con-
tact identifiers of the other party by adding a large number
of “fake” address book entries (so-called enumeration at-
tacks [42]). However, in contrast to offline brute-force at-
tacks, where up to millions of guesses can be checked per
second, the success probability is significantly lower since we
strictly limit the size of the input sets to a reasonable upper
bound (e.g., m = 10 and n = 10k, cf. § 4.3).

Table 2: Overhead of PrivateDrop’s PSI-based mutual authentication
protocol on n address book entries and m contact identifiers, respec-
tively. |q| is the size of group elements, |sign| the size of signatures
on encrypted contact identifiers, and l the length of hashes ui.

Phase Precomputation Online

Computation Sender S Receiver R Sender S Receiver R
Exp. mS +nS mR +nR 3mS +3mR 3mS +3mR
Hash calc. mS +3nS mR +3nR 2mS +mR +2 mS +2mR +2

Communication 0 (3mS +3mR +2) · |q|+(nS +
nR) · l +(mS +mS) · |sign|

4.6 Our PrivateDrop Protocol
In Fig. 4, we show our full PSI-based mutual authentica-
tion protocol for AirDrop. Its computation and communi-
cation overhead is summarized in Tab. 2. For the compu-
tation overhead, we count the required exponentiations and
hash operations. We assume that verifying each signature
requires one such exponentiation and one hash operation. Ob-
taining the signature on the values yi is ignored since the
exact overhead depends on the chosen implementation. In
case Apple provides keys αi along with values Yi and signa-
tures sign(σVR,Yi), the additional communication overhead
in the precomputation phase is only O(m). Otherwise, if the
keys are chosen on the client device, a non-interactive zero-
knowledge Schnorr proof requires additional computation
with O(m) exponentiations and hash operations.

Overhead. Overall, in the precomputation phase, both par-
ties have a computation overhead of O(m+ n), which is a
one-time cost. In the online phase, the computation over-
head is O(m), with m� n, while the communication over-
head is O(m+n). Due to n still being fairly limited in prac-
tice (e.g., n = 10k) and the availability of a low-latency and
high-bandwidth Wi-Fi connection, this communication over-
head is very well manageable (cf. our experiments in § 6).

5 Implementation and Integration
We implement both the original AirDrop protocol and
our PrivateDrop extension for iOS and macOS to empiri-
cally study the overhead caused by PSI. We do not use Ap-
ple’s closed source AirDrop implementation to provide a fair
comparison between non-PSI and PSI. In the following, we
discuss our implementation (including mDNS and HTTPS
communication) and our integration of PrivateDrop into the
original AirDrop protocol stack. Our open-source implemen-
tation is available on GitHub [45].

5.1 Implementation of the Base Protocol
Apple does not expose or document a low-level AirDrop API
that would allow us to integrate our PrivateDrop extension
and conduct a fine-grained performance evaluation. Using an
existing open-source implementation of AirDrop [46] is also
not an option as it is written in Python, which is not supported
on iOS and not optimized for performance.

3584 30th USENIX Security Symposium USENIX Association

AirDrop Sender S AirDrop Receiver R
Input: Input:

ABS = {cS
1, . . . ,c

S
nS
} ABR = {cR

1 , . . . ,c
R
nR
}

IDsS = {IDS
1, . . . , ID

S
mS
} IDsR = {IDR

1 , . . . , ID
R
mR
}

Output: ABR ∩ IDsS Output: ABS ∩ IDsR

kS $← Zq Precomputation Phase kR $← Zq
For i = 1 to mS: For i = 1 to mR:

hS
i = H(IDS

i), αS
i

$← Zq, yS
i = (hS

i)
αS

i hR
i = H(IDR

i), αR
i

$← Zq, yR
i = (hR

i)
αR

i

Obtain Y S
σ,i for yS

i from Apple Obtain Y R
σ,i for yR

i from Apple
For j = 1 to nS: For j = 1 to nR:

uS
j = H(H(cS

j),H(cS
j)

kS
) uR

j = H(H(cR
j),H(cR

j)
kR
)

rS $← Zq Online Phase rR $← Zq

For i = 1 to mR:
(Y R

σ,1 ,...,Y
R
σ,mR)←−−−−−−−−−−−−−

Message M1
Abort if sign

(
σVR,Y R

i
)

invalid
zS

i = (yR
i)

kS
, aS

i = (yR
i)

rS

cS = H(yR
1 ,z

S
1,a

S
1, . . . ,y

R
mR

,zS
mR

,aS
mR

)

pS = rS + kS · cS

(zS
1, . . . ,z

S
mR

),

(aS
1, . . . ,a

S
mR

), pS,

{uS
1, . . . ,u

S
nS
},

(Y S
σ,1, . . . ,Y

S
σ,mS

),
−−−−−−−−−−−−−→

Message M2
cS = H(yR

1 ,z
S
1,a

S
1, . . . ,y

R
mR

,zS
mR

,aS
mR

)

For i = 1 to mR:
Abort if (yR

i)
pS 6= aS

i · (zS
i)

cS

vR
i = H(hR

i ,(z
S
i)

1/αR
i)

Output {IDR
i ∈ IDsR|∃ j : uS

j = vR
i }

For j = 1 to mS:
Abort if sign

(
σVR,Y S

j

)
invalid

zR
j = (yS

j)
kR

, aR
j = (yS

j)
rR

cR = H(yS
1,z

R
1 ,a

R
1 , . . . ,y

S
mS
,zR

mS
,aR

mS
)

pR = rR + kR · cR

cR = H(yS
1,z

R
1 ,a

R
1 , . . . ,y

S
mS
,zR

mS
,aR

mS
)

(zR
1 , . . . ,z

R
mS
),

(aR
1 , . . . ,a

R
mS
), pR,

{uR
1 , . . . ,u

R
nR
}←−−−−−−−−−−−−−

Message M3
For j = 1 to mS:

Abort if (yS
j)

pR 6= aR
j · (zR

j)
cR

vS
j = H(hS

j ,(z
R
j)

1/αS
j)

Output {IDS
j ∈ IDsS|∃i : uR

i = vS
j}

Figure 4: PrivateDrop’s full PSI-based mutual authentication protocol for AirDrop. The protocol is based on the optimized and interleaved
execution of DO2 (green) and DO3 (orange), cf. Tab. 1 and Fig. 2, divided into a reusable precomputation and an online phase.

Therefore, we re-implement the full AirDrop protocol stack
in Swift, Apple’s modern programming language that com-
piles down to assembler code. In particular, we use Apple’s
public NetService API [8] to announce services via mDNS
and bootstrap communication over the AWDL interface. In
addition, we use SwiftNIO [9] to achieve high-performance
asynchronous network operations and to implement HTTPS
communication. In App. C, we show that our AirDrop imple-
mentation performs very similar to Apple’s.

AirDrop’s validation records are implemented using cryp-
tographic message syntax (CMS) [47]. To provide the best
integration with Apple’s existing certification infrastructure,
we also implement the signatures Yσ,i in Eq. (6) in CMS. For
validation, we use the OpenSSL library [71], as Apple’s Secu-
rity framework provides CMS support only on macOS but not
on iOS [6]. The individual validation records VRσ,i in Eq. (4)
are not part of our implementation.

5.2 Implementation of the PSI Operations

Implementing our PSI protocol requires access to low-level el-
liptic curve (EC) operations, for which we would have liked
to utilize built-in operating system capabilities. Unfortu-
nately, Apple’s Swift-based CryptoKit [7] does not expose
the required point operations, e.g., addition and scalar multi-
plication. As an alternative, we use the established open-
source library Relic [11]. Compared to other third-party
candidates such as MIRACL [68] or libecc [15], Relic is
focused on efficiency [73, 81] and portability with support
for all relevant architectures, i.e., arm64 (iOS and macOS)
and x86_64 (macOS). Also, Relic is written in C, which inte-
grates well with our Swift-based protocol implementation.

We instantiate all primitives to provide a security level
of 128 bit. Our Diffie-Hellman-based PSI implementa-
tion uses the standardized elliptic curve P-256.

USENIX Association 30th USENIX Security Symposium 3585

Sender S Receiver R

regularly
perform
BLE scans

if any
advertisement
received,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisement
without hashed identifiers

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

For every service
discovered, start
HTTPS discovery

R’s icon appears
in sharing pane
Select S’s
individual
validation record
based on PSI
output

TLS teardown

(1c) Ask for service AirDrop

Service information
Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTICATION

HTTPS POST /StartPSI

HTTPS 200 OK
with PSI message M1

HTTPS POST /FinishPSI
with PSI message M2

HTTPS 200 OK
with PSI message M3

with R’s individual validation record

Select R’s
individual
validation record
based on PSI
output

Initiate PSI
protocol as in
Figure 4

HTTPS POST /Ask
with S’s individual validation record

HTTPS POST /Upload
with file

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

HTTPS 200 OK

Start file transfer

TLS teardown
HTTPS 200 OK

(3) DATA TRANSFER

Figure 5: PrivateDrop protocol; changes to the original AirDrop
protocol (cf. Fig. 1) highlighted in blue.

5.3 Integration with the HTTPS Handshake
In order to integrate PrivateDrop into AirDrop’s HTTPS pro-
tocol, we introduce two new HTTPS messages into the au-
thentication phase that we depict in Fig. 5. In particular,
we introduce StartPSI and FinishPSI that include the three
messages M1, M2, and M3 from our optimized PSI proto-
col (cf. Fig. 4) as payload. The protocol is performed imme-
diately after the mDNS discovery is completed and replaces
the original HTTPS Discover exchange. Since the AirDrop
sender acts as the HTTPS client in the protocol, the ini-
tial HTTPS request contains no payload and simply signals
the receiver to initiate the PSI protocol.

Selecting Individual Validation Records. The output
of the PSI protocol determines which individual validation
records VRσ,i are included in the follow-up requests. If the PSI

protocol yields no matches, no validation records are included.
If the PSI protocol yields one or more matches, one randomly
chosen individual validation record that corresponds to one
of the matches is included in the request. Note that, in princi-
ple, we could include the validation records for all matches.
However, this would yield no benefit as one contact identifier
is sufficient to uniquely identify the other party based on the
user’s address book.7 On the contrary, transmitting multiple
validation records would increase communication overhead
and require the receiver to verify multiple signatures.

Communication Rounds. Note that after processing M2,
the receiver has already selected the appropriate individual
validation record and can send it back to the sender with M3.
The sender will include its individual validation record in
the Ask request when initiating a file transfer. By piggy-
backing the receiver’s validation record to M3, we avoid one
additional communication round that would be necessary to
exchange VRσ,i after the PSI protocol has completed. In total,
our PSI-based protocol only incurs one additional communi-
cation round compared to the original authentication.

5.4 Integration with the BLE Advertisements
AirDrop’s BLE advertisements contain the first two bytes of
the sender’s hashed contact identifiers, which are also part
of the validation record. Receivers use these hashes to check
if the sender is a potential contact match and whether they
should turn on their AWDL interface to conduct the full au-
thentication handshake. As shown in [92], this mechanism
provides no additional security as it can easily be circum-
vented with brute force. Therefore, the short hashes appear to
be an optimization to prevent wakeups of the receiver’s Wi-Fi
radio that unnecessarily drain the device’s battery.

As the purpose of our work is to prevent any leakage of
personal information, we propose to not include any (even
shortened) contact identifiers and simply set the fields to a
fixed value, e.g., 0x0000. Then, whenever AirDrop receivers
overhear such an advertisement, they activate their AWDL
interface unconditionally. Coincidentally, this behavior is
already implemented by AirDrop receivers that are discov-
erable by everyone (cf. § 2.2), so we do not expect that this
change will incur any practical hurdles.

5.5 Towards Replacing AirDrop
We implemented a fully-functional PrivateDrop prototype.
The following changes have to be made by Apple for turn-
ing PrivateDrop into a drop-in replacement for AirDrop,
which can be deployed with iOS and macOS updates, and

7We assume an unambiguous mapping of contact identifiers to contact
entries in a user’s address book. If a user assigned the same identifier to
multiple contacts, then having multiple validation records could help to
resolve the ambiguity. In any case, if AirDrop is unable to uniquely identify
the other party, it should inform the user, e.g., by displaying an appropriate
message. Note that Apple validates ownership of contact identifiers via
verification emails or SMS (cf. § 2.1), which prevents multiple registrations,
e.g., when users share an office phone number.

3586 30th USENIX Security Symposium USENIX Association

Table 3: Experiment parameters.

Protocols AirDrop, PrivateDrop

Set sizes
identifiers m 1, 10, 20

address book 100, 1 000, 5 000,
entries n 10 000, 15 000

Hardware Sender (macOS 11) MacBook Pro 15" 2019
Receiver (iOS 14) iPhone 12 mini

Network
connection

Apple Wireless Direct Link (AWDL) [90],
USB cable

requires no hardware modifications: (a) To ensure limited
backward compatibility with the orignal AirDrop protocol,
PrivateDrop-enabled devices should support AirDrop’s Dis-
cover request but never include AirDrop’s validation record
to protect themselves against identifier leakage (cf. § 3).
PrivateDrop devices would then always appear as non-con-
tacts to AirDrop devices. Note that downgrade attacks, i.e.,
forcing two PrivateDrop devices to use the legacy AirDrop
protocol, will hence merely result in unauthenticated con-
nections as PrivateDrop devices will never exchange their
validation records with AirDrop devices. (b) Apple’s CA
infrastructure must be extended to issue VRσ,i and Yσ,i val-
ues. (c) PrivateDrop should use the system’s Contact API
to provide input for the contact discovery. For evaluation
purposes, we use randomly generated contacts. (d) Our im-
plementation currently does not integrate BLE discovery, be-
cause iOS hides Apple-specific advertisements in the scan
responses and prohibits emitting them for third-party applica-
tions. (e) Finally, PrivateDrop currently does not implement
individual validation records but uses the AirDrop validation
records VRσ to match the Apple-signed TLS certificates.

6 Experimental Evaluation

We evaluate the performance of PrivateDrop based on our
implementation for AirDrop (cf. § 5). To this end, we conduct
an extensive experimental evaluation using different Apple
devices and variable input sizes over the devices’ AWDL
interface. We show that the median discovery delay is well
below one second in any practical setting. In the following,
we explain our evaluation metrics and experimental setup. We
then present and discuss the evaluation results.

6.1 Evaluation Metrics

We assess the protocol’s performance in terms of runtime
or delay. In particular, we time the protocol flow at several
reference points to measure (a) computational overhead, i.e.,
time spent for calculating cryptographic operations, (b) net-
work overhead, i.e., time spent for transmitting data over
the data channel, and (c) overall runtime, i.e., time spent for
executing the complete discovery process.

6.2 Experimental Setup

We conduct all experiments using our PrivateDrop
and AirDrop implementations (cf. § 5) and summarize all
other experiment parameters such as set sizes, hardware, and
network environments in Tab. 3.

Set Sizes. Our complexity analysis in § 4.6 shows that
the online PSI overhead depends on the number of identi-
fiers m and address book entries n. A previous online study
found that Apple users have n = 136 contacts on average [92].
Therefore, we select values for n in this order of magnitude
but also include values up to n = 15000 to assess potential
scalability limits. Similarly, we select m to cover moderate
and extreme limits (1 to 20). For simplicity of presentation,
the input sizes are the same for both sender and receiver in all
our experiments, i.e., m = mS = mR and n = nS = nR.

Hardware and Network Connection. We use up-
to-date Apple devices for the evaluation, in particular,
an iPhone 12 mini and a MacBook Pro (2019). A mix of iOS
and macOS devices allows us to conduct experiments via a ca-
ble network connection (USB) in addition to AWDL, thereby
measuring the impact of network-induced delays. In all ex-
periments, the MacBook acts as the sender and the iPhone as
the receiver to ensure comparable results.

Environment. We conduct all experiments in a home office
environment,8 where we cannot control interfering Bluetooth
and Wi-Fi transmissions. This interference might contribute
to the high variance of our AWDL experiments (cf. Fig. 9),
which was not observed in previous experiments that used a
Faraday tent [90]. We run cable-based experiments to isolate
the impact of PrivateDrop, while the AWDL experiments help
us to understand performance under real-world conditions.

Test Suite. We implemented a benchmark application
for iOS and macOS based on PrivateDrop (cf. § 5) that allows
us to define a scenario. A scenario is comprised of a fixed
set of experimental parameters such as the set sizes and the
choice of sender and receiver devices (cf. Tab. 3). For each
scenario, we run 100 experiments (Monte Carlo) that each
consist of a complete protocol execution. To avoid systematic
errors introduced by temporal disturbances, we schedule the
individual runs for each scenario in a round-robin fashion.
The bar plots indicate the median delay over all runs, and the
error bars indicate the 0.05 and 0.95 quantiles. Unless other-
wise stated, we measure the delays on the sender side. Each
experiment consists of a full protocol run as well as a prepa-
ration and cleanup phase: (a) Preparation: we generate the
address book at random, precompute the values ui, and wait
until both sender and receiver are ready. (b) Execution: we
run a complete protocol execution starting from the DNS-SD
discovery to the upload of a file. (c) Cleanup: we shut down
the HTTPS and DNS-SD server to close all connections.

8Our institution mandated home office due to the COVID-19 pandemic.

USENIX Association 30th USENIX Security Symposium 3587

100 1000 5000 10000 15000
Number of address book entries n

0

200

400

A
ut

he
nt

ic
at

io
n

de
la

y
[m

s]

Number of identifiers m
1 10 20

AirDrop baseline (median)

Figure 6: Overall authentication delay for AirDrop (baseline)
and PrivateDrop with different set sizes (m,n).

100 1000 5000 10000 15000
Number of address book entries n

0

20

40

C
om

pu
ta

tio
n

tim
e

[m
s]

identifiers m

1

10

20

PSI operation
zi

ai,c, p

c,yp
i ,ai · zc

i

vi

Intersect
u j = vi

Figure 7: Computation time for the PSI operations on an iPhone 12
with different set sizes (m,n).

6.3 Authentication Delay

We first empirically measure the performance
of PrivateDrop’s online phase for variable set sizes n
and m (cf. Tab. 3). For this, we run a set of experiments
between the MacBook Pro 2019 (sender) and iPhone 12 (re-
ceiver). In order to minimize noise introduced by the wireless
channel, we conduct this experiment via a USB cable
connection between sender and receiver. We later evaluate
the impact of the wireless channel in § 6.4.

Overall Delay. In Fig. 6, we show the delay of the com-
plete authentication phase (phase (2) in Figs. 1 and 5),
for PrivateDrop and AirDrop. AirDrop authentication is in-
dependent of m and n, and, therefore, we include the me-
dian delay as a baseline. In contrast, the PrivateDrop run-
time increases with both m and n as expected. Our results
for PrivateDrop show that for moderate settings (m = 10, n =
1000), the median authentication delay is increased by 2×
compared to AirDrop. Even for extreme scenarios (m =
20, n = 15000), the overall delay stays below 500 ms. This
satisfies our user experience requirement as humans perceive
any delay below 1 000 ms as an “immediate response” [22].

100 1000 5000 10000 15000
Number of address book entries n

0

500

1000

D
ur

at
io

n
[m

s]

PrivateDrop
FinishPSI
StartPSI

AWDL
Cable

AirDrop
AWDL
Cable

Figure 8: Transmission delay of AWDL and cable connections for
the AirDrop (Discover) and PrivateDrop (StartPSI and FinishPSI)
requests for a fixed number of identifiers m = 10.

PSI Delay. We closer investigate the impact of the PSI on-
line phase on the overall authentication delay. Fig. 7 shows the
computation time of the individual operations on an iPhone 12.
In fact, only computing the actual intersection depends on the
number of address book entries n (cf. violet parts in Fig. 7)
and is at most 5 % of the total time for n = 15000. All other
arithmetic operations increase linearly with m, which vali-
dates our complexity analysis in § 4.6. In absolute terms, the
median computational overhead is less than 12 ms for m = 1
and stays below 50 ms for m = 20. Note that a complete pro-
tocol execution requires identical operations on both sides.
To get the total PSI overhead, we can double these numbers
if assuming identical hardware for sender and receiver. Still,
the PSI operations alone make up less than half of the total
authentication delay (cf. Fig. 6). The other major component
is networking delay, which we explore next.

6.4 Networking Delay
AirDrop originally uses a wireless connection between sender
and receiver. We want to understand the impact of the net-
working delay and provide a comparison between AWDL and
the cable connection (cf. § 6.3). To this end, we repeat the pre-
vious experiment over AWDL and measure the transmission
delay of the HTTPS requests and replies. In particular, we
record timestamps T1..4 for each request-response pair, i.e.,

T1
Request−−−−−−−−−−→ T2

T4
Response←−−−−−−−−−− T3

and calculate the delay as t = T4−T1− (T3−T2) to exclude
the receiver-side processing delay. Fig. 8 shows the median
transmission delays t incurred by StartPSI and FinishPSI ex-
changes for both wireless and cable connections. We add the
median transmission delay of AirDrop’s Discover request for
reference. Qualitatively, we can observe that the number of
address book entries n has a stronger impact on transmission

3588 30th USENIX Security Symposium USENIX Association

delay for AWDL than for the cable connection and that the
transmission delay constitutes about half of the overall au-
thentication delay. Interestingly, the transmission delay for
both PSI requests is similar over the cable, while the first
request takes up significantly more time over AWDL. The
reason is that the first request includes the time required for
connection setup, which generally takes longer over AWDL
and has a higher variance, as we discuss next.

High Variance of AWDL Transmission Delays. We no-
ticed a high variance of the transmission delays over AWDL
compared to the cable connection (cf. App. A). This effect
can be explained by AWDL’s channel allocation mechanism.
AWDL initially allocates few time slots for transmissions,
i.e., little bandwidth is available, and then dynamically allo-
cates more if there is load on the Wi-Fi interface [90]. Thus,
initial Wi-Fi transmissions are deferred to the next available
time slot, resulting in uncontrollable delays in the order of
one second, which is the length of an AWDL period. The
increase of available bandwidth over time also explains why
the median transmission delay of the first message (StartPSI)
is significantly larger than the second one (FinishPSI).

6.5 Precomputation
While online performance is most crucial for user experience,
the precomputation of the encrypted address book entries u j
must also be manageable on mobile devices. Therefore, we
evaluate the runtime of calculating the values u j during the
precomputation phase (cf. Fig. 4). As the runtime linearly
depends on n (cf. § 4.6), we run a linear regression on the
results from an iPhone 12 to approximate the runtime as n×
0.331ms. We provide the raw results in App. B. We see that
even for large address books (n = 10k), the single-threaded
precomputation takes only 3.31 s. To save battery, mobile
devices could defer the precomputations to times when they
are charging, e.g., overnight.

7 Related Work
We survey closely related works for private mutual authenti-
cation, complete our overview of available PSI protocols in
addition to our selection process described in § 4.3, review fur-
ther secure computation techniques, and discuss other privacy
leaks in Apple’s wireless ecosystem.

7.1 Private Mutual Authentication
The most closely related work to ours is [96]. The authors
devise a mutual authentication protocol similar to [3, 4, 54],
but geared towards various discovery services, including the
contacts-only mode of Apple AirDrop. Utilizing identity-
based encryption (IBE) [19], the AirDrop sender distributes
encryptions of its identity under a certain “authorization pol-
icy”. This policy states that only the contacts of this party
can decrypt the identity. The authors also implement and
benchmark their approach. On a Nexus 5X smartphone, the
private authentication takes 360.4 ms.

First of all, the work of [96] mainly targets a different
privacy issue in AirDrop, namely the information leakage
caused by exchanging the certificates for establishing the TLS
connection, which leaks information even to nearby passive
adversaries. However, the authors operate under the assump-
tion that these certificates contain the device owner’s identity
in the clear and are actually used for verifying that sender and
receiver are mutual contacts. As recently shown in [92], this
is not how AirDrop is currently implemented: the certificates
contain only an account-specific UUID while the contact
check takes place after the TLS connection is established by
exchanging hash values of contact identifiers.

Another conceptual disadvantage of [96] is that Apple,
as the IBE root, must provision secret keys to all AirDrop
devices, whereas we only require Apple to sign encryptions
of hashed contact identifiers where the key can be chosen by
the client. Moreover, the system proposed in [96] does not
consider subtle issues related to everyday use cases, e.g., how
to handle transfers of phone numbers. This would require
additional effort to extend the employed IBE scheme with
efficient revocation capabilities [18].

In terms of implementation and evaluation, we provide an
actual integration into the AirDrop protocol with prototypes
on various state-of-the-art Apple devices and demonstrate
practical performance under real-world conditions.

7.2 Private Set Intersection
The study of PSI protocols is a very active field of research
with various optimizations for different use cases. The “stan-
dard” scenario is two-party PSI with balanced input sets and
security against semi-honest adversaries, who honestly follow
the protocol but try to learn additional information from the
transcript. Here, works based on oblivious transfer [60, 76,
79, 80] define the state-of-the-art in terms of concrete per-
formance, while others consider the cost-efficiency in cloud
deployment as the most relevant metric [75]. There have been
attempts to translate these works to the malicious model [83,
84] with a recent efficiency break-through [74].

PSI was also studied in the multi-party case [43, 50, 61] and
extended to generic protocols that can compute an arbitrary
symmetric function on top of the intersection [29, 77, 78].

As discussed in § 4.3, most closely related to the problem
studied in our work are so-called unbalanced PSI protocols
that work particularly well when one of the input sets is much
larger than the other [26, 27, 55, 59, 82]. Chen et al. [26,
27] present protocols based on fully homomorphic encryption
that are very computation intensive and thus not suitable to be
run between two mobile devices. Kiss et al. [59] and Kales
et al. [55] optimize protocols based on oblivious pseudoran-
dom function evaluations for the mobile use case, especially
so-called mobile contact discovery to privately synchronize
address books with user databases in messaging applications.
However, these protocols, in the best case, only consider
security against malicious PSI receivers but not senders.

USENIX Association 30th USENIX Security Symposium 3589

There also exist approaches that efficiently outsource PSI
computations to a third-party server [1, 2, 56, 57, 99]. How-
ever, such protocols are not suitable for our use case since the
input parties might be both offline.

Finally, we observe that purely public key-based Diffie-
Hellman-style protocols [13, 31, 33, 52, 53, 82], as have been
around since the 80’s [67, 87], are viable alternatives given
the requirements and specified input sizes. Specifically, [31]
and [53] are suitable candidates as they are secure against
malicious adversaries. We base our work on [53] as it re-
quires fewer exponentiations than the RSA-based protocol
of [31] and can be instantiated more efficiently with ellip-
tic curve cryptography. As described in § 4.5, we augment
this protocol with signed inputs to prevent certain attacks on
the ideal functionality of PSI, similar to the notion of autho-
rized PSI (APSI) [31, 33] and PSI with certified sets [21].

7.3 Secure Computation Protocols

There exist further generic and specialized cryptographic pro-
tocols to securely perform the operations necessary for mu-
tual authentication. We efficiently achieve this via PSI in two
rounds with O(m+n) complexity (cf. § 4).

Secure two-party computation protocols proposed
by Yao [97] and Goldreich, Micali, and Wigderson [40] can
obliviously evaluate arbitrary Boolean or arithmetic circuits
over private inputs. However, a naive circuit for performing
equality tests on m contact identifiers and n address book
entries has complexity O(m · n). This complexity can be
reduced to be linear with hashing techniques known from
so-called circuit-based PSI [29, 76, 77, 78]. Unfortunately,
such hashing techniques are incompatible with malicious
security [74], which otherwise can be guaranteed with generic
approaches [62, 72, 95] at the cost of additional overhead.
Furthermore, it is unclear how to efficiently authenticate the
contact identifiers used as inputs. There also exist specialized
protocols for securely performing comparisons/equality
checks (e.g., [30, 64, 98]).

The task of computing the intersection between two
sets can be equivalently formulated as the receiver query-
ing/searching the sender’s database on its inputs to test for
set membership. This can be done while hiding the query
and without transferring the entire database via private in-
formation retrieval (PIR). While there exists efficient multi-
server PIR [28, 36], we consider a two-party setting and hence
a single server. State-of-the-art single-server PIR is based
on homomorphic encryption [39, 58, 63], which is computa-
tionally too demanding for mobile devices. Moreover, PIR
does not necessarily protect unrelated database entries, which
in our case should remain private. This setting is addressed
by works that allow (complex) search queries on encrypted
data [38]. Unfortunately, such systems inherently suffer from
a certain leakage and have been prone to attacks [17, 23, 70].

7.4 Privacy of Apple’s Wireless Ecosystem
AirDrop is part of Apple’s larger wireless ecosystem, which
has been analyzed for privacy leaks before. AWDL was found
to leak personally identifiable information such as the user’s
real name [92]. Several works [14, 24, 65] have analyzed Ap-
ple’s Bluetooth implementation and found various ways of
tracking devices via static identifiers in Bluetooth advertise-
ments. Finally, [88] discovered that Apple devices can be
tracked via identifiers that are randomized asynchronously.

8 Conclusion
In this paper, we solved the problem of privacy-preserving
authentication between offline peers, based on the notion of
being mutual contacts. We demonstrated the practicability
of our approach via a comprehensive experimental perfor-
mance evaluation, which attests negligible overhead under
real-world conditions. We motivated our work with two dis-
tinct design flaws in AirDrop that allow attackers to learn
the phone numbers and email addresses of both sender and
receiver devices. However, our proposed protocol can sup-
port other applications, even outside of Apple’s ecosystem.
For example, Google recently launched a similar platform
called “Nearby” for Android [41, 86], where device visibility
can be restricted to the user’s contacts and thus would benefit
from our protocol for privacy-preserving authentication.

Our proposed solution PrivateDrop prevents users from
disclosing personal information to non-contacts. Still, users
remain trackable via their account-specific UUID in the TLS
certificate, which gives room for future work. Nevertheless,
our results demonstrate that PSI with malicious security is
ready for practical deployment, even in offline scenarios be-
tween resource-constrained mobile devices. We would be
glad to see our open-source implementation being adopted in
end-user systems such as AirDrop.

Responsible Disclosure
We informed the Apple Product Security team about our find-
ings (follow-up ID 705937802): We disclosed the sender
identifier leakage (cf. § 3.3) in May 2019 and the receiver
identifier leakage (cf. § 3.4) as well as our proposed PSI-
based protocol (cf. § 4) in October 2020. Apple has not yet
commented if they plan to address these AirDrop issues.

Availability
We open-source our PrivateDrop implementation [45] and
the code to reproduce our figures [44] as part of the Open
Wireless Link project [91].

Acknowledgments
We thank the anonymous reviewers and our shepherd Wouter
Lueks for their valuable comments, Benny Pinkas and
Gowri R Chandran for insightful discussions, Oliver Schick
for help with Relic, and Nanako Honda for explorative work.

3590 30th USENIX Security Symposium USENIX Association

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement
No. 850990 PSOTI). It was co-funded by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 CROSS-
ING/236615297 and GRK 2050 Privacy & Trust/251805230,
by the LOEWE initiative (Hesse, Germany) within the emer-
genCITY center, by the German Federal Ministry of Educa-
tion and Research and the Hessian State Ministry for Higher
Education, Research and the Arts within ATHENE.

References
[1] Aydin Abadi, Sotirios Terzis, and Changyu Dong. “VD-PSI:

Verifiable Delegated Private Set Intersection on Outsourced
Private Datasets”. In: FC. Springer, 2016, pp. 149–168.

[2] Aydin Abadi, Sotirios Terzis, Roberto Metere, and Changyu
Dong. “Efficient Delegated Private Set Intersection on Out-
sourced Private Datasets”. In: TDSC 16.4 (2019), pp. 608–
624.

[3] Martín Abadi. “Private Authentication”. In: Privacy Enhanc-
ing Technologies. Springer, 2002, pp. 27–40.

[4] Martín Abadi and Cédric Fournet. “Private Authentication”.
In: Theor. Comput. Sci. 322.3 (2004), pp. 427–476.

[5] Apple Inc. Apple Reports Record First Quarter Results.
Jan. 28, 2020. URL: https://www.apple.com/newsroom/
2020 / 01 / apple - reports - record - first - quarter -
results/ (visited on 10/15/2020).

[6] Apple Inc. Cryptographic Message Syntax Services. 2020.
URL: https://developer.apple.com/documentation/
security/cryptographic_message_syntax_services
(visited on 10/15/2020).

[7] Apple Inc. CryptoKit. 2020. URL: https://developer.
apple . com / documentation / cryptokit (visited on
10/15/2020).

[8] Apple Inc. NetService. 2020. URL: https://developer.
apple.com/documentation/foundation/netservice
(visited on 10/15/2020).

[9] Apple Inc. SwiftNIO. 2020. URL: https://github.com/
apple/swift-nio (visited on 10/15/2020).

[10] Apple Inc. Use AirDrop on your iPhone, iPad, or iPod touch.
Oct. 2019. URL: https://support.apple.com/en-
us/HT204144 (visited on 10/15/2020).

[11] Diego F. Aranha, Conrado P. L. Gouvêa, Tobias Markmann,
Riad S. Wahby, and Kevin Liao. RELIC is an Efficient LI-
brary for Cryptography. URL: https://github.com/
relic-toolkit/relic (visited on 10/15/2020).

[12] N. Asokan, Alexandra Dmitrienko, Marcin Nagy, Elena
Reshetova, Ahmad-Reza Sadeghi, Thomas Schneider, and
Stanislaus Stelle. “CrowdShare: Secure Mobile Resource
Sharing”. In: ACNS. Springer, 2013, pp. 432–440.

[13] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo
Gasti, and Gene Tsudik. “Countering GATTACA: Efficient
and Secure Testing of Fully-Sequenced Human Genomes”.
In: CCS. ACM, 2011, pp. 691–702.

[14] Johannes K. Becker, David Li, and David Starobinski.
“Tracking Anonymized Bluetooth Devices”. In: PoPETs
2019.3 (2019), pp. 50–65.

[15] Ryad Benadjila, Arnaud Ebalard, and Jean-Pierre Flori.
libecc Project. URL: https://github.com/ANSSI-FR/
libecc (visited on 10/15/2020).

[16] David Bernhard, Olivier Pereira, and Bogdan Warinschi.
“How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios”. In: ASIACRYPT.
Springer, 2012, pp. 626–643.

[17] Laura Blackstone, Seny Kamara, and Tarik Moataz. “Revis-
iting Leakage Abuse Attacks”. In: NDSS. Internet Society,
2020.

[18] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar.
“Identity-based Encryption with Efficient Revocation”. In:
CCS. ACM, 2008, pp. 417–426.

[19] Dan Boneh and Matthew K. Franklin. “Identity-Based En-
cryption from the Weil Pairing”. In: CRYPTO. Springer,
2001, pp. 213–229.

[20] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and Dan
Boneh. “OpenConflict: Preventing Real Time Map Hacks in
Online Games”. In: S&P. IEEE, 2011, pp. 506–520.

[21] Jan Camenisch and Gregory M. Zaverucha. “Private Inter-
section of Certified Sets”. In: FC. Springer, 2009, pp. 108–
127.

[22] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay.
“The Information Visualizer, an Information Workspace”. In:
CHI. ACM, 1991, pp. 181–186.

[23] David Cash, Paul Grubbs, Jason Perry, and Thomas Risten-
part. “Leakage-Abuse Attacks Against Searchable Encryp-
tion”. In: CCS. ACM, 2015, pp. 668–679.

[24] Guillaume Celosia and Mathieu Cunche. “Discontinued Pri-
vacy: Personal Data Leaks in Apple Bluetooth-Low-Energy
Continuity Protocols”. In: PoPETs 2020.1 (2020), pp. 26–46.

[25] Dmitry Chastuhin. Apple Bleee: Everyone Knows What Hap-
pens on Your iPhone. July 25, 2019. URL: https://hexway.
io/research/apple-bleee/ (visited on 10/15/2020).

[26] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
“Labeled PSI from Fully Homomorphic Encryption with Ma-
licious Security”. In: CCS. ACM, 2018, pp. 1223–1237.

[27] Hao Chen, Kim Laine, and Peter Rindal. “Fast Private Set In-
tersection from Homomorphic Encryption”. In: CCS. ACM,
2017, pp. 1243–1255.

[28] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. “Private Information Retrieval”. In: FOCS. IEEE,
1995, pp. 41–50.

[29] Michele Ciampi and Claudio Orlandi. “Combining Private
Set-Intersection with Secure Two-Party Computation”. In:
SCN. Springer, 2018, pp. 464–482.

[30] Geoffroy Couteau. “New Protocols for Secure Equality Test
and Comparison”. In: ACNS. Springer, 2018, pp. 303–320.

USENIX Association 30th USENIX Security Symposium 3591

https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://www.apple.com/newsroom/2020/01/apple-reports-record-first-quarter-results/
https://developer.apple.com/documentation/security/cryptographic_message_syntax_services
https://developer.apple.com/documentation/security/cryptographic_message_syntax_services
https://developer.apple.com/documentation/cryptokit
https://developer.apple.com/documentation/cryptokit
https://developer.apple.com/documentation/foundation/netservice
https://developer.apple.com/documentation/foundation/netservice
https://github.com/apple/swift-nio
https://github.com/apple/swift-nio
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT204144
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/ANSSI-FR/libecc
https://github.com/ANSSI-FR/libecc
https://hexway.io/research/apple-bleee/
https://hexway.io/research/apple-bleee/

[31] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik.
“Linear-Complexity Private Set Intersection Protocols Se-
cure in Malicious Model”. In: ASIACRYPT. Springer, 2010,
pp. 213–231.

[32] Emiliano De Cristofaro, Mark Manulis, and Bertram Poet-
tering. “Private Discovery of Common Social Contacts”. In:
ACNS. Springer, 2011, pp. 147–165.

[33] Emiliano De Cristofaro and Gene Tsudik. “Practical Private
Set Intersection Protocols with Linear Complexity”. In: FC.
Springer, 2010, pp. 143–159.

[34] Datafinder. Recover Encrypted Email Addresses. 2020. URL:
https : / / web . archive . org / web / 20191211152224 /
https://datafinder.com/products/email-recovery
(visited on 10/15/2020).

[35] Levent Demir, Amrit Kumar, Mathieu Cunche, and Cédric
Lauradoux. “The Pitfalls of Hashing for Privacy”. In: Com-
mun. Surv. Tutorials 20.1 (2018), pp. 551–565.

[36] Daniel Demmler, Amir Herzberg, and Thomas Schneider.
“RAID-PIR: Practical Multi-Server PIR”. In: CCSW. ACM,
2014, pp. 45–56.

[37] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems”. In:
CRYPTO. Springer, 1986, pp. 186–194.

[38] Benjamin Fuller, Mayank Varia, Arkady Yerand Emily Shen,
Ariel Hamlin, Vijay Gadepally, Richard Shay, John Darby
Mitchell, and Robert K. Cunningham. “SoK: Cryptograph-
ically Protected Database Search”. In: S&P. IEEE, 2017,
pp. 172–191.

[39] Craig Gentry and Shai Halevi. “Compressible FHE with
Applications to PIR”. In: TCC. Springer, 2019, pp. 438–464.

[40] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How
to Play any Mental Game or A Completeness Theorem for
Protocols with Honest Majority”. In: STOC. ACM, 1987,
pp. 218–229.

[41] Google Developers. Nearby - A platform for discovering
and communicating with nearby devices. URL: https://
developers.google.com/nearby (visited on 10/15/2020).

[42] Christoph Hagen, Christian Weinert, Christoph Sendner,
Alexandra Dmitrienko, and Thomas Schneider. “All the
Numbers are US: Large-scale Abuse of Contact Discovery in
Mobile Messengers”. In: NDSS. Internet Society, 2021.

[43] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam.
“Scalable Multi-party Private Set-Intersection”. In: PKC.
Springer, 2017, pp. 175–203.

[44] Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert. PrivateDrop Evaluation.
URL: https://github.com/seemoo-lab/privatedrop-
evaluation.

[45] Alexander Heinrich, Matthias Hollick, Thomas Schneider,
Milan Stute, and Christian Weinert. PrivateDrop Imple-
mentation. URL: https://github.com/seemoo- lab/
privatedrop.

[46] Alexander Heinrich and Milan Stute. OpenDrop: an Open
Source AirDrop Implementation. URL: https://github.
com/seemoo-lab/opendrop (visited on 10/15/2020).

[47] Russell Housley. “Cryptographic Message Syntax (CMS)”.
In: RFC 5652 (Sept. 2009). DOI: 10.17487/RFC5652.

[48] Troy Hunt. Have I Been Pwned. URL: https : / /
haveibeenpwned.com (visited on 10/15/2020).

[49] Kent Ickler. Hashcat Benchmarks for Nvidia GTX 1080TI.
June 20, 2017. URL: https://www.blackhillsinfosec.
com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-
1070-hashcat-benchmarks/ (visited on 10/15/2020).

[50] Roi Inbar, Eran Omri, and Benny Pinkas. “Efficient Scal-
able Multiparty Private Set-Intersection via Garbled Bloom
Filters”. In: SCN. Springer, 2018, pp. 235–252.

[51] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Pa-
tel, Mariana Raykova, Shobhit Saxena, Karn Seth, David
Shanahan, and Moti Yung. “On Deploying Secure Comput-
ing: Private Intersection-Sum-with-Cardinality Protocols”.
In: EuroS&P. IEEE, 2020.

[52] Stanislaw Jarecki and Xiaomin Liu. “Efficient Oblivious
Pseudorandom Function with Applications to Adaptive OT
and Secure Computation of Set Intersection”. In: TCC.
Springer, 2009, pp. 577–594.

[53] Stanislaw Jarecki and Xiaomin Liu. “Fast Secure Computa-
tion of Set Intersection”. In: SCN. Springer, 2010, pp. 418–
435.

[54] Stanislaw Jarecki and Xiaomin Liu. “Private Mutual Authen-
tication and Conditional Oblivious Transfer”. In: CRYPTO.
Springer, 2009, pp. 90–107.

[55] Daniel Kales, Christian Rechberger, Thomas Schneider,
Matthias Senker, and Christian Weinert. “Mobile Private
Contact Discovery at Scale”. In: USENIX Security. USENIX
Association, 2019, pp. 1447–1464.

[56] Seny Kamara, Payman Mohassel, Mariana Raykova, and
Seyed Saeed Sadeghian. “Scaling Private Set Intersection to
Billion-Element Sets”. In: FC. Springer, 2014, pp. 195–215.

[57] Florian Kerschbaum. “Outsourced Private Set Intersection
Using Homomorphic Encryption”. In: AsiaCCS. ACM, 2012,
pp. 85–86.

[58] Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna
Pavlyk, and Qiang Tang. “Optimal Rate Private Informa-
tion Retrieval from Homomorphic Encryption”. In: PoPETs
2015.2 (2015), pp. 222–243.

[59] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and
Benny Pinkas. “Private Set Intersection for Unequal Set
Sizes with Mobile Applications”. In: PoPETs 2017.4 (2017),
pp. 177–197.

[60] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. “Efficient Batched Oblivious PRF with Applica-
tions to Private Set Intersection”. In: CCS. ACM, 2016,
pp. 818–829.

[61] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike
Rosulek, and Ni Trieu. “Practical Multi-party Private Set
Intersection from Symmetric-Key Techniques”. In: CCS.
ACM, 2017, pp. 1257–1272.

3592 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://web.archive.org/web/20191211152224/https://datafinder.com/products/email-recovery
https://developers.google.com/nearby
https://developers.google.com/nearby
https://github.com/seemoo-lab/privatedrop-evaluation
https://github.com/seemoo-lab/privatedrop-evaluation
https://github.com/seemoo-lab/privatedrop
https://github.com/seemoo-lab/privatedrop
https://github.com/seemoo-lab/opendrop
https://github.com/seemoo-lab/opendrop
https://doi.org/10.17487/RFC5652
https://haveibeenpwned.com
https://haveibeenpwned.com
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/
https://www.blackhillsinfosec.com/hashcat-benchmarks-nvidia-gtx-1080ti-gtx-1070-hashcat-benchmarks/

[62] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for
Malicious and Covert Adversaries”. In: CRYPTO. Springer,
2013, pp. 1–17.

[63] Helger Lipmaa and Kateryna Pavlyk. “A Simpler Rate-
Optimal CPIR Protocol”. In: FC. Springer, 2017, pp. 621–
638.

[64] Helger Lipmaa and Tomas Toft. “Secure Equality and
Greater-Than Tests with Sublinear Online Complexity”. In:
ICALP. Springer, 2013, pp. 645–656.

[65] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, La-
mont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry,
Erik C. Rye, Brandon Sipes, and Sam Teplov. “Handoff All
Your Privacy - A Review of Apple’s Bluetooth Low Energy
Continuity Protocol”. In: PoPETs 2019.4 (2019), pp. 34–53.

[66] Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximil-
ian Blochberger, and Hannes Federrath. “Hashing of Person-
ally Identifiable Information is not Sufficient”. In: Sicherheit.
Vol. P-281. LNI. GI e.V., 2018, pp. 55–68.

[67] Catherine A. Meadows. “A More Efficient Cryptographic
Matchmaking Protocol for Use in the Absence of a Continu-
ously Available Third Party”. In: S&P. IEEE, 1986, pp. 134–
137.

[68] MIRACL UK Ltd. MIRACL – Multiprecision Integer and
Rational Arithmetic Cryptographic Library. URL: https:
//github.com/miracl/MIRACL (visited on 10/15/2020).

[69] National Institute of Standards and Technology. Secure Hash
Standard (SHS). Tech. rep. Aug. 2015.

[70] Muhammad Naveed, Seny Kamara, and Charles V.
Wright. “Inference Attacks on Property-Preserving En-
crypted Databases”. In: CCS. ACM, 2015, pp. 644–655.

[71] OpenSSL Software Foundation. OpenSSL: Cryptography
and SSL/TLS Toolkit. URL: https://www.openssl.org
(visited on 10/15/2020).

[72] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren.
“Overdrive2k: Efficient Secure MPC over Z2k from Some-
what Homomorphic Encryption”. In: CT-RSA. Springer,
2020, pp. 254–283.

[73] Daniel Pigatto, Natassya Silva, and Kalinka Castelo Branco.
“Performance Evaluation and Comparison of Algorithms for
Elliptic Curve Cryptography with El-Gamal based on MIR-
ACL and RELIC Libraries”. In: Journal of Applied Comput-
ing Research 112 (2011).

[74] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
“PSI from PaXoS: Fast, Malicious Private Set Intersection”.
In: EUROCRYPT. Springer, 2020, pp. 739–767.

[75] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
“SpOT-Light: Lightweight Private Set Intersection from
Sparse OT Extension”. In: CRYPTO. Springer, 2019,
pp. 401–431.

[76] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael
Zohner. “Phasing: Private Set Intersection Using
Permutation-based Hashing”. In: USENIX Security. USENIX
Association, 2015, pp. 515–530.

[77] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko,
and Avishay Yanai. “Efficient Circuit-Based PSI with Lin-
ear Communication”. In: EUROCRYPT. Springer, 2019,
pp. 122–153.

[78] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. “Efficient Circuit-Based PSI via Cuckoo Hashing”.
In: EUROCRYPT. Springer, 2018, pp. 125–157.

[79] Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Faster Private Set Intersection Based on OT Extension”. In:
USENIX Security. USENIX Association, 2014, pp. 797–812.

[80] Benny Pinkas, Thomas Schneider, and Michael Zohner.
“Scalable Private Set Intersection Based on OT Extension”.
In: TOPS 21.2 (2018), 7:1–7:35.

[81] Lucian Popa, Bogdan Groza, and Pal-Stefan Murvay. “Perfor-
mance Evaluation of Elliptic Curve Libraries on Automotive-
Grade Microcontrollers”. In: ARES. ACM, 2019, 100:1–
100:7.

[82] Amanda C. Davi Resende and Diego F. Aranha. “Faster
Unbalanced Private Set Intersection”. In: FC. Springer,
2018, pp. 203–221.

[83] Peter Rindal and Mike Rosulek. “Improved Private Set Inter-
section Against Malicious Adversaries”. In: EUROCRYPT.
Springer, 2017, pp. 235–259.

[84] Peter Rindal and Mike Rosulek. “Malicious-Secure Private
Set Intersection via Dual Execution”. In: CCS. ACM, 2017,
pp. 1229–1242.

[85] Claus-Peter Schnorr. “Efficient Identification and Signatures
for Smart Cards”. In: CRYPTO. Springer, 1989, pp. 239–
252.

[86] Daniel Marcos Schwaycer. Instantly share files with people
around you with Nearby Share. Aug. 2020. URL: https:
//blog.google/products/android/nearby- share/
(visited on 10/15/2020).

[87] Adi Shamir. “On the Power of Commutativity in Cryptogra-
phy”. In: ICALP. Springer, 1980, pp. 582–595.

[88] Milan Stute, Alexander Heinrich, Jannik Lorenz, and
Matthias Hollick. “Disrupting Continuity of Apple’s Wireless
Ecosystem Security: New Tracking, DoS, and MitM Attacks
on iOS and macOS Through Bluetooth Low Energy, AWDL,
and Wi-Fi”. In: USENIX Security. To appear. USENIX
Association, 2021.

[89] Milan Stute, David Kreitschmann, and Matthias Hollick.
“Linux Goes Apple Picking: Cross-Platform Ad hoc Com-
munication with Apple Wireless Direct Link”. In: MobiCom.
ACM, 2018, pp. 820–822.

[90] Milan Stute, David Kreitschmann, and Matthias Hollick.
“One Billion Apples’ Secret Sauce: Recipe for the Apple
Wireless Direct Link Ad hoc Protocol”. In: MobiCom. ACM,
2018, pp. 529–543.

[91] Milan Stute, David Kreitschmann, and Matthias Hollick. The
Open Wireless Link Project. 2018. URL: https://owlink.
org.

USENIX Association 30th USENIX Security Symposium 3593

https://github.com/miracl/MIRACL
https://github.com/miracl/MIRACL
https://www.openssl.org
https://blog.google/products/android/nearby-share/
https://blog.google/products/android/nearby-share/
https://owlink.org
https://owlink.org

[92] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Hein-
rich, David Kreitschmann, Guevara Noubir, and Matthias
Hollick. “A Billion Open Interfaces for Eve and Mal-
lory: MitM, DoS, and Tracking Attacks on iOS and macOS
Through Apple Wireless Direct Link”. In: USENIX Security.
USENIX Association, 2019, pp. 37–54.

[93] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghu-
nathan, Patrick Gage Kelley, Luca Invernizzi, Borbala
Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie
Bursztein. “Protecting accounts from credential stuffing with
password breach alerting”. In: USENIX Security. USENIX
Association, 2019, pp. 1556–1571.

[94] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and
Dawn Song. “Epione: Lightweight Contact Tracing with
Strong Privacy”. In: Data Eng. Bull. 43.2 (2020), pp. 95–
107.

[95] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authen-
ticated Garbling and Efficient Maliciously Secure Two-Party
Computation”. In: CCS. ACM, 2017, pp. 21–37.

[96] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh.
“Privacy, Discovery, and Authentication for the Internet of
Things”. In: ESORICS. Springer, 2016, pp. 301–319.

[97] Andrew Chi-Chih Yao. “How to Generate and Exchange
Secrets”. In: FOCS. IEEE, 1986, pp. 162–167.

[98] Ching-Hua Yu and Bo-Yin Yang. “Probabilistically Cor-
rect Secure Arithmetic Computation for Modular Conversion,
Zero Test, Comparison, MOD and Exponentiation”. In: SCN.
Springer, 2012, pp. 426–444.

[99] Qingji Zheng and Shouhuai Xu. “Verifiable Delegated Set
Intersection Operations on Outsourced Encrypted Data”. In:
IC2E. IEEE, 2015, pp. 175–184.

A Authentication Delay over AWDL
Fig. 9 shows the high variance of the authentication delay
of PrivateDrop over the AWDL interface. The lower and
upper error bars indicate the 0.05 and 0.95 quantiles, respec-
tively. Still, the median authentication delay for PrivateDrop
lies within 500 ms and 1 500 ms, depending on (m,n).

100 1000 5000 10000 15000
Number of address book entries n

0

500

1000

1500

A
ut

he
nt

ic
at

io
n

de
la

y
[m

s]

Number of identifiers m
1 10 20

AirDrop baseline (median)

Figure 9: Overall authentication delay for AirDrop (base-
line) and PrivateDrop with different set sizes (m,n) (MacBook
Pro 2019 → iPhone 12 via AWDL).

B PSI Precomputation
Fig. 10 shows the runtime of the PSI precomputation required
for calculating ui (cf. precomputation phase in Fig. 4) on
an iPhone 12. Even with a large address book (n = 15000),
the computation time does not exceed 5 s, which is very man-
ageable for a mobile device that charges overnight.

100 1000 5000 10000 15000
Number of address book entries n

0

2

4

Pr
ec

om
pu

ta
tio

n
tim

e
[s

]

Figure 10: Runtime of PSI precomputation on an iPhone 12.

C Performance Comparison with Apple’s
AirDrop Implementation

We benchmark our base AirDrop implementation against Ap-
ple’s original one. To evaluate Apple’s implementation, we
leverage the system logging facility of macOS (cf. [88]) that
produces debug output for AirDrop and provides logs verbose
enough to distinguish the authentication phase. We calcu-
late the authentication delay as the timestamp difference of
the entries indicating the start and end of the authentication
phase. We provide the details in our evaluation repository [44].
We use the same hardware configuration and environment as
described in § 6.2. We open the sharing pane on the Mac-
Book Pro and manually wake up the iPhone 12 by tapping on
the screen. We repeat this process 100 times and report on
the results in Fig. 11 as an empirical cumulative distribution
function. The results show that the best-case performance of
our implementation is similar to the original one. The high
variance of the delay can be attributed to the initialization
behavior of AWDL (cf. § 6.4).

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative probability

500

1000

1500

A
ut

h.
de

la
y

[m
s]

Our AirDrop impl.
Apple’s AirDrop impl.

Figure 11: Authentication delay of our AirDrop implementation
and Apple’s (MacBook Pro 2019 → iPhone 12 via AWDL).

3594 30th USENIX Security Symposium USENIX Association

	Introduction
	Background: Apple AirDrop
	Contact Identifiers and the Address Book
	Device Discoverability
	Full Protocol Workflow
	Mutual Authentication

	Contact Identifier Leakage in AirDrop
	Threat Model
	Recovering Hashed Contact Identifiers
	Contact Identifier Leakage of Sender
	Contact Identifier Leakage of Receiver

	PrivateDrop: PSI-based Mutual Authentication for AirDrop
	Requirements
	Design Options and Final Design
	Choice of PSI Protocol
	Optimizing PSI for PrivateDrop
	Countering Privacy Attacks
	Our PrivateDrop Protocol

	Implementation and Integration
	Implementation of the Base Protocol
	Implementation of the PSI Operations
	Integration with the HTTPS Handshake
	Integration with the BLE Advertisements
	Towards Replacing AirDrop

	Experimental Evaluation
	Evaluation Metrics
	Experimental Setup
	Authentication Delay
	Networking Delay
	Precomputation

	Related Work
	Private Mutual Authentication
	Private Set Intersection
	Secure Computation Protocols
	Privacy of Apple's Wireless Ecosystem

	Conclusion
	Authentication Delay over AWDL
	PSI Precomputation
	Performance Comparison with Apple's AirDrop Implementation

