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Abstract
Compacting garbage collection (compact-gc) is a method that
improves memory utilization and reduces memory fragmenta-
tion by rearranging live objects and updating their references
using an address table. A critical use-after-free bug may exist
if an object reference that is not registered in the address table
is used after compact-gc, as the live object may be moved but
the reference will not be updated after compact-gc. We refer
to this as a use-after-compact-gc (use-after-cgc) bug. Prior
tools have attempted to statically detect these bugs with target-
specific heuristics. However, due to their path-insensitive anal-
ysis and imprecise target-specific heuristics, they have high
false-positives and false-negatives.

In this paper, we present a precise and scalable static ana-
lyzer, named CGSan, for finding use-after-cgc bugs. CGSan
detects use-after-cgc bug candidates by intra-procedural static
symbolic taint analysis and checks their feasibility by under-
constrained directed symbolic execution. To mitigate the in-
completeness of intra-procedural analysis, we employ a type-
based taint policy. For scalability, we propose using directed
inter-procedural control-flow graphs, which reduce search
spaces by excluding paths irrelevant to checking feasibility,
and directed scheduling, which prioritizes paths to quickly
check feasibility. We evaluated CGSan on Google V8 and
Mozilla SpiderMonkey, and we found 13 unique use-after-cgc
bugs with only 2 false-positives while two prior tools missed
10 bugs and had 34 false-positives in total.

1 Introduction

Garbage collection [30] automatically finds and reclaims dead
memory objects that are no longer used in the program execu-
tion. This feature makes garbage collection an essential part
of modern memory management. Virtual machines and inter-
preters, such as Microsoft Common Language Runtime and
JavaScript (JS) engines, apply garbage collection to determine
when memory objects should be freed at runtime because the
systems are too complex to specify where memory objects
should be disposed in the source code.

1 void InterpretedFrame::Summarize(...) const {
2 ...
3 // define an unrooted pointer, `code`.
4 AbstractCode code = AbstractCode::cast(GetBytecodeArray());
5 // `GetParameters` triggers a GC.
6 Handle<FixedArray> params = GetParameters();
7 // the moved `code` is used as a function argument.
8 FrameSummary::JavaScriptFrameSummary summary(
9 isolate(), receiver(), function(), code,

10 GetBytecodeOffset(), IsConstructor(), *params);
11 ...
12 }

Figure 1: A code snippet in Google V8 triggers a use-after-cgc
bug assigned to CVE-2019-13696 [22].

One of the most popular garbage collection variants is
compacting garbage collection (compact-gc) [7, 11, 15] for
efficient memory management. The primary cause of wasted
memory is the presence of holes after memory objects are
freed, known as memory fragmentation. If future memory al-
locations are larger than the existing holes, additional memory
must be allocated and the memory holes remain unused. To
resolve this issue, compact-gc rearranges live objects, which
are still in use, and updates their references, so that the mem-
ory holes can be compacted into larger areas of free memory.
For the update process, it manages an address table containing
memory addresses where the references are stored. We call
the references registered in the table rooted pointers.

Compact-gc introduces a new type of use-after-free bugs
if an unrooted pointer, which is not registered in the address
table, is used after compact-gc. It is well-known that if an un-
rooted pointer refers to a dead object, it becomes a dangling
pointer after compact-gc. But also, if an unrooted pointer
refers to a live object and the live object is moved after
compact-gc, the unrooted pointer becomes a dangling pointer
because the unrooted pointer is not updated. We call such bugs
use-after-compact-gc (use-after-cgc) bugs. Figure 1 shows
an example of use-after-cgc bugs in Google V8. First, an
unrooted pointer, code, is defined by a function call. Then,
GetParameters internally triggers compact-gc, which moves
the object in code and makes code a dangling pointer. Finally,
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code is used as an argument of JavaScriptFrameSummary
constructor, which leads to a use-after-cgc bug.

Detection of use-after-cgc bugs is an important problem be-
cause developers intentionally use unrooted pointers instead
of rooted pointers for performance reasons. Using rooted
pointers requires more memory operations than using un-
rooted pointers. When a rooted pointer is created, it is regis-
tered in the address table and it will be updated after compact-
gc. If the pointer is used only before compact-gc, it does not
need to be updated, and employing a rooted pointer is a waste
of CPU cycles. Therefore, developers use unrooted pointers
if they believe that the pointers are never used after compact-
gc. For example, Google V8 uses unrooted pointers in over
5,000 locations. This highlights the need for automatic tools
to guarantee they are safely used.

Although use-after-cgc bugs are as critical as use-after-free
bugs, there are few use-after-cgc bug detectors and they have
several limitations. For example, Google V8 and Mozilla
SpiderMonkey have static analyzers to find use-after-cgc
bugs, named gcmole [1] and rootAnalysis [2], respectively.
They focus on finding patterns of unrooted pointer defini-
tion, compact-gc, and unrooted pointer use, which we refer
to as def-cgc-use pairs. For scalability, they employ intra-
procedural and path-insensitive analysis without solving path
constraints. To mitigate their imprecision, they heuristically
silence def-cgc-use pairs that developers mark as safe, which
are target-specific and can be incorrect. Hence, their methods
are scalable but not general and have high false-positives and
false-negatives (see §2.3).

While it is possible to apply general bug finding methods,
like fuzzing [19] and symbolic execution [14,34], or previous
use-after-free bug detection methods [5, 32, 33] to find use-
after-cgc bugs, these cannot be both precise and scalable at
the same time in practice. In particular, garbage collection is
usually executed when the size of the managed heap is over
a threshold. It thus may require many memory allocations to
trigger the garbage collection. This makes fuzzing slow and
symbolic execution not applicable because path constraints do
not include any condition for the threshold. Previous use-after-
free bug detectors employ pointer analysis to find use-free
pairs. However, in programs using garbage collection, free
operations are centralized in garbage collection functions and
memory objects are only freed when they are dead. It requires
a context-sensitive analysis, which is not scalable in practice,
to figure out when the garbage collection functions free each
pointer. Additionally, pointer analysis is difficult to be simul-
taneously precise and scalable for complex programs with
garbage collection because there are too many pointers to
analyze. Brown et al. [8] found use-after-free bugs caused by
garbage collection in JS bindings with an incomplete source
code parser, which focused on portions relevant to what they
want to check. The imprecise parsing made the analysis scal-
able but path-insensitive and incomplete, which can lead to
high false-positives and false-negatives.

In this paper, we propose a precise and scalable detection
method of use-after-cgc bugs. At a high level, we find def-cgc-
use pairs, which are use-after-cgc bug candidates, using data-
flow analysis. We then automatically check their feasibilities
with directed symbolic execution [4, 12, 18].

While the high-level idea is intuitive, there are two chal-
lenges to be both precise and scalable at the same time. (1)
Traditional data-flow analysis [3] is scalable but not precise
because it only supports data propagation through variables,
not memory. (2) Directed symbolic execution is not scalable
enough to be applied to large systems like JS engines.

To cover data propagation through variables and memory at
scale for the systematic detection of def-cgc-use pairs, we em-
ploy intra-procedural static symbolic taint analysis. Symbolic
taint analysis gives us precise data-flow analysis by repre-
senting taint values with symbolic expressions, but it is not
scalable. Thus, we start the analysis from the function entry
and do not dive into the function calls, which reduces path
explosion and improves scalability. We also employ a taint
policy based on value types and call-graphs to mitigate the
imprecision of the intra-procedural analysis.

For scalable directed symbolic execution, we perform
under-constrained directed symbolic execution, which starts
from the function entry, skipping the paths from the program
entry to the function entries, similar to UC-KLEE [26]. We
also guide the directed symbolic execution based on the di-
rected inter-procedural control-flow graphs (ICFGs) to avoid
traversing paths that are irrelevant to check the feasibility of
def-cgc-use pairs. Additionally, we prioritize the traversal of
paths using the directed scheduling.

We implement a precise and scalable detection of use-after-
cgc bugs in a static analyzer, named CGSan, and apply it to
Google V8 and Mozilla SpiderMonkey. As a result, CGSan
found 13 use-after-cgc bugs, including 10 bugs that the prior
tools could not detect. And CGSan had only 2 false-positives
while prior tools had 34 false-positives in total. We also show
that the directed ICFGs and the directed scheduling improve
the scalability of the directed symbolic execution. Lastly, we
present three kinds of patches for use-after-cgc bugs based
on our study and various patches by the developers.

In summary, our main contributions are as follows:

• We propose a precise and scalable static analyzer for
use-after-cgc bug detection, called CGSan, based on
intra-procedural static symbolic taint analysis and under-
constrained directed symbolic execution.

• We present novel techniques to boost up the scalability
of the directed symbolic execution, with the directed
ICFGs and the directed scheduling.

• We evaluate CGSan on Google V8 and Mozilla Spider-
Monkey and found 13 unique bugs with only 2 false-
positives.

• We make our source code public to support open-science:
https://github.com/DaramG/CGSan.
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2 Background

In this section, we review how a compacting garbage collec-
tion manages memory objects. We then introduce a definition
of a use-after-cgc bug with simple examples and explain how
prior tools detect use-after-cgc bugs and show their limita-
tions. Lastly, we describe symbolic taint analysis and directed
symbolic execution, which are the basis of our techniques for
finding use-after-cgc bugs.

2.1 Compacting Garbage Collection

Compacting garbage collection (compact-gc) [7, 11, 15] is
an optimized garbage collection that solves the memory frag-
mentation problem. Due to its memory efficiency, many sys-
tems, including Java Virtual Machine, Microsoft Common
Language Runtime, and some JS engines employ compact-gc.
Thus, these systems may have potential use-after-cgc bugs.

Compact-gc is usually located within the memory allocator
and is explicitly triggered when the allocated heap size is over
a threshold. It starts with tracing memory to find objects that
are no longer in use. If the objects are reachable from the root
objects, which developers assert as still in use, they can be
accessed in the rest of the program. It determines as garbage
those objects that are not reachable from the roots, reclaims
these garbage objects, and compacts memory by relocating
live objects into contiguous memory.

Programs have diverse kinds of memory objects managed
by compact-gc. There is a concept of a memory cell that is
a basic type of memory object, which each different kind of
memory object is derived from. For example, Google V8 and
Mozilla SpiderMonkey have abstract super-classes represent-
ing the memory cell named Object and Cell, respectively.

When compact-gc relocates live objects, it moves their data
and updates their references. Figure 2 shows memory layouts
before and after compact-gc. It manages an address table
that has addresses where the references are stored and, when
needed, recursively updates the references in the address table.
We call pointers in the table rooted pointers and pointers not
in the table unrooted pointers. In general, object types derived
from the cell type are unrooted pointers.

The address table should be kept updated by the lifetimes
of rooted pointers. If rooted pointers are not saved into the
table after they are initialized, they will not be updated dur-
ing compact-gc and become dangling pointers. If they are
not removed from the table after they are disposed, compact-
gc will overwrite values at invalid addresses. To make sure
that rooted pointers are registered and deregistered by their
lifetime, developers employ a custom smart pointer in C++
whose constructor and destructor perform registration and
deregistration. For instance, V8 and SpiderMonkey employ
custom smart pointers, Handle<T> and Rooted<T> to repre-
sent rooted pointers for memory object type T.

compact-gc

Address Table
rooted1
rooted2

ptr1
ptr2

dead ob j1 ob j2

Address Table
rooted1
rooted2

ptr′1
ptr′2

ob j1 ob j2

Figure 2: Memory layouts before and after compact-gc.

2.2 Use-after-Compacting-GC Bugs

In this subsection, we define use-after-cgc bugs with the ter-
minologies and introduce their simple examples.

2.2.1 Definitions

Before diving into sample examples of use-after-cgc bugs, we
first introduce several terminologies related to a use-after-cgc
bug and define what a use-after-cgc bug is.

Rooted pointer. As described in §2.1, a rooted pointer is a
reference that is registered in the address table of compact-gc
for the relocation.

Unrooted pointer. An unrooted pointer is a reference that
refers to an object managed by compact-gc but not in the
address table of compact-gc. Therefore, it becomes dangling
pointers after compact-gc. It is straightforward that an un-
rooted pointer to a dead object becomes a dangling pointer
after compact-gc. For an unrooted pointer to a live object, it
may become a dangling pointer after compact-gc if compact-
gc moves the live object since the unrooted pointer is not in
the address table and is not updated.

Compact-gc function. A compact-gc function is a function
that triggers compact-gc. There are two kinds of compact-gc
functions: an explicit compact-gc function and an implicit
compact-gc function. An explicit compact-gc function is a
basic function that performs compact-gc. And an implicit
compact-gc function is a function that inter-procedurally trig-
gers an explicit compact-gc function. Note that an implicit
compact-gc function may not trigger compact-gc depending
on its calling context.

Def-cgc-use pair. A def-cgc-use pair is a sequence of an
unrooted pointer definition, compact-gc invocation, and the
unrooted pointer use in a function. We denote a def-cgc-use
pair as < f , lde f , lcgc, luse > where function f defines an un-
rooted pointer, invokes a compact-gc function, and uses the
unrooted pointer, at lde f , lcgc, and luse, respectively.

Use-after-cgc bug. A use-after-cgc bug is a kind of use-
after-free bug caused by the use of an unrooted pointer that
becomes a dangling pointer after compact-gc. In this paper,
we conclude as a use-after-cgc bug when a def-cgc-use pair
has a feasible path, which is from the function entry of f
through lde f , lcgc to luse.
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1 void mayGC (Context* cx, int x) {
2 if (x == 42) GC (cx); // trigger GC if `x` == 42.
3 }
4

5 Object* buggy (Context* cx) {
6 Object* unrooted;
7 unrooted = defObj (cx); // define `unrooted` by a function call.
8 GC (cx); // trigger GC directly.
9 return unrooted; // BUG: use `unrooted` as a return value.

10 }
11

12 void Object::buggyMethod (Context* cx) {
13 // implicitly define `this`.
14 mayGC (cx, 42); // trigger GC.
15 method (); // BUG: implicitly use `this`.
16 }
17

18 void safe1 (Context* cx, Rooted<Object*> rooted) {
19 mayGC (cx, 42); // trigger GC and update ptr in `rooted`.
20 use (*rooted); // NOT A BUG: use updated ptr in `rooted`.
21 }
22

23 void safe2 (Context* cx, Object* unrooted) {
24 // explicitly define `unrooted`.
25 mayGC (cx, 43); // do not trigger GC.
26 use (unrooted); // NOT A BUG: use `unrooted` as argument
27 } // but it is not moved.
28

29 void safe3 (Context* cx, int y) {
30 Object* unrooted;
31 unrooted = defObj (cx); // define `unrooted` by a function call.
32 mayGC (cx, y); // trigger GC if `y` == 42.
33 if (y != 42)
34 unrooted->field = 42; // NOT A BUG: use `unrooted` if `y` != 42.
35 }

Figure 3: Example code snippets depict two use-after-cgc bug
cases and three safe cases.

2.2.2 Simple Examples

We describe two use-after-cgc bug cases and three safe cases
in Figure 3 to illustrate the concept. We focus on intra-
procedurally depicting examples for each step of def-cgc-use
pairs including why each case is a bug or not. We assume
that GC is an explicit compact-gc function, Context* rep-
resents a memory state, defObj returns a new object that
will be moved after compact-gc, and use internally accesses
the first argument. Additionally, Object* is a basic memory
cell type of compact-gc, which is an unrooted pointer type,
while Rooted<Object*> is a rooted pointer type. Note that
∗ operation of Rooted<Object*> returns the corresponding
unrooted pointer, whose type is Object*.

Unrooted pointer definition. Memory objects managed
by compact-gc are created by their constructors with a given
Context. At an intra-procedural level, unrooted pointers can
be passed in as function arguments or defined by memory
reads or function calls. For example, buggy and safe3 de-
fine unrooted pointers named unrooted by a function call to
defObj. And safe2 explicitly defines unrooted as a func-
tion argument while the this pointer in buggyMethod is im-
plicitly defined by the C++ language. By contrast, safe1 gets
a rooted pointer as a function argument and uses an unrooted
pointer obtained from the rooted pointer after compact-gc
updates it, which is safe.

Compact-gc. Intra-procedurally, there are two kinds of
methods to trigger compact-gc: call explicit compact-gc
functions or implicit compact-gc functions. For instance,
buggy triggers an explicit compact-gc function, GC, while
buggyMethod, safe1, and safe3 call implicit compact-gc
functions, mayGC. However, mayGC in safe2 cannot trigger
GC because mayGC calls GC only if the second argument is 42.

Unrooted pointer use. The use of unrooted pointers has
the same definition as the use of general values. In the exam-
ple, unrooted is used as a return value in buggy, an argument
in buggyMethod, which is implicitly passed by the compiler,
an explicit argument in safe2, and dereferenced in safe3.
We assume that return values will be used in the callers and
function arguments will be used in the callee functions.

Feasibility. To be a use-after-cgc bug, there must exist a
feasible path of def-cgc-use. It is straightforward to recognize
that buggy and buggyMethod have feasible def-cgc-use paths.
However, safe1 is lacking an unrooted pointer definition and
safe2 is lacking compact-gc. safe3 does not have a cgc-
use path because compact-gc and unrooted pointer use are
mutually exclusive: it triggers GC if y == 42 but unrooted
is used only if y != 42.

2.3 Existing Detection Tools

To find use-after-cgc bugs, Google V8 and Mozilla Spider-
Monkey have their source-code-based static analyzers, named
gcmole [1] and rootAnalysis [2], respectively. They first calcu-
late compact-gc functions based on call-graphs. They then per-
form intra-procedural data-flow analysis for unrooted pointers
to find def-cgc-use pairs. Finally, they conclude def-cgc-use
pairs as use-after-cgc bugs without checking their path con-
straints, for scalability, which leads to false-positives.

To mitigate false-positives due to path-insensitive analysis,
they employ two heuristics: annotations from their develop-
ers and a list of known non compact-gc functions. In V8
and SpiderMonkey, there are source code annotations that
assert there is no compact-gc in the scope. This allows gc-
mole and rootAnalysis to skip analysis on code with those
annotations. However, the no_gc annotation in V8 is only
advisory and does not ensure that compact-gc cannot be trig-
gered. In addition, analyzers have a list of functions that will
not trigger compact-gc and are exempted from the list of
compact-gc functions. Developers should maintain the list
when they change the implementation of functions in the list.
This means that the list also can be wrong by mistake and
lead to false-negatives (see §7.5).

Limitation. Although these tools are used in the develop-
ment process, their methods are not precise due to inaccurate
heuristics, path-insensitive and incomplete analysis. For ex-
ample, gcmole could not detect the bug in Figure 7a due to its
inaccurate heuristics, and rootAnalysis has false-positives be-
cause it is based on C++ Abstract Syntax Tree (AST) instead
of compiled output (see §7.5).
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Table 1: A table of use-after-cgc bugs each tool found in the
example of Figure 3. 3 denotes a bug detected by each tool
while 7 denotes a case each tool did not detect.

Functions Truth gcmole rootAnalysis CGSan

mayGC 7 7 7 7

buggy 3 3 3 3

buggyMethod 3 7 7 3

safe1 7 7 7 7

safe2 7 3 3 7

safe3 7 3 3 7

To show the imprecision of gcmole and rootAnalysis, we
evaluate them on the examples in Figure 3 and the results are
in Table 1. The prior tools detect three use-after-cgc bugs in
buggy, safe2, and safe3. They are unable to distinguish safe
cases due to their path-insensitive analysis. They incorrectly
determine that mayGC function always triggers compact-gc be-
cause it contains a call to GC, which makes them detect safe2
as a bug. In addition, they do not consider path constraints at
line 33 in safe3 and conclude that safe3 has a feasible def-
cgc-use pair. Surprisingly, they cannot detect buggyMethod
as a bug. The fact that they are based on C++ AST enforces
to handle many kinds of expressions and statements individu-
ally, causing them to miss some cases like the implicit this
pointer. This highlights the imprecision of prior tools and
motivates the development of our tool, CGSan.

2.4 Symbolic Taint Analysis

Taint analysis [27] is a program analysis technique that tracks
information flows by predefined taint sources, taint propaga-
tions, and taint sinks. Conventional taint analysis treats values
as tainted or untainted without exact value representation.
Thus, conventional taint analysis is imprecise and may im-
properly under-taint or over-taint. For example, XORing two
equivalent operands always returns zero, so the result should
be untainted. However, conventional taint analysis marks the
result as tainted if the operand value is tainted.

One method that overcomes these limitations is dynamic
symbolic taint analysis, such as TaintPipe [21] and Straight-
Taint [20]. They propagate taints based on program execu-
tion traces. They first calculate symbolic summaries for the
code segments, then update the taint state by applying sym-
bolic summaries to the latest taint state while following the
given program execution traces. They can be free from under-
tainting and over-tainting problems because symbolic sum-
maries express values with exact symbolic representation.

Our Analysis. Our goal is to find paths that trigger use-
after-cgc bugs, which is a harder problem than to determine
whether a given path triggers use-after-cgc bugs. We thus
derive a variant of symbolic taint analysis that statically tra-
verses all possible paths without relying on program execution

LLVM IR
Memory cell type

Explicit compact-gc

Use-after-cgc bugs

DETECTOR

Unrooted pointer type collection

Compact-gc classification

CFG reduction

Static symbolic taint analaysis

CHECKER

Directed ICFG construction

Directed symbolic execution

Def-cgc-use pairs

Figure 4: CGSan Architecture.

traces, and does not dive into function calls for scalability. We
refer to this as intra-procedural static symbolic taint analysis.
Notably, intra-procedural analysis loses the precision, but we
mitigate it with a type-based approach and call-graphs.

2.5 Directed Symbolic Execution
Directed symbolic execution [4, 18] aims to verify whether
the target point can be reached from the program entry point,
which is known as the reachability problem. It is a widely used
technique for reducing false-positives of static analysis. To
guide symbolic execution to the target point, inter-procedural
control-flow graphs are built, prioritizing the shortest distance
path from the program entry to the target. For example, Ma et
al. [18] employ call-chain-backward symbolic execution that
starts from the target and checks reachability while traversing
call-graphs reversely to quickly strip unreachable paths. And
WOODPECKER [12] speeds up directed symbolic execution
by skipping instructions irrelevant to the target point.

Our Analysis. There are two key differences between pre-
vious directed symbolic execution and ours. (1) We have
multiple ordered targets, which means that we aim to check
the feasibility of paths from the first target through several tar-
gets to the last target. (2) We start execution from the function
entry, like UC-KLEE [26], not the program entry. This avoids
exhausting the analysis time finding paths from the program
entry to the first target in large programs. We also speed up
our directed symbolic execution with the directed ICFGs and
the directed scheduling, which we propose.

3 Overview

The main goal of CGSan is to automatically detect use-after-
cgc bugs in a scalable and precise manner. In this section, we
outline the overall architecture of CGSan and describe how
CGSan finds use-after-cgc bugs on running examples.
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Table 2: A table of def-cgc-use pairs that the DETECTOR
module found in the example of Figure 3. lde f , lcgc, and luse
denote where function f defines an unrooted pointer, invokes
a compact-gc, and uses the unrooted pointer, respectively.

Function ( f ) lde f lcgc luse

buggy line 7 GC in line 8 line 9
buggyMethod line 12 mayGC in line 14 line 15
safe2 line 23 mayGC in line 25 line 26
safe3 line 31 mayGC in line 32 line 34

3.1 Architecture

Figure 4 depicts the architecture of CGSan. At a high-
level, CGSan takes LLVM IR of the target program, explicit
compact-gc functions, and the memory cell type, and outputs
a set of use-after-cgc bugs. CGSan consists of two major
modules: DETECTOR, and CHECKER.

DETECTOR. CGSan takes LLVM IR of the target program
as an input instead of an AST of the source code because
the LLVM IR is a more accurate and already in single static
assignment (SSA) form, which simplifies the analyzer imple-
mentation. This module takes as inputs the LLVM IR, explicit
compact-gc functions, and the memory cell type, and finds
def-cgc-use pairs. First, it computes the type hierarchy and col-
lects unrooted pointer types, which are derived from the mem-
ory cell type. It then obtains a set of compact-gc functions,
which internally or explicitly trigger compact-gc, from call-
graphs. Next, an intra-procedural control-flow graph (CFG)
is constructed while removing nodes and edges irrelevant to
def-cgc-use pairs. Lastly, this module traverses the reduced
CFGs and detects def-cgc-use pairs by intra-procedural static
symbolic taint analysis with the taint policy based on unrooted
pointer types and call-graphs (see §4).

CHECKER. This module confirms whether the detected
def-cgc-use pairs are feasible by under-constrained directed
symbolic execution. For each def-cgc-use pairs, it first con-
structs the directed ICFGs, which do not have nodes and edges
irrelevant to checking def-cgc-use pairs and are optimized by
the constant constraint propagation. It then performs under-
constrained directed symbolic execution based on the directed
ICFGs to determine feasible use-after-cgc bugs. To be more
scalable, we employ the directed scheduling that determines
which branches should be taken first (see §5).

3.2 Running Examples

We now depict the procedure of CGSan on the program of
Figure 3 introduced in §2.2.2. As shown in Table 1, CGSan
correctly found that only buggy and buggyMethod have use-
after-cgc bugs. In the rest of this subsection, we describe how
CGSan works using source code instead of LLVM IR for the
sake of simplicity.

First, the DETECTOR module finds unrooted pointer types
and compact-gc functions based on the fact that Object*
is a basic memory cell type and GC is an explicit compact-
gc function, respectively. It concludes that there is only one
unrooted pointer type, Object*, because this example does
not have any type derived from Object*. It then calculates
a call-graph and collects compact-gc functions by reversely
traversing the call-graph from GC. As a result, it outputs GC,
mayGC, buggy, buggyMethod, safe1, safe2, and safe3 as
compact-gc functions.

Before performing static taint analysis, the DETECTOR
module constructs and reduces CFGs of compact-gc functions.
It removes nodes and edges that are irrelevant to def-cgc-use
pairs from the CFGs by finding which nodes contain unrooted
pointer definition, compact-gc, and unrooted pointer use based
on unrooted pointer types. For example, it removes all nodes
and edges from CFGs of mayGC and safe1 because they do
not define any unrooted pointer before calling the compact-
gc functions. It also deletes the else edge of line 33 from
the CFG of safe3 because an unrooted pointer will be never
used after taking that edge. CFGs of other functions will be
preserved because each has a node including an unrooted
pointer definition, compact-gc, and unrooted pointer use.

The DETECTOR module performs intra-procedural static
symbolic taint analysis to collect def-cgc-use pairs in compact-
gc functions. This module follows the reduced CFGs to cut
down the search space of the analysis. It introduces values
whose types are unrooted pointer types, Object*, as tainted
when they are defined, and it marks all tainted variables as
freed when a compact-gc function is called. During the anal-
ysis, it continues checking for use of freed tainted variables
and concludes that there are def-cgc-use pairs if freed tainted
variables are used. Finally, as shown in Table 2, it finds def-
cgc-use pairs in buggy, buggyMethod, safe2, and safe3.

Lastly, the CHECKER module classifies feasible def-cgc-
use pairs. It first builds the directed ICFGs for the detected
def-cgc-use pairs in two steps. (1) It removes nodes and edges
of ICFGs disconnected from nodes in def-cgc-use pairs, simi-
lar to CFG reduction in the DETECTOR module. For example,
else edges in mayGC of line 2 and safe3 of line 33 will be
removed. (2) It then strips the reduced ICFGs by the constant
constraint propagation. It is straightforward to delete the edge
in calling mayGC(cx, 43) of safe2 by traditional constant-
propagation so that safe2 never calls GC. In safe3, variable
y must not be 42 to reach use node in line 34. Therefore,
the constant constraint propagation spreads the constraint,
y != 42, to other nodes. It concludes that mayGC in safe3
cannot call GC if we must reach use node in line 34. And
the CHECKER module finds feasible paths for def-cgc-use
pairs in buggy and buggyMethod by directed symbolic exe-
cution with the directed ICFGs and the directed scheduling.
Finally, CGSan concludes use-after-cgc bugs exist in buggy
and buggyMethod, which is the correct answer as shown in
Table 1.
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4 DETECTOR

Recall from §3.1, the DETECTOR module performs four steps.
We describe how we collect unrooted pointer types from the
memory cell type, and classify compact-gc functions from
the given explicit compact-gc functions. We then explain
CFG reduction for skipping paths irrelevant to def-cgc-use
pairs. Lastly, we depict static symbolic taint analysis for the
systematic detection of def-cgc-use pairs.

4.1 Unrooted Pointer Type Collection
According to §2.1, unrooted pointer types are derived from
the memory cell type. We thus traverse the type hierarchy in
reverse from the given memory cell type and collect unrooted
pointer types. However, the type information in LLVM IR
is not rich enough to build the type hierarchy for collecting
unrooted pointer types because they are optimized by com-
pilers. For instance, AbstractCode in Figure 1, which is an
unrooted pointer type, becomes i64 type in LLVM IR. There-
fore, we obtain type hierarchy from source-level LLVM meta-
data that preserves source-level types and collect unrooted
pointer types.

4.2 Compact-GC Classification
There are two kinds of compact-gc functions: an explicit
compact-gc function, and an implicit compact-gc function,
which inter-procedurally triggers an explicit compact-gc func-
tion. We first calculate call-graphs while resolving indirect
call targets by previous type-based approaches [16,24] to con-
struct more precise call-graphs. We then reversely traverse
call-graphs from the given explicit compact-gc functions and
gather a set of compact-gc functions.

4.3 CFG Reduction.
As described in §2.2.1, finding use-after-cgc bugs is the same
as finding def-cgc-use pairs. In other words, a use-after-cgc
bug requires a path from lde f through lcgc to luse. We thus
remove nodes and edges that are irrelevant to def-cgc-use
pairs from CFGs of every function. We first recognize which
CFG nodes have lde f or luse by finding instructions that define
or use unrooted pointer typed values, and identify CFG nodes
having lcgc by finding compact-gc function calls. We then
delete edges from the CFG that are not in paths from the
function entry to lde f , from lde f to lcgc, and from lcgc to luse.
Lastly, we remove nodes from the CFG that are not reachable
from the function entry and get the reduced CFG. Note that
this CFG reduction allows the DETECTOR module to be more
scalable without any additional false-negatives. In §7.2, we
will show how effectively this CFG reduction cuts down the
search space of the DETECTOR module without any additional
false-negatives.

4.4 Static Symbolic Taint Analysis

To systematically detect def-cgc-use pairs, we employ intra-
procedural static symbolic taint analysis that tracks data-flows
of unrooted pointers by symbolic evaluation while follow-
ing the reduced CFG. For scalability, we do not solve path
constraints and perform an intra-procedural analysis, while
mitigating its incompleteness with a taint policy based on un-
rooted pointer types and compact-gc functions. The path con-
straints will be considered in the CHECKER module. We also
assumed that each symbolic variable, if it is a pointer, refers
to a unique object, i.e., no aliasing, similar to UC-KLEE [26].

Taint Introduction. Intra-procedural analysis requires the
initialization of values such as function arguments, return
values of function calls, and values in unseen memory. We
initialize them as new unconstrained symbolic values because
intra-procedural analysis assumes that they can be any value.
We introduce them as new symbolic taint values if they are
unrooted pointer types, which allows us to get taint sources
without recursing into function calls. If they are not unrooted
pointer types, we introduce them as normal symbolic values.
This policy covers all unrooted pointer definitions depicted
in §2.2.2: we mark the return value of defObj and function
arguments that are Object* type as symbolic taint values.
Note that we easily cover the implicitly added arguments like
this in buggyMethod because we are based on LLVM IR.

Taint Propagation. Symbolic taint analysis presents val-
ues as symbolic expressions and propagates them by symbolic
evaluation. We define a different policy for function calls to
detect def-cgc-use pairs. For compact-gc functions, we as-
sume that they always trigger compact-gc and compact-gc
always moves live objects without updating unrooted point-
ers. Thus, we mark all symbolic taint values, which refer to
unrooted pointers, as freed. For other functions, we make
them return symbolic taint values if their return values are
unrooted pointer types. If not, we make them return normal
symbolic values. Notably, when a pointer is passed to a func-
tion call, we assume that the corresponding memory will not
be modified because the DETECTOR module is based on the
intra-procedural analysis.

Taint Checking. We monitor four operations to capture
def-cgc-use pairs: a freed taint value is used in 1) a memory
address of memory load, 2) a memory address or a value
of memory store, 3) a function call argument or 4) a return
value. This policy is based on the assumption that arguments
will be used in callee functions and the return value will be
used in caller functions. Finally, we conclude that there is
a def-cgc-use pair if we find that a freed taint value, i.e. a
freed unrooted pointer, is used. Notably, when a compact-gc
function call takes a non-freed taint value as an argument, we
do not conclude whether the current analyzed function has a
def-cgc-use pair because the taint value is not freed. Instead,
we check whether the compact-gc function has a def-cgc-use
pair when we perform the analysis from its function entry.
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5 CHECKER

Prior tools [1, 2] are path-insensitive and employ target-
specific heuristics to filter out infeasible def-cgc-use pairs,
which is scalable but not precise as we discussed in §2.3. In
contrast, we apply under-constrained directed symbolic ex-
ecution to check feasible def-cgc-use pairs. For scalability,
we reduce paths to explore for checking def-cgc-use pairs by
constructing their directed ICFGs. Also, while exploring the
directed ICFGs, we prioritize which branches should be taken
first using the directed scheduling.

5.1 Directed ICFG Construction

As shown in §3.2, we do not need to traverse all paths to check
feasible def-cgc-use pairs. We thus remove irrelevant nodes
and edges from their ICFGs and optimize the reduced ICFGs
to the directed ICFGs by the constant constraint propagation.

Irrelevant ICFG Reduction. The pseudo-code of the
irrelevant ICFG reduction is shown in Algorithm 1. The
Reduce function takes in the def-cgc-use pair denoted
as < f , lde f , lcgc, luse > and the ICFG of function f de-
noted as G, and outputs the reduced ICFG. First, the
ReduceForPair function intra-procedurally removes nodes
and edges from G that are not in paths from the function entry
through lde f and lcgc to luse as the CFG reduction in §4.3.

Next, the ReduceForGc function inter-procedurally re-
duces the ICFG in lcgc. GetSubICFG(G, lcgc) returns Gcgc,
the sub ICFG of the function call target at lcgc of G. And
GetCgcCalls(Gcgc) collects Lgc, a set of locations where
compact-gc functions are invoked in Gcgc. Then, Trim re-
moves nodes and edges disconnected with nodes in Lgc. In
the for-loop of line 8-10, we recursively reduce ICFGs of
compact-gc functions in Lgc if they are not connected with
others in Lgc. If so, we skip the reduction because triggering
compact-gc once in the connected nodes is enough to be a
feasible def-cgc-use pair. Lastly, SetSubICFG(G, lcgc,Gcgc)
updates the sub ICFG at lcgc of G with Gcgc.

To help illustrate this irrelevant ICFG reduction, we pro-
vide an example on safe3 of Figure 3, and its reduced
ICFG is shown in Figure 5a. First, ReduceForPair removes
1© because we cannot reach luse if we take that edge. In
ReduceForGc, GetSubICFG returns an ICFG of mayGC, which
is boxed in Figure 5a. GetCgcCalls then outputs GC node
and Trim removes 2© because that edge is not connected with
GC node. Finally, SetSubICFG updates the sub ICFG and we
get the reduced ICFG in Figure 5a.

Constant Constraint Propagation. Traditional constant-
propagation [3] substitutes values with known constant values
while following the program execution. This is enough for
code optimization because the instructions to be executed do
not affect the current execution state. However, the reduced
ICFG enforces taking specific branches and we must satisfy
their branch conditions before taking them. Branch conditions

Algorithm 1: Irrelevant ICFG Reduction
Input :The def-cgc-use pair ( f , lde f , lgc, luse),

The ICFG of f (G)
Output :The reduced ICFG

1 function Reduce(G, lde f , lcgc, luse)
2 G← ReduceForPair(G, lde f , lcgc, luse)
3 return ReduceForGc(G, lcgc)

4 function ReduceForGc(G, lcgc)
5 Gcgc← GetSubICFG(G, lcgc)
6 Lgc← GetCgcCalls(Gcgc)
7 Gcgc← Trim(Gcgc, Lgc)
8 for l ∈ Lgc do
9 if IsNotConnected(Lgc, l) then

10 Gcgc← ReduceForGc(Gcgc, l)

11 return SetSubICFG(G, lcgc, Gcgc)

lde f

lcgc

luse

GC

mayGC

y == 42
3

y! = 422

1

y == 42 y! = 42

(a) The reduced ICFG.

lde f

lcgc

luse

GC

mayGC

y == 42

y! = 42

y == 42 y! = 42

(b) The directed ICFG.

Figure 5: The reduced ICFG and the directed ICFG of safe3.
The ICFG in the dotted box represents the ICFG of mayGC.
Black and grey mean remaining and removed, respectively.

sometimes check whether symbolic values are specific con-
stant values or not, which we call constant constraints. For
example, the reduced ICFG in Figure 5a does not have 1©,
which condition is y == 42, and enforces y not to be 42 even
before taking that branch. Therefore, we propagate constant
constraints instead of constant values in both the forward and
backward direction of the program execution. Note that we
only perform propagation for variables stored in LLVM IR
registers, not memory.

Algorithm 2 depicts the overview of the constant con-
straint propagation. The Propagate function gets the re-
duced ICFG and the context as inputs, and returns the di-
rected ICFG where the context includes constant constraints
of function arguments and the return value. We start invok-
ing the Propagate function with the reduced ICFG from the
irrelevant ICFG reduction stage and the empty context.

In the beginning, the Prepare function updates the context
with the reduced ICFG. If the reduced ICFG makes phi in-
struction return a constant, we add that constant constraint
to the context. And if branch conditions for following the
reduced ICFG are that values must be some constants or must
not, we add them to the context.
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Algorithm 2: Constant Constraint Propagation
Input :The reduced ICFG (G),

The context of constant constraints (C)
Output :The directed ICFG

1 function Propagate(G, C)
2 C′← Prepare(G, C)
3 G′,C′← Backward(G, C′)
4 G′← Forward(G′, C′)
5 if IsSameICFG(G, G′) then
6 return G′

7 return Propagate(G′, C)

Backward function propagates constant constraints and
deletes edges that are unreachable in the given context while
intra-procedurally traversing the reduced ICFG from the func-
tion end to the function entry. For example, if the context has
a constant constraint of the value defined by a phi instruction,
we filter out values that do not satisfy the constant constraint
and remove the corresponding edges from the ICFG. In par-
ticular, if the reduced ICFG enforces a return value from a
function call to satisfy a constant constraint, we update a
constant constraint of the return value in the context of the
function call with the constant constraint. The updated con-
text will be used to trim paths that return values violating the
constant constraint in the Forward function.

Next, the Forward function inter-procedurally and recur-
sively performs forward propagation of constant constraints
based on the given context and removes edges unsatisfiable
with constant constraints. It then deletes unreachable edges
due to the previous removal. Finally, we return the directed
ICFG if the directed ICFG and the given ICFG are the same.
If not, we invoke Propagate with the directed ICFG and the
given context until they are the same as described in line 5-7.
This is because the directed ICFG can introduce a new con-
stant constraint if some edges are deleted, so that we calculate
the fixed point of the Propagate function.

To help understand the constant constraint propagation, we
provide an example on safe3. Figure 5b shows the directed
ICFG of safe3. Based on its reduced ICFG in Figure 5a, the
Prepare function appends the constant constraint, y != 42,
to the context. The Backward function performs the back-
ward propagation with the constant constraint and updates the
context with the constraint that the second argument of mayGC
function call, y, must not be 42. Next, the Forward function
inter-procedurally performs forward propagation and removes
the edge denoted as 3© because y != 42. This removes all
paths for def-cgc-use and the Forward function makes all
edges unreachable. And we recursively call Propagate be-
cause the given ICFG, which is the reduced ICFG, and the
obtained ICFG have different edges. But it is straightforward
to end because the obtained ICFG is empty. Finally, we get
the directed ICFG, which is empty, as shown in Figure 5b.

5.2 Directed Scheduling

Although the directed ICFG reduces the search space, schedul-
ing which paths will be executed first affects the scalability
of directed symbolic execution. We thus considered shortest-
distance symbolic execution (SDSE) [18], prioritizing the
path traversals with the shortest distance to the target. How-
ever, SDSE can be stuck because the shortest distance path
often includes an error-handling path, e.g, functions immedi-
ately return if arguments are invalid, and its path constraints
are often unsatisfiable. Therefore, we prioritize paths by loop
scheduling, stateful scheduling, and retrievable scheduling.

We orchestrate a task queue, using depth-first-search to
schedule paths, where a task is an execution state and an
ICFG node to be executed. We start with a task queue that has
the initial execution state and the entry node of a function. We
pop a task from the front of the task queue and evaluate its
node with its execution state. Then, we collect the successor
nodes from the directed ICFG whose branch conditions are
satisfiable with path constraints of the execution state. We
prepend the nodes to the front of the task queue, and we repeat
until the queue becomes empty or timeout.

Loop Scheduling. To mitigate cases that are stuck in
traversing loops, many previous works [17, 29, 31, 35] limit
the number of iterations of each loop, also known as loop
unrolling. However, there is a trade-off between too few it-
erations and too many iterations, potentially resulting in an
incomplete analysis. We employ loop scheduling based on
how many times the execution state already took the branch
from the current node to the successor node, which is denoted
as n. Instead of ignoring a successor node once n reaches the
limit, as loop unrolling does, we push the task to the back
of the queue. This scheduling has the same impacts as loop
unrolling but preserves the completeness of the analysis.

The loop scheduling also prepends successor nodes to the
queue in the order of n, so that the successor node with the
smallest n will be first in the queue unless n is over the limit
in which case the node is appended to the end of the queue.
We empirically chose the limit as 100 for our analysis. This
guides us to take branches that are previously less taken and
avoid cases that are stuck in traversing loops.

Stateful Scheduling. We have three ordered targets to
check def-cgc-use pairs, which start from lde f through one
of the compact-gc function calls in lcgc to luse. It is straight-
forward to guide to lde f and luse because they are unique in
the directed ICFG. However, the directed ICFG can contain
multiple compact-gc function calls in lcgc and allow paths that
do not trigger compact-gc in lcgc when there are connected
nodes containing compact-gc in lcgc. This is because the di-
rected ICFG cannot determine which node in the connected
nodes having compact-gc will be touched. To avoid skipping
compact-gc, we do not append the task that already passed all
compact-gc nodes in lcgc without touching any of them. In ad-
dition, we prioritize traversing nodes containing compact-gc
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before touching compact-gc, and prioritize traversing nodes
that do not contain compact-gc after touching compact-gc.

Retrievable Scheduling. The directed ICFG enforces tak-
ing specific branches, which means that the corresponding
branch conditions must be satisfied. When path constraints
of the current task are unsatisfiable with the condition, the
next task in the queue is likely unsatisfiable also because
they will have almost the same path constraints due to the
depth-first-search. We thus find the task that has path con-
straints satisfiable with the branch condition from the front
of the queue, and process that task first. We refer this to as
retrievable scheduling. Retrievable scheduling is inspired by
the path kneading of ShellSwap [6], but, as far as we know,
this has not been applied to the directed symbolic execution.

6 Implementation

We have implemented CGSan with 0.9K lines of C++ code
and 9.5K lines of F# code. We use C++ for loading LLVM IR
with LLVM version 11.0 and use F# for the rest of the system.
Specifically, it takes 6.1K lines of F# code to load LLVM into
F#. And we employ Z3 [23] version 4.8.8 for solving path
constraints. We now describe relevant implementation details.

Compiling Source to LLVM IR. V8 and SpiderMonkey
are compilable under LLVM, so it is straightforward to trans-
form the source code to LLVM IR. We disable function inlin-
ing to avoid duplicate analysis of the same source code, and
we enable source-level debugging to get rich LLVM metadata,
such as type information used in the DETECTOR module.

Configurable Symbolic Execution. The DETECTOR mod-
ule and the CHECKER module both need symbolic evaluation,
though their requirements differ. We built a configurable and
reusable symbolic execution library to reduce implementation
efforts. It has options to control the symbolic execution, such
as guiding paths to explore, function modeling, and memory
operation hooks. In the case of the DETECTOR module, we
turn off solving path constraints, add function models, and
register callbacks for return instructions, memory loads, and
stores as addressed in §4. For the CHECKER module, we con-
figure guiding paths with the directed ICFGs and the directed
scheduling, while solving path constraints as described in §5.

7 Evaluation

We now evaluate CGSan to answer the following questions:

1. Can the DETECTOR module find def-cgc-use pairs and
does CFG reduction affect the scalability? (§7.2)

2. Can the CHECKER module effectively figure out feasible
def-cgc-use pairs? (§7.3)

3. Can CGSan find real-world use-after-cgc bugs? (§7.4)

4. How does CGSan perform against prior tools? (§7.5)

7.1 Experimental Setup
We evaluate CGSan on LLVM IR compiled from the lat-
est versions of two major JS engines: Google V8 8.1 and
Mozilla SpiderMonkey 74. The evaluation was performed on
a machine with an AMD Ryzen 3900X (12 cores) and 64GB
RAM, running 64-bit Ubuntu 18.04 LTS. We did not evaluate
JavaScriptCore because it did not perform compact-gc.

Recall that CGSan requires the explicit compact-gc func-
tions and the memory cell type as inputs. We thus set the
memory cell types as Object for V8 and Cell for Spider-
Monkey, and we pass CollectGarbage and gc as the explicit
compact-gc functions of V8 and SpiderMonkey. We also set
timeouts of 10 seconds for analyzing a function in the DE-
TECTOR module and 10 minutes for checking the feasibility
of a detected def-cgc-use pair in the CHECKER module.

7.2 DETECTOR Statistics
Table 3 presents the overall statistics of the DETECTOR mod-
ule. From the given memory cell type, the DETECTOR module
collected 549 and 244 unrooted pointer types in V8 and Spi-
derMonkey, respectively. It also identified 8,224 and 14,680
compact-gc functions in V8 and SpiderMonkey. Finally, it
found 20 and 1,464 def-cgc-use pairs in V8 and SpiderMon-
key. Note that SpiderMonkey had a lot of def-cgc-use pairs
but they did not have any feasible path, which means that they
were not use-after-cgc bugs (see §7.3). In total, the DETEC-
TOR module finished in a half-hour for each target, however,
even with the help of intra-procedural analysis and CFG re-
duction, there were timeout cases in 112 functions of V8 and
118 functions of SpiderMonkey. Timeouts were due to the
path explosion problem in large functions and may lead to
false-negatives.

Effectiveness of CFG Reduction. Recall from §4.3, CFG
reduction improves the scalability of the DETECTOR module
without any additional false-negatives. To show the effective-
ness of CFG reduction, we evaluated the DETECTOR module
with and without CFG reduction, and Table 3 shows the results.
After applying CFG reduction, the detection time decreased
by 40% and the number of timeout cases decreased by 48%
on average of both targets. This highlights that CFG reduc-
tion makes the DETECTOR module more scalable and more
complete because fewer timeout cases mean that we covered
more functions. We also verified def-cgc-use pairs found by
the DETECTOR module with CFG reduction includes all def-
cgc-use pairs found by the DETECTOR module without CFG
reduction, i.e. there is no additional false-negative.

7.3 CHECKER Statistics
Before evaluating the CHECKER module, we manually ana-
lyzed the detected def-cgc-use pairs. We first checked whether
compact-gc functions of def-cgc-use pairs trigger compact-
gc. If so, we verified whether def-cgc-use pairs have feasible
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Table 3: The detection result of the DETECTOR module with and without CFG redcution.

Target Unrooted Type Compact-gc
DETECTOR w/ CFG reduction DETECTOR w/o CFG reduction

def-cgc-use Timeout Time def-cgc-use Timeout Time

V8 549 8,224 20 112 36m 20 263 67m
SpiderMonkey 244 14,680 1,464 118 35m 1,426 178 51m

Table 4: The check result of manual analysis, the CHECKER module with and without the directed ICFG.

Target
Manual Analysis CHECKER w/ Directed ICFG CHECKER w/o Directed ICFG

Feasible Infeasible Feasible Infeasible Timeout Avg. Time Feasible Infeasible Timeout Avg. Time

V8 19 1 18 0 2 98s 8 0 12 364s
SpiderMonkey 0 1,464 0 1,309 155 64s 0 8 1,456 597s

paths. We could reduce the manual effort as some def-cgc-
use pairs shared the same compact-gc functions. In addi-
tion, we used the fact that developers of SpiderMonkey manu-
ally add AutoSuppressGC to temporally disable compact-gc.
We easily filtered out the compact-gc functions that do not
trigger compact-gc by checking whether they are within an
AutoSuppressGC scope. For example, AutoEnterAnalysis
in Figure 6, which internally calls AutoSuppressGC, tempo-
rally disables GC until the end of AddTypePropertyId func-
tion, which is the scope of enter. This ensures that compact-
gc in addType of line 10 does not do anything.

As described in Table 4, we concluded that there were 19
feasible pairs in V8 and no feasible pairs in SpiderMonkey
by the manual analysis. And the CHECKER module found
18 feasible pairs and 0 infeasible pairs in V8 while detecting
0 feasible pairs and 1,309 infeasible pairs in SpiderMonkey.
Compared to the manual analysis, CGSan only missed a fea-
sible case in V8, which CGSan could not verify within the
given timeout. Also, while the timeout was 10 minutes, it took
98 seconds and 64 seconds on average to check the feasibility
of a pair in V8 and SpiderMonkey. This highlights that the
CHECKER module is precise and scalable.

The crux of the CHECKER module is that the directed
ICFG and the directed scheduling improve the scalability
while preserving the precision. To show their effectiveness,
we compare the CHECKER module with and without them.

Effectiveness of the Directed ICFG. As shown in Table 4,
after using the directed ICFG, the CHECKER module detected
2.25× more feasible def-cgc-use pairs in V8 and 163× more
infeasible def-cgc-use pairs in SpiderMonkey while having
fewer timeouts. And the CHECKER module with the directed
ICFG found a superset of feasible def-cgc-use pairs and in-
feasible def-cgc-use pairs compared to the CHECKER module
without the directed ICFG. This means that the directed ICFG
preserves the precision. In addition, the directed ICFG effec-
tively reduced irrelevant search space, so that the average time
to check a def-cgc-use pair decreased by 83%.

1 void js::AddTypePropertyId(
2 JSContext* cx, ObjectGroup* group, JSObject* obj, jsid id,
3 TypeSet::Type type) {
4 ...
5 // Internally trigger `AutoSuppressGC` and
6 // temporally disable GC in this function scope.
7 AutoEnterAnalysis enter(cx);
8 ...
9 // This invokes GC but GC does not do anything.

10 types->addType(sweep, cx, type);
11 ...
12 }

Figure 6: Compact-gc suppression of SpiderMonkey.

Table 5: The comparison of the directed scheduling on V8.

Directed Scheduling Feasible Timeout Avg. Time

w/o Loop Scheduling 1 19 581s
w/o Stateful Scheduling 13 7 221s
w/o Retrievable Scheduling 16 4 157s
CGSan 18 2 98s

Effectiveness of Directed Scheduling. To demonstrate
the effectiveness of three methods of the directed scheduling,
we evaluated the CHECKER modules without each schedul-
ing, and Table 5 shows the results. We evaluated only on
V8 because the CHECKER module did not find any feasible
def-cgc-use pair in SpiderMonkey.

The CHECKER module without loop scheduling found only
one feasible case and had 19 timeout cases while taking 5.9×
more time to check a def-cgc-use pair on average. Note that it
pushed a task to the back of the task queue if it already took
the next branch over the limit, even though it did not have
loop scheduling. The results highlight that loop scheduling
effectively prioritizes branches. Also, the CHECKER without
stateful scheduling and retrievable scheduling found fewer
feasible cases and took more time than CGSan, thus these two
scheduling methods are effective in terms of scalability.
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7.4 Bug Findings

We manually investigated 18 feasible def-cgc-use pairs from
CGSan and categorized them into 15 unique use-after-cgc
cases by functions of def-cgc-use pairs. Table 6 shows unique
use-after-cgc cases and how they defined unrooted pointers
and used them after compact-gc. They defined unrooted point-
ers by function arguments, and function calls, and they used
unrooted pointers as function arguments, return values, and
values of memory store. Most unrooted pointer definitions
and uses in Table 6 were done by function calls because the
DETECTOR module employs the intra-procedural analysis.
After we reported all bugs to the vendor, developers fixed 12
cases and marked 2 cases as "Won’t Fix".

"Fixed" Case. To describe fixed cases, we choose case
1 and case 13 in Table 6, which have two common def-use
patterns. Figure 7a shows the buggy implementation of case 1.
This function defines an unrooted pointer, raw_dictionary,
by the function call, which is the override operator ∗, at
line 7. It then triggers the compact-gc function named
AddShadowingKey at line 14. After iterating the loop once,
raw_dictionary is used as a function argument at line 11,
which leads to a use-after-cgc bug. Notably, there is a no_gc
mark in the function, even though AddShadowingKey inter-
nally triggers compact-gc. In Figure 7b, there is the buggy
implementation of case 13, AddAsyncParentModule. This
takes an unrooted pointer, this, as an argument, which the
C++ compiler implicitly appends. Then, ArrayList::Add
internally triggers compact-gc, and this is used as an ar-
gument of set_async_parent_modules method, which the
C++ compiler implicitly passes. Therefore, this leads to a
use-after-cgc bug.

"Won’t Fix" Case. Developers claimed that they will not
fix case 4 and case 10 in Table 6 because these cases were not
buggy even though they had feasible def-cgc-use pairs. We
assumed that all unrooted pointers will be freed after compact-
gc. However, AllocateRawWithImmortalMap of case 4 only
took permanent unrooted pointers as an argument, which are
never freed even after compact-gc, e.g, built-in constant JS ob-
jects like undefined. This means that it is not buggy for now,
but can be buggy if developers invoke it with movable un-
rooted pointers. Therefore, instead of fixing the use-after-cgc
bug pattern, developers enforce passing permanent unrooted
pointers when calling AllocateRawWithImmortalMap by
adding a debug check. CheckStackGuardState of case 10
intentionally accessed an unrooted pointer after compact-gc
to calculate the memory address difference before and after
compact-gc. Therefore, developers claimed that they are not
buggy and marked them as "Won’t Fix".

Impact of Discovered Bugs. After we reported the found
bugs, Google confirmed their impacts and gave rewards for
case 7 in Table 6 and the case where the DETECTOR module
found but the CHECKER module could not verify within the
timeout. As we described in Table 6, developers did not fix

1 template <typename Derived, typename Shape> ExceptionStatus
2 BaseNameDictionary<Derived, Shape>::CollectKeysTo(
3 Handle<Derived> dictionary, KeyAccumulator* keys) {
4 ...
5 DisallowHeapAllocation no_gc;
6 // define an unrooted pointer, `raw_dictionary`.
7 Derived raw_dictionary = *dictionary;
8 for (InternalIndex i : dictionary->IterateEntries()) {
9 ...

10 // use the unrooted pointer, `raw_dictionary`.
11 PropertyDetails details = raw_dictionary.DetailsAt(i);
12 if ((details.attributes() & filter) != 0) {
13 // trigger GC.
14 keys->AddShadowingKey(k);
15 ...

(a) A use-after-cgc bug in CollectKeysTo.
1 // implicitly define an unrooted pointer, `this`.
2 void SourceTextModule::AddAsyncParentModule(
3 Isolate* isolate, Handle<SourceTextModule> module) {
4 // trigger GC.
5 Handle<ArrayList> new_array_list =
6 ArrayList::Add(
7 isolate, handle(async_parent_modules(), isolate), module
8 );
9 // implicitly use the unrooted pointer, `this`.

10 set_async_parent_modules(*new_array_list);
11 }

(b) A use-after-cgc bug in AddAsyncParentModule.

Figure 7: Two use-after-cgc bugs found by CGSan on V8.

case 4 and 10 because they are not buggy. For other cases,
developers fixed but Google did not reward because: case 1, 2,
3, 11, and 12 affected other users of V8, but not Chrome, and
may require user interaction; case 13 was in the experimental
features; case 14 was a bug but not a serious security issue;
case 5, 6, 9, and 15 were already found by gcmole.

7.5 Comparison against Prior Tools
To show the performance of CGSan relative to prior tools,
we compare CGSan against gcmole and rootAnalysis. We
evaluated the number of bugs each tool found in the examples
of Figure 3 and two JS engines, V8 and SpiderMonkey.

Comparison on the examples. In §2.3, we showed that the
two prior tools, gcmole and rootAnalysis, correctly concluded
buggy as a use-after-cgc bug, but incorrectly concluded
safe2 and safe3 as use-after-cgc bugs and buggyMethod
as not a bug, in the examples of Figure 3. Whereas, according
to Table 1, CGSan correctly determined use-after-cgc bugs as
only in two functions, buggy and buggyMethod. This result
highlights that CGSan is more precise than prior tools, gcmole
and rootAnalysis.

Comparison on the JS engines. We also check that
CGSan is effective in finding use-after-cgc bugs in real-world
JS engines. To demonstrate this, we ran gcmole and rootAnal-
ysis on V8 and SpiderMonkey, respectively. We could not
apply each tool to both JS engines because they are tightly
coupled with their targets, e.g. target-specific heuristics, and
would require significant modifications to apply to others.
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Table 6: A list of unique use-after-cgc cases CGSan found. Def and Use represent patterns of unrooted pointer definition and use,
respectively. In the Prev. column, 3 indicates the case detected by gcmole and 7 is the case not detected before.

Idx Function Def Use Status Patch Strategy Prev.

1 BaseNameDictionary<Derived, Shape>::CollectKeysTo Call Call Fixed Relocate compact-gc 7

2 Deserializer::DeserializeDeferredObjects Call Call Fixed Remove compact-gc 7

3 Deserializer::ReadObject Call Return Fixed Remove compact-gc 7

4 Factory::AllocateRawWithImmortalMap Arg Call Won’t Fix - 3

5 Factory::NewFixedArrayWithFiller Arg Call Fixed Use rooted pointer 3

6 Logger::ICEvent Arg Call Fixed Use rooted pointer 3

7 Logger::MapEvent Arg Call Fixed Use rooted pointer 7

8 Map::DeprecateTransitionTree Arg Call Submitted - 7

9 MapUpdater::ConstructNewMap Call Call Fixed Use rooted pointer 3

10 NativeRegExpMacroAssembler::CheckStackGuardState Arg Call Won’t Fix - 7

11 ObjectDeserializer::Deserialize Call Store Fixed Remove compact-gc 7

12 PartialDeserializer::Deserialize Call Call Fixed Remove compact-gc 7

13 SourceTextModule::AddAsyncParentModule Arg Call Fixed Use rooted pointer 7

14 ToPropertyDescriptorFastPath Call Call Fixed Relocate compact-gc 7

15 V8HeapExplorer::AddEntry Arg Store Fixed Remove compact-gc 3

In SpiderMonkey, rootAnalysis detected 30 use-after-
cgc cases, which were all false-positives, while CGSan
did not find any bugs. Although rootAnalysis employed
target-specific heuristics, e.g. that SpiderMonkey sup-
presses compact-gc with AutoSuppressGC, to reduce
false-positives, it had more false-positives than CGSan
due to its path-insensitivity. For example, rootAnalysis
concluded that JSDependentString::new_ had a def-
cgc-use pair where the implicit compact-gc function
was AllocateString<JSDependentString, js::NoGC>,
which did not trigger compact-gc internally. However, CGSan
recognized that AllocateString<JSDependentString,
js::NoGC> did not trigger compact-gc and concluded there
is no def-cgc-use pair in JSDependentString::new_.

In the case of V8, gcmole detected 8 use-after-cgc cases.
After manual verification, these were classified as 4 false-
positives and 4 bugs. A false-positive was marked as "Won’t
Fix" and 3 false-positives were caused by path-insensitivity
of gcmole. For instance, even though there were only def-cgc-
use nodes in FutexEmulation::Wait function without CFG
edges connecting them, gcmole concluded it was a use-after-
cgc bug. All 4 bugs were also found by CGSan. In Table 6,
Prev. column presents which cases were also discovered by
gcmole. 10 cases were not found by gcmole due to its wrong
heuristics and incompleteness. For example, gcmole missed
case 1 and case 13 due to the wrong no_gc mark and missing
to check this, which compilers implicitly passed.

8 Patch Strategies

Based on our study and bug fixes by developers, we sum-
marize three general patch strategies for use-after-cgc bugs.
Table 6 shows which strategy developers employed to patch.

1 template <typename Derived, typename Shape> ExceptionStatus
2 BaseNameDictionary<Derived, Shape>::CollectKeysTo(
3 Handle<Derived> dictionary, KeyAccumulator* keys) {
4 ...
5 - Derived raw_dictionary = *dictionary;
6 for (InternalIndex i : dictionary->IterateEntries()) {
7 Object k;
8 + Derived raw_dictionary = *dictionary;
9 ...

(a) A patch of the bug in Figure 7a by relocating Def and GC.
1 void SourceTextModule::AddAsyncParentModule(
2 - Isolate* isolate, Handle<SourceTextModule> module) {
3 + Isolate* isolate, Handle<SourceTextModule> module,
4 + Handle<SourceTextModule> parent) {
5 + Handle<ArrayList> async_parent_modules(
6 + module->async_parent_modules(), isolate);
7 Handle<ArrayList> new_array_list =
8 - ArrayList::Add(
9 - isolate, handle(async_parent_modules(), isolate), module

10 - );
11 - set_async_parent_modules(*new_array_list);
12 + ArrayList::Add(isolate, async_parent_modules, parent);
13 + module->set_async_parent_modules(*new_array_list);
14 }

(b) A patch of the bug in Figure 7b by using the rooted pointer.

Figure 8: Two patches of use-after-cgc bugs in Figure 7.

Remove Compact-gc. An intuitive patch strategy is to re-
move compact-gc. If there is no compact-gc, objects in un-
rooted pointers will not be moved, and so pointers will not be
invalidated. However, this strategy reduces memory efficiency
due to the absence of compact-gc.

Use Rooted Pointer. Another intuitive patch strategy is
to use rooted pointers instead of unrooted pointers. During
compact-gc, rooted pointers will be updated and safe to use
afterward. Figure 8b shows an example, which is the patch for
Figure 7b. Developers changed AddAsyncParentModule to
a static function and get a rooted pointer, module, instead of
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an unrooted pointer, this. This mitigates use-after-cgc bugs
but increases the performance overhead as mentioned in §2.1.

Relocate Compact-gc. The most performant patch strat-
egy is relocating compact-gc. This generally implies mov-
ing compact-gc function calls to either before the unrooted
pointer definition or after the unrooted pointer use. For in-
stance, the patch for Figure 7a in Figure 8a transfers an un-
rooted pointer definition for raw_dictionary from the out-
side of the loop to inside so that there is no longer compact-gc
function call between unrooted pointer definition and use.

9 Discussion

We discuss our limitations due to our assumptions and issues
related to supporting other targets.

Limitations. As mentioned in §7.4, CGSan has some limi-
tations due to its assumptions. First, we assume that compact-
gc functions must move all unrooted pointers, but there can
be unrooted pointers that are not moved even after compact-
gc like AllocateRawWithImmortalMap, which is marked as
"Won’t Fix". Also, when the memory context that unrooted
pointers belong to is different from the memory context where
compact-gc performed, the unrooted pointers will not be
moved. However, we assume that they share the same context
because most programs will have one memory context. Sec-
ond, other threads can trigger compact-gc functions, but we
lack a scalable lockset analysis and multi-threading-capable
static symbolic execution to handle multiple threads. And we
mitigated the path explosion problem during the analysis but
there were timeout cases, which means that the path explosion
problem still existed. We leave overcoming our limitations as
future work.

Supporting Other Targets. Theoretically, use-after-cgc
bugs can exist in any software system that employs compact-
gc. To apply CGSan to them, it requires clear identifications
of the memory cell type and explicit compact-gc functions.
Fortunately, as we described in §2.1, these systems typically
have a memory cell type and explicit compact-gc functions.
In addition, we proved the possibility of supporting multiple
targets by evaluating CGSan on two independent code bases,
V8 and SpiderMonkey.

10 Related Work

In this section, we survey related works in static analysis
for bug finding. We refer the reader to §2 for symbolic taint
analysis and directed symbolic execution.

Many static analyzers including CGSan focus on specific
bugs. For example, Wang et al. [28] and Deadline [31] are
designed to detect double-fetch bugs in the OS kernel based
on pattern matchings and the specialized symbolic checking,
respectively. Also, some analyzers extract constraints from
source code and report violating cases. APISan [35] finds

API misuse bugs by inferring API usage from source code,
LRSan [29] detects security checks in the OS kernel and finds
lacking-recheck bugs, and CRIX [17] infers which variables
require checks and detects missing check bugs. In addition,
EECatch [25] identifies errors, infers their severity level, and
detects that error handling code is over the severity of the
corresponding error in the Linux kernel. Also, K-MELD [13]
infers locations where allocated memory objects are expected
to be released by a new ownership reasoning mechanism and
finds memory leaks in the Linux kernel.

There have been several static analyzers to detect use-
after-free bugs. They perform a pointer analysis to check
whether accessed pointers are in a freed pointer set. The main
challenge is to make pointer analysis scalable and precise.
CRED [33] improves its scalability by spatio-temporal con-
text reduction, TAC [32] mitigates imprecision by predicting
use-after-free related pointer aliases with machine-learning
techniques, and DCUAF [5] detects concurrent use-after-
free bugs in the Linux kernel by local-global analysis and
summary-based lockset analysis. However, they are not ap-
plicable for discovering use-after-cgc bugs in practice as we
described in §1.

In addition, there have been many extensible frameworks
for detecting bugs. μchex [9] is a scalable framework based
on parsing only what analysts want to analyze instead of
an entire language, which is scalable but not precise. Using
μcheck, Brown et al. [8] discovered various bugs by pattern
matching, including use-after-free bugs caused by garbage
collection in JS bindings. Sys [10] provides a framework that
detects bugs by static analysis and checks them by symbolic
execution. This is similar to ours but we improve scalability
by novel techniques, directed ICFG construction, and directed
scheduling.

11 Conclusion

Compacting garbage collection may introduce a new kind
of use-after-free bug, named use-after-cgc, if an unrooted
pointer defined before compact-gc is used after compact-gc.
In this paper, we have presented CGSan, a precise and scalable
static analyzer for detecting use-after-cgc bugs. CGSan finds
use-after-cgc bug candidates, which are def-cgc-use pairs, by
intra-procedural static symbolic taint analysis. It then checks
their feasibility of def-cgc-use pairs by under-constrained
directed symbolic execution. CGSan also constructs the di-
rected ICFGs and employs the directed scheduling to be more
scalable without losing the precision. We evaluated CGSan
against Google V8 and Mozilla SpiderMonkey, and we found
13 use-after-cgc bugs in a few hours and reported them to the
vendors. We also showed that our optimization techniques
improve scalability while preserving precision. Lastly, we
summarized three general patch strategies for use-after-cgc
bugs based on our study and patches by the vendors.

2072    30th USENIX Security Symposium USENIX Association



Acknowledgement

We thank our shepherd, Chengyu Song, and the anonymous
reviewers for their helpful comments. We are also grateful
to Insu Yun, Tim Becker, and Tyler Nighswander for fruitful
feedback.

References

[1] gcmole. https://github.com/v8/v8/tree/
master/tools/gcmole.

[2] rootanalysis. https://github.com/mozilla/
gecko-dev/tree/master/js/src/devtools/
rootAnalysis.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 2006.

[4] Domagoj Babic, Lorenzo Martignoni, Stephen McCa-
mant, and Dawn Song. Statically-directed dynamic au-
tomated test generation. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis,
pages 12–22, 2011.

[5] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in linux device drivers. In Proceedings of the
USENIX Annual Technical Conference, pages 255–268,
2019.

[6] Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and
David Brumley. Your exploit is mine: Automatic shell-
code transplant for remote exploits. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
824–839, 2017.

[7] Joel F Bartlett. Compacting garbage collection with
ambiguous roots. In ACM SIGPLAN Lisp Pointers,
pages 3–12, 1988.

[8] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son Engler, Ranjit Jhala, and Deian Stefan. Finding and
preventing bugs in javascript bindings. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
559–578, 2017.

[9] Fraser Brown, Andres Nötzli, and Dawson Engler. How
to build static checking systems using orders of magni-
tude less code. In Proceedings of the International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 143–157, 2016.

[10] Fraser Brown, Deian Stefan, and Dawson Engler. Sys:
A static/symbolic tool for finding good bugs in good
(browser) code. pages 199–216, 2020.

[11] Jacques Cohen and Alexandru Nicolau. Comparison
of compacting algorithms for garbage collection. ACM
Transactions on Programming Languages and Systems,
5(4):532–553, 1983.

[12] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang.
Verifying systems rules using rule-directed symbolic ex-
ecution. In Proceedings of the International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 329–342, 2013.

[13] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen
McCamant. Detecting kernel memory leaks in special-
ized modules with ownership reasoning. In Proceedings
of the Network and Distributed System Security Sympo-
sium, 2021.

[14] Patrice Godefroid, Michael Y. Levin, and David A Mol-
nar. Automated whitebox fuzz testing. In Proceedings
of the Network and Distributed System Security Sympo-
sium, pages 151–166, 2008.

[15] Henry Lieberman and Carl Hewitt. A real-time garbage
collector based on the lifetimes of objects. Communica-
tions of the ACM, 26(6):419–429, 1983.

[16] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
Proceedings of the ACM Conference on Computer and
Communications Security, pages 1867–1881, 2019.

[17] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
missing-check bugs via semantic- and context-aware
criticalness and constraints inferences. In Proceedings
of the USENIX Security Symposium, pages 1769–1786,
2019.

[18] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S Foster, and
Michael Hicks. Directed symbolic execution. In In-
ternational Static Analysis Symposium, pages 95–111,
2011.

[19] Valentin J. M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, 2019.

[20] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and
Peng Liu. StraightTaint: Decoupled offline symbolic
taint analysis. In Proceedings of the International Con-
ference on Automated Software Engineering, pages 308–
319, 2016.

[21] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and
Peng Liu. TaintPipe: Pipelined symbolic taint analysis.
In Proceedings of the USENIX Security Symposium,
pages 65–80, 2015.

USENIX Association 30th USENIX Security Symposium    2073

https://github.com/v8/v8/tree/master/tools/gcmole
https://github.com/v8/v8/tree/master/tools/gcmole
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis
https://github.com/mozilla/gecko-dev/tree/master/js/src/devtools/rootAnalysis


[22] MITRE. CVE-2019-13696. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-13696, 2019.

[23] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient SMT solver. In Proceedings of the International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337–340, 2008.

[24] Ben Niu and Gang Tan. Modular control-flow integrity.
In Proceedings of the ACM Conference on Programming
Language Design and Implementation, pages 577–587,
2014.

[25] Aditya Pakki and Kangjie Lu. Exaggerated error han-
dling hurts! an in-depth study and context-aware detec-
tion. In Proceedings of the ACM Conference on Com-
puter and Communications Security, pages 1203–1218,
2020.

[26] David A. Ramos and Dawson Engler. Under-
constrained symbolic execution: Correctness checking
for real code. In Proceedings of the USENIX Security
Symposium, pages 49–64, 2015.

[27] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the IEEE
Symposium on Security and Privacy, pages 317–331,
2010.

[28] Pengfei Wang, Jens Krinke, Kai Lu, and Gen Li. How
double- fetch situations turn into double-fetch vulnera-
bilities: A study of double fetches in the linux kernel. In
Proceedings of the USENIX Security Symposium, pages
1–16, 2017.

[29] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
it again: Detecting lacking-recheck bugs in os kernels.
In Proceedings of the ACM Conference on Computer
and Communications Security, pages 1899–1913, 2018.

[30] Paul R Wilson. Uniprocessor garbage collection tech-
niques. In International Workshop on Memory Manage-
ment, pages 1–42, 1992.

[31] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
661–678, 2018.

[32] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Machine-learning-guided typestate analysis for static
use-after-free detection. In Proceedings of the Annual
Computer Security Applications Conference, pages 42–
54, 2017.

[33] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue.
Spatio-temporal context reduction: A pointer-analysis-
based static approach for detecting use-after-free vulner-
abilities. In Proceedings of the International Conference
on Software Engineering, pages 327–337, 2018.

[34] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of
the USENIX Security Symposium, pages 745–761, 2018.

[35] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API us-
ages through semantic cross-checking. In Proceedings
of the USENIX Security Symposium, pages 363–378,
2016.

2074    30th USENIX Security Symposium USENIX Association

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13696

	Introduction
	Background
	Compacting Garbage Collection
	Use-after-Compacting-GC Bugs
	Definitions
	Simple Examples

	Existing Detection Tools
	Symbolic Taint Analysis
	Directed Symbolic Execution

	Overview
	Architecture
	Running Examples

	Detector
	Unrooted Pointer Type Collection
	Compact-GC Classification
	CFG Reduction.
	Static Symbolic Taint Analysis

	Checker
	Directed ICFG Construction
	Directed Scheduling

	Implementation
	Evaluation
	Experimental Setup
	Detector Statistics
	Checker Statistics
	Bug Findings
	Comparison against Prior Tools

	Patch Strategies
	Discussion
	Related Work
	Conclusion

