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Abstract

CAPTCHA is an effective mechanism for protecting comput-
ers from malicious bots. With the development of deep learn-
ing techniques, current mainstream text-based CAPTCHAs
have been proven to be insecure. Therefore, a major effort has
been directed toward developing image-based CAPTCHAs,
and image-based visual reasoning is emerging as a new di-
rection of such development. Recently, Tencent deployed
the Visual Turing Test (VIT) CAPTCHA. This appears to
have been the first application of a visual reasoning scheme.
Subsequently, other CAPTCHA service providers (Geetest,
NetEase, Dingxiang, etc.) have proposed their own visual
reasoning schemes to defend against bots. It is, therefore,
natural to ask a fundamental question: are visual reason-
ing CAPTCHASs as secure as their designers expect? This
paper presents the first attempt to solve visual reasoning
CAPTCHAs. We implemented a holistic attack and a modu-
lar attack, which achieved overall success rates of 67.3% and
88.0% on VIT CAPTCHA, respectively. The results show
that visual reasoning CAPTCHAs are not as secure as antic-
ipated; this latest effort to use novel, hard Al problems for
CAPTCHA S has not yet succeeded. Based on the lessons we
learned from our attacks, we also offer some guidelines for
designing visual CAPTCHAs with better security.

1 Introduction

Completely Automated Public Turing test to Tell Computers
and Humans Apart (CAPTCHA) is a defensive system for
distinguishing computers from humans. Since L. Von Ahn
[50] proposed this technology in 2004, CAPTCHAs have
become an almost standard security mechanism for defending
against malicious computer programs and bots. Each type
of CAPTCHA scheme corresponds to a specific Al problem
that is difficult for current computer programs to solve but is
easily solvable by humans.

*Corresponding author: Haichang Gao (e-mail: hchgao@xidian.edu.cn)

Text-based CAPTCHASs have long been the most widely
used scheme because of their simple structure and low cost.
Such a CAPTCHA relies on a text recognition problem to
distinguish humans from computers [51]. To resist the attack,
text-based CAPTCHAS are often specifically designed with
anti-segmentation features and anti-recognition features [6].
However, with advances in segmentation and character recog-
nition technologies, most text-based CAPTCHAS have been
solved [15], [5], [45], [32], [55], [14], [56], [13], [4], [57],
[60], and designers need to find a new way to achieve se-
curity. Subsequently, image-based CAPTCHAs have been
proposed. The image-based scheme is more diverse in con-
tent and background, and thus, it seems to be more secure than
the text-based scheme. However, with the rapid development
of computer vision techniques, it has been proven that solving
CAPTCHA s based on image or object recognition is not a
challenge for a machine [18], [59], [44], [29], [12].

In recent years, with the development and extensive ap-
plication of deep learning, computers have been expected to
have excellent logical reasoning skills to understand com-
plex tasks similar to humans, which has led to the emer-
gence of visual reasoning tasks based on computer vision
and natural language processing. Subsequently, visual rea-
soning CAPTCHAs have also emerged as a new direction of
development in the security field. Tencent, China’s largest on-
line instant messaging provider, proposed a visual reasoning
scheme named the Visual Turing Test (VTT) [52], as shown
in Figure 1. It uses the VIT CAPTCHA in Tencent Water-
proof Wall [46], which serves hundreds of millions of people
every day. This was the first application of a visual reason-
ing CAPTCHA, and it appears more secure than previous
schemes. There are also three CAPTCHA service providers,
Geetest, NetEase, and Dingxiang, who have now also pro-
posed visual reasoning CAPTCHAs to defend against bots.
It is therefore natural to ask a fundamental question: are the
visual reasoning CAPTCHAS, in fact, as secure as their de-
signers expect?

To comprehensively analyze the security of CAPTCHAs
based on visual reasoning, this paper first proposes a holis-

USENIX Association

30th USENIX Security Symposium 3291



f D o B
"EA )e'th" < ..lj"’

Q: Please click the uppercase of
the green letter

Q: Please click the object with a
different tilt direction
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Q: Please click the object with a
notch on the left

Figure 1: Samples of Tencent’s VIT CAPTCHA.

Q: Please click the two objects
that can be united as one

tic method that consists of three modules: an input module
extracts semantic features through a bidirectional long short-
term memory (BiLSTM) network and visual features through
a convolutional neural network (CNN); a reasoning module
integrates the visual and semantic features to calculate the
feature vectors of the possible answer objects; and an output
module takes the output of the reasoning module as input
to predict the final answer. Our holistic method is effective
and robust. It achieves overall success rates of 67.3%, 66.7%,
77.8% and 86.5% on VTT, Geetest, NetEase, and Dingxiang
CAPTCHAGS, respectively. Through analysis, we found that
most failures of our holistic method are related to abstract at-
tributes that a computer program cannot obtain directly from
an image, such as the literal meaning or pronunciations of
characters.

Accordingly, to address the abstract attribute problem, we
also propose a modular method. Its framework consists of
four modules for query parsing, detection, classification, and
integration. The query parsing module is responsible for trans-
forming the text instruction of a VIT CAPTCHA into a se-
ries of reasoning steps, while the detection and classification
modules predict the locations and visual attributes of all fore-
ground objects. Finally, the integration module refers to the
extracted reasoning steps to combine the visual and abstract
attributes of objects to predict the final answer. The success
rates of this modular method for VTT, Geetset, NetEase and
Dingxiang CAPTCHAS are 88.0%, 90.8%, 86.2% and 98.6%,
respectively.

Compared to the holistic method, the modular method is
higher in accuracy but inferior in efficiency. Nevertheless,
we have successfully broken visual reasoning CAPTCHAs.
The high success rates of both of our attacks show that visual
reasoning CAPTCHA s are not as secure as anticipated. Based
on the lessons learned from our attacks, we summarize three
guidelines for future CAPTCHA design. Our contributions
are as follows:

* We present a comprehensive summary and analysis of
the Al problems used as the basis of existing CAPTCHA
schemes.

* We evaluate state-of-the-art visual reasoning

CAPTCHAs and implement two successful attacks,

which demonstrate that visual reasoning CAPTCHAs

are not as secure as their designers hoped. To the best of
our knowledge, this is the first attempt to solve visual
reasoning CAPTCHAS in the industry.

We summarize three guidelines (using a larger category

set, making some occlusion, using more variations) and

one promising direction for future CAPTCHA design.

2 Al Problems Underlying
CAPTCHA Schemes

Existing

The design principle of a CAPTCHA is to utilize the dif-
ference between the capabilities of human beings and ma-
chines in solving hard Al problems to defend against mali-
cious bots or programs. The offensive and defensive nature
of CAPTCHAs is thus manifested in a cycle of continuously
cracking and designing new mechanisms addressing different
Al problems. In this section, we mainly focus on the most
widely used text-based and image-based CAPTCHASs and ex-
plore different hard Al problems hidden in different types of
CAPTCHAs. Table | lists the different CAPTCHA schemes
developed to date based on various Al problems, where the
third column presents the defense strategies used and the last
column shows typical examples.

2.1 Text-based CAPTCHAs

Early text-based CAPTCHA s adopted the character recogni-
tion task as the underlying hard Al problem and followed the
anti-recognition principle for enhanced security. Gimpy and
EZ-Gimpy are two such typical text-based CAPTCHAs. How-
ever, these two schemes have already been broken with high
success rates [32]. Chellapilla et al. [7] further proved that
computers are comparable to or even better than humans in
recognizing distorted single characters. In fact, segmentation
followed by recognition was the general process applied for
early CAPTCHA cracking. Therefore, designers turned their
attention to anti-segmentation algorithms, with the aim of pre-
venting the successful extraction of characters from images.
The most commonly used anti-segmentation schemes include
crowding characters together (CCT), the hollow scheme, the
two-layer, variable lengths, and background interference.
Unfortunately, all of these resistance mechanisms have also
been broken. Gao’s team [14] has proven that the hollow
scheme can be broken using the color filling segmentation
(CFS) algorithm. In 2017, they also proposed a method [13]
of coping with the two-layer scheme. More recently, Tang et
al. [45] proposed a pipeline method and broke a wide range
of real-world CAPTCHAs with high success rates, thereby
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Table 1: Different CAPTCHA schemes with different Al problems.

Generation Methods

Representative Mechanisms

Al Problems
Text-based character recognition
CAPTCHA character segmentation

distort, rotate, multi-font
CCT, hollow, two-layer, variable

Gimpy [32], EZ-gimpy [32]

i '
length, etc. Microsoft [13], Yahoo! [14]

object recognition
facial recognition

Image-based

CAPTCHA image perception

semantic comprehension
behavior detection

adversarial perturbation

visual reasoning

rich image categories

background embedding
orientation, size

semantic relationship
slider, notch

classification misleading

logical relationship, attributes

ASIRRA [11], Facebook [44]
ARTIFACIAL [40],
FaceDCAPTCHA [22]
What’s up [21],
DeepCAPTCHA [33]
SEMAGE [49], Google
reCAPTCHA v2 [20]
slider CAPTCHA [46], [16]
Adversarial
CAPTCHA [37], [42]
VTT [52], Space
CAPTCHA [16]

proving that the CCT scheme and background interference
are also not secure. More innovatively, Zi et al. [60] proved
that CAPTCHAs of this type can be completely broken under
deep learning attacks without segmentation, indicating that
anti-segmentation mechanisms, in general, are losing ground.

In addition to text-based CAPTCHAs designed with En-
glish letters and digits, Wang et al. [53] demonstrated that text
CAPTCHA s based on large character sets, such as Chinese,
Korean, and Japanese, are also not secure.

On the basis of the high success rates achieved to date,
researchers have begun to emphasize efficiency in breaking
CAPTCHAs. Other methods from the machine learning field
have also been applied in cracking efforts, such as reduced
training sets [17], the generative adversarial network (GAN)-
based approach [57], and unsupervised learning and represen-
tation learning [47].

Overall, only limited space for improvement remains for
text-based CAPTCHAs. Thus, CAPTCHA designers have
gradually set their sights on the image domain.

2.2 Image-based CAPTCHASs

Image-based CAPTCHAS are the most popular alternative to
text-based CAPTCHAs. Compared to the simple text-based
scheme, image-based CAPTCHA s can contain more abundant
information, with more categories and more diversity in im-
age content. We simply categorize image-based CAPTCHAs
based on different Al problems as follows:

CAPTCHA based on object recognition. Early image-
based CAPTCHASs adopted object recognition as the underly-
ing Al problem. This type of CAPTCHA usually asks users
to identify specific images from several given categories. The
robustness of an image-based CAPTCHA of this type de-

pends on the number of object categories [59]. Evolving
from ASIRRA [11] to the multiclassification CAPTCHASs of
Google and Facebook, this principle has been widely adopted
in subsequent image-based CAPTCHA design. However, each
problem has been successfully solved [18], [44]. Currently,
image CAPTCHAs based only on object recognition are not
sufficient.

CAPTCHA based on facial recognition. The facial
recognition task is also widely used as the underlying hard
Al problem in image-based CAPTCHA design. ARTiFA-
CIAL [40] requires users to click the corners of the eyes
and mouth of a human face hidden in a complex background
image. In FaceDCAPTCHA [22], a series of human faces
are embedded in the background, and black color blocks are
added to faces for enhanced security. However, both schemes
have been successfully broken [29], [12]. The work of Uzun’s
team [48] also showed that current facial recognition services
are insecure.

CAPTCHA based on image perception. The What’s Up
CAPTCHA proposed by Google [21], is based on identifying
an image’s upright orientation. Recently, Baidu and Dang-
dang [9] used a variant of What’s Up CAPTCHA to defend
against bots. It seems that image orientation perception re-
mains a hard Al problem. The main limitation is that for
a large number of images, orientation is difficult for both
humans and computers. In addition, DeepCAPTCHA [33]
distinguishes humans and bots based on depth perception. In
this CAPTCHA, the user is required to arrange 3D objects in
order of size (or depth) by clicking or touching them. The se-
curity of CAPTCHAs based on image perception is expected
to be a subject of future work by both designers and attackers.

CAPTCHA based on semantic comprehension. Some
CAPTCHAs [49], [20] capitalize on the human ability to com-
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prehend image content and establish semantic relationships.
These CAPTCHASs often ask users to select semantically re-
lated images from a given image set or select all areas that
contain specified semantic information from the sections of a
CAPTCHA image. The main limitation lies in the CAPTCHA
generation stage. The definition of the correct relationships,
the legal issues facing image collection, the time consump-
tion required for image labeling, and the implementation of a
regular updating strategy all pose large challenges.

CAPTCHA based on behavior detection. Slider
CAPTCHA is a newly emerging type of CAPTCHA based
on behavior detection. It asks the user to drag a slider to fill
in a notch in a background image or simply to slide it from
one side to another. For a machine, such a CAPTCHA es-
sentially poses an object detection and behavior simulation
problem. Zhao et al. [58] designed an algorithm based on the
exclusive OR (XOR) operation to detect the notch position
and mimic human behavior by leveraging common activation
functions to bypass detection. They achieved success rates
ranging from 96% to 100% on Geetest, Tencent, and NetEase
slider CAPTCHAs. As an increasing number of protection
mechanisms tend to detect abusive traffic based on user inter-
actions with the website, not just the behavior when sliding
the bar, the security of slider CAPTCHAs still needs further
evaluation.

CAPTCHA with adversarial perturbation. It has been
proven that deep neural networks are vulnerable to well-
designed input samples, called adversarial examples [1], [19],
which are imperceptible to humans but can easily fool deep
neural networks. To further improve CAPTCHA security,
Margarita [37] used adversarial examples for CAPTCHA gen-
eration within an object classification framework. In addition,
adversarial examples were also adopted in the design process
of reCAPTCHA v2 [20] to resist attacks based on deep learn-
ing. Shi et al. [42] proposed a framework for text-based and
image-based adversarial CAPTCHA generation to improve
the security of normal CAPTCHAs while maintaining sim-
ilar usability. The combination of adversarial examples and
CAPTCHA:s is currently still in the exploration stage.

With the rapid development of the Al field, many other new
types of CAPTCHA schemes have sprung up, such as rea-
soning puzzle CAPTCHA [34], word-order click CAPTCHA
[36], scratch cards CAPTCHA [10], etc. Visual reasoning
CAPTCHA:s are also a new type of image-based CAPTCHA
that relies on visual reasoning tasks, the combination of com-
puter vision tasks and natural language processing tasks. The
"visual reasoning" task includes multiple Al problems at the
same time, such as object recognition, semantic comprehen-
sion, and relational reasoning. It shows a scene in which
different objects have a logical relationship in position or
content, and the answer needs to be obtained based on the
common comprehension of text and images, which is more
complicated than CAPTCHAs based only on object recog-
nition or semantic comprehension. At present, research on

visual reasoning CAPTCHAs is still lacking. We will discuss
visual reasoning CAPTCHA and related research in detail in
the next section.

3 Visual Reasoning CAPTCHASs

In this section, we first introduce existing visual reasoning
schemes and their respective characteristics and then analyze
existing methods to solve hidden AI problems behind the
visual reasoning CAPTCHA. Finally, we illustrate the differ-
ence between the visual reasoning CAPTCHAs and the Al
problem behind it and the difficulty of cracking.

3.1 Existing Schemes

Tencent first proposed a new CAPTCHA named VTT based
on a visual reasoning task. Each VTT challenge consists
of an image and a text instruction referring to the image.
To pass the test, the user must understand the relationship
expressed in the text instruction and click a specific region of
the image. A VTIT image usually contains 10 to 20 synthetic
3D objects. There are three possible types of challenges in
VTT CAPTCHA:

An object’s own attributes. The user must identify each
object’s visual attributes, including common attributes such
as geometric shape, color, and size, as well as subtle attributes
such as tilt direction, fracture type, notch type, and character
category. Examples of related instructions include "Please
click the yellow cube,” "Please click the object tilting to the
left.”

A visual logical relationship. Related instructions may
concern comparative relationships, e.g., "Please click the
biggest cylinder," or spatial relationships, e.g., "Please click
the cube left of the cone.”

An abstract logical relationship. Related instructions
may invoke 1) synonym or antonym, e.g., "Please click the
two characters with opposite meanings'; 2) pronunciation,
e.g., "Please click the Chinese characters with pronuncia-
tion ’bai’"; 3) character components, e.g., "Please click the
Chinese characters with component "4 ’"; 4) uppercase or
lowercase, e.g., "Please click the uppercase of the green let-
ter"; 5) numerical sorting, e.g., "Please click the numbers
from the smallest to biggest". Such problems are more diffi-
cult for a machine to solve since the machine cannot obtain
the necessary knowledge from either the image or the text
instruction.

Geetest, a worldwide CAPTCHA service provider, has also
designed a simplified scheme called Space CAPTCHA [16].
It looks almost the same as VTT but involves only regular
geometries. The challenges contain only common attributes
and spatial relations. Each image contains 7 to 10 objects. The
prompts concern only the colors, shapes, sizes, and spatial
relationships of regular geometric objects. However, the ob-
ject categories and prompt formats are all different from those
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QI: Please click the tiny sphere Q2: Please click the other blue

big green thing

thing that is the same shape as the

Q3: Please click the other conoid
that is the same color as the big
sphere

Q4: Please click the other
polyhedron that is the same size as
the green conoid

(a) Geetest

that is behind the big cylinder

')

Q1I: Please click the number 8
that is side facing to you

)
s

Q2: Please click the letter h with
the same color as the number 6

9 A~
J| 9n|i‘

Q3: Please click the letter J with
the same direction as the letter n

Q4: Please click the green letter ¢

(b) NetEase

My mR

1] 17 s

Q1I: Please click the letter that is
on the right of the cylinder

Q2: Please click the object with
the same color as the trapezoid

Q3: Please click the letter closest Q4: Please click the lowercase
to the sphere letter

(c) Dingxiang

Figure 2: Samples of more visual reasoning CAPTCHAs.

of VTT. In addition, occlusion is more common in Space
CAPTCHA. For example, the answer object in Figure 2(a.Q1)
is incomplete. In Figure 2(a.Q4), the polyhedron is blocked
by the blue cylinder. In addition, it is often the case that the
relative spatial relationships are not very clear in challenges
concerning location. For instance, it is difficult to distinguish
whether the blue sphere in Figure 2(a.Q1) is behind the cylin-
der.

NetEase [35] and Dingxiang [10] have also designed spatial
reasoning CAPTCHAs. Both contain fewer objects, attributes,
and visual logical relationships and no abstract logical rela-
tionships (shown in Figure 2(b) and 2(c)).

NetEase’s visual reasoning CAPTCHA contains regular
geometric shapes, English letters, and digits. Each image usu-
ally contains 5 to 7 objects. The prompts mainly focus on
objects that are "the same color", "side facing", and "with the
same direction".

Dingxiang’s CAPTCHA includes planar graphics, regular
geometric shapes, and English letters. Each image shows 5
objects. The prompts concern only the locations (e.g., up,
down, left, right, closest to) of objects or objects of the same
color.

The main object categories in the existing visual reasoning
schemes are shown in Table 2.

Table 2: Main object category in the existing visual reasoning
schemes.

VTT Geetest NetEase Dingxiang

Regular geometries v/ v v v
Chinese characters v - - -
English letters v - v v
Digits v - v -

3.2 Related Work and Key Issues

Visual reasoning tasks have emerged as a basis for evaluating
the logical reasoning abilities of Al systems. Three datasets,
DAQUAR [31], VQA [3], and CLEVR [26], have been built
as standard datasets for visual reasoning tasks that require
a computer to infer an answer from an image for a given
text-based prompt concerning spatial and semantic relation-
ships. Simply put, the input problems for visual reasoning
tasks are relatively difficult, involving multilevel relationships
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among objects. Therefore, to solve such a task, an Al model
needs reasoning capabilities, and a neural module network is
an effective method. Methods of this kind make full use of
the composability of language. Many small neural modules
responsible for specific functions such as detection and loca-
tion are defined, and the input problem is then parsed into a
combination of modules composing a program that can be
executed to obtain the answer to the prompt. [25], [8], [43]
are several typical reasoning models.

However, the current Al solutions to visual reasoning
problems are not sufficient for solving visual reasoning
CAPTCHAs. The reason is that solving the CAPTCHA is not
exactly equivalent to solving the underlying visual reasoning
problem. Specifically, measures such as changing the form
of the prompts and applying the click mechanism make the
task of cracking this type of CAPTCHA different from that of
simply solving a visual reasoning problem, as these measures
may invalidate the reasoning mechanism. Therefore, how to
deal with such changes is a difficult point to consider.

In addition, most of the current technologies for cracking
CAPTCHAs are only aimed at solving specific mechanisms,
and some general cracking methods tend to focus on the
commonality of different CAPTCHAs. The novel Al problem
involved in visual reasoning CAPTCHAs, i.e., the in-depth
analysis and inference of the question to determine the answer,
is the first time used in the CAPTCHA field. The simple
convolutional network and long short-term memory network
applied to previous text and image cracking methods have
no way to understand some meanings more deeply. Thus,
the inapplicability of past technologies to new mechanisms
is also a bottleneck that we need to address. In fact, VIT
designers have evaluated its security by implementing an
attack experiment with a relation network and achieved only
a 4.7% success rate [52].

Does this mean that the security of the visual reasoning
CAPTCHA:s is as their designers expected? In the follow-
ing section, we present an in-depth analysis to answer this
question.

4 Holistic Approach

In this section, we introduce a holistic attack on the represen-
tative visual reasoning CAPTCHA, VTT. After introducing
this attack, we conduct a comprehensive analysis of its results
and the reasons for its failure cases. We also attacked visual
reasoning schemes designed by Geetest, NetEase, and Dingx-
iang to demonstrate the universal capabilities of our method.
To evaluate the robustness of our attack, we also present two
groups of experiments addressing higher logical complexity
and new categories.

4.1 Model structure

The VTT CAPTCHA and the traditional visual reasoning task
are two distinct tasks. The former is a reasoning detection task
that requires the correct object to be located, while the latter
requires giving a text answer. To solve the VTT CAPTCHA,
we modify the MAC model [25], which achieved state-of-the-
art performance on the CLEVR dataset in 2018, to output an
object detection result rather than a text answer.

As long as the user clicks on any pixel of the target object
in the VTT image, the system will determine the user to
be a human. Inspired by YOLO-v3 [38], we evenly divide
each image into a 14x14 grid and, for each grid cell, predict
whether the center coordinates of the object of interest are
located in that grid cell. Figure 3 depicts an outline of our
holistic model, which consists of an input module, a reasoning
module, and an output module.

1) Input module. The input module is designed to extract
semantic features and global visual features. For the semantic
feature extractor, we adopt the original BiILSTM [41] network
to process the word embeddings of the text instruction. The
output states of the BILSTM network, cwi,cw», ..., cws, rep-
resent each word in the instruction string, whose length is s.
The final hidden states from the backward and forward direc-
tions of the BILSTM network are concatenated to form the
global semantic feature vector of the whole text instruction,
denoted by ¢. To extract the global visual feature vector f,
we replace ResNet-101 with ResNet-50 [23], which allows
a larger batch size and provides a faster training speed and
better prediction performance.

2) Reasoning module. The reasoning module is the core
of our holistic model. It has a recurrent structure and consists
of a sequence of elementary reasoning cells. Our reasoning
cell follows the working principle of the MAC cell [25]. It
contains two basic units: a control unit and a memory unit.
The control unit receives both the semantic feature vector ¢
and the control state C;_ from the previous step to calculate
the updated control state C;. It determines which part of the
text instruction is the most relevant to each reasoning step.
The memory unit is responsible for taking orders from the
control unit and identifying the most important part u; from
the global visual feature vector f. Then, the memory unit
incorporates the previous memory state M;_; and u; to obtain
the updated memory state M;. The memory state represents
the most relevant visual information in each step.

Compared to the original MAC cell, our reasoning cell
lacks a write unit. The write unit of the MAC cell is designed
to integrate information retrieved from the global visual fea-
ture vector with the current memory state. The intermediate
result of the write unit represents the current information of
the reasoning process. For the CLEVR dataset, the model
needs to output a text description of the answer. In contrast,
VTT CAPTCHA requires the model to predict the coordinate
information of the answer object. Due to this special require-
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Figure 3: Framework of the holistic model. (The final answer is labeled with a red rectangle)

ment of the VIT CAPTCHA, using the memory state from
the memory unit instead of the output of a write unit to predict
the answer grid cell is a more reasonable approach.

3) Output module. The output module receives the global
text representation ¢ and the final memory state M, as inputs.
Then, g and M, are concatenated together and passed through
a classifier that consists of two fully-connected layers, one
ReLU layer, and one softmax layer. The dimensions of the
last fully-connected layer are modified to 196(14 x 14) to
allow the model to predict the probability distribution over all
candidate grid cells. After normalization by the softmax layer,
the grid cell with the highest score is the final prediction of
our model.

4.2 Experiments and analysis

1) Implementation details

Data preparation. First, we collected 13,500 VTT
CAPTCHA instruction-image pairs from the Internet [46].
The labeling task was to label the bounding box of the an-
swer. In most cases, there was only one answer object for
a given challenge. It took less than one day for five of this
paper’s authors to finish the labeling task. For each VTT test,
the final feature map has dimensions of 14 x 14, so every
test image was evenly divided into 14 x 14 grid cells to map
each position in the feature map to the original image. Then,
we wrote a simple Python program to calculate the grid cell
containing the central pixel of the answer object. Accord-
ingly, the calculated grid cell was labeled the ground truth
for the VTT test. Finally, we divided the samples into a train-
ing dataset (10,000), a validation dataset (2,500), and a test
dataset (1,000).

Training. Each image was normalized to 224 x 224 pixels
before being processed by the model. The text instructions
were embedded in a 300-dimensional space. The dimensional-
ity of the hidden states (the control state and memory state) of
our model was set to 512. We combined 16 reasoning cells to
build the core reasoning module. A variable dropout strategy
and exponential linear unit (ELU) activation functions were
used throughout the network. In the training phase, the model
was trained by minimizing the softmax cross-entropy loss

Table 3: Proportions and success rates of different answer
questions.

Answer object Proportion  Success rate
Regular geometries 35.5% 78.5%
Chinese characters 30.2% 32.9%

English letters 18.2% 83.6%

Digits 16.1% 76.2%
Total 100.0% 67.3%

with the Adam [28] strategy for 25 epochs on an NVIDIA
GTX 1080 GPU.

2) Experimental results

Our holistic approach achieved an average success rate of
67.3% on the test dataset. Moreover, the average processing
time for each CAPTCHA was less than 0.05 seconds, which
is 120 times faster than a human being [52].

Although the success rate of 67.3% is encouraging, it
also indicated that our approach failed on some CAPTCHAs.
Based on the categories of the answer objects, instances of
the VIT CAPTCHA can be roughly divided into four classes:
those based on regular geometric objects, Chinese characters,
English letters, and digits. Table 3 lists the proportions and
success rates for the different challenge types. From the pro-
portions, we find that challenges concerning regular geometric
objects make up the largest part of the entire dataset, followed
by challenges concerning Chinese characters. Challenges ad-
dressing English letters and digits are fewer in number. In
this experiment, the success rate for challenges based on En-
glish letters was the highest, at 83.6%. The success rates for
challenges based on regular geometric objects and digits were
78.5% and 76.2%, respectively, while for challenges related to
Chinese characters, only a 32.9% success rate was achieved
because of the diversity of the character classes.

We comprehensively analyzed the reasons for the failure
cases of our holistic method and found that the main reasons
for failure are different for different challenge types. Some
failure samples for our holistic model are shown in Figure 4.
The failures of our holistic method can be attributed to four
main causes:

Classification error. As shown in Table 4, classification
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Figure 4: Failure samples for our holistic method.

Table 4: Error distribution(%) for the holistic method.

Answer object CE GPE SPE AAE Others
Regular geometries 69.6 159 8.7 0 5.8
Chinese characters  18.1 0 0 81.9 0

English letters 202 17.0 114 457 5.7

Digits 155 262 20.0 383 0

* Abbreviations in Table 4: CE (classification error), GPE (grid prediction
error), SPE (semantic parsing error), AAE (abstract attribute error)

errors account for 69.6% of attack failures on challenges
concerning regular geometric objects. The subtle attributes of
regular geometric objects include the tilt direction, notch type,
and fracture type. For English letters and digits, classification
errors are responsible for 20.2% and 15.5%, respectively, of
all attack failures. The only subtle attribute of the relevant
objects in these two categories is the side facing direction. For
Chinese characters, classification errors account for 18.1%
of attack failures. In this category, subtle visual attributes
exist in relatively few training samples compared to color,
shape, and other common attributes. Our model can learn the
features corresponding to common attributes for almost all
types of samples, while some subtle attributes appear only in
relation to specific challenges. Therefore, the performance
of our model in recognizing these subtle attributes is slightly
inferior (see the failure cases shown in Figure 4(a.Q1) (a.02)).

Grid prediction error. The design principle of our holistic
attack simplifies the complexity of the task and improves the
attack efficiency. However, this design will sometimes lead to
inaccurate prediction, with the model incorrectly outputting a
grid cell that is close but not identical to the answer grid cell
(shown in Figure 4(b.Q1) (b.Q2)). Such grid prediction errors

are responsible for 15.9%, 17.0%, and 26.2% of the failure
cases on regular geometric objects, English letters, and digits,
respectively.

Semantic parsing error. Another failure cause is that our
holistic model fails to extract the logical relationships ex-
pressed in the natural language instructions. Taking Figure
4(c.Q1) as an example, the model successfully recognized the
"cube closest to the user" but missed the color information
"blue" and instead found a "green" one, resulting in failure.
Such semantic parsing errors are responsible for 8.7% of the
failures on regular geometric objects, 11.4% of the failures
on English letters, and 20.0% of the failures on digits.

Abstract attribute error. Table 4 shows that failure to
identify abstract attributes is responsible for 81.9% of the
failures on challenges based on Chinese characters. Accord-
ing to our manual count, most of the Chinese-based VTT
CAPTCHA instances in our dataset involve abstract attributes.
Because there are thousands of Chinese character classes, the
numbers of classes of synonyms or antonyms, pronunciations,
components, and other attributes are even larger. The map-
ping relationships between the characters and their abstract
attributes are independent of the presented image and text
instruction themselves. Therefore, it is not surprising that our
model failed to establish the relevant mapping relationships
between Chinese characters and their abstract attributes (as
shown in Figure 4(d.Q1)). The high proportions of failures
related to abstract attributes for English-based and digit-based
CAPTCHAS can be attributed to similar reasons: some of
these CAPTCHAs involve the mapping between lowercase
and uppercase letters (as shown in Figure 4(d.Q2)), while
some relate to the sorting of digits. For English-based and
digit-based tests, abstract attribute errors account for 45.7%
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and 38.3%, respectively, of all failure cases. By contrast, 0%
of the failures on regular geometric objects are related to
abstract attributes because these objects have only common
attributes and subtle attributes.

Table 5: Attack results for different visual reasoning
CAPTCHA:s.

VTIT  Geetest NetEase Dingxiang
Success Rate  67.3% 66.7% 77.8% 86.5%
6 6
—— Geetest —— Geetest
5 NetEase 5 NetEase
Dingxiang Dingxiang
4 4
3 3 +——
2 2
1 \ 1
925 30 35 40 45 50 55 025 30 35 40 45 50 55
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Figure 5: Loss and accuracy during the training and validation
phases of Geetest, NetEase and Dingxiang.

4.3 More visual reasoning schemes

We also used the holistic method to attack the other three
visual reasoning CAPTCHAs.

We collected 5,000 prompt-image pairs for each scheme
from Geetest’s website [16], NetEase’s website [35], and
Dingxiang’s website [10]. A total of 4,000 samples were used
for training, 500 were used for validation, and 500 were used
for testing. The split of the dataset was randomly determined.
We loaded the VTT baseline model and further trained it to
fine-tune the holistic model for the new schemes. As shown in
Table 5, the final attack results are 66.7%, 77.8%, and 86.5%
successful, comparable to or better than the VTT attack re-
sults. For Geetest’s Space CAPTCHA, although only regular
geometric objects are involved, the attack success rate is lower
than that of NetEase and Dingxiang. One of the reasons is
that Geetest’s Space CAPTCHA contains more objects in a
challenge, and some of them are partially occluded by other
objects. The other reason is that the combination of object
attributes contained in the question is more abundant, which
increases the difficulty of reasoning. In contrast, NetEase’s
and Dingxiang’s CAPTCHAs contain richer categories, but
the question is more straightforward, lower in complexity, and
involves fewer types. The loss and accuracy on the Geetest,

NetEase and Dingxiang samples during the training and vali-
dation phases are shown in Figure 5.

4.4 Robustness analysis

The experimental results discussed above show our holistic
method’s great ability to address the visual reasoning task
in existing VIT CAPTCHAs. To test the robustness of our
holistic model when faced with new variations, we conducted
two groups of supplementary experiments.

1) Robustness to higher visual logical complexity

For the original VTT prompts, the user needs to refer to
only one object to identify the answer object. For example, for
the instruction "Please click the blue cube that is on the right
of the blue cone," the user needs to refer to the location of the
blue cone to find the answer blue cube to its right. To test the
robustness of our model to prompts with higher visual logical
complexity, we extended the number of reference objects to
2 and 3. For instance, the instruction "Please click the green
cone that is on the right side of the green cone left of the red
cube" has two reference objects. It should be noted that we
performed this robustness experiment after developing the
modular attack. Considering that the logical reasoning task in
the VIT CAPTCHA is similar to that on the CLEVR dataset,
we modified the generation code of CLEVR [26] to generate
this new type of VIT prompt in accordance with the image
information we prepared for the modular attack.

We used 1,500 instruction-image samples (1,300 as the
training dataset and 200 as the validation dataset) to fine-tune
the baseline model for 2 and 3 reference objects and then eval-
uated the performance of the two fine-tuned models on their
respective 500 test samples, which had the same distribution
as the samples based on geometric objects in the baseline eval-
uation. The attack success rates of the two fine-tuned models
were 45.0% and 42.3%. Compared to the 78.5% success rate
of the baseline model, the fine-tuned results were slightly
lower but still acceptable. The results show that despite the
greatly increased logical complexity of the VTT instructions,
with only a small number of newly labeled samples to train
the baseline model, our holistic model still performs well in
breaking the VIT CAPTCHA under the criterion of a 1%
attack success rate [5].

2) Robustness to new object categories

Introducing new object categories into the VIT CAPTCHA
design is a simple but valid way to defend against attacks
from adversaries. In fact, each Chinese character class can be
considered an individual category. Therefore, in this section,
we used Chinese character classes to analyze the robustness
to new object categories.

First, we removed all Chinese samples used in the base
experiment and retrained our model in the same way as be-
fore. Without Chinese characters, the new model achieved
77.2%, 78.9%, and 85.7% success rates for challenges based
on regular geometric shapes, English letters, and digits, re-
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Figure 6: Framework of the modular approach.

spectively. The final success rate on the test dataset without
Chinese samples was 77.9%. Then, we selected another 1,500
images (1,300 as the training dataset and 200 as the validation
dataset) containing 100 Chinese character classes to generate
corresponding visual reasoning based instructions for each
image in a manner similar to the first robustness experiment.
Note that the instructions were all based on common attributes
rather than abstract attributes of Chinese characters.

After the new model was fine-tuned, the attack success rate
on the 500 Chinese character challenges was 69.7%, show-
ing the high robustness of our holistic attack to new object
categories. This result is higher than the 32.9% success rate
achieved in the base experiment. The reason is that the model
needed to learn only the common attributes from 100 Chi-
nese character classes represented in 1,500 images rather than
many abstract attributes of thousands of Chinese character
classes represented in nearly the same number of samples.

In summary, despite an increase in the visual logical com-
plexity of the challenges or the introduction of new object
categories, as long as the CAPTCHA is still based on the
visual reasoning task, our method is able to achieve a high
attack performance after fine-tuning on only a small number
of newly collected CAPTCHA samples.

S Modular Approach

Our holistic network has shown remarkable performance in
breaking visual reasoning CAPTCHAs. However, when a
CAPTCHA involves abstract attributes, such as synonyms or
antonyms, pronunciations, or components, our holistic model
does not work well. If we could manage to obtain the abstract
attributes of all foreground objects and then integrate them
into the process of completing the visual reasoning task, this
problem could be solved. Based on this idea, we developed a
modular method.

5.1 Model structure

The framework of our modular method is shown in Figure 6.
It consists of four modules for semantic parsing, detection,
classification, and integration. The semantic parsing module
is responsible for inferring the reasoning steps necessary to
complete the task. The detection and classification modules
locate each foreground object and extract common attributes
such as the color, shape, and size. The integration module then
refers to the extracted reasoning procedure and aggregates all
of the objects’ attributes to predict the final answer.

1) Semantic parsing module

The semantic parsing module takes the raw text instruc-
tion ¢ as its input and outputs the corresponding reasoning
procedure p. In essence, transforming ¢ to p is a sequence-to-
sequence task. As shown in Figure 7, the program generator
network developed by Feifei’s team [27] is adopted as the
basis of our semantic parsing module. An encoder takes the
raw text instruction ¢ as its input and extracts its semantic
features. A decoder then takes these semantic features to pre-
dict the corresponding program p. Both the encoder and the
decoder adopt a two-layer long short-term memory (LSTM)
architecture as their core structures.

Step 1. The encoder first embeds the discrete words <
vi,v2,...,v; > of the natural language instruction into 300-
dimensional vectors < x1,X2,...,X; > through an embedding
layer with weights W,:

xi =Wy (1
All of these word vectors < x1,X3,...,x; > are then input
into a two-layer LSTM with 256 hidden units in sequence.
The reason for the choice of a two-layer structure instead
of a single-layer structure is that it allows the network to
extract higher-order features and enhances the representation
capability of the semantic parsing module. For step i in each
time, an LSTM cell takes the preceding hidden state h;_| and
the current word vector x; as its input and outputs the updated
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hidden state h;:

h; = LSTMStep(x;,h;_1) 2)
The hidden state h; of the second LSTM layer in the final time
step ¢ is used as the input to the decoder. For the same reason
as for the encoder, a two-layer LSTM structure is adopted as
the framework for the decoder. However, the network weights
are not shared between the encoder and the decoder.

Step 2. For step i in each time step, the decoder network
first concatenates its output 0, from the previous time step
with the encoder’s final hidden state k, through a learned
embedding layer. This operation allows the model to predict
the current program p by referring to the previous prediction
and the global semantic information:

u;=Wyloi1,h] 3)

Step 3. u; is used to compute the hidden state of the decoder
cell, o;:

0; = LSTMStep(u,-,o,-_l) @)

Step 4. o; is passed through a softmax layer to compute a
probability distribution over all programs:

s; = softmax(o;) )

Step 5. The prediction with the highest probability is re-
garded as program p:

p; = argmax(s;) (6)

It should be noted that the semantic parsing module is
responsible only for transforming the input text instruction
into a sequence of programs. The specific function of each
program will be discussed in regard to the integration module.

2) Detection module

The task of the detection module is to locate the positions
of all foreground objects. Faster R-CNN [39] is used as the de-
tection module. Although there are other detection networks
that perform better in terms of accuracy and efficiency, such as
YOLO-v3 [38] and SSD [30], our detection task is relatively
simple. Thus, the simple Faster R-CNN already satisfies our
requirements.

In addition to locating the foreground objects, the detection
network is able to perform some simple classification at the
same time. Some common visual attributes, such as colors,
sizes, and shapes of regular geometries, are also predicted by
the detection module. After detection, the detected objects are
cropped from the original images and sent to the classification
module for further classification of subtle attributes.

3) Classification module

The function of the classification module is to recognize
subtle visual attributes such as notches, fractures, tilt direc-
tions and character categories. SENet [24] is used as the
classification module. By calculating the interdependencies
among channels, this structure enables adaptive recalibration
of the channelwise feature responses, thus greatly enhanc-
ing the representation power of the model and increasing the
classification accuracy.

4) Integration module

Question  Please click  the letter ‘B’ left of the big  cone
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Figure 7: Structure of the semantic parsing module.

The three modules described above predict the reasoning
procedure and visual attributes needed to solve CAPTCHAs.
However, they cannot address abstract attributes invoked in
the presented instructions. If we can establish the relevant
mapping relationships between objects and their abstract at-
tributes, the corresponding CAPTCHAs will be cracked. For
each Chinese character object, we input its predicted charac-
ter class into the online Xinhua Dictionary [54] to search for
its pronunciation, antonym, and component attributes. The
mappings between the uppercase and lowercase versions of
English letters and the numerical sorting of numbers were
established programmatically.

The extracted reasoning procedure for a CAPTCHA in-
stance consists of a series of programs, each of which repre-
sents a reasoning step. A program is responsible for filtering
out redundant foreground objects. Different programs serve
unique functions. After the processing of the program, only
objects with the required attributes remain. For example, the
program filter_shape[cone] selects objects with the shape
"cone" from among the objects remaining after the preceding
program. After a sequence of program-based filtration opera-
tions, the final remaining objects are the predicted answers.

Taking the CAPTCHA shown in Figure 8, with the instruc-
tion "Please click the letter ‘B’ left of the big cone" as an
example, we describe the integration process in detail below.
It consists of five programs in total. To clearly illustrate the in-
tegration process, the candidate answer objects are displayed
in colors, while the eliminated objects are displayed in gray.
The whole reasoning procedure is as follows:

a. Initially, all foreground objects are treated as candidate
answers.

b. The first is program filter_shape[cone]. Its function is
to select all the objects with the shape "cone" from among
all the candidate objects. As shown in Figure 8, only the
cones are selected to be used as candidate answers to the next
program.

c. The second program, filter_size[big], is responsible for
selecting all objects with the size "big" from among the can-
didate objects output by the previous step.

d. The program relate[left] is slightly different. Instead of
selecting candidate answers from the output of the last step, it
treats the output of the last program as a reference to search
for candidates among all the foreground objects. The output
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of the second program consists of a "big cone." Thus, the
function relate[left] finds objects to the left of such objects.

e. After the program filter_shapelletter], only English let-
ters remain.

f. The program filter_letter[’ B’ | searches among its candi-
date objects for objects equivalent to the letter "B."

g. Finally, after all of the programs have performed their
filtration tasks, only the green letter "B" remains, which is the
final answer of our model.

5.2 Experiment details

Data preparation. 1) Visual feature selection. We manually
analyzed 2,000 VTT instruction-image pairs in our dataset
and counted the visual attributes involved, including color,
shape, size, direction of rotation, notch type, and fracture type.
The number of classes of each attribute above is listed in Table
6. For the tilt direction attribute, "T1" and "T2" represent two
different values. The naming principle for the values of the
notch type attribute is similar. For the fracture type attribute,
"Fi" and "F(-1)" can be joined together. 2) Instruction-image
pairs preparation. To reduce the labeling burden, we chose
only 5,000 VTT images from among the training samples
collected for the holistic experiment and labeled every fore-
ground object in these images. Twenty members of our labo-
ratory spent one day labeling all of the object attributes online.
We needed only to select the corresponding attributes from
option boxes instead of providing keyboard input. Each test
image could be reused to generate multiple instructions. For
this purpose, the generation code of CLEVR [26] was modi-
fied to automatically generate instructions in accordance with
the labeled information and the preset VIT instruction tem-
plates. Instruction labeling was also automatically completed
by means of the instruction generation code. Finally, 5,000
labeled images, each corresponding to 2 instructions (10,000
instructions in total), were prepared. It should be noted that
the 5,000 selected images were not all randomly chosen. In-

Table 6: Number of classes of different visual attributes.

Number
Attribute of Sample of Label
Classes
Color 4 Yellow, Red, Blue, White
Shape 924 Cube, r, 3, H, -
Size 3 Big, Medium, Small
Tilt direction 2 T1, T2
Notch 4 N1, N2, N3, N4
F1, F2, F3, F4, F(-1), F(-2),
Fracture 8 F(-3). F(-4)

stead, different types of images were selected in accordance
with the category proportions in the holistic experiment, as
shown in Table 3. Specifically, 1750 (35%), 1,500 (30%),
1,000 (20%), and 750 (15%) images were chosen for which
the answer objects were regular geometric shapes, Chinese
characters, English letters and digits, respectively. The test
samples in the holistic experiment were reused in the modular
attack test.

Training the semantic parsing module. We used 10,000
instruction and reasoning procedure pairs, denoted by (g, P),
to train the semantic parsing module (8,500 as the training
dataset and 1,500 as the validation dataset). For each instruc-
tion, the corresponding reasoning procedure was manually
labeled. We used the cross-entropy loss to measure the dif-
ference between the model prediction P’ and the true label P
for instruction ¢. During the training process, the Adam [28]
strategy was used to optimize the model. The learning rate
was set to 5 x 107#. The model was trained with a batch size
of 64 for 16,000 iterations on an NVIDIA TITAN X GPU.

Training the detection module. A total of 5,000 images
were used to train the detection module (4,500 as a training
dataset and 500 as a validation dataset). Note that the detection
module is responsible only for predicting object locations and
simple visual attributes. The detection module was trained
with a batch size of 8 and a learning rate of 5 x 10~3 for
32,000 iterations. The training hardware was the same as that
for the semantic parsing module.

Training the classification module. According to the
bounding boxes predicted by the detection module, we cut
out all foreground objects from the original images and saved
them as individual images. Each kind of subtle visual at-
tribute was equally treated as one individual class regardless
of the other attributes. The sizes of the training and validation
datasets were 54,212 and 16,347, respectively. Each image
was normalized to 224 x 224 pixels before being input to the
model. The classification module was optimized using the
stochastic gradient descent (SGD) strategy with a momentum
of 0.9 and a batch size of 8. The learning rate was initially set
to 1 x 10* and was decreased by a factor of 10,000 in every
epoch. The model was trained for 10 epochs.
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Table 7: Results of our modular attack.

Answer object SPM DM CM  ASR

93.0% 90.0% 99.0%
96.6% 82.7% 80.0%
98.5% 93.8% 83.7%
99.0% 96.3% 94.7%
95.0% 88.8% 88.0%

* Abbreviations in Table 7: SPM (semantic parsing module), DM (detec-
tion module), CM (classification module), ASR (attack success rate)

Regular geometries ~ 100%
Chinese characters 100%
English letters 100%
Digits 100%
Overall accuracy 100%

5.3 Evaluation

We ran our attack on 1,000 CAPTCHA challenges and
achieved a success rate of 88.0% with an average speed of
0.96 seconds per challenge. To systematically analyze our
method, we counted the failure cases of our attack (as shown
in Table 7) and analyzed the causes.

Final accuracy. The accuracy for the challenges based on
Chinese characters is the lowest due to their diversity and com-
plexity. We observed an interesting phenomenon: although
the detection accuracy and classification accuracy for geomet-
ric objects are not the highest, their overall accuracy is the
best. One reason is that geometric objects do not have abstract
attributes. Another is that during the process of cracking a
visual-based CAPTCHA, the model does not need to recog-
nize all foreground objects correctly; as long as the target
object is recognized correctly, the challenge is considered
cracked.

Semantic parsing module. The evaluation criterion for
the program generator is that the prediction for a text instruc-
tion is considered correct only if every step of the predicted
reasoning procedure is equal to the ground truth. Under this
standard, the program generator achieved 100% accuracy.
The program generator network has previously shown great
power on the CLEVR task [27]. Thus, considering that the
text instructions of the VI'T CAPTCHA scheme involve fewer
categories and much simpler logical relationships, this high
accuracy is not surprising.

Detection module. The overall true positive rate (TPR) of
detection of the Faster R-CNN module across all classes is
95.0%. We found that occlusion was the main cause of failure.
Figure 9 shows a failure case of our detection module. The
red bounding boxes represent the predictions of our model,
and the green bounding box represents an object that was not
correctly predicted. The blue cylinder in the green bounding
box was not detected because its edge was partially blocked
by a Chinese character.

Classification module. The overall accuracy of the classi-
fier is 88.8%. As expected, the accuracy of Chinese characters
is the lowest. The number of categories of Chinese characters
is the largest, and tilt and occlusion effects make the classi-
fication problem even more challenging. Consequently, the
classifier can easily misclassify these characters. Moreover,

cube_green_medium 1.000

sphere_red_sm:

Figure 9: A failure case of the detection module.

Table 8: Results for different visual reasoning CAPTCHAS of
the modular method.

SPM DM ASR
Geetest 100% 95.7% 90.8%
NetEase 100% 93.5% 86.2%

95.2% 98.6%

* Abbreviations in Table 8: SPM (semantic parsing module), DM (detec-
tion module), ASR (attack success rate)

Dingxiang 100%

the classification accuracy for geometric objects is the second
lowest. For geometric objects, the task of the SENet module
is to classify their subtle attributes, such as tilt direction, notch
type, and fracture type. These attributes are essentially local
features relative to the shape of the object. For example, two
distinct geometric objects might have the same notch type.
As a result, the classifier must strip these local features from
the various geometric shapes.

5.4 More visual reasoning schemes

1) Attack

We also used the modular method to attack the other three
visual reasoning CAPTCHAs. The three schemes have much
fewer categories than VIT CAPTCHA. To simplify our ex-
periments, we removed the classification module and used
the detection module to complete detection and classification
tasks simultaneously. We used the data collected in Section
4.3 and annotated the data in the same manner as in Section
5.2. For each scheme, there are 4,000 samples for training
the models of semantic parsing and detection modules, 500
samples for validation and 500 samples for testing. Table 8
list the experiment results. The final attack results are 90.8%,
86.2% and 98.6% for the Geetest, NetEase and Dingxiang
schemes, respectively. This suggested the wide applicability
of our method.
2) Usability Analysis

To visually express the quality of the proposed attack meth-
ods, we compared the attack results with actual humans from
two aspects. On the one hand, considering that the CAPTCHA
is used to distinguish humans from bots, we expect to quan-
titatively measure how close our attacks are to human per-
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formance. On the other hand, we want to learn whether the
problems difficult for machines to solve also apply to humans.

We applied a framework similar to that used in [52] to quan-
titatively evaluate the usability of the four tested CAPTCHAs.
More specifically, we analyzed the usability of these schemes
from the perspectives of success rate and response time.
For each CAPTCHA mechanism, 2,500 samples containing
prompts of various types in even proportions were selected for
online deployment. All of these CAPTCHA prompt-image
pairs were derived from the training and test datasets used for
the security analysis.

In the usability experiment, we invited 50 participants
whose ages ranged from 19 to 45 on our campus to take
our online tests. We recruited volunteers online on the cam-
pus social network. All volunteers were composed of stu-
dents and teachers from various majors, who have enough
ability to solve such CAPTCHA schemes. To avoid the in-
herent biases, we ensure that these volunteers have not done
similar CAPTCHA tests before. Everyone was required to
complete the test independently. Each volunteer was asked to
complete at least 40 CAPTCHA tests for each scheme. We
received 2475, 1969, 2061, and 2361 valid records for the
four CAPTCHA mechanisms of VTT, Geetest, NetEase, and
Dingxiang, respectively. Table 9 lists the success rates and
average response times for the different CAPTCHA schemes.

The response times for all four schemes are relatively short,
with the longest being 10.7 seconds for Geetest CAPTCHA.
The consensus is that a CAPTCHA should be completable
by a human in no more than 30 seconds [40], and these
CAPTCHAs satisfy this principle well. Both the short
response times and the high pass rates prove that these
CAPTCHAs all have good usability and that complex prob-
lems for machines do not have a significant impact on humans.

Our methods approach or even exceed the human pass
rates, which proves the effectiveness of the attack. Following
the criterion that a scheme is considered broken when the
attacker is able to reach a precision of at least 1% [5], our
method achieved a good attack effect.

Table 9: Usability analysis of different CAPTCHA schemes.

VTT Geetest NetEase Dingxiang
Response Time (s) 9.1 10.7 4.5 5.7

Std Dev of
Response Time (s) 5.5 5.9 3.0 43
Human Pass

Rate(%)

87.48 90.76  95.20 95.43

5.5 Ablation study

Our modular attack is based on a modular design principle. To
fairly evaluate the contributions of each of the three modules
of our attack, we performed an ablation study, as reported in
this section.

Contribution of the semantic parsing module. In this
test, we removed the semantic parsing module and used only
the detection module to predict the locations of foreground
objects. Then, we randomly selected one foreground object
as the final answer. We implemented this attack strategy on
the same 1,000 samples used to test our modular method, and
the final success rate was 6.9%. The dramatic reduction in
the success rate demonstrates the great significance of our
semantic parsing module in the entire modular attack.

Contribution of the detection module. The basic require-
ment to solve a VIT CAPTCHA instance is to identify an
area of the image as the answer. Without the detection mod-
ule, an adversary must take a brute force strategy to attack
the VIT CAPTCHA. Using this method, the final success
rate was only 3.2%, showing that the detection module is
indispensable for our modular attack.

Contribution of the classification module. In this test,
we removed the classification module and trained a Faster
R-CNN model to predict both the bounding boxes and the
classes of all visual attributes (including subtle attributes)
of the foreground objects. That is, for all objects, only the
detection module was used to perform both the detection
and classification tasks. In this way, our simplified modular
method achieved a success rate of 45.9%.

As shown in Table 10, we further calculated the accuracy
of the simplified modular method for each challenge category.
The second column presents the final detection-classification
results, and the last column shows the final success rate when
the classification module is removed. In contrast to the results
for Chinese characters, the final success rate for challenges
based on geometric objects is still very high. The root cause
lies in the fact that for Chinese characters, there are more
object categories represented by the same number of training
samples. Consequently, there are fewer training samples for
each character class. Moreover, it is quite difficult for an object
detection network to classify a large number of categories,
especially categories that contain subtle properties. Therefore,
itis not unexpected that the success rate for Chinese characters
is the worst. Thus, the classification module is required. When
our classification module is presented with the same number
of samples for Chinese characters as for geometric shapes,
it can achieve much better accuracy on Chinese character
objects.

In summary, our classification module not only increases
the overall success rate from 45.9% to 88.0% but, more im-
portantly, can greatly increase the recognition accuracy when
the number of training samples is limited.

6 Guidelines and Future Direction

Our experimental attacks on visual reasoning CAPTCHAs
not only reveal their weaknesses and vulnerabilities but, more
importantly, help us better understand what kinds of mecha-
nisms or design features contribute to good security. Based
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Table 10: Results of the ablation study.

Detection- Attack

Target object classification success
rate rate

Regular geometries 93.2% 89.9%

Chinese characters 24.2% 20.0%

English letters 89.7% 54.5%

Digits 91.6% 78.9%

Overall accuracy 77.3% 45.9%

on the observation of the effectiveness of the different de-
sign features of visual reasoning CAPTCHAS, we summarize
three guidelines for future CAPTCHA design that could make
these types of CAPTCHASs harder to crack. We also evalu-
ate the recommendations experimentally and continue to use
commonsense knowledge in CAPTCHAs in future work.

Using a larger category set. As discussed above, using
more categories in CAPTCHA design results in a larger the-
oretical solution space that a malicious bot must search and
thus provides better security. To evaluate this guideline, we
expanded the robustness experiments in Section 4.4 in the
same experimental settings. Under the same amount of data,
attacking VTT challenges containing 100 Chinese character
classes is more difficult than attacking 50 Chinese character
classes. The attack results in Table 11 strongly demonstrate
our opinion. Meanwhile, according to our experimental results
in Table 7, the classification accuracy for Chinese characters
is the lowest among regular geometries, English letters, and
digits, which indicates that using more classes indeed pro-
vides better defense against adversaries. Research by Algwil
et al. [2] also corroborates our view. They have shown that
in the context of recognition tasks, it is more demanding to
attack CAPTCHAs with a Chinese mechanism than Roman
character-based CAPTCHAs. One important reason is that
the Chinese character set is a larger category set than English
letters.

Table 11: The attack success rates of adding more categories.

100 classes

69.7%

50 classes

77.7%

Attack Success Rate

Making some occlusion. Occlusion refers to the case in
which the view of an object is partially blocked by another
object. Making some occlusion will enhance the security of
CAPTCHA: . To confirm this guideline, we set comparative
experiments for no occlusion and occlusion of the answer ob-
jects, as shown in Figure 10. Meanwhile, we explore whether
occlusion will affect human pass rates. We use one single
question type and only regular geometries contained in im-
ages to simplify the experiments. Table 12 shows that the
occlusion of the answer objects has significant impact on the
machine attack results but has little impact on humans’ ability

s 4B,
¥4 ‘A..

(a) Please click the red sphere

-..

&
D - v D v
v'i -

(b) Please click the yellow cylinder

Figure 10: Examples of no occlusion (left) and occlusion
(right) of the answer objects.

to solve the CAPTCHA. The root cause lies in the fact that
once part of an object is blocked, its edge information and
part of its texture information are lost, in turn, which will
affect the final prediction of the CNN model. In contrast, hu-
mans can infer the shape contour of an object by observing
only a small fraction of it. Therefore, for visual perception-
based CAPTCHAs, designers can make use of this defect of
machine learning to enhance the security of CAPTCHAs.

Table 12: The attack success rate and human pass rate under
different occlusion settings.

No Occlusion  Occlusion
Attack Success Rate 86.0% 69.5%
Human Pass Rate 93.9% 92.9%

Using more variations. Variation refers to objects in the
same category that appear subtly different but remain the
same in their main outline and basic features. The experimen-
tal results of our holistic attack in Table 4 demonstrate that
among all our attack failure cases, the recognition error rate
is the highest for regular geometric objects. The root cause
lies in the fact that more variations are introduced in the de-
sign of the geometric objects used in the VIT CAPTCHA,
such as the notch and slant attributes. On the one hand, these
attributes raise the difficulty for a model in recognizing the ob-
ject category; on the other hand, recognizing these attributes
themselves is even more challenging for a model than the cate-
gory classification task. In fact, Zi et al. [60] argued that using
a number of character fonts can greatly increase CAPTCHA
security because it introduces more variations and requires a
more robust attack model. Therefore, more variations can be
introduced to enhance security.

Commonsense knowledge. Abstract concepts can be re-
garded as a type of commonsense knowledge. The inability
of our holistic model to address abstract concepts resulted in
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81.9%, 45.7% and 38.3% of its failures on VTT tests based
on Chinese characters, English letters, and digits, respectively,
as shown in Table 4, and our modular method can solve only a
limited subset of challenges based on abstract concepts. How-
ever, the body of commonsense knowledge held by humans
is nearly infinite. All these experimental results show that
solving problems based on commonsense knowledge is in-
deed a complex task for current machine learning and deep
learning algorithms. The high abstractness and infinite scope
of commonsense knowledge greatly increase the problem
complexity for a machine. We believe CAPTCHASs invok-
ing commonsense knowledge will be a promising research
direction.

7 Conclusion

In this paper, we explored the hard Al problems underly-
ing current existing CAPTCHAs and found that conventional
CAPTCHA schemes have been proven to be insecure. We
comprehensively studied the security of one representative vi-
sual reasoning scheme, Tencent’s VIT CAPTCHA, by means
of a holistic attack and a modular attack and achieved success
rates of 67.3% and 88.0%, respectively. To test the robustness
of our method, we also conducted supplementary experiments
on three other visual reasoning schemes. Our high success
rates prove that the latest effort to use novel, hard Al problems
(visual reasoning) for CAPTCHAS has not yet succeeded. We
further summarized three guidelines for future vision-related
CAPTCHA design and believe that in particular, the adop-
tion of commonsense knowledge in CAPTCHA design has
promising prospects.
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