
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

SMASH: Synchronized Many-sided Rowhammer
Attacks from JavaScript

Finn de Ridder, ETH Zurich and VU Amsterdam; Pietro Frigo, Emanuele Vannacci,
Herbert Bos, and Cristiano Giuffrida, VU Amsterdam; Kaveh Razavi, ETH Zurich

https://www.usenix.org/conference/usenixsecurity21/presentation/ridder

SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript

Finn de Ridder
ETH Zurich

VU Amsterdam

Pietro Frigo
VU Amsterdam

Emanuele Vannacci
VU Amsterdam

Herbert Bos
VU Amsterdam

Cristiano Giuffrida
VU Amsterdam

Kaveh Razavi
ETH Zurich

Abstract
Despite their in-DRAM Target Row Refresh (TRR) mitiga-
tions, some of the most recent DDR4 modules are still vul-
nerable to many-sided Rowhammer bit flips. While these
bit flips are exploitable from native code, triggering them
in the browser from JavaScript faces three nontrivial chal-
lenges. First, given the lack of cache flushing instructions in
JavaScript, existing eviction-based Rowhammer attacks are
already slow for the older single- or double-sided variants
and thus not always effective. With many-sided Rowhammer,
mounting effective attacks is even more challenging, as it re-
quires the eviction of many different aggressor addresses from
the CPU caches. Second, the most effective many-sided vari-
ants, known as n-sided, require large physically-contiguous
memory regions which are not available in JavaScript. Finally,
as we show for the first time, eviction-based Rowhammer at-
tacks require proper synchronization to bypass in-DRAM
TRR mitigations.

Using a number of novel insights, we overcome these chal-
lenges to build SMASH (Synchronized MAny-Sided Ham-
mering), a technique to succesfully trigger Rowhammer bit
flips from JavaScript on modern DDR4 systems. To mount
effective attacks, SMASH exploits high-level knowledge of
cache replacement policies to generate optimal access pat-
terns for eviction-based many-sided Rowhammer. To lift
the requirement for large physically-contiguous memory re-
gions, SMASH decomposes n-sided Rowhammer into mul-
tiple double-sided pairs, which we can identify using slice
coloring. Finally, to bypass the in-DRAM TRR mitigations,
SMASH carefully schedules cache hits and misses to suc-
cessfully trigger synchronized many-sided Rowhammer bit
flips. We showcase SMASH with an end-to-end JavaScript
exploit which can fully compromise the Firefox browser in
15 minutes on average.

1 Introduction

Transistor scaling has been continuously improving the per-
formance and capacity of modern DRAM devices. Security

has instead been lagging behind. In particular, rather than
addressing the root cause of the Rowhammer bug, DDR4 in-
troduced a mitigation known as Target Row Refresh (TRR).
TRR, however, has already been shown to be ineffective
against many-sided Rowhammer attacks from native code,
at least in its current in-DRAM form [12]. However, it is
unclear whether TRR’s failing also re-exposes end users to
TRR-aware, JavaScript-based Rowhammer attacks from the
browser. In fact, existing many-sided Rowhammer attacks
require frequent cache flushes, large physically-contiguous
regions, and certain access patterns to bypass in-DRAM TRR,
all challenging in JavaScript.

In this paper, we show that under realistic assumptions, it
is indeed possible to bypass TRR directly from JavaScript,
allowing attackers to exploit the resurfaced Rowhammer bug
inside the browser. In addition, our analysis reveals new re-
quirements for practical TRR evasion. For instance, we discov-
ered that activating many rows in rapid succession as shown
in TRRespass [12] may not always be sufficient to produce
bit flips. The scheduling of DRAM accesses also plays an
important role.

Target Row Refresh. The discovery of the Rowhammer
bug in 2014 [18] has led to an entire new class of attacks that
all take advantage of the bug’s promise: bit flips across secu-
rity boundaries. In particular, researchers have demonstrated
practical attacks on browsers, virtual machines, servers, and
mobile systems, launched from native code, JavaScript, and
even over the network [5,9,11,14,15,24,33,36,38,41,42,44].
In addition to these memory corruption attacks, Rowhammer
may also serve as a side channel to leak information [21].

In response to the onslaught, manufacturers enhanced
DDR4 chips with in-DRAM TRR—a Rowhammer “fix”
which monitors DRAM accesses to mitigate Rowhammer-
like activities. TRR consists of two components: a sampler
and an inhibitor. The sampler is responsible for sampling
memory requests to detect potentially Rowhammer-inducing
sequences before they do harm. The inhibitor seeks to avert
attacks by proactively refreshing the victim rows. Unfortu-

USENIX Association 30th USENIX Security Symposium 1001

nately, TRRespass [12] recently showed that the mitigation is
inadequate and can be bypassed by moving from double-sided
to many-sided Rowhammer, i.e., activating not just two but up
to 19 rows depending on the particular TRR implementation.

The crux of the problem is the memory chips’ sampler. A
reliable sampler would take enough samples to provide the
inhibitor with sufficiently accurate information to refresh all
the necessary victim rows in the case of a Rowhammer at-
tack. Unfortunately, common sampler implementations mon-
itor a limited number of aggressors and always at the same
time [12], implicitly relying on the assumption that mem-
ory requests will arrive in an uncoordinated, chaotic fashion.
However, given precise control over the rows to hammer by
means of large physically-contiguous memory regions and
by aggressively hammering multiple rows through explicit
cache flushing (using the CLFLUSH instruction), many-sided
Rowhammer can overwhelm the sampler and trigger bit flips
even in TRR-enabled DRAM [12].

Bypassing TRR from JavaScript. While the resurrection
of native-code Rowhammer on modern DDR4 systems is cer-
tainly serious, especially in clouds and similar environments,
it does not immediately affect Web users exposed to attacks
from JavaScript. In the absence of CLFLUSH and control over
physically-contiguous memory, hammering a large number
of rows by means of cache evictions, at a rate that is high
enough to induce bit flips while still bypassing in-DRAM
TRR, is not possible without new insights. Note that com-
pared to double-sided Rowhammer, many-sided Rowhammer
patterns exacerbate these challenges, as they require even
more physically-contiguous memory and even more evictions.

A first key insight that helps us simplify the access pat-
terns and greatly reduce the demand for physically-contiguous
memory is that many-sided Rowhammer is equivalent to many
times double-sided Rowhammer. As we will see, we can easily
identify suitable double-sided pairs using slice coloring. Our
slice-coloring strategy exploits slice-collision side channels
and uses amplification techniques [27] to boost the signal and
operate with the (unmodified) low-resolution, jittery timers
available to JavaScript in modern browsers [35].

Our second key insight is that we can use high-level knowl-
edge of cache replacement policies to improve the efficiency
of eviction-based many-sided Rowhammer. In particular,
rather than common eviction sets, we carefully construct ac-
cess patterns such that every single cache miss itself leads to
an aggressor row access and thus contributes to the hammer-
ing activity. Since all the misses are now useful, we minimize
the number of “useless” memory accesses for eviction to
a small number of highly efficient cache hits. Interestingly
enough, such self-evicting patterns can be even more efficient
than traditional flush-based patterns.

Even these optimized hammering patterns do not trigger
bit flips without our third key insight. Where previous work
on Rowhammer focuses on blindly generating as many ac-

cess patterns per time unit as possible, we discovered that
carefully scheduling the accesses plays an important role
in bypassing TRR. Specifically, we show for the first time
that an attacker needs to ensure that the sampler consistently
samples the accesses to the same set of rows, allowing the
(unsampled) accesses to the other rows to hammer away with-
out hindrance from TRR’s refresh operations. As we shall
see, we will do so by synchronizing the access patterns with
the refresh commands. Using our three novel insights, we
build SMASH (Synchronized MAny-Sided Hammering), a
technique to mount TRR-aware, JavaScript-based Rowham-
mer attacks. To demonstrate the practicality of SMASH, we
present an end-to-end exploit to fully compromise the Firefox
browser without software bugs in 15 minutes on average.

Summarizing, we make the following contributions:

1. A demonstration of the first end-to-end (synchronized
many-sided) Rowhammer attack on TRR-enabled DDR4
in modern browsers, providing first evidence that
Rowhammer continues to threaten Web users.

2. An automated approach to generate optimal access pat-
terns for many-sided Rowhammer without relying on
cache flushing instructions.

3. A further analysis of TRR, revealing synchronization as
an additional requirement for successful attacks.

2 Background

We briefly discuss DRAM, Rowhammer, and caches to help
readers understand the challenge of performing Rowhammer
from JavaScript in the browser on modern DDR4.

2.1 DRAM
Since the introduction of synchronous DRAM or SDRAM,
main memory is organized in banks, partitioned among the
DRAM chips attached to the Dual Inline Memory Module
(DIMM) or simply module. To access data in memory, the
CPU’s memory controller selects a bank and broadcasts its
requests to all chips sharing the same rank, where a rank
corresponds to the chips on one side of the module. One
or more DIMMs may be connected to the processor’s mem-
ory interface by the memory bus or channel. The number
of available channels depends on the microarchitecture. For
example, Intel’s Kaby Lake processors have two channels,
each supporting up to two modules.

The memory controller uses parts of the physical memory
address to select the corresponding channel, DIMM, rank,
and bank. A bank is a two-dimensional array of cells storing
bits. To read their content, the memory controller further uses
parts of the physical address to bring a row of information
into the bank’s row buffer. Once the row is in the row buffer,
the CPU’s memory controller can read and write to different

1002 30th USENIX Security Symposium USENIX Association

offsets within this buffer using column bits in the physical
address of the target location.

To prevent data loss from the slow but continuous leakage
of charge from the capacitors that make up the DRAM cells,
the cells need to be refreshed periodically. Each full refresh
consists of transferring the rows to the row buffer and writing
them back. The DDR4 SDRAM standard specifies that un-
der normal conditions, the per-row refresh or REF command
should be issued every 7.8 µs.

2.2 Rowhammer

Kim et al. [18, 45] show that by repeatedly activating a row
(the aggressor row) at high frequency, it is possible to cause
a disturbance error in one of the neighboring (victim) rows.
The disturbance manifests as a bit flip, where 0 becomes
1 or vice versa. The Rowhammer effect may be amplified
in a particular row by activating both adjacent rows in al-
ternating fashion, an access pattern known as double-sided
Rowhammer. Researchers have shown Rowhammer attacks
on numerous targets in various scenarios [5, 9, 11, 14–16, 21,
32, 33, 36–38, 41, 42, 44].

2.3 Target Row Refresh

Target Row Refresh (TRR) is the deployed industry solution
against the Rowhammer vulnerability. TRR tries to detect
Rowhammer-inducing access patterns to then prevent a bit
from flipping, e.g., by refreshing the victim rows. The re-
cent investigation into TRR by Frigo et al. [12] concluded
that almost all recent DDR4 devices advertise themselves as
Rowhammer-free by implementing the TRR mitigation in-
side the DRAM device itself. The in-DRAM TRR features
a sampling mechanism to detect the aggressor rows and an
inhibitor mechanism that refreshes the victim rows. They also
showed that it is often possible to bypass in-DRAM TRR.
By moving from double-sided Rowhammer to many-sided
Rowhammer, where not just two but many rows (up to 19)
are hammered repeatedly, it is still possible to trigger bit flips.
Experiments suggest that the reason behind the effectiveness
of many-sided patterns is due to the limited space in the sam-
pler. This means that if there are more victims (because there
are more aggressors) than the sampler can track, some will
go unprotected.

2.4 CPU caches

To perform Rowhammer attacks in the browser, the attacker
needs to flush aggressor addresses from different levels of
CPU cache. Modern Intel processors have three levels of set-
associative caches. In an N-way set-associative cache, each
set accommodates N cache lines. Once a set is full but a
new line for that set arrives, a replacement policy determines

Tag Set Line offset

Undocumented hash function Slice

016 663

02

Figure 1: Displayed is a physical address and the mappings its bits
are used for. Only the LLC is partitioned into slices. For efficiency
reasons, the L1 cache uses the virtual instead of physical address
bits for set addressing.

which line to evict. The replacement policies for many mi-
croarchitectures have already been reverse engineered [3, 43].

Many modern processors have an inclusive last-level cache
(LLC): any 64-byte cache line stored in the upper levels also
resides in the LLC. Reasoning about cache behavior becomes
simpler with an inclusive LLC, in particular because evic-
tion from the LLC implies eviction from the entire cache
hierarchy.

The LLC set to which a cache line belongs is determined
by the set index bits of the physical address, as shown in Fig-
ure 1. The width of the set index is determined by the number
of sets of the LLC. For example, the Kaby Lake LLC has
1024 sets per slice. Slices first appeared in the Sandy Bridge
microarchitecture in 2011, and further partition the LLC in
4, 8, or 16 chunks [26]. Originally, the number of slices was
equal to the number of CPUs, but in recent microarchitectures
it instead equals the number of hyperthreads [7]. Intel uses
undocumented but reverse engineered [10, 26, 46] hash func-
tions to map cache lines to slices. As we shall see later, cache
slicing poses challenges for the creation of access patterns for
many-sided Rowhammer attacks in the browser.

3 Threat Model

We assume an attacker who controls a malicious website (or
a malicious ad on a benign website) that is visited by the
victim. The attacker does not rely on any software bug but
only exploits Rowhammer bit flips triggered from within the
JavaScript sandbox to gain control over the victim’s browser.
We assume the victim’s system deploys all the state-of-the-
art mitigations against Rowhammer and side-channel attacks,
i.e., modern in-DRAM Rowhammer mitigations [12, 22, 28]
and browser mitigations against microarchitectural attacks, in-
cluding low-resolution, jittery timers and mitigations against
speculative execution attacks [29, 31, 35, 40]. Finally, similar
to [15], SMASH relies on transparent huge pages (THP) for
crafting its access patterns. See Appendix C for an overview
of the default THP settings on popular Linux distributions.

USENIX Association 30th USENIX Security Symposium 1003

4 Rowhammering DDR4 in the Browser

Carrying out a Rowhammer attack from inside JavaScript has
never been trivial [15]. The attacker needs to find a way to
flush the aggressors from the cache without relying on cache
flushing instructions. Lack of memory addressing informa-
tion in JavaScript further complicates such attacks. The ar-
rival of the in-DRAM TRR mitigation only exacerbated such
challenges. Because of the mitigation, ordinary double-sided
Rowhammer will no longer suffice. To attack TRR-enabled
DDR4, the attacker needs a many-sided access pattern. This
poses our first challenge:

Challenge 1: to build a many-sided access pattern, the
attacker needs a large chunk of physical memory, which is
hard to acquire in JavaScript.

Many-sided patterns consist of many adjacent rows. Since
DRAM row addresses are determined by high physical ad-
dress bits, collecting adjacent rows requires a relatively large
amount of physical memory. As shown later, SMASH ad-
dresses this challenge by applying a new insight about many-
sided Rowhammer that allows it to collect the required aggres-
sor addresses without the need for a large contiguous chunk
of physical memory.

The next hurdle faced by the attacker is: how to make
sure every memory access goes to DRAM (and not one of the
caches)? The attacker could try to adopt a known solution such
as Rowhammer.js [15] or the technique presented by Aweke
et al. [4]. These methods use eviction sets to create CLFLUSH-
free access patterns. Aweke et al. [4] take advantage of the
LLC’s replacement policy and introduce two additional cache
misses and a series of hits to ensure the eviction of double-
sided or single-sided pairs, while Rowhammer.js searches for
efficient eviction strategies that also introduce at least two
additional misses and many more hits.

The problem with these approaches is that, when applied
to many-sided access patterns, they cause an intolerable slow-
down. We evaluated the effects of the method from Aweke et
al. [4] on our test bed S0 (specified in Section 8) for creating
CLFLUSH-free 18-sided access patterns. In this experiment,
the 18 aggressor rows end up in different cache sets. Conse-
quently, 270 additional cache hits (15 cache hits multiplied by
18 aggressors) and 18 additional cache misses are necessary
for ensuring that the 18 aggressors are evicted from the LLC.
We chose the method from Aweke et al. [4] since it has less
overhead compared to Rowhammer.js. Still, we found this
pattern to be too slow to trigger bit flips. This brings us to our
second challenge:

Challenge 2: the attacker needs to find a strategy to pro-
duce patterns that can efficiently perform many-sided
Rowhammer without introducing too many additional
cache hits and misses.

ScatterGather

Figure 2: The order of memory requests and CLFLUSH instructions
matters. The “gather” 18-sided pattern on the left does produce bit
flips while the “scatter” 18-sided pattern on the right does not.

As shown later, SMASH addresses this challenge by craft-
ing optimal access patterns that ensure all the cache misses
land on the aggressor rows and contribute to hammering.

The next important observation we make is about the order
of cache hits and cache misses. The common belief is that as
long as enough requests are sent to memory in a given period
of time, it is possible to trigger Rowhammer bit flips. Another
experiment, summarized in Figure 2, suggests that this does
not hold for DDR4 devices with in-DRAM TRR. In one case,
we send 18 memory requests in a batch for an 18-sided pattern,
followed by the CLFLUSH instructions that flush the aggressors
from the cache. We confirm that this pattern triggers bit flips
as shown in previous work [12]. However, if we interleave the
CLFLUSH instructions with memory requests to the aggressor
rows, we can no longer trigger bit flips despite sending the
same number of requests in a given period of time. As we
show later, this is due to the properties of the TRR mitigation.
This observation leads to our third and final challenge:

Challenge 3: the attacker must carefully schedule the se-
quence of cache hits and misses to bypass the in-DRAM
TRR mitigation successfully.

As shown later, SMASH addresses this challenge by syn-
chronizing DRAM accesses with the TRR mitigation.

4.1 Overview
In the remainder of the paper we tackle the aforementioned
three challenges. In Section 5 we discuss how we can relax
the requirements of large memory allocations (C1) imposed
by TRRespass [12] showing how one of the parameters dis-
cussed by Frigo et al. [12] (i.e., row location) does not always
play a role when trying to bypass in-DRAM mitigations. We
then show (Section 6) how we can increase the hammering

1004 30th USENIX Security Symposium USENIX Association

Table 1: Minimum contiguous allocations. The table reports the
index of the physical address bit that maps to the LSB of the DRAM
row address, for different memory configurations. The final column
shows how much contiguous physical memory is needed to control
three adjacent rows, computed as 2(LSB+log2 3) B.

Organization LSB row
address

Min.
alloc.Ch. DIMMs/Ch. Ranks Banks

2 2 2 16 20 3.0 MB
2 1 2 16 19 1.5 MB
1 2 2 16 19 1.5 MB
1 1 2 16 18 0.75 MB
2 1 1 16 18 0.75 MB
1 2 1 16 18 0.75 MB
1 1 1 16 17 0.38 MB

throughput (C2) by building gray-box self-evicting Rowham-
mer patterns that rely on the known cache replacement poli-
cies of modern Intel CPUs [3]. Finally, in Section 7 we discuss
why maximizing throughput alone does not yet allow us to
trigger bit flips (Section 4) and that we need to carefully order
our memory accesses to bypass TRR (C3).

After addressing these challenges, we will be able to trigger
bit flips from the browser on modern DDR4 systems. We
then evaluate the effectiveness of our self-evicting patterns on
different memory modules and configurations in Section 8 and
finally show how we can exploit the bit flips to compromise
the latest version of the Firefox browser without relying on
any software bug (Section 9).

5 Minimal Rowhammer Patterns

As discussed in Section 4, TRRespass requires contiguous
memory allocations that are bigger than what is provided
by modern operating systems to control the location of each
aggressor. This is a consequence of the mapping between
physical memory and DRAM addresses–––and the way the
operating system provides physical memory ranges to user
space applications (see Figure 3). For example, in order to
build a 19-sided pattern, one that TRRespass found to be
effective against one of our test beds (see Section 8), the at-
tacker requires 2(17+log2 37) = 4.63MB of contiguous physical
memory since the DRAM row address starts at the high order
physical address bit 17 and because we need 2 ·19−1 = 37
rows in total, including victim rows, to form a 19-sided pattern.
Obtaining such allocations is not trivial from the restricted
environment of the JavaScript sandbox.

Contiguous memory in JavaScript. In order to gain con-
trol over DRAM row addresses from JavaScript prior work
relies on two techniques to obtain contiguous allocations:
(i) 2 MB Transparent Huge Pages (THP) [15] or (ii) massag-

0

Row address
Page offset of a 2 MB huge page

20

 17 32 0

Figure 3: Row address control. The high order bits of a physical
address determine the DRAM row address. In this example, where
the LSB of the row address is 17, a 2 MB huge page allows the
attacker to control 2(20−17+1) = 16 rows.

ing the buddy allocator in order to obtain high order alloca-
tions (max. 4 MB) [11]. Neither technique allows us to obtain
the 4.63 MB of contiguous physical memory necessary to
perform 19-sided Rowhammer.

Relaxing the constraints. In one of our initial experiments
we tried to understand the impact of row location when trying
to bypass in-DRAM TRR. Starting from the assisted double-
sided pattern described by Frigo et al. [12] (i.e., a double-sided
pair “escorted” by an arbitrary row) we implemented its gen-
eralization: N-assisted double-sided1. That is, a pattern where
a single double-sided pair is accompanied by N dummy rows.
This means a 19-sided pattern becomes double-sided with
N = 19−2 = 17 dummies. While Frigo et al. [12] observed
that on a specific DIMM the locations of these dummies mat-
ter, in the experiments on our test beds we did not observe any
noticeable difference in the number of flips with dummy rows
at arbitrary locations within the same bank. This means that
the attacker only needs to form a single double-sided pair and
N dummy rows mapping to the same bank—a requirement
that we will show is easier to fulfill.

Minimum viable allocations. The DRAM row address is
determined by the outcome of linear functions applied to
the physical address. These functions simply map high order
physical address bits to the row address (see Figure 3). Thanks
to the discovery of N-assisted double-sided we now need to
control only three adjacent DRAM rows: two aggressor rows
and a victim row in the middle. In other words, we need to
control only the two LSBs of the DRAM row address.

To find out how much contiguous physical memory we
need (or where in the physical address these two LSBs are),
we reverse engineered the DRAM addressing functions for
most modern Intel CPUs.2 They can be found in Table 5 of
Appendix A.

Given these particular functions, Table 1 shows how much
contiguous physical memory is required to control one double-

1We could not trigger bit flips when using only unpaired rows à la single-
sided Rowhammer.

2This task was made easier by the discovery that these functions have
not changed for any of the successors of the Skylake microarchitecture (e.g.,
Kaby Lake, Coffee Lake, Coffee Lake Refresh).

USENIX Association 30th USENIX Security Symposium 1005

sided pair. As mentioned before, huge pages give us 2 MB
of contiguous physical memory and by massaging the buddy
allocator we may be able to obtain 4 MB. We therefore con-
clude that in most cases, huge pages will suffice. They fall
short only for large configurations such as systems using more
than two DRAM channels (not included in Table 1). In Sec-
tion 9 we discuss the advantages and limitations, with respect
to exploitation, of using either huge pages or buddy allocator
massaging to acquire contiguous physical memory.

6 Self-Evicting Rowhammer

The effectiveness of Rowhammer heavily depends on the
optimality of the aggressors’ activation rate (i.e., number of
activations within a fixed time interval) [4, 8, 17]. As we have
explained in Section 4, the eviction-based Rowhammer tech-
niques described in prior works [4, 15], while effective on
DDR3 systems, do not generate enough memory accesses to
trigger bit flips on DDR4 systems where long many-sided
Rowhammer patterns are required. This calls for newer evic-
tion strategies that maximize hammering throughput.

Aweke et al.’s method [4] for eviction-based Rowhammer
introduces only one cache miss per aggressor by exploiting the
LRU-like replacement policy of the LLC [3]. This translates
to two extra accesses to DRAM in the case of double-sided
Rowhammer. However, each additional aggressor will intro-
duce another extra access and therefore the approach does not
scale to many-sided patterns.

In Section 5 we explained that the location of the dummy
rows (i.e., rows used to distract the TRR mitigation) does
not matter. In this section we will show that it is possible to
eliminate all extra DRAM accesses by using the dummy rows
for eviction too. We first explain our strategy for selecting
these dummy rows in Section 6.1. We then discuss how we
create access patterns that handle the replacement policy of
the LLC in Section 6.2. Finally, in Section 6.3 we show how
we can make these patterns faster using parallelization.

6.1 Selecting double-sided pairs

The goal of our self-evicting Rowhammer patterns is to em-
ploy the dummies to bypass the in-DRAM TRR sampler while
also evicting the caches. To ease the discussion we first define
the terminology we will use throughout the remainder of the
paper.

Terminology. As mentioned before, a double-sided pair is
a pair of addresses that map to two rows (i.e., the aggressors)
surrounding a third row (i.e., the victim) in the same bank.
Let (a,b) denote a double-sided pair with virtual addresses a
and b. A virtual address d is a dummy of (a,b) if it co-located
in the same bank as a, and therefore also with b, and not equal
to either. With these definitions established, an N-assisted

double-sided pattern, in access order, looks as follows:

a,b d0 . . .dN−1 (1)

with di denoting the (i+ 1)th dummy of (a,b). After dN−1
we again access a. We will use the term aggressor to refer to
either a, b, or a dummy address. Furthermore, we use A and
B to refer to the cache sets of respectively a and b.

We are now able to specify our intentions more accurately.
We want to employ the dummies di for the eviction of a and
b from the CPU caches. In order to do so, we split them into
two groups of equal size as follows: dummies d2k map to A
while dummies d2k+1 map to B, with k an integer from 0 to
N/2. We are basically creating a zebra-like pattern in which
every other address maps to the same set.

Building eviction sets. In order to achieve our goal of self-
eviction we need to make sure the dummy addresses are not
only co-located with (a,b) in the same bank but are also con-
gruent with a or b, i.e., they map to the same cache set. Unfor-
tunately an attacker capable of allocating 2 MB of contiguous
physical memory does not control higher order physical ad-
dress bits (i.e., the bits above bit 20) used to index the CPU
cache slices (recall Figure 1). We solve this problem with the
help of a page coloring algorithm that allows us to discover
the seemingly unreachable high order slice bits, similar to Liu
et al. [25].

Huge page coloring. Consider an attacker with a set of
2 MB huge pages at their disposal. The color of a huge page,
then, is given by the result of the slice hash function applied
only to the slice bits above the huge page offset. Since the
attacker already controls the slice bits within the page offset,
with known page colors the attacker has full control of slice
indices.

To reveal a huge page’s color the attacker exploits a side
channel based on cache eviction. Suppose, by way of illustra-
tion, that the associativity of the LLC is W = 1. We are given
two huge pages P and Q and would like to know whether
their colors are equal or different. To find out we choose an
arbitrary page offset f and create two addresses p and q, one
from each page but both at page offset f to make sure that
their set indices and slice bits within the page are equal. We
then access p, followed by q, and again by p. If our second
access to p causes a (slow) cache miss, then the hash of the
high order slice bits or equivalently page colors of P and Q
are equal, otherwise they are different.

In practice the LLC’s associativity is larger than one, say
W = 16 and the number of page colors (i.e., slices) is eight
on modern quad-core CPUs. As a result brute forcing all
possible permutations to find W +1 = 17 same-color pages
quickly bloats. Fortunately, there is a faster way: given the
slice hash functions on Intel processors [10,26,46], each huge
page contains precisely four cache lines that are congruent

1006 30th USENIX Security Symposium USENIX Association

(i.e., they have equal set index and slice bits). As a result, we
only need to search for five huge pages of an identical color
assuming a 16-way LLC (i.e., because 4 ·5 > 16).

Given this property of huge pages, our aim is to color each
huge page based on how it shares cache slices with other
huge pages. If two huge pages have the same color, they
map similarly to the LLC. Our coloring algorithm works as
follows. We take five random huge pages and extract from
each four congruent addresses (i.e., in total 20 addresses).
Using the eviction-based side channel, we test for equal page
colors. If the page colors are the same, repeatedly accessing
these 20 addresses will take long due to evictions. If the
page colors differ, then repeatedly accessing these addresses
execute quickly. In that case, we change these 20 addresses
by permuting the slice bits under our control (i.e., within the
huge pages). Assuming eight different slices, as can be found
modern quad-core CPUs, we have eight possible colors for
each huge page. In other words, we are searching for eight
“valid” (i.e., five pages of the same color) permutations among
85 = 32768.

Coloring more huge pages After we have identified five
pages of the same color, we can quickly reveal the color of
any other page as follows. We remove one of the huge pages
with a known color from the access sequence by removing
its four associated addresses, and replacing them with four
addresses from the new page with an unknown color. We
then proceed as before, but this time only permute the new
page, not changing the other addresses. As soon as the four
new addresses are congruent with the other already congruent
addresses we observe eviction and are able to deduce the new
page’s color.

In order to distinguish between a cache miss and hit, we
need to address the limited resolution of timers in modern
browsers [19, 34, 40]. We do so by amplifying our measure-
ments: to “test” a permutation, we repeatedly, say, a 1000
times, perform the associated sequence of 20 accesses and
measure the total time this takes.

Address selection. Using the page coloring algorithm the
attacker can reveal the page color of 512 huge pages (i.e.,
1 GB) in seconds. With the colors known, we can start creating
N-assisted double-sided Rowhammer patterns as described in
Equation 2.

We first select the double-sided pair (a,b). To find a, the
attacker chooses an arbitrary offset within one of the known
color huge pages. Then, to find b, we add two to (or subtract
two from) the row address of a. We also change a few addi-
tional bits in b to make sure a and b still map to the same
bank after the addition, for the actual bits used in our exper-
iments see Table 6 in Appendix B. Next, we select dummy
addresses at the same page offsets as (a,b) but from different
huge pages of the same color. Using the same offsets on pages
of the same color, we ensure that the dummies at the same

Set Set

A
gg

re
ss

or
s

H
its

Figure 4: A self-evicting Rowhammer pattern. A self-evicting
16-assisted double-sided Rowhammer pattern with W = 16, W ′ = 3
and therefore 2(W −W ′) = 26 hits. Each address maps to either set
A or B. Aggressor i is evicted by aggressor (i+6) (mod 18). The
arrows show the order of access.

offset as a map to A, and dummies at the offset of b map to B.
In addition, the dummies will automatically be co-located in
the same bank as (a,b).

6.2 Handling the replacement policy
We now have our double-sided pair (a,b) and the dummies.
In principle, given that our dummies map to either A or B, the
N-assisted double-sided pattern is self-evicting. In practice,
however, the dummies will only evict each other or the double-
sided pair if they do not all fit inside their cache sets. In
particular, an N-assisted double sided pattern of length L =
N +2 will only be self-evicting if L/2 >W where W is the
associativity of the LLC. This would severely limit SMASH
to only very large numbers of N.

Introducing hits. We therefore have to introduce yet an-
other kind of address, which we refer to as the hits (as in
cache hits). The hits are addresses that ought to never leave
the LLC and like the dummies, they either map to A or B.
That is, h2k is congruent to a and dummies d2k while h2k+1 is
congruent to b and dummies d2k+1 for some integer k. Hits are
used to effectively reduce the LLC’s perceived associativity to
W ′ <W . With the hits, for example, a 6-assisted double-sided
pattern (with four aggressors per set) can also be self-evicting
even if the LLC’s associativity is larger than four, which is
the case in practice.

With hits, such a 6-assisted double-sided pattern may look
as follows:

a,b d0,d1 h0 . . .h2(W−2)−1

d2,d3 d4,d5 h0 . . .h2(W−2)−1
(2)

Each line consists of exactly 2W accesses that fill up both
A and B. The first four accesses on each line go to DRAM
and evict the first four on the other line. In Equation 2, for
example, d2 evicts a in A, d3 evicts b in B, d4 evicts d0 in

USENIX Association 30th USENIX Security Symposium 1007

A again, etc. Figure 4 shows another example, a 16-assisted
double-sided pattern with W ′ = 3.

With the introduction of hits we also introduce a new param-
eter, namely how many of them we introduce in our patterns.
At a minimum, we need to make sure the pattern does not fit
in A and B (otherwise there will be no evictions) and therefore
have to add at least W −L/2 to a pattern of length L. Second,
it does not make sense to introduce more than 2(W − 1) as
with more there is no space left in A and B for aggressors.
Third, please note that if W ′ does not divide L/2 (which it
does in Equation 2, where W ′ = 2 and L/2 = 4), the order
of access becomes a bit more complicated, for example if
W ′ = 3 we get

a,b d0,d1 d2,d3 h0 . . .h2(W−3)−1

d4,d5 a,b d0,d1 h0 . . .h2(W−3)−1

d2,d3 d4,d5 a,b h0 . . .h2(W−3)−1

(3)

Bank

Replacement

Hit promotion

Age update

1 cache miss

5 cache hits

Set

Set

All ages back to 3

3 3 3 3 3 3

1

3 1 3 3 3 3 3

New line with age 1

1 1 1 1 1 1

Other ages also go to 1

6
5

2

4

Figure 5: The evolution of a 6-way cache under self-eviction.
Displayed on the left are three pairs of aggressors (incl. dummies) at
random distances r0 and r1 from each other. The blue upper half of
each pair maps to set A, shown on the right, the yellow lower half to
B, which is not shown in its entirety but which evolves equally. Each
of the six steps shown is explained in the text.

Handling QLRU. Until now we have implicitly assumed
an LRU-like replacement policy. We now demonstrate how
we can relax this assumption to create patterns that self-evict
with Quad-age LRU (QLRU), the actual replacement policy
used by the LLC of modern Intel CPUs. Figure 5 shows
the evolution of cache set A under self-eviction, illustrating
the QLRU behavior3 under the reduced associativity W ′ = 1,
which means after accessing one aggressor per set we imme-
diately move on to the hits. We will start at 1 and end at 5 ,
with 6 denoting the start of the next round.

1 First, we access a, which is brought into set A and
replaces the oldest and leftmost cache line. 2 As all lines
have age three at this point (the oldest possible age) a ends
up in the leftmost slot. Since a is new, its age becomes one.
3 We continue by causing five cache hits, accessing each of

the other cache lines currently in the cache but whose age is
three. 4 Accessing them makes their ages go back to one.
5 Finally, because all ages are now one, the replacement

policy says that all of them should become three, which is
done through the age update. 6 We are now back at the
beginning, with a in the LRU position, ready to be evicted
upon the attacker accessing the first dummy mapping to A,
namely d0.

6.3 Double pointer chase

Finally, to make our patterns even faster we use a double
pointer chase to perform the accesses as opposed to the more
common single pointer chase. In a single (register) pointer
chase, the memory location pointed to by an aggressor pro-
vides the address of the next aggressor (or sometimes a hit, as
in our case). This approach, however, does not maximize the
memory throughput since every second memory access needs
to wait until the first has completed, reducing parallelism at
the memory controller level.

For this reason, instead of using one register, we have used
two. We naturally split the pattern in two halves, with the
addresses in each half mapping to either A or B. When then
chain both halves in two single pointer chases that we inter-
twine. The result is something like

mov rax, (rax)
mov rbx, (rbx)
mov rax, (rax)
mov rbx, (rbx)

where each instruction loads from memory, not stores to.
Our experiments showed that the double pointer chase im-
proves memory throughput by 80 % compared to using a
single pointer chase.

3To be precise, the replacement policy shown in Figure 5 is
QLRU_H11_M1_R0_U0, which is the policy employed by the LLC of the
Intel i7-7700K CPU used for our experiments. See [3] for more details.

1008 30th USENIX Security Symposium USENIX Association

Hits

Hits

Hits

Hits Hits

Hits

Hits Hits Hits Hits Hits Hits Hits Hits

Hits Hits Hits

(a)

(b)

(c)

(d)

(e)

Figure 6: Five different variants of 18-sided Rowhammer: the baseline pattern that uses CLFLUSH (a), a naive self-evicting pattern (b) and a
desynchronized self-evicting pattern with NOPs (c) both of which are detected by the sampler, a strongly synchronized self-evicting pattern that
does trigger bit flips (d), and finally a weakly synchronized self-evicting pattern that also produces bit flips (e).

7 Synchronized Rowhammer

The self-evicting pattern presented in Section 6 is not directly
able to trigger bit flips, not even when the double-sided pair
encloses a known-to-be vulnerable row. This implies that
many-sided Rowhammer alone is not always enough to by-
pass TRR. To investigate this, we have to understand the
difference between the “gather” CLFLUSH-based pattern of
Figure 2 (i.e., the baseline pattern) that can trigger bit flips
and the self-evicting pattern that cannot.

In this section we clarify how an attacker may craft a
Rowhammer-inducing, synchronized self-evicting pattern tak-
ing S0 as case study. One system configuration is usually
vulnerable to several many-sided patterns. This fact simplifies
the final implementation because the attacker can select the
pattern with the optimal number of aggressor rows in order
to improve the eviction process. Hence, we chose to employ
the 18-sided (or rather, 16-assisted double-sided) pattern in-
stead of the original 19-sided reported in [12]. As shown in
Figure 6-a, the baseline pattern iterates over the aggressors,
issuing memory requests in succession and it then flushes
these addresses with the x86 64 CLFLUSH instruction. Our
test machine is equipped with an Intel i7-7700K CPU with a
16-way set-associative LLC (i.e., W = 16). We chose to set
the reduced associativity W ′ = 3. As an example, our self-
evicting pattern looks as follows (the double-sided pair, eight
pairs of dummies, and 26 hits, see Figure 6-b):

a,b d0,d1 d2,d3 h0 . . .h26−1

d4,d5 d6,d7 d8,d9 h0 . . .h26−1

d10,d11 d12,d13 d14,d15 h0 . . .h26−1

(4)

Given that this pattern is about 30 % faster than the baseline
pattern, it is surprising that it does not generate bit flips. We
hence tried to slow this pattern down to make it execute at the
same speed as the baseline pattern.

7.1 Self-eviction with hard synchronization
To investigate this phenomenon, we slow down the pattern
through the addition of additional NOPs in front of (a,b). In
this way, the activation interval increases. The outcome is
shown in Figure 7 providing us with two important insights:

1. First, we are able to synchronize our memory requests
with the refresh commands sent to DRAM. Exactly when
t (i.e., the time to iterate over the pattern of Equation 4
once) or 2 t divides tREFI, both patterns stop slowing
down and the curve flattens despite the increasing num-
ber of NOPs.

2. Second, if the pattern is too fast, i.e., tREFI/t > 5, it
does not trigger bit flips.

Frigo et al. [12] reports that in-DRAM TRR “acts on every
refresh command” and that the sampler “can sample more
than one aggressor per refresh interval”. In all experiments,
we only found bit flips in victim rows adjacent to the first n−S
aggressors where n is as always the total number of aggressors
and S the suspected capacity of the sampler, in terms of the
number of aggressors it keeps track of. We learned S simply
by decreasing the number of aggressors until we were no
longer able to reproduce a particular bit flip.

The memory controller needs to schedule refresh com-
mands on average once every tREFI= 7.8µs. Modern mem-
ory controllers try to improve performance by opportunisti-
cally sending a refresh command when there is no DRAM
activity. To successfully trigger Rowhammer bit flips, the
pattern needs to repeat for tens of thousands of times dur-
ing which many refresh commands have to be issued by the
memory controller. When there are no NOPs (i.e., pattern in
Figure 6-b), the memory controller will try to schedule a re-
fresh command during one of the regions with many cache
hits. This means that the TRR mechanism will be able to
successfully sample and refresh each of the 18 aggressor rows

USENIX Association 30th USENIX Security Symposium 1009

0 1000 2000 3000 4000 5000 6000 7000 8000
NOPs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

t
R
E
F
I
/t

Flip percentage

0

(0, 20]

(20, 40]

(40, 60]

(60, 80]

(80, 100]

Figure 7: The self-evicting pattern using a double pointer chase and
structured as in Figure 4 and Equation 4. The vertical axis reports
the number of times we could fit our pattern (taking t ns) inside
a refresh interval, while the horizontal axis reports the number of
NOPs in front of our access pattern. We monitor the percentage of
times we observed a of bit flip at a vulnerable memory location when
repeating the experiment for 30 times.4

in the pattern of Equation 4 when the refresh command lands
in the three different regions with cache hits.

When inserting NOPs in front of the pattern three different
scenarios can happen as shown in Figure 7. In the first sce-
nario, as shown in Figure 6-c, with a small number of NOPs,
the memory controller may still choose to send the refresh
command in the regions with cache hits, resulting in no bit
flips. In the second scenario, a very large number of flips in
front of each pattern would make the pattern too slow to trig-
ger bit flips. In the third scenario, as shown in Figure 6-d, with
the right number of NOPs, the pattern synchronizes with when
the memory controller intends to send a refresh command.
This results in the first aggressors (a,b) escaping the TRR
mechanism to successfully hammer memory and trigger bit
flips.

While the strategy of adding NOPs to the beginning of the
self-evicting pattern is effective in triggering bit flips, it re-
quires the attacker to very precisely synchronize with the
refresh command and find out the correct number of NOPs for
a successful attack. While this is a plausible strategy, as we
will show in our evaluation, it is not always trivial to precisely
synchronize with the refresh interval in JavaScript. Instead,
we will describe another strategy for creating patterns that
only softly synchronize with the memory controller’s refresh
command and lift the requirement of finding the exact number

0 1000 2000 3000 4000 5000 6000 7000 8000
NOPs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

t
R
E
F
I
/t

Flip percentage

0

(0, 20]

(20, 40]

(40, 60]

(60, 80]

(80, 100]

Figure 8: The self-evicting pattern with an increasing number of
NOPs in front but arranged as in Equation 5 to minimize the inter-
pattern gaps.

of NOPs for effective hammering.

7.2 Self-eviction with soft synchronization
To make sure that the memory controller does not sneak in a
refresh at the moment that is not desired, we have to make sure
that the regions with cache hits are sufficiently small. To this
end, we slightly modify our self-evicting access pattern from
Section 6 to more evenly distribute our cache hits between
our cache misses, creating the following self-evicting pattern:

a,b h0 . . .h7 d0,d1 h8 . . .h17 d2,d3 h18 . . .h25

d4,d5 h0 . . .h7 d6,d7 h8 . . .h17 d8,d9 h18 . . .h25

d10,d11 h0 . . .h7 d12,d13 h8 . . .h17 d14,d15 h18 . . .h25

(5)

Figure 8 shows the results of executing this pattern with
a variable number of NOPs in front. As shown in Figure 6-e,
given that the few cache hits do not provide a large-enough
window for the memory controller to schedule refreshes, it
opportunistically uses the single available NOP gap instead
for scheduling refresh commands. The pattern of Equation 5
can hence synchronize with the refresh command more softly
without requiring a precise number of NOPs. This makes the

4Note that with a small number of NOPs we observe a massive slowdown.
The processor’s performance counters indicate that, in this case, many more
LLC misses occur than we expect. We verified that these additional misses
are not caused by the L1 and L2 prefetchers. We hence think that this effect
is due to a different behavior of the cache replacement policy triggered by a
high access density in the absence of the delay caused by many NOPs.

1010 30th USENIX Security Symposium USENIX Association

Table 2: The test beds used in our evaluation.

System CPU
Organization

Ch. DIMMs/Ch. Ranks Banks

S0 i7-7700K 1 1 1 16
S1 i7-7700K 2 1 2 16
S2 i7-7700K 2 1 2 16

search for bit flips much more convenient from JavaScript as
we show in the next section.

Adjusting for cache slices. During these experiments we
realized that accesses to different slices may take a variable
amount of time. This makes it harder to generate synchro-
nizing patterns where A and B, the two sets to which the
addresses map, reside in different slices. Therefore, by adjust-
ing each address’ column bits, we make sure A and B map to
the same slice (see Table 6 in Appendix B).

8 Evaluation

The previous section shows that we can successfully generate
self-evicting hammering patterns that are able to bypass TRR
mechanisms using a soft synchronization technique with re-
fresh operations. In Section 6, we also showed that the ability
to properly select aggressor addresses depends on the virtual-
to-DRAM addressing functions and how to select addresses
that map into a given cache set and slice.

In this section, we evaluate the constraints under which
the attacker can successfully create effective self-evicting pat-
terns. We evaluate the feasibility of constructing self-evicting
patterns on three setups with different memory configurations
and memory modules from two of the major memory vendors
(see Table 2). All systems feature an Intel Core i7-7700K
CPU which employs a Kaby Lake microarchitecture. Since
Skylake, Kaby Lake, Coffee Lake (R) microarchitectures all
use the same DRAM addressing function for a given mem-
ory configuration, as we discovered in Section 5, we focus
on the feasibility of constructing self-evicting synchronizing
patterns on different memory configurations without lack of
generality in terms of the CPU’s microarchitecture.

8.1 Practicality of self-evicting patterns

Whether it is possible to extract self-evicting patterns from
huge pages only, depends on the DRAM addressing functions
employed by the memory controller. To a lesser degree, it
also depends on the complex addressing scheme used for
slice addressing, which has not changed since Sandy Bridge,
apart from the fact that as of Skylake the number of slices
equals the number of hyperthreads instead of cores [3, 7].

Table 3: The self-evicting patterns for our three tested setups (Ta-
ble 2).

System Best
TRRespass

Self-evicting pattern (W = 16)

L* W ′ Hits Total length incl. hits

S0 19-sided 18 3 26 96
S1 10-sided 10 3 26 160
S2 3-sided 4 1 30 64

* A pattern’s length L = N +2 where N is the number of dummies in
the corresponding N-assisted double-sided pattern.

Table 4: The table shows, for each test bed, whether we were able to
produce bit flips natively in C and in JavaScript, and if so, with how
many NOPs and XORs, respectively, using the patterns in Table 3.

System Native
flips

NOPs JavaScript
flips

XORs

S0 3 1500-6200 3 300-900

S1 3
100-1900,
3500-3700 3

0-400,
700*

S2 3 100 7 ––

* We also found a tiny number of bit flips with respectively 500 and
600 XORs (i.e., less than 1 % of all flips triggered by this pattern).

We have reverse engineered the physical-to-DRAM ad-
dressing functions for several memory configurations using
the software-based method of DRAMA [30]. Table 5 in Ap-
pendix A shows the results of our reverse engineering and
Table 6 in Appendix B the bits that need to change for obtain-
ing double-sided pairs in the form of (a,b). Assuming THP
is enabled, in six out of the seven possible configurations we
could successfully find double-sided pairs inside a huge page.
In the remaining case, the row bits start after the huge page
boundary so we cannot find a b that is two rows apart from a.

8.2 Ability to produce bit flips

We first used the open-source TRRespass fuzzer [12] to find
the most effective many-sided access pattern for each of our
three test beds. We then made each pattern self-evicting and
synchronized according to the strategies described in Sec-
tions 6 and 7. Table 3 summarizes some distinct properties of
the resulting patterns (e.g., reduced associativity W ′).

Table 4 shows that all three self-evicting patterns were
able to trigger bit flips using our native C implementation.
At the same time, we observe a clear difference in the num-
ber of NOPs required for different systems. In particular, the
“effective NOP range” is more narrow on systems S1 and S2
compared to system S0. We suspect that this is caused by the
relative slowness (compared to the flushing patterns) of the
self-evicting patterns that we built for S1 and S2. As shown
in Table 3, the TRRespass patterns for S1 and S2 are smaller

USENIX Association 30th USENIX Security Symposium 1011

First eviction set Colors 500 huge pp. Soft sync.

0

10

20

30

40

50

60

T
im

e
(s

)

Figure 9: The time spent on each of the different parts of the
initialization. Measurement are repeated n = 10 times. Most time is
spent on synchronization.

(i.e., fewer dummies necessary) compared to S0 which means
the introduction of hits will have a larger relative effect on
the time in between activations of (a,b). As a consequence,
using too many NOPs make these patterns too slow to trigger
bit flips.

Our implementation in JavaScript is able to trigger bit flips
on systems S0 and S1. We observed that the occurrence of
bit flips on S1 is less frequent compared to S0. Although
we observe this too using our native implementation, it is
reasonable to expect that the difference is exaggerated by the
more stringent synchronization requirements (i.e., the smaller
NOP ranges) for systems S1 and S2, compared to S0. Since
NOPs are not available in JavaScript, our implementation uses
XORs instead. Both instructions are cheap, yet the XOR-loop
in JavaScript has more overhead and therefore introduces a
delay with coarser granularity. This makes it harder to target
the sweet spot of systems S1 and S2.

8.3 JavaScript implementation benchmarks
We now evaluate the performance of our JavaScript implemen-
tation, running on the latest version of Mozilla’s JavaScript
runtime SpiderMonkey. In particular, we consider the pro-
gram’s initialization phase (e.g. time spent on detecting page
colors) and hammering phase.

Initialization. The attacker starts by running the slice-
coloring algorithm to reveal the page color of 500 huge pages
backing their ArrayBuffer. Next, the attacker uses a subset
(the size of which depends on the pattern’s length) of huge
pages to assemble the first self-evicting pattern. Finally, the
attacker needs to take care of synchronization and does so by
varying the number of XORs in front of the pattern.

Figure 9 reports the time spent on each of these steps: “First
eviction set” and “Colors 500 huge pp.” together report the

0 60 120 180 240 300 360 420 480 540 600

Time (min)

0

50

100

150

200

250

300

T
ot

al
nu

m
b

er
of

un
iq

ue
bi

t
fl

ip
s S0

S1

Figure 10: The cumulative number of unique bit flips on respec-
tively systems S0 and S1 during a single run of 10 hours, using our
implementation in JavaScript and the patterns of Table 3. The hori-
zontal axis shows time passed in minutes, excluding the one minute
initialization. In Section 9 we consider time until first exploitable bit
flip.

time required by the slice-coloring algorithm to find five huge
pages of the same color and subsequently using them to reveal
the color of 500 other pages, respectively. Lastly, “Soft sync.”
reports the time spent on finding the right number of XORs for
soft synchronization. Each measurement has been repeated 10
times. On average, it takes an attacker one minute to complete
the initialization. Note that the soft synchronization step takes
the longest. In our implementation, we use amplified time
measurements to estimate how many times the pattern fits
inside the refresh interval tREFI of 7.8 µs before using it for
hammering. If the pattern fits four times, then it is a good
candidate for hammering as shown in Figures 7 and 8.

Hammer time. With the initialization complete, the at-
tacker starts hammering in search of an exploitable bit flip. To
hammer different rows, the attacker simply changes the subset
of huge pages used for pattern assembly. Figure 10 shows
the cumulative number of unique bit flips over time during a
single 10 hour experiment on S0 and S1. Section 9 shows how
we can use these bit flips to compromise SpiderMonkey.

8.4 Discussion

To perform SMASH successfully, the attacker needs to be
aware of the victim’s memory configuration. In particular,
without knowing the DRAM addressing functions and at least
one n-sided pattern that bypasses TRR, it is not possible to
build a self-evicting pattern. While fingerprinting is possible
to detect a specific system, the attacker can also try different
configurations until one is successful.

1012 30th USENIX Security Symposium USENIX Association

9 Exploitation

After harvesting all the primitives to re-enable Rowhammer
from the browser on modern DDR4 systems, we can now
use Rowhammer bit flips to build an exploit. For our proof-
of-concept exploit, we target the latest version of the Fire-
fox browser at time of writing (v. 81.0.1) running on Ubuntu
18.04 with the latest updates and Linux kernel 4.15.0-111-
generic installed. Our exploitation techniques mimic the ones
of the original GLitch exploit [11]. However, GLitch takes
advantage of WebGL and the GPU to exploit the browser on
ARMv7 (32-bit) systems. As a consequence, we cannot rely
on the same GPU-triggered bit flips, vulnerable templates, or
memory massaging techniques.

9.1 Memory massaging
In Section 5 we discussed how an attacker can obtain
physically-contiguous memory in the browser using THP
or by massaging power-of-two allocators (e.g., Linux’s buddy
allocator [2]). We now discuss these techniques and how we
use them for our exploit.

THP. Transparent Huge Pages (THP) need to be enabled in
the operating system as the Firefox browser does not explicitly
request the use of huge pages when performing large alloca-
tions. However, it does carry out MB-aligned allocations for
large objects e.g. when allocating a large ArrayBuffer. As a
result, with THP enabled the operating system will transpar-
ently back these objects with huge pages, which the attacker
can use to template memory for vulnerable locations. Unfortu-
nately, THP are hard to split for exploitation which means that
we can only trigger bit flips on memory we already control.
This means that we still need to massage the operating sys-
tem’s allocator to land a 4 kB page on a vulnerable template
after releasing the huge page back to the operating system.

Massaging buddy. In order to release the huge pages back-
ing our vulnerable ArrayBuffers to the operating system we
need to force the browser to munmap the associated mapping.
To do so we trick SpiderMonkey, the browser’s JavaScript
runtime, into releasing all the references to it by transferring
the ArrayBuffer to a Web Worker and then killing the Web
Worker. Finally, we massage the buddy allocator in Linux [2]
into providing us with the same 4 kB page frames that previ-
ously formed a huge page.

The buddy allocator used by Linux distributions tries to
first serve applications with all the available 4 kB pages be-
fore fragmenting larger memory blocks. This means that in
order to split the 2 MB page containing a vulnerable template
we first need to exhaust all the smaller power-of-two contigu-
ous allocations i.e., 4 kB, 8 kB, 16 kB, etc. Depending on the
amount of memory available to the system, this approach can
reach near-out-of-memory situations which may cause the

operating system to abort the application. In our experiments
we always managed to get the huge page split and reused by
smaller objects before the operating system would kill the
application.

Once Firefox reuses the vulnerable 2 MB page, we can now
identify which 4 kB objects are backed by this contiguous
chunk of memory by exploiting a timing side channel on
the self-evicting hammering pattern discussed in Section 6.
This technique is similar to what was described for the page
coloring algorithm. Indeed, if the pages being used are 2 MB-
aligned, the self-evicting pattern will again reach DRAM with
every “alleged” cache miss and also cause a bank conflict. But
when this is not the case, memory accesses will generate row
hits at best but most likely cache hits since the addresses will
map to different cache sets.

9.2 Vulnerable templates
The GLitch exploit relies on a technique known as type flip-
ping. This exploits the fact that modern browsers [1,5] encode
pointers in “invalid” double-precision floating point numbers
(i.e., NaN values). These NaN values defined in the IEEE
754 double-precision floating point encoding cannot store
any useful information for mathematical computations. The
Firefox browser uses some of these 253− 1 unused values
to store pointers in it. The type flipping technique exploits
this “abuse” of the NaN value to turn pointers into numbers
and vice versa. In other words we can break ASLR and craft
arbitrary pointers by simply triggering Rowhammer bit flips
on values stored inside JavaScript Arrays. The outcome of
the operation depends on the direction of the bit flips (i.e., if
it is a 1-to-0 or 0-to-1 bit flip).

The exploit chain. The end-to-end exploit gives the at-
tacker an arbitrary read/write primitive inside the browser
which can then be escalated to remote code execution using
different strategies [13, 39]. We first allocate a small (inlined)
ArrayBuffer. These objects store metadata and data consec-
utively in memory and allow byte-granular memory reads.
This property makes them a perfect target for browser ex-
ploitation. Then the exploit chain unfolds in three stages.

1. We store the pointer to this ArrayBuffer in a vulnerable
Array cell and then trigger a 1-to-0 bit flip on this pointer
in order to derandomize the location of the object (and
consequently its data).

2. With knowledge of the location of this buffer, we now
need to leak its header’s metadata in order to craft a coun-
terfeit object that we fully control. To leak the header’s
metadata we rely on a fake JSString. JSStrings are
easy to craft since they simply contain the pointer to the
data and some constant metadata. Unfortunately, they
are immutable which means that they provide us only

USENIX Association 30th USENIX Security Symposium 1013

with an arbitrary read primitive. We use the pointer we
leaked in the previous step to craft the fake JSString
and leak the ArrayBuffer’s metadata.

3. Finally, we craft a fake ArrayBuffer using the metadata
leaked in the previous step and reuse the 0-to-1 bit flip to
create a reference to it. These nested ArrayBuffers
allow us to overwrite the pointer of the inner buffer
from the outer one. This provides us with the arbitrary
read/write primitive we were seeking.

Firefox 64-bit. Firefox implements two different NaN-
boxing techniques for 32 and 64-bit architecture. The abstract
design is similar, but the kinds of bit flips that can be used
for exploitation differs. If the value stored in the Array is
greater than a special tag value (0xfff80000� 32 on 64-bit)
the value is stripped of the type-casting metadata and then
used as a canonical pointer. Due to the larger pointer size on
64-bit systems, the number of exploitable bit flips is reduced
compared to 32-bit systems. Frigo et al. [11] report 25 out of
64 bits to be exploitable on every Array entry. In our case,
we can exploit only 15 out of 64 bits, making the exploitation
more cumbersome.

Evaluation. We evaluated our exploit on test bed S0. The
exploit chain runs in a matter of seconds. Finding a first
exploitable bit flip, however, takes more time. We run our
experiments 40 times looking for an exploitable 1-to-0 and 0-
to-1 bit flip. The median times to first exploitable bit flip (after
initialization) are 703.5 s (about 13 min) and 857 s (about
16 min) respectively for 1-to-0 and 0-to-1 bit flips. However,
these values have a large variance. In fact, in some of our runs
we could detect exploitable bit flips in as little as 6 s for 1-to-0
and 44 s for 0-to-1 flips.

10 Mitigations

We briefly discuss three possible directions for mitigating
Rowhammer in general and SMASH in particular.

Mitigating Rowhammer in hardware. Rowhammer is a
vulnerability in DRAM hardware and it is sensible to expect
that it should be fixed in hardware. Unfortunately it will take
many years for newer and more effective mitigations to reach
end users. Furthermore, given that future DRAM devices will
feature even smaller transistors, it remains to be seen whether
it is possible to build effective mitigations for such devices.
Nevertheless, there are three directions in which the security
of future DRAM devices can be improved: first, hardware
manufacturers can build more precise samplers at a higher
cost, either inside the DRAM device or at the memory con-
troller. Second, more aggressive error correction than existing
solutions [9] can be deployed to reduce the probability of

triggering bit flips. Third, the number of potential activations
can be limited depending on the access patterns and the vul-
nerability of a given DRAM device. All three directions come
with either performance or storage overhead, not to mention
an additional power consumption.

Mitigating Rowhammer in software. There have been
many proposals for mitigating Rowhammer in software while
hardware mitigations become available. There are how-
ever issues with their security, compatibility or performance.
CATT [6] proposes to protect kernel memory from getting
hammered by user memory using a guard page. Unfortunately
kernel memory may directly be exposed to user memory
through common mechanisms such as the page cache, leaving
the system exposed [14]. ALIS [38] and GuardION [42] try
to protect the rest of the system against memory regions that
may be hammered, but these solutions require changes to each
software and furthermore do not protect the rest of the sys-
tem against attacks. ZebRAM [20] tries to partition a VM’s
memory into safe and unsafe regions using odd and even
rows. The safe region can be directly accessed by the VM,
while the unsafe region is used as an ECC-protected swap
cache. ZebRAM’s design, while secure against known attacks,
has non-trivial performance overhead with memory-intensive
workloads.

Mitigating SMASH. We now discuss more pragmatic mit-
igations that make it harder to exploit browsers with SMASH
without addressing the underlying Rowhammer vulnerability.
The current version of SMASH relies on THP for the con-
struction of efficient self-evicting patterns. Disabling THP,
while introducing some performance overhead, would stop
the current instance of SMASH. Furthermore, our exploit
relies specifically on corrupting pointers in the browser to
break ASLR and pivot to a counterfeit object. Protecting the
integrity of pointers in software or in hardware (e.g., using
PAC [23]) would stop the current SMASH exploit.

11 Conclusion

We showed that Internet users are still affected by the
Rowhammer vulnerability in modern DDR4 devices. These
devices require many-sided Rowhammer patterns for bypass-
ing their TRR mitigation. Efficiently executing such patterns
in JavaScript without access to cache flushing instructions and
contigous physical memory is specially challenging. We dis-
covered a new property of the TRR mitigation that in combina-
tion with a careful selection of hammering addresses allowed
us to create efficient many-sided Rowhammer patterns in the
browser. Triggering bit flips in JavaScript, however, required
us to go one step further and carefully schedule cache accesses
with respect to the refresh commands issued by the CPU’s
memory controller. Our end-to-end exploit, called SMASH,

1014 30th USENIX Security Symposium USENIX Association

can fully compromise the Firefox browser with all the mitiga-
tions enabled in 15 minutes on average. We discussed future
directions for mitigating Rowhammer attacks in general and
SMASH in particular.

Acknowledgements

We thank our shepherd Vasileios Kemerlis and the anonymous
reviewers for their valuable feedback. This work was sup-
ported by the European Union’s Horizon 2020 research and
innovation programme under grant agreements No. 786669
(ReAct) and No. 825377 (UNICORE), by Intel Corpora-
tion through the Side Channel Vulnerability ISRA, by the
Netherlands Organisation for Scientific Research through
grants NWO 639.021.753 VENI “PantaRhei”, and NWO
016.Veni.192.262. This paper reflects only the authors’ view.
The funding agencies are not responsible for any use that may
be made of the information it contains.

References

[1] Value.h. https://searchfox.org/
mozilla-central/source/js/public/Value.h
(commit 9c72508f) (visited on 2021-02-09).

[2] Physical Page Allocation, 2019. https:
//web.archive.org/web/20190306040105/
https://www.kernel.org/doc/gorman/html/
understand/understand009.html (visited on
2021-02-09).

[3] Andreas Abel and Jan Reineke. nanoBench: A Low-
Overhead Tool for Running Microbenchmarks on x86
Systems. In ISPASS ’20. IEEE.

[4] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd M. Austin. ANVIL: Software-Based Protec-
tion Against Next-Generation Rowhammer Attacks. In
ASPLOS ’16. ACM.

[5] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup Est Machina: Memory Deduplication
as an Advanced Exploitation Vector. In S&P ’16. IEEE.

[6] Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. CAn’t Touch This:
Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory. In USENIX Security ’17.
USENIX Association.

[7] Samira Briongos, Pedro Malagón, José Manuel Moya,
and Thomas Eisenbarth. RELOAD+REFRESH: Abus-
ing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In USENIX Security ’20. USENIX As-
sociation.

[8] Lucian Cojocar, Jeremie S. Kim, Minesh Patel, Lillian
Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu.
Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers. In S&P ’20. IEEE.

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting Correcting Codes: On the Effec-
tiveness of ECC Memory Against Rowhammer Attacks.
In S&P ’19. IEEE.

[10] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr,
and Dejan Kostic. Make the Most out of Last Level
Cache in Intel Processors. In EuroSys ’19. ACM.

[11] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand Pwning Unit: Accelerating Mi-
croarchitectural Attacks with the GPU. In S&P ’18.
IEEE.

[12] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. TRRespass: Exploiting the
Many Sides of Target Row Refresh. In S&P ’20. IEEE.

[13] Samuel Groß. Exploiting a Cross-mmap Overflow
in Firefox, 2017. https://web.archive.org/
web/20200915100228/https://saelo.github.io/
posts/firefox-script-loader-overflow.html
(visited on 2021-02-09).

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another Flip in the Wall
of Rowhammer Defenses. In S&P ’18. IEEE.

[15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A Remote Software-Induced Fault At-
tack in JavaScript. In DIMVA ’16. Springer.

[16] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal Brain Damage:
Exposing the Graceless Degradation in Deep Neural
Networks Under Hardware Fault Attacks. In USENIX
Security ’19. USENIX Association.

[17] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikçi,
Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur
Mutlu. Revisiting RowHammer: An Experimental Anal-
ysis of Modern DRAM Devices and Mitigation Tech-
niques. In ISCA ’20. IEEE.

[18] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin,
Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM
disturbance errors. In ISCA ’14. IEEE.

USENIX Association 30th USENIX Security Symposium 1015

https://searchfox.org/mozilla-central/source/js/public/Value.h
https://searchfox.org/mozilla-central/source/js/public/Value.h
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20190306040105/https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://web.archive.org/web/20200915100228/https://saelo.github.io/posts/firefox-script-loader-overflow.html

[19] David Kohlbrenner and Hovav Shacham. Trusted
Browsers for Uncertain Times. In USENIX Security

’16. USENIX Association.

[20] Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. ZebRAM: Comprehensive and
Compatible Software Protection Against Rowhammer
Attacks. In OSDI ’18. USENIX Association.

[21] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading Bits in Memory With-
out Accessing Them. In S&P ’20. IEEE.

[22] Jung-Bae Lee. Green Memory Solution. Samsung
Electronics’ Investor’s Forum, 2014.

[23] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan. PAC
it up: Towards Pointer Integrity using ARM Pointer
Authentication. In USENIX Security ’19. USENIX As-
sociation.

[24] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lam-
ster, Misiker Tadesse Aga, Clémentine Maurice, and
Daniel Gruss. Nethammer: Inducing Rowhammer Faults
through Network Requests. In EuroS&P Workshops ’20.
IEEE.

[25] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks
are Practical. In S&P ’15. IEEE.

[26] Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse Engineering Intel Last-Level Cache Complex Ad-
dressing Using Performance Counters. In RAID ’15.
Springer.

[27] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L.
Titzer, and Toon Verwaest. Spectre is here to stay:
An analysis of side-channels and speculative execution.
CoRR, 2019.

[28] Micron. DDR4 SDRAM Datasheet. page 380, 2016.

[29] Microsoft Edge Team. Mitigating speculative execu-
tion side-channel attacks in Microsoft Edge and Internet
Explorer, 2018.

[30] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In USENIX
Security ’16. USENIX Association.

[31] Filip Pizlo. What Spectre and Meltdown Mean For
WebKit, 2018. https://webkit.org/blog/8048/
what-spectre-and-meltdown-mean-for-webkit/
(visited on 2021-02-09).

[32] Damian Poddebniak, Juraj Somorovsky, Sebastian
Schinzel, Manfred Lochter, and Paul Rösler. Attacking
Deterministic Signature Schemes Using Fault Attacks.
In EuroS&P ’18. IEEE.

[33] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In USENIX
Security ’16. USENIX Association.

[34] Tom Ritter. Fuzzy Timers Changes, 2018.
https://hg.mozilla.org/mozilla-central/
rev/920270da576f (visited on 2021-02-09).

[35] Tom Ritter. Set Timer Resolution to 1ms with Jitter,
2018. https://bugzilla.mozilla.org/show_bug.
cgi?id=1451790 (visited on 2021-02-09).

[36] Mark Seaborn and Thomas Dullien. Exploiting the
DRAM rowhammer bug to gain kernel privileges. In
Black Hat USA, 2015.

[37] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating Software Mitigations Against
Rowhammer: A Surgical Precision Hammer. In RAID

’18. Springer.

[38] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer Attacks over the
Network and Defenses. In USENIX ATC ’18. USENIX
Association.

[39] argp. OR’LYEH? The Shadow over Firefox, 2016.
http://www.phrack.org/issues/69/14.html (vis-
ited on 2021-02-09).

[40] The Chromium Projects. Mitigating Side-Channel
Attacks, 2018. https://www.chromium.org/Home/
chromium-security/ssca (visited on 2021-02-09).

[41] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic Rowhammer Attacks on Mo-
bile Platforms. In CCS ’16. ACM.

[42] Victor van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vi-
gna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. GuardION: Practical Mitigation of DMA-Based
Rowhammer Attacks on ARM. In DIMVA ’18. Springer.

[43] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris
Köpf. CacheQuery: learning replacement policies from
hardware caches. In PLDI ’20. ACM.

1016 30th USENIX Security Symposium USENIX Association

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://hg.mozilla.org/mozilla-central/rev/920270da576f
https://hg.mozilla.org/mozilla-central/rev/920270da576f
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
http://www.phrack.org/issues/69/14.html
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca

[44] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation. In
USENIX Security ’16. USENIX Association.

[45] Thomas Yang and Xi-Wei Lin. Trap-Assisted DRAM
Row Hammer Effect. IEEE Electron Device Letters,
2019.

[46] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and
Gernot Heiser. Mapping the Intel Last-Level Cache.
IACR Cryptol. ePrint Arch., 2015.

USENIX Association 30th USENIX Security Symposium 1017

A DRAM Addressing Functions

Table 5: The DRAM addressing functions for different memory configurations on Intel Skylake, Kaby Lake, Coffee Lake, and Coffee Lake
Refresh microarchitectures.

Organization Addressing Min.
alloc.Ch. DIMMs/Ch. Ranks Banks LSB row Bank Ch.

2 2 2 16 20 7-14, 15-20, 16-21, 17-22, 18-23, 19-24 8-9-12-13-18-19 3.0 MB
2 1 2 16 19 7-14, 15-19, 16-20, 17-21, 18-22 8-9-12-13-15-18 1.5 MB
1 2 2 16 19 6-13, 14-19, 15-20, 16-21, 17-22, 18-23 –– 1.5 MB
1 1 2 16 18 6-13, 14-18, 15-19, 16-20, 17-21 –– 0.75 MB
2 1 1 16 18 7-14, 15-18, 16-19, 17-20 8-9-12-13-15-16 0.75 MB
1 2 1 16 18 6-13, 14-18, 15-19, 16-20, 17-21 –– 0.75 MB
1 1 1 16 17 6-13, 14-17, 15-18, 16-19 –– 0.38 MB

B Address Selection

Table 6: Start with an arbitrary huge page offset a. To find the offset b that together with a forms a double-sided pair mapping to different sets but
the same slice, take a and change the bits given in the table. For example, on S0 we have b = a⊕ (1� 18)⊕ (1� 15)⊕ (1� 11)⊕ (1� 10).

System Row addition or subtraction Same bank Same slice

S0 18 15 11,10
S1 20 16 13,9
S2 20 16 13,9

C Default THP Setting

Table 7: The default THP setting on popular Linux distributions. SMASH requires always.

Linux distribution Version Default /sys/kernel/mm/transparent_hugepage/enable

Ubuntu Desktop 20.04 LTS madvise
Fedora 33 Workstation madvise

Linux Mint 20.1 madvise
Manjaro 20.2.1 madvise
Debian 10.7.0 always
CentOS 8 always

Kali Linux 2021 W02 always
openSUSE Leap 15.2 always

1018 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	DRAM
	Rowhammer
	Target Row Refresh
	CPU caches

	Threat Model
	Rowhammering DDR4 in the Browser
	Overview

	Minimal Rowhammer Patterns
	Self-Evicting Rowhammer
	Selecting double-sided pairs
	Handling the replacement policy
	Double pointer chase

	Synchronized Rowhammer
	Self-eviction with hard synchronization
	Self-eviction with soft synchronization

	Evaluation
	Practicality of self-evicting patterns
	Ability to produce bit flips
	JavaScript implementation benchmarks
	Discussion

	Exploitation
	Memory massaging
	Vulnerable templates

	Mitigations
	Conclusion
	DRAM Addressing Functions
	Address Selection
	Default THP Setting

