
This paper is included in the Proceedings of the 
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the 
30th USENIX Security Symposium 

is sponsored by USENIX.

A Highly Accurate Query-Recovery Attack against 
Searchable Encryption using Non-Indexed Documents

Marc Damie, University of Technology of Compiègne, France; Florian Hahn and 
Andreas Peter, University of Twente, The Netherlands

https://www.usenix.org/conference/usenixsecurity21/presentation/damie



A Highly Accurate Query-Recovery Attack against
Searchable Encryption using Non-Indexed Documents

Marc Damie
University of Technology of Compiègne, France

marc.damie@etu.utc.fr

Florian Hahn
University of Twente, The Netherlands

f.w.hahn@utwente.nl

Andreas Peter
University of Twente, The Netherlands

a.peter@utwente.nl

Abstract
Cloud data storage solutions offer customers cost-effective
and reduced data management. While attractive, data security
issues remain to be a core concern. Traditional encryption
protects stored documents, but hinders simple functionalities
such as keyword search. Therefore, searchable encryption
schemes have been proposed to allow for the search on en-
crypted data. Efficient schemes leak at least the access pattern
(the accessed documents per keyword search), which is known
to be exploitable in query recovery attacks assuming the at-
tacker has a significant amount of background knowledge
on the stored documents. Existing attacks can only achieve
decent results with strong adversary models (e.g. at least 20%
of previously known documents or require additional knowl-
edge such as on query frequencies) and they give no metric
to evaluate the certainty of recovered queries. This hampers
their practical utility and questions their relevance in the real-
world.

We propose a refined score attack which achieves query
recovery rates of around 85% without requiring exact back-
ground knowledge on stored documents; a distributionally
similar, but otherwise different (i.e. non-indexed), dataset suf-
fices. The attack starts with very few known queries (around
10 known queries in our experiments over different datasets of
varying size) and then iteratively recovers further queries with
confidence scores by adding previously recovered queries that
had high confidence scores to the set of known queries. Addi-
tional to high recovery rates, our approach yields interpretable
results in terms of confidence scores.

1 Introduction

Cloud data storage services continue to be on the rise and
attract more users than ever before. At the same time, data is
a major target in cyber-attacks and the headlines about data
breaches become mainstream. This makes data security a key
concern in this setting. While traditional encryption technol-
ogy can be used to protect the confidentiality of data, simple

functionalities such as searching get lost under encryption.
To cope with this, Song, Wagner, and Perrig [29] presented a
practical solution to search on encrypted data. Few years later,
Curtmola et al. [7] presented their construction of a searchable
symmetric encryption (SSE) scheme based on an inverted in-
dex. As a result, their construction can search keywords in
encrypted documents in optimal search time.

An (index-based) SSE scheme creates an encrypted index
which can be queried to obtain the identifiers of the docu-
ments containing one given keyword. The encrypted index
hides the underlying keywords from the server but leaks the
access pattern for each query; the access pattern is the list of
identifiers of all documents containing the queried keyword.
In this work, we focus on single-keyword search SSE schemes
that leak the access pattern; we do not consider more complex
systems such as encrypted databases.

The access pattern leakage has been shown to be ex-
ploitable in passive attacks. Blackstone et al. [1] divided such
passive attacks into two categories: 1) known-data attacks
where the adversary has partial or complete knowledge of the
documents indexed by the server (also referred to as leakage-
abuse attacks), and 2) similar-data attacks where the adver-
sary only has knowledge of (non-indexed) documents similar
to the indexed documents (also referred to as inference at-
tacks). An adversary who can run known-data attacks is more
powerful than an attacker who is restricted to similar-data
attacks. While Islam et al. [15] and Cash et al. [3] motivated
their attacks as similar-data attacks, decent results were only
achieved in the setting of known-data attacks.

Cash et al. defined in [3] (referred to as CGPR) four levels
of security: L1 to L4. The most secure type of schemes is re-
ferred to as L1 which only leaks the access pattern for the key-
words which have been queried. The other types successively
leak more until L4 which leaks the number of occurrences
of each keyword and the pattern of their locations in the doc-
uments. Islam et al. [15] (referred to as IKK) proposed the
first passive attack exploiting the access pattern leakage. Af-
ter [15], several passive attacks have been proposed to recover
the queries of L1-schemes [1, 3, 22, 32]. Although most of
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these attacks can be executed as similar-data attacks, they are
only effective as known-data attacks with exact knowledge of
at least 20% of all indexed documents.

Other attacks have been proposed, for example by Black-
stone et al. [1], that conceptually only work as known-data
attacks and do not support similar-data attacks at all. This
conceptual restriction, however, enables the attack to work
with less partial knowledge and can be effective with exact
knowledge down to 10% of all indexed documents. While
this represents an impressive improvement of known-data at-
tacks, it still requires exact knowledge of parts of the indexed
documents. On the other hand, Oya and Kerschbaum [23]
proposed a new attack augmenting the adversary knowledge
with the query frequency. While effective, this new attack is
not directly comparable to our setting with decreased attacker
knowledge. Finally, all existing attacks [1, 3, 15, 23, 28] as-
sume the exact knowledge of the client’s keyword universe,
i.e. the queryable vocabulary.

In conclusion, no practical similar-data attack has been
proposed so far that achieves an accuracy higher than 50%
even under advantageous conditions (i.e. client’s keyword
universe small AND known by the attacker). In Appendix
A, we describe more extensively the related papers and their
respective contributions. Also, we discuss orthogonal lines of
research focusing on other attacker models or schemes with a
different leakage.

Our contribution. In this paper, we describe an attack that
works without knowledge of the indexed documents and only
uses similar data. At the same time our similar-data attack
achieves recovery rates of up to 90%. The documents known
by the adversary only need to be distributionally close to the
indexed documents. For example, an attacker can mount a
successful attack exploiting information of a previous data
breach, even if the breached documents have been identified as
such and were purged from the index to mitigate future known-
data attacks. For a successful similar-data attack, an adversary
correctly recovers most of the queries given knowledge of
only 10 query tokens and their corresponding keywords.

Our attack is based on a confidence metric used to score a
trapdoor-keyword pair. The score should be maximized when
the trapdoor (i.e. a query token) is paired with its (correct)
underlying keyword. This confidence score is the key element
which provides a good interpretability of the attack results. We
start with our score attack that computes a confidence score
of each trapdoor-keyword pair and returns, for each trapdoor,
the pair with the highest score. This base similar-data attack
reaches a recovery rate of 60% while assuming around 25% of
known queries. Secondly, we paper proposes an improvement
strategy reducing drastically the amount of adversary knowl-
edge necessary, especially regarding the known queries. Our
refined score attack, an iterative refinement strategy1, reaches

1Code: https://github.com/MarcT0K/Refined-score-atk-SSE

recovery rates of up to 85% with only 10 known queries in
our experiments over different datasets of varying size. More
specifically, the iterative scoring approach recovers further
queries by adding previously recovered queries that had a
high confidence score to the set of known queries. Our attack
has a low runtime and can be performed in less than two min-
utes. As indicated by our experiments, the refined score attack
is sensitive to the amount of knowledge available, that is, its
accuracy improves with additional adversary knowledge. This
observation was not made for attacks like IKK and CGPR
where their performance stays almost the same with growing
amounts of known queries. We show that both padding and
obfuscation countermeasures can successfully mitigate our
attack. However, these countermeasures come with practical
drawbacks, such as storage and communication overhead. We
also study how the refined score attack behaves when the
attacker owns a dataset with a lower degree of similarity.

Our paper highlights that Searchable Symmetric Encryp-
tion (SSE) schemes should no longer be used without coun-
termeasure. For example, suppose a company uses SSE to
manage the employee mailboxes, each employee having their
own encrypted index and secret key. An attacker having ac-
cess to just one single employee’s mailbox may have enough
background knowledge to successfully recover the queries of
every other employee for which she has only very few known
queries. Using the compromised mailbox, she can run a mas-
sive file-injection attack by sending few emails to everyone.
This preliminary active attack would be a way to obtain the
known queries necessary to perform the refined score attack
on the rest of the employees’ queries. Such a scenario is not
possible with the existing known-data attacks because, by
definition, they can only recover the queries from the owner
of the mailbox accessible by the attacker.

2 Definitions, attacker models, and assump-
tions

The notation as introduced in this section and used throughout
this work is summarized in Table 1.

2.1 Searchable symmetric encryption (SSE)

From a high-level perspective, the majority of searchable
symmetric encryption (SSE) schemes are based on the same
design idea introduced by Curtmola et al. [7]. We consider
a document set D, which consists of documents d ∈D with
identifiers id(d). Each document d consists of keywords. If a
keyword x occurs in d, we denote this as x ∈ d. Now, initially,
a client generates an inverted index for document set D that
indicates for each keyword in which document it occurs. The
document set D is encrypted on the client side using a secret
key and uploaded to a server. In a second step, the client can
then query the encrypted index for single keywords using
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Table 1: Summary of notations
Notation Meaning Size notation

Base adversary knowledge

Dsim Similar document set nsim

Q Queries observed by the attacker (i.e. a list of trapdoors) l

RQ Results of the queries from Q (i.e. a list of document identifiers for each td in Q ) l

KnownQ (trapdoor, keyword) pairs known by the attacker k

Derived adversary knowledge

Ksim Vocabulary extracted from Dsim msim

Ckw Word-word co-occurrence matrix built from Dsim msim×msim

Ctd Trapdoor-trapdoor co-occurrence matrix built from RQ l× l

n̂real Estimation of nreal, the number of documents indexed by the server not applicable

Unknown by the attacker

Dreal Encrypted documents indexed by the server nreal

Kreal Queryable vocabulary (i.e. the client’s keyword universe)* mreal

Kreal(Q ) Underlying keywords of the observed queries Q (i.e. the objective of the attack)* l

*Actually, the attacker knows a small part of this vocabulary thanks to the known queries

a trapdoor function, which takes the secret key and a key-
word as input and outputs a unique trapdoor. We denote as
Trapdoor(x) the trapdoor of the keyword x. When the client
searches for a keyword, she sends the corresponding trapdoor
to the server. The server computes the result set using the
encrypted index together with the received trapdoor and sends
back the matching result set, which consists of the matching
encrypted documents and their identifiers.

Here, SSE supports various kinds of document sets such
as, for example, a set of emails, a set of articles, a set of
information sheets. The only condition on the document set is
that the user can extract keywords. For text files, the procedure
is straightforward but it could also be a tag extraction for
videos. In the case of videos or images, the tags would be the
subject of the queries. Thus, we can also consider indexing
non-textual data.

Depending on the leakage profile of the scheme, the re-
sponse leaks more or less information to the server. Our attack
works on the minimum leakage profile called L1. L1-schemes
only unveil the identifiers of the documents containing the
keyword queried by the user.

2.2 Attacker models
A passive attacker observes the trapdoors sent to the server
and the server response, which includes the list of the match-
ing document identifiers. These identifiers reveal no further
information about the content of the document. The attacker
can link a query to its response and create (Trapdoor, DocIDs)
pairs. We consider two slightly different attacker models; both
are applicable for our attack as described in Section 5:

• An honest-but-curious server follows the protocols but
tries to recover the underlying keywords of the queries.
To facilitate search on encrypted documents, the en-
crypted index is usually supposed to be stored on the
server along with the encrypted documents as it is the
case in settings considered by the IKK and CGPR attacks.
Such an attacker owns metadata about the encrypted doc-
uments: total number of documents and their size.

• A passive traffic observer records the traffic of
the database. This adversary only has pairs of
(Trapdoor,DocIDs) and uses them to recover the un-
derlying keywords. It could also represent a case where
the index server does not store the encrypted documents.
Such an index server ignores the number and the size of
the indexed encrypted documents.

2.3 Adversary knowledge
Similar document set The adversary knowledge is focused
on a similar document set Dsim = {d1, . . . ,dnsim}. A docu-
ment set Dsim is similar if it is distributionally close to the
indexed documents Dreal. A formal definition of document
set similarity is proposed in Subsection 2.4.

In a company, the mailbox of an employee is a document
set similar to her colleague mailboxes. As another example,
leaked confidential notes are a similar document set to recover
the queries on the rest of the notes. Known-data attacks can
also work on leaked documents but the server can simply
remove these documents from the index to avoid these attacks.
Despite this removal, our attack that we introduce in Section
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5 is still effective. Since it is a similar-data attack, we do not
need our documents to be indexed as opposed to the known-
data attacks [1, 3, 15] that assume their known documents are
part of the document set indexed by the server.

A vocabulary Ksim of msim keywords is extracted from
Dsim. An index matrix is built from this document set:
IDsim[i, j] = 1 if the j-th keyword is contained in the i-th
document, 0 otherwise. Then, the msim×msim co-occurrence
matrix is Ckw = ID>simIDsim · 1

nsim
, where nsim = |Dsim|.2 Note

that we use relative frequency numbers rather than absolute
count numbers.

Keyword extraction algorithm The (keyword) distribu-
tional knowledge on document sets is dependent on the way
keywords are extracted from the documents. The attacker uses
an algorithm to extract the vocabulary from her known docu-
ment set. In the literature, all attack papers (im- or explicitly)
assume that the attacker uses the same keyword extraction
algorithm as the client. Whether this assumption is realistic
or not has not been questioned in the literature, but we would
like to stress the importance of this assumption here. We also
assume the attacker and the client to use the exact same extrac-
tion algorithm, and we leave the study of the case of different
extraction algorithms for future work.

Observed queries We denote as Kreal the client’s query-
able vocabulary of mreal keywords. The adversary does know
neither this vocabulary nor its size. The adversary observes l
unique trapdoors and obtains their corresponding search re-
sults. Let Q = 〈td1, . . . , tdl〉 be the set of observed trapdoors
and Rtd = {id(d)|(x ∈ Kreal) ∧ (td = Trapdoor(x)) ∧ (d ∈
Dreal)∧ (x ∈ d)}, the document identifiers returned for the
trapdoor td.

Let DocIDs = {id1, . . . , idp} =
⋃

td∈Q Rtd . We note that
p≤ nreal. Let IDreal be the p× l index matrix built from the
responses to the trapdoors as follows: IDreal[i, j] = 1 if the
response to the j-th trapdoor contains the i-th identifier, 0
otherwise. Finally, we can infer the mreal×mreal trapdoor co-
occurrence matrix: Ctd = ID>realIDreal · 1

nreal
. The estimation of

nreal is presented in Appendix B.

Known queries As in IKK and CGPR, the adversary knows
the underlying keywords of k queries in Q . The set of known
queries is defined as follows:

KnownQ = {〈kwknown, tdknown〉|(kwknown ∈Kreal∩Ksim)

∧ (tdknown ∈ Q )∧ (tdknown = Trapdoor(kwknown))}

2.4 Similarity definitions
Similar document set Let C (D,kwa,kwb) be the function
returning the number of co-occurrences of keywords kwa and

2A> denotes the transpose of a matrix A

kwb inside the document set D . Let SimMat(D1,D2,K ) be a
function returning an m×m similarity matrix of D1 and D2
over the vocabulary K = {kw1, . . .kwi, . . .kwm}. The function
SimMat is defined such that:

(SimMat(D1,D2,K ))i j =
C (D1,kwi,kw j)

|D1|
−

C (D2,kwi,kw j)

|D2|
(1)

In other words, the i j-th element of the matrix returned
by SimMat is the difference between the co-frequency of the
keywords i and j in the document set D1 and the co-frequency
of the same two keywords in the document set D2. Thus,
SimMat(D1,D2,K ) describes the similarity of D1 and D2
over the vocabulary K and the norm ||SimMat(D1,D2,K )||
is a measure of the similarity of D1 and D2. In this paper, we
consider the Frobenius norm (being a natural matrix-extension
of the Euclidean vector-norm), but note that other norms can
be considered as well.

We define Dsim and Dreal as two ε-similar document sets if
for ε≥ 0 the following holds:

||SimMat(Dsim,Dreal,Kreal))|| ≤ ε (2)

In other words, the closer the co-frequencies between the
document sets are, the more similar the document sets are. In
our definition, we only need to consider the similarity over
the queryable vocabulary Kreal because those are the only
keywords that are queried for by the client and to be recovered
by the attacker.

Similar and queryable vocabularies To recover the
queries, the attacker needs to have as many elements of the
queryable vocabulary Kreal as possible in her similar vocab-
ulary Ksim. This creates a natural upper bound for the attack
accuracy:

AttackAccuracy≤ |Kreal∩Ksim|
|Kreal|

(3)

In other words, the attacker can only recover the queries
for which the underlying keywords are contained in Ksim.

In the experiments presented in Section 5, Ksim contains
most elements of Kreal since the average accuracy goes up to
95% which means that more than 95% of the keywords of
the queryable vocabulary Kreal are contained in the similar
vocabulary Ksim.

Attacker assumptions An attacker knows neither the in-
dexed documents Dreal nor the vocabulary Kreal. Thus, she
cannot calculate the exact ε-similarity between her dataset
Dsim and the indexed dataset Dreal. We assume that:

1. Dsim is ε-similar to the indexed document set Dreal, for
a sufficiently small ε (e.g. ε = 0.8 as in the Figure 7).
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2. Ksim contains most elements of Kreal (especially
Kreal(Q ), the underlying keywords of the queries ob-
served by the attacker).

3 Score attack

On an intuitive level, our score attack makes use of a con-
fidence metric which scores trapdoor-keyword pairs. This
metric is called a matching score and should be maximized
when the trapdoor is paired with its correct underlying key-
word. The attacker computes the matching score of every pos-
sible trapdoor-keyword pair. For each trapdoor, the trapdoor-
keyword pair with the highest score is returned.

3.1 Extracting the known query co-occurrence
sub-matrices

The attacker uses her known queries (= known correct
trapdoor-keyword pairs) to project the keyword and the trap-
door co-occurrence matrices to a common sub-vector space.
This projection is done by only keeping the columns of the
known queries and to sort the columns using the known
queries such that the i-th column is related to the i-th known
query. Formally the projection works as follows:

For a keyword kw, we denote its position in the vocabu-
lary Ksim = (kw1, . . . ,kwmsim) by pos(kw), i.e. pos(kwi) = i
for kwi ∈ Ksim. Likewise, we denote the position of a trap-
door td in the list of observed queries Q = 〈td1, . . . , tdl〉 by
pos(td). We define the projection of the trapdoor-trapdoor co-
occurrence matrix Ctd onto the known queries as the l×k ma-
trix Cs

td such that: for all i∈ {1 . . . l} and all j ∈ {1 . . .k} there
exists a known query q j = (tdknown,kwknown) ∈ KnownQ
such that

Cs
td [i, j] =Ctd [i, pos(tdknown)]. (4)

Likewise, we define the projection of the word-word co-
occurrence matrix Ckw onto the known queries as the msim×
k matrix Cs

kw such that: for all i ∈ {1 . . .msim} and all j ∈
{1 . . .k} there exists a known query q j = (tdknown,kwknown)∈
KnownQ such that

Cs
kw[i, j] =Ckw[i, pos(kwknown)]. (5)

In our notation, we use the superscript s to emphasize that
Cs

td and Cs
kw define co-occurrence sub-matrices. Such matrices

are very convenient since we can directly compare a keyword
and a trapdoor. We denote as Cs

kw[kwi] (resp. Cs
td [td j]), the

vector composed of the co-occurrences of keyword kwi (resp.
trapdoor td j) with every keyword (resp. trapdoor) related to
a known query. Thus, we can extract a k-dimensional vector
describing each keyword or trapdoor. In the next section, we
will define our confidence score based on the distance between
a keyword vector and a trapdoor vector.

3.2 Confidence score and matching process

The sub-matrices Cs
kw and Cs

td are used to score a trapdoor-
keyword pair. A score should be maximized when the pair is
correct. The scoring function for a vector-norm ‖ · ‖ (e.g. the
L2 norm) is defined as

Score(td j,kwi) =− ln(||Cs
kw[kwi]−Cs

td [td j]||), (6)

for all kwi ∈Ksim and all td j ∈ Q .
Note that Equation (6) results in a high score when the

distance between a keyword and a trapdoor is small. This
distance can be obtained since Cs

kw[kwi] and Cs
td [td j] share a

common vector space. The − ln function is used to transform
the distance into a score to focus on the order of magnitude
instead of distance values close to zero. For example, a dis-
tance of e−11 results in a score of 11. In our case, the distance
is always less than 1 because we are using relative frequency
matrices. We focus on orders of magnitude for interpretability
matters. Even for an attack accuracy above 80%, the attacker
needs to identify the correct predictions. The interpretability
provided by a scoring approach is then necessary. We argue
that there is a higher interpretative meaning when comparing
two orders of magnitude scaled between 0 and ∼ 30 (experi-
mental upper bound) than comparing two small norms close
to zero. Moreover, in Section 5 and in Appendix C, we pro-
pose geometrical methods (focusing on the distance between
the scores) to improve the results of the score attack presented
in this section.

Our score attack uses the score function as follows: for
each trapdoor, it goes through all keywords and returns the
keyword for which the score is maximized. See Figure 1 for
an algorithmic description. Note that the score is a confi-
dence score and the attacker can sort the predictions (i.e. the
trapdoor-keyword pairs returned) based on their matching
score to define the most likely predictions.

To run the algorithm, the norm || · || can be chosen freely.
However, our experiments showed that the L2 norm maxi-
mizes the accuracy. This norm tolerates a high difference
between one of the k components of the vector, i.e. when one
of the co-occurrences in the attacker dataset is very far from
its corresponding co-occurrence in the indexed dataset.

4 Experimental results

4.1 Methodology

Datasets We simulate the attacks using two publicly avail-
able datasets. First, we use the Enron dataset [17] which is
widely used in the literature to simulate attacks. Like in IKK
and CGPR, we compose our Enron document set by extract-
ing every email contained in the folders _sent_mail to obtain
30109 documents. Second, we use data from the Apache mail-
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Require: Ksim,Cs
kw,Q ,Cs

td
pred← []
for all td ∈ Q do

candidates = []
for all kw ∈Ksim do

s =− ln(||Cs
kw[kw]−Cs

td [td]||)
append (kw,s) to candidates

end for
candidates = sort(candidates,desc)
append (td,candidates[0]) to pred

end for
return pred

Figure 1: The score attack

ing list archives3. We use specifically the "java-user" mailing
list from the Lucene project for the years 2002-2011. This
second dataset contains 50878 documents. It was introduced
in CGPR.

Keyword extraction The keyword extraction is exclusively
done on the email content. Thus, keywords of the title or the
names of the recipients cannot be queried. To obtain the list
of the keywords, we stem the words using the Porter Stem-
mer [27] and remove the stop words. For Apache dataset, we
systematically remove the mailing list signature proposing to
unsubscribe. Otherwise, the keyword contained in this "Un-
subscribe" message would be useless in the search since it
appears in every email.

Adversary knowledge generation At the beginning of an
experiment, the document set used (i.e. Enron or Apache) is
divided randomly into two disjoint subsets. One subset is used
to generate the index, i.e. the encrypted document set Dreal to
be attacked. The second subset is part of the adversary knowl-
edge, i.e. the similar document set Dsim. Every experiment
is done with non-overlapping document set, that is, only as
similar-data attack. The similar vocabulary Ksim is extracted
from Dsim and is given to the adversary. The index vocabulary
Kreal is extracted from Dreal and is not known by the adver-
sary. The similar (resp. real) vocabulary extraction algorithm
consists in extracting the msim (resp. mreal) most frequent key-
words of Dsim (resp. Dreal). The underlying keywords of the
queries are chosen uniformly at random from Kreal. For each
run, document and query sets are freshly chosen uniformly at
random.

Hardware and software The experiments are done on a
Debian server with a quad-core processor (64 bits, 2.1 GHz)
and 8 GB of memory. The algorithms are implemented using
Python 3.7. Specifically, we use the NLTK [21] for the basic

3http://mail-archives.apache.org/mod_mbox/
lucene-java-user/

natural language processing: word tokenization, stemming
and stopwords.

Our code to simulate the attack and to obtain our re-
sults is publicly available: https://github.com/MarcT0K/
Refined-score-atk-SSE.

Result presentation We call correct prediction, a query for
which the algorithm has returned the corresponding underly-
ing keyword. We evaluate the performance of our attack using
the term accuracy. The accuracy corresponds to the number of
correct predictions divided by the number of unknown queries.
Our accuracy excludes known queries and is always computed
over the unknown queries (i.e. acc = |CorrectPred(UnknownQ )|

|Q |−|KnownQ | ).
In other articles such as CGPR, the term recovery rate is also
used to define this concept. We use bar plots to present the
results of our experiments. Each bar is obtained by computing
the average result over 50 attack simulations. These bars are
completed with errors bars which correspond to µ±σ with µ
the average accuracy and σ the standard deviation.

4.2 Results
Figure 2 shows the accuracy of the algorithm on Enron corpus
for several vocabulary sizes. The server stores 60% of the
corpus and the adversary knows the remaining 40%. The
adversary has observed 15% of the possible queries. She
knows either 15, 30 or 60 queries. When the vocabulary size
is 1000 and the adversary knows 30 queries (20% of the
queries observed), the average accuracy is 60%. When the
vocabulary size is 2000 and the adversary knows 60 queries
(20% of the queries observed), the average accuracy is 55%.
Then, the base algorithm can be successful only if it has
enough known queries. When the vocabulary is bigger, the
accuracy decreases if the number of known queries remain
the same. The accuracy increases in function of the number
of known queries (Figure 2), we assume that we could obtain
better result for big vocabularies with more known queries.
Obtaining so many queries is unrealistic since we would need
a preliminary inference attack or a massive injection attack
to obtain the knowledge required by this base similar-data
attack. Therefore, the base score attack is only a practical
attack when the size of the server vocabulary is below 2000.

In Figure 2, we can distinguish one surprising result when
there are 60 known queries and the vocabulary size is 500.
This result is decreased compared to the previous one (i.e. 30
known queries) and the errors bars are overlapping. We can
explain that because, in this experiment, there are 75 queries
for 60 known queries, i.e. only 15 unknown queries. It is the
only experiment where there is a minority of unknown queries.
We consider this result as insignificant but keep it in our work
for the sake of the complete discussion. Indeed, it does not
make sense to know most of the queries before the attack and
to consider a result obtained on the recovery of such a small
amount of unknown queries.
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Figure 2: Average accuracy of the base matching algo-
rithm on Enron for vocabulary size. Parameters: |Dsim| =
12K, |Dreal|= 18K, |Q |= 0.15 ·mreal

In [3], it was assumed that the co-occurrences were too
noisy to rely totally on them. The occurrence is much less
noisy but most of the keywords have an extremely close fre-
quency therefore it is impossible to identify a keyword just
based on a single occurrence estimator except if we are sure
to have perfect knowledge as in CGPR attack when they know
nearly 100% of the encrypted documents. The co-occurrence
is noisier but its distribution is scattered enough to identify
keyword-trapdoor pairs. The lack of precision is balanced
by the number of co-occurrences available to perform the
identification. There is a trade-off between the number of
estimators and the precision.

4.3 Execution time

The complexity in time of the algorithm in Figure 1 is
O(|Q | ·msim · k), if we consider the complexity of the norm
|| · || to be O(k). Figure 3 describes the average execution
time of this algorithm over 50 repetitions in function of the
vocabulary size. We exclude the keyword extraction and the
co-occurrence computation from this execution time. This
experiment was done with Enron dataset. The similar docu-
ment set represents 40% of the total dataset (12 044 emails)
and the server document set 60%. We note that even with
large document set the execution time is negligible (20 sec-
onds) compared to attacks like [28] which needs 16 hours
when msim =mreal = 1K. Our implementation is already CPU-
parallelized but can be further improved using GPU paral-
lelization.

Besides its short runtime, this algorithm is deterministic
and parameter-less. Non-determinism is present, for example,
in the simulated annealing used by IKK. Indeed, two runs of
IKK algorithm could result in two different results because

Figure 3: Average execution time of the matching algo-
rithm for vocabulary size Parameters: |Dsim|= 12K, |Dreal|=
18K, |Q |= 0.15 ·mreal, |KnownQ |= 10

of a random choice present in this algorithm. It becomes a
problem when the attack is too long to be repeated many times
with different initializations and/or when the attacker does not
have a confidence metric to identify the correct predictions (as
in IKK). The CGPR attack introduced an error-rate parameter
which needs to be set experimentally but it is unclear whether
this parameter is specific to each document set or not and how
to set it properly.

5 Refined score attack

5.1 Algorithm
Our base attack introduces a matching score that acts as a
confidence metric: the higher the score is, the more likely the
correctness of the keyword-trapdoor pair is. We can use this
property to determine the most certain predictions, that is, a
keyword-trapdoor candidate (kwi, td) will be considered as
certain if its score is much higher than the scores of any other
candidate (kw j, td). The certainty of a prediction kwi for the
trapdoor td is defined as:

Certainty(td,kwi) = Score(td,kwi)−max
j 6=i

Score(td,kw j)

(7)
Based on this certainty, we propose a refinement pro-

cess which drastically reduces the number of known queries
needed at the attacker’s side: the matching is performed sev-
eral times and at the end of each round, the most certain
predictions are added to the set of known queries. We detail
this process in Figure 4. This algorithm introduces a new pa-
rameter, namely, the refinement speed RefSpeed to decrease
attack runtime. However, if the refinement speed is chosen
too large, it is very likely that wrong predictions are added
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Require: Ksim,Cs
kw,Q ,Cs

td ,KnownQ ,RefSpeed
f inal_pred← []
unknownQ ← Q
while unknownQ 6= /0 do

% 1. Extract the remaining unknown queries
unknownQ ←{td : (td ∈Q )∧(@kw∈Ksim : (td,kw)∈
KnownQ )}
temp_pred← []

% 2. Propose a prediction for each unknown query
for all td ∈ unknownQ do

cand← [] {The candidates for the trapdoor td}
for all kw ∈Ksim do

s←− ln(||Cs
kw[kw]−Cs

td [td]||)
append {"kw": kw, "score": s} to cand

end for
Sort cand in descending order according to the score.
certainty← score(cand[0])− score(cand[1])
append (td,kw(cand[0]),certainty) to temp_pred

end for

% 3. Either stop the algorithm or keep refining.
if |unknownQ |< RefSpeed then

f inal_pred← KnownQ ∪ temp_pred
unknownQ ← /0 {Stopping criteria}

else
Append the RefSpeed most certain predictions from
temp_pred to KnownQ
Add the columns corresponding to the new known
queries to Cs

kw and Cs
td

end if
end while
return f inal_pred

Figure 4: The refined score attack

to the known queries. Overall, the time complexity of the
algorithm in Figure 4 is O( |Q |

RefSpeed · |Q | ·msim ·k). Notice that
the runtime of the refined score attack increases by the fac-
tor |Q |

RefSpeed in comparison to the base attack, thus RefSpeed
decreases the runtime by a multiplicative factor. As a result,
the refined score attack is finished in minutes whereas Pouliot
and Wright’s attack [28] requires several hours.

Each iteration of this algorithm is divided into three phases:

1. Remove all (attacker-)known queries from the queries
to be recovered.

2. For each unknown query, find the best matching keyword
candidate and compute its certainty score.

3. If there are more than RefSpeed unknown queries, we
keep refining the results: the most certain predictions
(RefSpeed many) are added to the known queries. Then,
add the columns corresponding to the new known queries

Figure 5: Comparison of the accuracy between the score
attack and the refined score attack. Fixed parameters:
|Dsim|= 12K, |Dreal|= 18K,msim = 1.2K,mreal = 1K, |Q |=
150,RefSpeed = 10

to the co-occurrence sub-matrices (Cs
kw and Cs

td) and
start a new iteration. Otherwise, the algorithm stops and
returns the queries imputed since the first iteration.

The main benefit of the refined score algorithm is the use of
more information available to the adversary. The initial score
attack only uses a small part of the co-occurrence matrices (i.e.
the co-occurrence sub-matrices). This refinement iteratively
imputes new known queries which increases the size of these
sub-matrices. We optimize the use of the adversary knowledge
(the co-occurrence matrices) in order to minimize the amount
needed for a successful attack (the known queries).

5.2 Experimental results
General comparison In Figure 5, we compare the accuracy
of the base and the refined versions of the attack. We fixed
mreal = 1K and |Q | = 150. Each bar represents the average
accuracy over 50 simulations done with the same parameters.
In Figure 5, we see that the base algorithm needs 40 known
queries to reach 70% of accuracy while the refined score al-
gorithm reaches 85% with only 10 known queries. Even with
only 5 known queries, the refined score algorithm achieves
62% of accuracy with a standard deviation of 13 percentage
points.

If not stated differently, we fix |Ksim|= |Kreal| to simplify
the experiment understanding. However, it is likely that the
similar vocabulary and the queryable vocabulary are not iden-
tical. For the experimental results depicted in Figure 5, we
used |Ksim|= 1.2K and |Kreal|= 1K. By choosing the vocab-
ulary sizes such that |Ksim| > |Kreal|, we increase the prob-
ability that Ksim∩Kreal = Kreal. In this case, all queries can
be recovered theoretically. In other words, as the size of Ksim
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Figure 6: Comparison of the accuracy between En-
ron, Apache and ’Apache reduced’. Fixed param-
eters: |Dsim| = 12K, |Dreal| = 18K,msim = mreal =
1K, |KnownQ |= 15,RefSpeed = 10

increases, the accuracy upper bound as stated in Equation (3)
in Subsection 2.4 potentially increases.

The refined score attack yields highly accurate results
within minutes. It recovers most of the queries and assumes
less adversary knowledge than IKK and CGPR attacks. In [3],
Cash et al. report the average accuracy of the IKK attack is
around 30% for an attacker knowing 95% of the indexed doc-
uments for |Kreal|= 500, |Q |= 150,KnownQ = 8. With the
same parameters, CGPR achieves 70% accuracy. In Figure 5
we see that for a vocabulary size twice as large and less known
queries, i.e. |Kreal|= 1K, |Q |= 150,KnownQ = 10, the re-
fined score attack obtains also 85% without partial knowledge
of the encrypted documents.

Query set size In both the IKK and CGPR attacks, the num-
ber of observed queries was set as 15% of all possible queries.
We investigate the role of this choice in Figure 6. With a fixed
number of known queries, the attack accuracy increases with
a larger query set. Intuitively, this demonstrates that our attack
uses efficiently the adversary knowledge, i.e. more observed
queries implies more adversary knowledge. In contrast, both
IKK and CGPR had steady results even for an increasing num-
ber of known queries, which indicates some sort of inefficient
use of adversary knowledge.

Different email corpus We compare the accuracy on En-
ron and on Apache in Figure 6. For these simulations we
used three document sets: Enron (|Dsim| = 12K, |Dreal| =
18K), Apache (|Dsim|= 20K, |Dreal|= 30K) and ’Apache re-
duced’ (|Dsim|= 12K, |Dreal|= 18K). ’Apache reduced’ is the
Apache dataset truncated in order to have as many emails as in
Enron. Apache has slightly better results than Enron while the

emails contain a richer vocabulary and longer emails. Thus,
our attack could be effective on a wide range of documents.
Moreover, the bar plot shows that ’Apache reduced’ has lower
results than Apache. Our results on ’Apache reduced’ are
closer to those on Enron. Since Apache and ’Apacha reduced’
share a common distribution and only differ in size, it shows
(once again) that our attack is sensitive to the amount of ad-
versary knowledge. In this case, the part of the adversary
knowledge which is increased is the similar document set.

Document set similarity Recall the similarity definition
for the document sets from Subsection 2.4. For a better un-
derstanding of this new definition, we performed two experi-
ments:

1. Using Enron as an attacker document set and Apache as
an indexed document set

2. Fixing the size of the indexed document set and attacking
it with similar document sets of varying size.

During the first experiment over 50 repetitions, we recov-
ered at best 5 queries. This bad performance is explained by
the fact that the Enron dataset has a low similarity with the
Apache dataset (ε = 10.2). Further, the attacker vocabulary
(Ksim) and the queryable vocabulary (Kreal) only have 56% of
their keywords in common. In comparison, Figure 9 shows
results for experiments where the attacker and the server share
up to 98% of their vocabulary. Recall from Subsection 2.4,
that the joint keywords are an upper bound for the attack ac-
curacy. The disjoint vocabulary set combined with the high
ε value between Enron and Apache explain the low attack
accuracy for the first experiment. We note that Enron is com-
posed of emails sent in a company while Apache is composed
of emails from a mailing list dedicated to a highly technical
project. This important difference in the nature of the emails
result in two very different keyword distributions (i.e. a very
low similarity between the document sets).

We show the results of the second experiment in Figure 7.
By varying the size of the attacker dataset, the co-occurrence
matrices of the attacker dataset and the indexed dataset di-
verge more or less. In other words, this size reduction applies
noise to the attacker’s word-word co-occurrence matrix in
comparison to the one computed with the complete dataset.
We preferred to apply this size reduction instead of applying
a synthetic gaussian noise (as is done in e.g. the IKK attack
paper) to the matrix because the added noise is more realistic
this way. Figure 7 shows that reducing the attacker document
set size leads to increased ε values hence it is an efficient way
to decrease similarity.

In Figure 7, we observe that the smaller the attacker dataset
is, the less similar the document sets are and hence the less ac-
curate the attack results are. When the attacker dataset size is
divided by 2, e.g. from 12K documents to 6K, we still achieve
an average accuracy of 68%. Thus, the refined score attack

USENIX Association 30th USENIX Security Symposium    151



Figure 7: Accuracy and ε-value of set similarity for varying
attacker document set sizes with Enron. Fixed parameters:
|Dreal| = 18K,msim = mreal = 1K, |Q | = 150, |KnownQ | =
15

show a certain degree of robustness against decreased simi-
larity. However, if we further reduce the size of the dataset,
the accuracy is also further reduced until we have a totally
ineffective attack.

5.3 Attack analysis

Role of the amount of information The refined score at-
tack is sensitive to the amount of information given to the
attacker. The more information the adversary has, the higher
the attack accuracy is. This holds true for each piece of infor-
mation owned by the attacker: document set, observed query
set and known queries. This was not the case in the previous
attacks especially for IKK and GCPR which had identical
results with and without known queries. IKK presented an ac-
curacy of 80% regardless of the percentage of known queries
(from 0 to 25% in their article). CGPR only presented results
without known queries for their count attack even if it could
use them.

Technical comparison with related attacks Technically,
all query-recovery attacks solve a matching problem between
trapdoors and keywords based on specific background infor-
mation available to the attacker. IKK assumes partial knowl-
edge of the indexed documents together with known trapdoor-
keyword mappings. IKK describes the matching problem
as an optimization problem that minimizes the distance be-
tween the trapdoor co-occurrence matrix and the keyword co-
occurrence matrix. CGPR makes similar assumptions while,
in practice, it does not require known trapdoor-keyword map-
pings. CGPR iteratively filters keyword-trapdoor candidates
for which the differences between the occurrences (computed

from attacker documents and from observed queries) do not
match. Blackstone et al. [1] and Oya and Kerschbaum [23]
both propose attacks using query volume information only.
[1] assumes an attacker can identify known documents in the
index and thus still requires partial knowledge on indexed doc-
uments. They represent two bipartite graphs: one connecting
indexed documents to the queries and one connecting known
documents to keywords; then they match query nodes with
keyword nodes by iteratively refining the candidates using
multiple filtering steps. Oya and Kerschbaum [23] formu-
late an optimization problem based on maximum likelihood
estimators which assumes a distributional knowledge of the
indexed documents plus knowledge about query frequency.

Instead of partial index information, we focus on few
attacker-known keyword-trapdoor pairs which we use to score
every keyword-trapdoor candidate. We then iteratively add
pairs with highest scores to the attacker-known pairs to im-
prove our knowledge and refine further predictions. This
avoids complex optimization problems and the requirement
of knowledge about indexed documents. The scoring and its
corresponding iterative refinement are the core novelties of
our attack.

As highlighted in [1], all prior attacks require exact knowl-
edge of the queryable vocabulary (i.e. the client’s key-
word universe). Our attacker does not require such knowl-
edge and builds her own vocabulary. Considering the fol-
lowing setup: |Dsim| = 12K, |Dreal| = 18K,msim = mreal =
1K, |Q |= 300, |KnownQ |= 15, with an exact knowledge of
the queryable vocabulary, we obtain an average accuracy of
92%. On the other hand, when the attacker builds her own
knowledge, we obtain an average accuracy of 87%. This ac-
curacy decrease is a direct consequence of the accuracy upper
bound presented in Equation (3) of Subsection 2.4.

In Appendix A.2, we detail the relation between substi-
tution cipher cryptanalysis and SSE attacks (especially the
refined score attack).

Improving the attack using clustering Our novel scor-
ing approach offers further possibilities for improvement. In
Appendix C we discuss clustering to further improve attack
results. In our attacks, when a prediction is uncertain, we
sometimes have a group of candidates with higher scores than
the rest of the candidates instead of only one candidate with
a particularly high score. In such cases, it seems natural to
return a list of potential keywords instead of forcing the al-
gorithm to choose only one keyword. Note that it would not
affect the overall interpretability of the results as the scores
are augmented. In Appendix C, we show that clustering can
further increase the accuracy of the refined scoring attack.
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6 Attack mitigation

6.1 Existing countermeasures

To mitigate leakage-abuse attacks, several countermeasures
have been proposed in [3, 4, 15, 34]. We divide these counter-
measures into two categories: padding and obfuscation. IKK
proposed a first countermeasure which could be assimilated
to padding. CGPR were the first to present precisely the no-
tion of padding. It consists in adding fake entries, i.e. fake
keyword-document pairs. These false-positive results can be
easily filtered by the user when they receive the database
response. With padding, there is no entry removal because
it could impact the search results (i.e. no false negative re-
sults). To harden this countermeasure, Xu et al. proposed
in [34] a method to produce fake entries that cannot be dis-
tinguished from the real entries by an attacker. In [4], Chen
et al. presented a new kind of countermeasures: obfuscation.
First, it uses code erasure to divide the documents into shards.
Thanks to code erasure, the false negative results are allowed
because the user does not need every shard to reconstruct the
document. After having computed the shards, the algorithm
adds and removes shards from the results. The removal rate
is chosen so the reconstruction rate for matching documents
is close to 100%. Thus, false-negative shards do not result in
false-negative documents.

Chen et al. also presented an improved attack scenario
where the attacker knows which shards belong together. In this
case, the countermeasure corresponds to padding because the
attacker knows that all the reconstructed documents are either
a matching document or a false-positive result. Moreover, he
knows that the proportion of matching documents which is
not reconstructed is negligible. Therefore, if the attacker only
keeps the reconstructed files he would have all the matching
documents plus some false-positive results.

These countermeasures have been proposed to mitigate
known-data attacks but they are also suitable for similar-data
attacks since they alter the co-occurrence matrix Ctd inferred
from the queries. Therefore, padding and obfuscation should
be also effective to mitigate our attack.

6.2 Experimental results

To test the possibility to mitigate our attack, we implemented
the padding presented in CGPR and the obfuscation presented
in [4]. For padding, we use the countermeasure proposed by
CGPR which is well established but the hardening proposed
by Xu et al. [34] would not provide highly different results
since we do not try to filter fake entries. Figure 8 describes
the average accuracy of the refined score attack over 50 sim-
ulations for several vocabulary sizes. For the padding, we
used a padding size npad = 500. For the obfuscation, we used
the parameters used by Chen against the "improved" attack:
p = 0.88703 the rate of false-positive shards, q = 0.04416

Figure 8: Comparison of the accuracy for countermeasures.
Fixed parameters: |Dsim|= 12K, |Dreal|= 18K, |Q |= 0.15 ·
mreal, |KnownQ | = 15. Padding: npad = 500. Obfuscation:
p = 0.88703,q = 0.04416

the rate of false-negative shards.

Figure 8 clearly shows a good mitigation from both coun-
termeasures. For small vocabularies, the accuracy can still
be considered as too high. However, as the vocabulary size
grows, the accuracy becomes small and negligible for big
vocabularies. This figure should not be used to compare the
efficiency of the countermeasures. Padding performs better
than obfuscation because the padding size we chose is high.
For example, when |Kreal|= 1K, the number of entries is in-
creased by 32% because of padding. When |Kreal|= 4K, the
number of entries is increased by 166% because of padding.
These fake entries create several types of overheads including
storage, communication and computation. Chen et al. chose
p = 0.88703 and q = 0.04416 to minimize the overheads
then it is likely that obfuscation can achieve results equivalent
or better with bigger overheads. We leave the comparison
of these countermeasures and their overheads for a future
work. Our experiments highlight the importance of hiding the
document access pattern to mitigate the refined score attack.

Our attack provides a matching score which can help to
identify the good predictions. When |Kreal|= 500, the average
accuracy for padding is 35% and for obfuscation 47%, the
refined score attack can identify successfully a non-negligible
part of the correct predictions thanks to the matching score.
It is needed to define a maximum query recovery rate, so
the countermeasure parameters are chosen so that there is no
attack with an accuracy higher than this threshold. An analogy
with encryption security is possible: the attack accuracy is
the adversary advantage and the maximum query recovery
is the threshold under which the advantage is considered as
negligible. We leave this direction for a future work.
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Table 2: Accuracy statistics on Enron over 50 simulations of
orders 2 and 3. |Dsim| = 12K, |Dreal| = 18K,mreal = msim =
300, |Q |= 75, |KnownQ |= 10

Accuracy statistics µ σ

Order-2 attack 0.92 0.0351

Order-3 attack 0.77 0.0659

7 Additional results

7.1 Generalization

In [2], Bost and Fouque presented the word-word co-
occurrence as an order 2 of co-occurrence, occurrence be-
ing the order 1 of co-occurrence. Thus, we generalize our
attack and build n-dimensional co-occurrence tensors to work
on co-occurrence of order n. This generalization help to re-
cover the queries since it increases exponentially the number
of co-occurrence we can rely on. For example, let us con-
sider the order 3: a word-word-word co-occurrence. We build
3-dimensional co-occurrence tensors and Ckw[i, j,k] (resp.
Ctd [i, j,k]) is the number of documents where the keywords
(resp. trapdoors) i, j and k appear together.

Our attack remains identical and just the matrix construc-
tion differs. In the refined score attack, if the order n > 2, each
keyword and trapdoor is represented by a (n−1)-dimensional
tensors and the matching score will be computed via a ma-
trix norm. The main issue of this generalization is the space
complexity O((msim)

n) due to tensor sizes. For msim = 1K,
with order 2, the similar co-occurrence matrix has 1 million
cells and with order 3, the similar co-occurrence tensor has 1
billion cells. The first reason which could justify not to use
an order greater than 2 is the technical limitations.

We have done simulations to compare the order 2 and order
3. For each order, we run 50 simulations with Enron dataset,
mreal = msim = 300, |Q |= 75, |KnownQ |= 15. As shown in
Table 2, for order 2, we obtained an average accuracy of 92%
and for order 3, 77%. Then, in our case, increasing the order
decreased the accuracy. It highlights the trade-off between
number of co-occurrence estimators and the noise of these
co-occurrences. To take a decision, we need a maximum of
co-occurrence estimators but if they are too noisy, they will
be misleading and the decision may be wrong. Here, we only
have 30 thousands emails to compute 1 billion co-occurrences
which is not enough to limit the noise of the co-occurrence
tensor. However, increasing the co-occurrence order may be
a viable option for attacks on larger datasets.

Note that the real co-occurrence matrix Ctd is always built
using the index matrix (ID[i, j] = 1 if document i contains the
underlying keyword of query j), whatever the order is. Thus,
we expect altering the index matrix as proposed by IKK to be
an effective countermeasure even against generalized attacks.

Figure 9: Comparison of the accuracy of the refined score
attack for different query distributions. Fixed parameters:
|Dsim|= 12K, |Dreal|= 18K, |Q |= 0.15 ·mreal, |KnownQ |=
15.

7.2 About the observed query distribution
In [18], Kornaropoulos et al. discuss the default choice of the
uniform distribution for range queries. While they focus on
SSE schemes allowing range queries, the same statement can
be done for single-keyword search schemes. In [1], Black-
stone et al. criticized the role of the query distribution. They
show that the attack performance is highly impacted whether
the attack is executed on the most frequent keyword or not.

Figure 9 compares the accuracy of the refined score at-
tack over three different query distributions: Uniform, Zipfian
and inverted Zipfian. The uniform distribution is the standard
setup used in the rest of our experiments. With Zipfian distri-
bution, which gives more weight to the highest rank elements,
we mostly obtain queries for which the underlying keyword
is one of the most frequent. With inverted Zipfian distribution,
which gives more weight to the lowest rank elements, we
mostly obtain queries for which the underlying keyword is
one of the least frequent.

Figure 9 shows that inverted Zipfian decreases the refined
score attack accuracy. The attack becomes ineffective when
the vocabulary is bigger (i.e. a vocabulary size of 4000). De-
spite the inverted Zipfian distribution, the refined score attack
still achieves 67% of accuracy when the vocabulary size is 1K.
On the other hand, with the Zipfian distribution, the refined
score attack reaches 81%, when the vocabulary size is 4000,
and up to 91% when the vocabulary size is 1K.

The refined score attack could be much more devastating if
the uniform assumption turns out to be false. By default, the
literature uses the uniform distribution for the queries. This
assumption could be dangerous because, if the real query dis-
tribution is more advantageous than the uniform distribution
(e.g. the Zipfian distribution), the SSE schemes are way more
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Table 3: Variance of the accuracy over 50 simulations of
the refined score attack. |Dsim|= 12K, |Dreal|= 18K,mreal =
msim = 1K, |Q |= 150, |KnownQ |= 5.

Acc. stats. µ σ q0.25 q0.75 min max

Base setup 0.65 0.21 0.54 0.78 0.06 0.87

Top 25% Q 0.71 0.16 0.68 0.81 0.17 0.87

exposed than what is usually admitted. The gap between Uni-
form and Zipfian distributions in Figure 9 for a vocabulary
size of 4000 is particularly alarming since it nearly doubles
the attack accuracy considering Zipfian distribution instead
of Uniform distribution.

7.3 About the known query distribution

The query distribution explains only a part of the result vari-
ance. The distribution of known queries also impacts the
results. It means that some known queries provide more infor-
mation than others. To identify the impact of this distribution,
we simulated 50 times two refined score attacks and studied
their respective accuracy variance. The first attack is the basic
setup used in our article: 5 known queries picked uniformly
among the queries. The second attack simulation picks 5
known queries uniformly from the 25% of queries with the
largest result sets, i.e. the most frequent underlying keyword.
We report the results in the Table 3. The basic setup has a
bigger variance and a lower mean. The second experiment
presents steadier results which confirms that the distribution
of known queries impacts the results. Since an attacker has
still chances to observe only queries with the most frequent
underlying keywords given a uniform distribution, the maxi-
mum accuracy scores are equivalent for both distributions.

The variance is lower when the adversary obtains more
known queries because there are enough "good" known
queries to start the refinement. Thus, only a part of these
known queries are truly necessary. An attacker can use [35]
active attack to obtain their known queries. Thus, an attacker
can aim at a specific known query distribution in order to
minimize the number of known queries needed by attacking
specific keywords. Just few qualitative known queries are
needed to start a successful refined score attack.

Conclusion

We introduced a highly effective similar-data attack against
SSE. The refined score attack achieves an accuracy (i.e. query-
recovery rate) of 90% while only using documents similar to
the encrypted documents. Previous attacks could only achieve
equivalent results by assuming that attacker knows a signifi-
cant part of the encrypted documents (from 20% for Black-
stone et al. [1] to 70% for Cash et al. [3]). Our attack provides

devastating results while avoiding the strong assumption that
the attacker knows a part of the encrypted documents. Unlike
the existing attacks we assume few known queries (around
10 known queries in our experiments over different datasets
of varying size) rather than knowing the plaintext of a sub-
stantial part of the encrypted documents. We argue that it is
more realistic to obtain few known queries (e.g. using active
attacks) than to obtain a part of the documents indexed. Thus,
the refined score attack is more easily performed while previ-
ous attacks had a limited number of realistic use cases. One
conclusion of our experiments is that the more knowledge the
adversary has, the better our refined score attack performs.
Despite the simplicity of this statement, it was not observed in
previous attacks. This sensitivity to the information amount
highlights an optimized adversary knowledge use as opposed
to a relative underutilization of this knowledge by some exist-
ing attacks. We also showed that the existing countermeasures
(padding and obfuscation) can effectively mitigate the refined
score attack. Finally, we highlighted that the distribution of
observed and known queries impacts the accuracy of our at-
tack. It implies that, if the real query distribution is different
from the uniform distribution commonly used in the litera-
ture, the refined score attack can be even more devastating.
Considering the results presented in this article, SSE should
no longer be used without countermeasures.
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A Extended discussion of related work

We have discussed the most relevant related work in Section 1
and compared our refined score attack with the related attacks
in Section 5.3. In this Appendix, we would like to discuss
further lines of related research.

A.1 General overview
Passive attacks against L1 schemes Several attacks have
already been proposed to recover the queries of L1 schemes.
All of them had one common assumption to achieve good
results: the adversary knows at least a part of the documents
indexed. In [15] (IKK), Islam et al. presented the first attack
using the co-occurrence of the search tokens. In [3] (CGPR),
Cash et al. presented a simpler but very effective known-data

attack using slightly more knowledge than IKK. Two signifi-
cant advantages of CGPR over IKK were its execution time
and its effectiveness on large keyword sets. However, [3] high-
lighted that IKK and CGPR attacks could not provide com-
pelling results as similar-data attacks, i.e. the attacker needs
to know a part of the indexed data to recover some queries.
In [28], Pouliot and Wright introduced a graph-matching at-
tack. Pouliot et al. [28] proposed a graph matching attack that
can work as a known-data attack and a similar-data attack. As
a similar-data attack, it rarely recovers more than 50% of the
queries and only under rather advantageous conditions (e.g.
small vocabulary). Moreover, the execution time increases
tremendously for bigger keyword sets. In [22], Ning et al.
presented a new known-data attack which represents every
keyword (resp. search token) with a binary sequence: the i-
th bit is 1 if the i-th document contains the keyword (resp.
matches the query), 0 otherwise. The sequences are compared
to find the underlying keywords of the queries. This attack
performs better than CGPR. However, it is a known-data-
only attack since it cannot use a distributional knowledge
to construct these binary sequences. In [1], Blackstone et al.
revisited the underlying concepts of the known-data attacks
and presented a new known-data attack. This attack can be
done on co-occurrence-hiding schemes and achieves good
results even when the known data is small. Despite these
results this attack cannot be executed using similar data (i.e.
it is a known-data-only attack) because the algorithm is based
on the assumption that the documents known by the attacker
are indexed. In [32], Wang et al. introduced a volume-based
attack working on co-occurrence-hiding schemes. The lat-
ter two attacks [1, 32] both even work against schemes with
protection beyond L1 security.

All these passive attacks tried to avoid known queries as
part of the adversary knowledge: [1,32] did not assume known
queries while [15] and [3] showed that query knowledge does
not improve the results significantly. However, they all made
another strong assumption: the adversary knows a significant
part of the encrypted documents. In our work we follow an
orthogonal approach and study similar-data attacks that avoid
partial knowledge of the encrypted documents but exploit a
small subset of queried keywords. We argue that it is easier
to obtain few known queries (using active attacks) than to
obtain a part of the encrypted documents. Thus, the refined
score attack can be considered as much more feasible than
existing leakage abuse attacks.

Other attacks Other attacks exist against L1 schemes but
differ from what is intended by the passive attacks presented
above. In [35], Zhang et al. presented an active attack which
recovers specific keywords based on maliciously crafted
files/documents injected by the attacker. In [20], Liu et al.
recovers the queries exploiting the query frequencies. This
last direction has not been treated much more in the literature
since there is no query dataset available. In [23], Oya and Ker-
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schbaum introduced an attack assuming co-occurrence AND
query frequency. This new attacker model is more or less a
mixture of the attacker models from Liu et al. [20] and Black-
stone et al. [1]. While strengthening the attacker assumptions
with the query frequency, it is important to highlight that this
attack can work on schemes with no or partial access pattern
leakage [8, 24, 25].

Several articles have also presented attacks on schemes
other than L1 schemes. In [3, 12, 14], the attacks are focused
on less secure schemes, i.e. schemes with L2, L3 or L4 leakage
profiles. In [13, 16, 19], attacks on schemes supporting range
queries were proposed. These SSE schemes are opposed to
the schemes for single-keyword search that are the subject of
our attack.

A.2 Relation between substitution cipher
cryptanalysis and SSE attacks

There exists a particular link between SSE passive query-
recovery attacks and the cryptanalysis of substitution ciphers.
In [3], Cash et al. define L4 leakage profile as full plaintext
under deterministic word-substitution cipher. We argue that
the analogy to substitution ciphers still holds for most secure
schemes including L1 schemes. In simple substitution ciphers,
each plain letter is replaced by one other letter, the key is a
dictionary, for example {”a” : ”x”,”b” : ” j”, . . .}. In SSE with
single-keyword search, we can construct a similar mapping
such that {trapdoori : keyword j, . . .}. The main difference is
the larger alphabet size for SSE.

To perform a ciphertext-only attack on substitution ciphers,
a frequency analysis is performed. A very common way to pro-
ceed is to compute n-grams from the ciphertext and compare
them with the reference n-grams occurrences computed from
a large publicly available corpus, e.g. the most frequent En-
glish bigram is "th". Several methods, automated or not have
been proposed: [6, 9–11, 30, 31]. Especially in [11] and [9],
simple attacks based on "digrams" are presented. The digrams
are letter-letter co-occurrence matrices. We can see an equiva-
lence between the letter-letter co-occurrences used for substi-
tution cipher attacks and the word-word co-occurrences used
by IKK, CGPR and our attack. However, we note that, with
L1 schemes, the matrix is symmetric while the digrams are
not. Moreover, Forsyth and Safavi-Naini in [10] tackle the fre-
quency analysis problem (for substitution cipher attacks) by
using simulated annealing as IKK for SSE. In [9], Dhavare et
al. presented a hill climbing solution which is an optimization
algorithm similar to simulated annealing. Simulated anneal-
ing is a very powerful approach against substitution ciphers
and less against SSE due to the large alphabet size.

We argue that a similar-data attack on SSE is analogous to
ciphertext-only attack on substitution ciphers since the pub-
licly available corpus used for substitution ciphers attack is
analogous to the similar document set used in similar-data at-
tacks. In our case, we present a similar-data attack with known

queries corresponding to a chosen-plaintext attack. One could
say that substitution ciphers cryptanalysis uses n-grams and
not only bigrams. Thus, we present a generalized attack in
Subsection 7.1 which uses co-occurrence of order n (i.e. the
number of documents containing n specific keywords).

Refined score attack We compare the refined score attack
to the digram method presented in [11]. In this method, there
is a preliminary step of vowel identification based on the letter
occurrences. This preliminary step can correspond to the prior
active attack performed to obtain known queries for the re-
fined score attack. Then, the cryptanalyst identifies iteratively
new letters using the digrams of these vowels (equivalent to
co-occurrence matrices). When the cryptanalyst guesses new
letters, she can use them to identify the remaining unknown
letters. In our refined score attack, at the end of each iteration,
we learn few queries and will use these newly known queries
to recover the remaining unknown queries. There is a strong
similarity between the notions of known letter in substitution
cipher cryptanalysis and of known query in SSE attack and
the way they are used to iteratively discover new letters (resp.
queries).

B Estimation of the number of indexed docu-
ments

Both IKK and GCPR attacks use known queries but conclude
that the results are equivalent with or without them. We as-
sume that known queries convey significant information and
should be fully used to obtain an effective attack as shown
in Section 5. Another example of this knowledge underuti-
lization is the number of documents indexed nreal which is
considered as known by IKK and CGPR attacks. However, if
the attacker is a passive traffic observer he would not have this
information. IKK and CGPR only considered the honest-but-
curious server. Storing the index and the documents on two
separate servers is a simple way to degrade the information
leakage to that of a passive traffic observer.

This number is mandatory to transform the count matrix
into a frequency matrix. We note Dsim(kw), the documents
from Dsim that contains the keyword kw. We also highlight
|Rq|= |Dreal(kw)| if kw is the underlying keyword of query
q.

n̂real =
1
k
· ∑

kw,td∈KnownQ

|Rq|
|Dsim(kw)|

·nsim (8)

Equation (8) shows how n̂real the estimation of the number
of indexed is computed. The first part of the equation (i.e.
1
k ·∑kw,td∈KnownQ

|Rq|
|Dsim(kw)| ) is the average ratio between the

number of encrypted documents containing one keyword and
the number of similar documents containing the exact same
keyword. Then, this ratio (which is a sort of scale factor) is
multiplied by the number of similar documents to obtain n̂real.
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Thanks to this estimation, the minimum adversary knowl-
edge needed by IKK and CGPR attacks does not include the
number of indexed documents contrary to what was implic-
itly assumed. If the result length is hidden, the co-occurrence
between the known queries can be used to estimate n̂real.

C Improvement strategy: Clustering

The matching score provides a very interesting basis to in-
terpret and analyse the results. By default, we always pick
tdpred = argmaxi Score(tdi,kw) and the difference between
the score of tdpred and the score of the second best prediction
is considered as the certainty of the predictions. However, we
observed that, sometimes, we have several potential candi-
dates instead of one:

• Classical score distribution: [. . . 6, 6.2, 6.3, 9], one clear
candidate

• Atypical score distribution: [. . . 6, 6.2, 6.3, 7.9, 8, 8.2],
one cluster of candidates

We argue that it would be very interesting to return clusters
when the choice is uncertain. To process appropriately these
score distributions, we use hierarchical clustering ( [5, 33])
to identify the best-candidate cluster. With clustering, the
prediction will be a cluster (either with one single candidate
or with several candidates) and the certainty of the prediction
will be the distance between the best-candidate cluster and
the rest of the scores. In the main body of this paper, a certain
prediction was a prediction for which the certainty is high.
In this case, a certain prediction is a single-point cluster for
which the certainty is high.

Hierarchical clustering is an iterative method used to obtain
n−1 clusters from n clusters. We specifically use the single-
linkage clustering which considers the minimum distance
between two clusters as the dissimilarity. Usually it is needed
to define a number of clusters or a "cutting height" to know
when to stop the iterations. To avoid this problem, we define
a maximum size MaxSize < msim for our best-candidate clus-
ter. This parameter can be easily set by an attacker without
knowledge about hierarchical clustering.

For each query, we have msim candidates because we com-
pute the matching score of the trapdoor with all keywords
from Ksim. We denote Γi, the clusters after the i-th itera-
tion and Γ0 the initial state which is a partition of one-point
clusters. The clustering is done over S = {s1, . . . ,smsim}, the
matching scores of one given trapdoor with all the candidates,
sorted in descending order. We define the best-candidate clus-
ter Smax as follows:

∃imax ∈ {0, . . . ,msim−2} such that
imax = max{i : ∃S ∈ Γi,s1 ∈ S∧|S| ≤MaxSize}

So, the best-candidate cluster Smax ∈ Γimax and s1 ∈ Smax

i.e., Smax is the cluster containing the highest score.

Since we use single-linkage clustering in a 1-dimensional
space (i.e. the scores), we obtain the Equation (9). This does
not hold with more than one dimension or with a different
linkage criterion. This equation is interesting because it im-
plies that there is a O(MaxSize) algorithm to find Smax. In
comparison, the naive single-linkage clustering algorithm is
O(n3),n >> MaxSize. This complexity reduction is impor-
tant because a clustering is performed over the msim candi-
dates of each trapdoor.

∃i≤MaxSize,Smax = {s1, . . . ,si} and
∀ j ≤MaxSize+1,si− si−1 ≤ s j− s j−1

(9)

To obtain Smax, we use Figure 10 which takes as input the
score set S and the parameter MaxSize. It outputs the best-
candidate cluster and the distance between this cluster and
the closest cluster (i.e. the certainty of the prediction). To find
the best-candidate cluster, the algorithm just needs to find the
maximum leap between two consecutive scores among the
(MaxSize + 1) maximum scores from the score set S . From
Equation (9), we know that all the scores which are before
this maximum leap compose Smax.

Require: S ,MaxSize
MaxDist← 0
MaxInd← 0
S ← sort(S ,desc)
for all i ∈ 1 . . .MaxSize do

CurrDist = S[i]−S[i+1]
if MaxDist < CurrDist then

MaxDist← CurrDist
MaxInd← i

end if
end for
Smax = S[: MaxInd] {MaxInd first elements of S}
return Smax,MaxDist

Figure 10: Best-candidate clustering algorithm

This clustering can be used to improve either the base
attack or the refined attack. To improve the base attack, we
just need to call the clustering algorithm in the prediction
loop: instead of appending the candidate with the highest
score, the algorithm appends the best-candidate cluster to the
prediction list. To improve the refined attack, clustering will
be used to identify the most certain predictions. The algorithm
stops when there are less than RefSpeed single-point clusters
found. We present comparative results in Figure 11. The
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Figure 11: Comparison of the accuracy of the score
attacks with and without clustering. Parameters:
|Dsim|= 12K, |Dreal|= 18K,msim = 1.2K,mreal = 1K, |Q |=
150, |KnownQ |= 10,RefSpeed = 10,MaxClustSize = 10

Table 4: Cluster size statistics (and their corresponding aver-
age accuracy) over 50 simulations of the refined score attack
using the clustering improvement. |Dsim| = 12K, |Dreal| =
18K,mreal = msim = 1K, |Q |= 150, |KnownQ |= 15

Size stats. µ q0.8 q0.85 q0.95 q0.99 Acc.

MaxSize=1 1 1 1 1 1 0.873

MaxSize=5 1.26 1 1 3 5 0.902

MaxSize=10 1.36 1 2 3 7 0.906

MaxSize=20 1.41 1 2 4 8 0.907

MaxSize=50 1.45 1 2 4 9 0.907

Results below were obtained with mreal = msim = 2K

MaxSize=5 1.35 1 2 3 5 0.658

MaxSize=10 1.53 2 2 5 8 0.667

MaxSize=20 1.63 2 2 5 11 0.670

accuracy is strongly increased for the base score attack (about
15 percentage points). We still observe an improvement for
the refined score attack (about 5 percentage points).

In the particular case of clustering, a correct prediction
is a prediction for which the cluster returned contains the
correct keyword. Thus, comparing the accuracies with and
without clustering is imperfect since methods with clustering
has a slightly different definition of accuracy. Moreover, we

highlight that, by construction, the methods improved with
clustering must perform at least as well as the standard meth-
ods.

Cluster size choice Table 4 presents the size statistics of
the clusters returned by the clustering + refined score attack
algorithm with varying MaxClustSize. The table is separated
into two parts: the upper part presents results when the vo-
cabulary size is 1K and the lower part when the vocabulary
size is 2K. First, we note that choosing MaxSize=1 is strictly
equivalent to using the standard refined score attack. In the
upper part, we read that q0.8 = 1, it means that for at least 80%
of the queries, only one possible keyword is returned. When
MaxClustSize = 10, we also note that q0.99 = 7, i.e. less that
1% of the queries has a best-candidate cluster reaching the
maximum size. These results tend to prove that the clustering
does not improve artificially the results because the refined
score algorithm returns cluster only for a small minority of
results. Moreover, when MaxClustSize = 1 (i.e. refined score
attack without clustering), the accuracy is slightly decreased
(3%).

In the Figure 11, we use MaxClustSize = 10. In the up-
per part of Table 4, we show that the accuracy is increased
compared to the experiments using 1 or 5 as maximum size.
However, the accuracy is only very slightly (less than 0.1%)
increased when the maximum size is 20 or 50. This small ac-
curacy difference could also be few big clusters (i.e. 20-point
clusters) containing the correct keyword but the attacker has
no way to identify this result as a correct prediction. We can
also wonder how this attacker can exploit such clusters. Thus,
the experimental accuracy might be increased but the practical
accuracy would remain identical. On the other hand, choosing
a maximum cluster size of 10 instead of 20 divides the com-
plexity by two. To sum up, by choosing MaxClustSize = 10,
we sacrifice an uncertain 0.1% accuracy gain for an algorithm
execution time divided by two.

In our experiments, these clusters seem to contain words
which are semantically close. We observe clusters containing
only figures or only days of the week. However, we cannot
draw any strong semantic conclusion from these clusters since
they are built from very small corpus. Clusters with a real
semantic signification are used in natural language process-
ing especially for translation but are obtained from corpus
composed of billions of documents. This claim seems coher-
ent since the word-word co-occurrence matrix is the basis of
word embeddings as GloVe [26].
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