
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

CSProp: Ciphertext and Signature Propagation
Low-Overhead Public-Key Cryptosystem for

IoT Environments
Fatemah Alharbi, Taibah University, Yanbu; Arwa Alrawais, Prince Sattam

Bin Abdulaziz University; Abdulrahman Bin Rabiah, University of California,
Riverside, and King Saud University; Silas Richelson and Nael Abu-Ghazaleh,

University of California, Riverside
https://www.usenix.org/conference/usenixsecurity21/presentation/alharbi

CSProp: Ciphertext and Signature Propagation
Low-Overhead Public-Key Cryptosystem for IoT Environments

Fatemah Alharbi
Taibah University, Yanbu

Arwa Alrawais
Prince Sattam Bin Abdulaziz University

Abdulrahman Bin Rabiah
University of California, Riverside

King Saud University

Silas Richelson
University of California, Riverside

Nael Abu-Ghazaleh
University of California, Riverside

Abstract
Cryptographic operations can be prohibitively expensive

for IoT and other resource-constrained devices. We introduce
a new cryptographic primitive which we call Ciphertext and
Signature Propagation (CSProp) in order to deliver security to
the weak end-devices. CSProp is a cryptographic propagation
algorithm whereby an untrusted machine sitting upstream of
a lightweight device can modify an authenticated message so
it can be efficiently verified. Unlike proxy-based solutions,
this upstream machine is stateless and untrusted (making it
possible for any device to serve that role), and the propagated
signature is mathematically guaranteed to be valid only if
the original signature is also valid. CSProp relies on RSA
security and can be used to optimize any operations using
the public key such as signature validation and encryption,
which our experiments show are the most common public
key operations in IoT settings. We test CSProp by using
it to extend DNSSEC to edge devices (validation), and to
optimize the performance of TLS (validation and encryption)
on a range of resource constrained devices. CSProp reduces
DNSSEC validation latency by 78x and energy consumption
by 47x on the Raspberry Pi Zero. It reduces TLS handshake
latency and energy by an average of 8x each. On an Arduino-
based IoT board, CSProp significantly outperforms traditional
RSA public key operations (e.g., 57x and 36x reductions in
latency and energy consumption, respectively, for encryption).

1 Introduction and Roadmap

Critical infrastructure on the Internet relies on the distribution
of roles and responsibilities over several nodes. The inter-
action between nodes often occurs over secure channels to
provide the required level and type of security (i.e., confi-
dentiality, integrity, availability − the CIA triad). Operating
securely in constrained environments is one of the primary
challenges facing the wide-scale deployment of Internet of
Things (IoT) and other embedded systems on the edge of the
Internet. The problem is that the cryptographic algorithms
used to secure interactions between well-provisioned desktop

and server environments are computationally prohibitive for
resource-poor, battery operated devices. By the year 2025, it
is estimated that the number of IoT devices will be over 75
billion [41]; thus, it is essential to develop security solutions
for them.

We focus on a security problem which arises when
resource-constrained devices are added to a secure network of
more capable machines. If the security protocols/primitives
used by the network are too computationally intensive for
the small device, then either (1) performance will suffer if
we attempt to use the primitives as is; (2) security will suffer,
for example, if we relegate participation to a resource rich
gateway or proxy; or (3) security for the network must be
overhauled so the new device can participate. In standardized
large-scale networks, (3) is likely not an option due to the
large development time, and the lack of backward compatibil-
ity, and so (2) will be chosen to avoid the performance and
functionality cost.

In this paper, we contribute a new cryptographic primi-
tive we call Ciphertext and Signature Propagation (CSProp).
When used for signature propagation, CSProp allows a capa-
ble machine (Patty in Figure 1a), even one that is stateless and
untrusted (e.g., a certificate is not required to authenticate it)
sitting upstream of a lightweight device to bear the majority
of the cost of verification. Specifically, Patty modifies and
forwards (propagate) an authenticated message so it can be
efficiently verified by a lesser machine. Importantly, it is cryp-
tographically guaranteed that the propagated signature verifies
correctly only if the original signature does. The trivial solu-
tion where Patty simply forwards Bob’s (data, signature) pair
directly to Alice puts unacceptable strain on Alice’s resources.
Another trivial solution where Patty simply verifies Bob’s
signature herself and forwards only the data to Alice is unde-
sirable from a security point of view as it requires Alice to be
trusted, and also opens the door for an attacker who targets
the link between Alice and Patty. Likewise, when used for
ciphertext propagation, CSProp allows Patty (see Figure 1b)
to perform the majority of the computational overhead caused
by public key encryption. More precisely, Alice partially en-

USENIX Association 30th USENIX Security Symposium 609

Stateless and Untrusted Propagator

(Patty)
End Device

(Alice)

Origin Server

(Bob)

Propagated Signature

σ', vk, vklow

Original Ciphertext

C', pk, pklow

Original Signature

σ, vk

Propagated Ciphertext

C, pk

Stateless and Untrusted Propagator

(Patty)

End Device

(Alice)

Origin Server

(Bob)

Lightweight

(a) Signature Propagation

Stateless and Untrusted Propagator

(Patty)
End Device

(Alice)

Origin Server

(Bob)

Propagated Signature

σ', vk, vklow

Original Ciphertext

C', pk, pklow

Original Signature

σ, vk

Propagated Ciphertext

C, pk

Stateless and Untrusted Propagator

(Patty)

End Device

(Alice)

Origin Server

(Bob)

Lightweight

(b) Ciphertext Propagation

Figure 1: Figure 1: High Level Overview of CSProp

crypts the message and forwards a lightweight ciphertext to
Patty. Patty completes the encryption operation performing
the more expensive portion of the operation. The construc-
tion of CSProp (see Section 3) guarantees the security of the
original message assuming only that the standard public key
encryption (e.g., RSA) is secure.

CSProp differs from a small number of prior proposals that
use a proxy [28, 52] to reduce the cost of encryption in two
important ways: (1) We do not require the proxy to be trusted
since the security is obtained by construction; and (2) CSProp
is backwards compatible with RSA, making it straightforward
to deploy. Specifically, the construction provides security
guarantees that there is no way for Patty to produce a valid
lightweight propagated signature, except by propagating an
original valid signature from Bob. Thus, CSProp securely
implements a lightweight channel between Alice and Bob,
without requiring any modifications to the protocol at Bob
(i.e., providing backward compatibility at the server). CSProp
requires no state, making it possible to change the role of
Patty, even at the granularity of each cryptographic operation.
We provide related background and preliminaries in Section 2
and present a formal definition of the new primitive, as well
as an instantiation based on RSA in Section 3.

CSProp can optimize public-key operations which include
signature verification and encryption, but not operations that
use the private key such as signing and decryption. Public-key
operations are typically executed at the client’s end specially
when using Internet protocols such as the Domain Name Sys-
tem SECurity extension (DNSSEC) and the Transport Layer
Security (TLS) protocols, and when generating data that is
being forwarded to an upstream server. We conduct a mea-
surement study of the traffic generated by an IoT camera,
discovering that TLS signature verification and encryption
operations account for the majority of the Public Key crypto-
graphic operations.

We apply CSProp to improve the performance of two secu-
rity protocols on IoT devices in Section 4: DNSSEC [39], a
secure extension of the Domain Naming System protocol, and
the Transport Layer Security (TLS) [83] protocol which is the

Table 1: Glossary

Acronym Definition Acronym Definition
sk Secret key pk Public key
pklow Low public key vk Verification key
vklow Low verification key N Public modulus
e Public exponent elow Low public exponent
d Private exponent M Plaintext message
C Ciphertext C′ Partial decrypted ciphertext
h Message digest σ Digital signature
σ′ Partial verified digital signature K Pre-master key
H Hash function A Adversary
C Challenger P Computational problem
φ Totient function A Address record
DS Delegation signer record DNSKEY DNS Key record
RRset A set of DNS records of same type RRSIG DNSSEC signature
KSK Zone’s key signing key ZSK Zone’s zone signing key
RRsetA RRset of A record(s) type RRsetDS RRset of DS record(s) type
RRsetDNSKEY RRset of DNSKEY records type M A padded version of M

backbone of secure communication on the Internet. DNSSEC
requires a sequence of signature validations (public-key op-
erations) to validate a DNS response through the sequence
of DNS servers that are used to obtain it. TLS also requires
signature validation as part of connection establishment to
authenticate the ends of the connection, but also uses encryp-
tion to establish a session key, both of which are operations
that use the public key. In an IoT setting, often such oper-
ations are offloaded to a third server (e.g., a DNS resolver
or a default gateway), thus shielding the end devices from
overhead of encryption and verification. However, the last
hop is left unprotected: for example, a recent attack [9] has
shown that DNS cache poisoning can be performed between
the end device and the resolver to directly poison the OS-wide
DNS cache of the victim’s system. CSProp can be used to
secure the end devices by having the resolver propagate the
signatures forward for efficient verification.

In Section 5, we evaluate the impact of CSProp using ex-
periments on three generations of Raspberry PIs. We achieve
substantial savings in consumed energy and latency. More
precisely, on Raspberry Pi Zero, the propagated signature ver-
ification in DNSSEC (vs. traditional DNSSEC validation)
reduces latency by a factor of 78x and energy consumption by
47x. For TLS handshake, the advantage to latency and energy
by an average of 8x and 8x, respectively (considering the full
TLS handshake, which has substantial message delays that
are unaffected by CSProp). We also compare CSProp with
Elliptic Curve Cryptography (ECC) cipher suite and found
that CSProp beats up ECC by 2.7 times. We also study the
impact of CSProp on a resource-constrained Arduino based
device, where we achieve substantial savings (e.g., 57x and
36x reduction in latency and energy for encryption).

In summary, the paper makes the following contributions:

1. We introduce Ciphertext and Signature Propagation
(CSProp), a new cryptographic primitive that allows Pub-
lic Key Cryptography (PKC) operations at a much lower
overhead than traditional implementations.

2. We present a formal definition of the new primitive, as
well as an instantiation based on RSA, and prove its
security under this construction.

610 30th USENIX Security Symposium USENIX Association

3. We apply CSProp to DNSSEC and TLS and evaluate
their performance using experiments on three genera-
tions of RaspberryPIs. Our experiments show substan-
tial performance and energy gains from using CSProp
(e.g., reducing the latency and energy consumption of
DNSSEC by 78x and 47x respectively, and of TLS by 8x
for both latency and energy). On a resource-constrained
IoT board, the Arduino MKR WIFi 1010, CSProp out-
performs RSA public-key operations in latency, power
consumption, and memory usage.

We discuss related work in Section 6. We summarize our
conclusions and discuss future work in Section 7.

2 Background and Preliminaries

In this section, we present some cryptographic preliminaries
to provide the necessary background for describing CSProp.
Specifically, we introduce the RSA problem and explain low
public exponent RSA. Next, we discuss some special case
attacks on RSA with low public exponents. We refer interested
readers to [26] for an excellent survey of the subject.

2.1 The RSA Problem
Cryptographic primitives in this work have security based on
the RSA problem, which is defined as:

Given integers (N,e) where N = p ·q is the product of two
secret primes, find d such that e ·d = 1 (mod φ(N)), where

φ(N) = (p−1)(q−1) is Euler’s totient function.

If e · d = 1 (mod φ(N)) then xe·d = x (mod N) and so the
modular exponentiation functions x 7→ xe (mod N) and x 7→ xd

(mod N) are inverses of one another. In cryptography, the
stronger assumption is often made that given (N,e) and a
random x (mod N), it is hard to compute xd (mod N). In
cryptographic terminology, this ammounts to saying that x 7→
xe (mod N) is a trapdoor permutation. Moving forward, when
we speak about the RSA problem, this is the variant to which
we are referring.

2.2 Low Public Exponent RSA
The computation time of RSA encryption and digital signature
verification are dominated by the time required to compute
the eth power of the message and signature. To reduce compu-
tation time, e can be chosen to be a small number. The RSA
problem when e is set to a public fixed small value (as op-
posed to e being chosen randomly in normal RSA) is known
as the low public exponent variant of RSA1.

CSProp’s use of the small exponent bears some similari-
ties to the use of small public keys in RSA, but with some
important differences due to the fact that CSProp uses a small
factor rather than a small full key. Readers might wonder why

1Choosing a low private exponent d is insecure and can completely break
the cryptosystem [56, 98]

not use a full public key that is low (e.g., e = 3) for the RSA
cryptosystem, which is an idea that has been considered to ac-
celerate RSA operations in the past. Our rationale is two-fold:
(1) Security: RSA with low public exponent has been demon-
strated to be vulnerable to some types of attacks that could
break RSA encryption and verification [27, 36, 54], although
they can be prevented by avoiding implementation pitfalls
that enable them. In contrast, CSProp is immune against these
attacks since we use only a small factor, not the full exponent;
and (2) Compatibility: in light of the known attacks on low
public exponents, RFC recommendations [38] and vendor
practice favor using larger public exponents, which presents a
substantial barrier to using low public exponents throughout
the system. Despite realization of the potential of using RSA
with small public exponents [62] (assuming a secure padding
scheme such as RSAES-OAEP [19] and RSASSA-PSS [21]
is used), vendors and organizations continue to choose to
enforce larger exponents [38]. In contrast, CSProp supports
backward compatibility by choosing larger exponents, but
requires that only a factor of the public exponent is low.

The hardness of the RSA problem and its efficient cousin,
RSA with low public exponent, is the subject of an exten-
sive body of work. CSProp is different from traditional low
public exponent RSA in that the public exponent consists of
two factors in which one of them is small (i.e., not the full
public key, which is the exponent e), with important implica-
tions that make it not vulnerable to some of the attacks on
low public exponents. CSProp’s resilience to these attacks
results is due to: (1) CSProp uses a small public factor, rather
than a small public exponent, making its security properties
equivalent to RSA before propagation; and (2) Low public
exponent security problems arise primarily due to incorrect
usage: since the propagation scheme is automated and not
typically directly accessible to users, we make sure that it
does not have implementation issues. In fact, Section 3 shows
that CSProp’s security depends on the security of traditional
RSA. Next, we review some of published attacks against low
public exponent RSA.
Partial Key/Message Exposure Attacks. Coppersmith [36]
showed an attack on RSA with low public exponents when
the attacker knows two-thirds of the bits of the message.
While “message guessing” attacks can easily be avoided
if proper padding is used, Boneh, Durfee and Frankel [27]
extended Coppersmith’s technique to give an attack on RSA
with low public exponents when the adversary knows at least
a quarter of the bits of the secret key. Other works [18, 50,
87] demonstrate that in some circumstances it is possible to
recover bits of the key via side-channel attacks. CSProp is not
vulnerable to this attack since the full public exponent is large
and only the propagated factor is small (e.g., elow = 3). Thus,
the security of CSProp depends on the security of traditional
RSA.
Broadcast Attacks. Håstad [54] described a factorization al-
gorithm (thus breaking RSA) if the adversary gets access to 3

USENIX Association 30th USENIX Security Symposium 611

ciphertexts which encrypt the same message under 3 different
low public exponent public keys (N1,3),(N2,3),(N3,3). His
technique generalizes to larger values of elow and requires
roughly elow different encryptions. Other works [11, 37] gen-
eralize this method to attack RSA when related (as supposed
to the exact same) messages are encrypted multiple times un-
der different low exponent public keys. In our case, since the
strength of our propagation procedure (Prop) holds depending
on the hardness of the standard RSA ciphertext encryption
procedure (Enc), these attacks do not apply to CSProp (see
Section §3 for more details).

3 Ciphertext and Signature Propagation

In this section, we formally introduce ciphertext and signature
propagation, CSProp. Recall that this primitive provides end-
to-end security since it does not need a stateful and trusted
proxy. We provide the instantiation of CSProp based on the
RSA cryptosystem and present a proof of CSProp’s security.

3.1 Definitions
Notation. Throughout this section, we let n denote a security
parameter, and let P and P ′ be computational problems rep-
resenting the cryptographic problems facing the adversary in
the original and propagated signature domains respectively.

3.1.1 Signature Propagation

Definition. A P−to−P ′ signature propagation scheme of
rate R is a set of efficient algorithms:(

KeyGen,Sign,Verify,Prop,VerifyProp)

satisfying the following syntax, efficiency, correctness, and
security requirements.

• Syntax:
- KeyGen: this algorithm is used to generate the keys nec-
essary for signature propagation. Its syntax is as follows:
KeyGen(1n) outputs (vk,vk′,sk).
- Sign and Verify: the syntax for these algorithms is the
same as for standard public-key signing and verifying:
Sign(M,sk,vk) outputs σ; and Verify(M,vk,σ) outputs a bit.
- Prop: is used by the stateless and untrusted propagator to
generate the propagated signature: Prop(M,vk,vk′,σ) out-
puts σ′.
- VerifyProp: is used by the client to verify the
propagated signature, completing the validation process:
VerifyProp(M,vk,vk′,σ′) outputs a bit.
• Efficiency: We have R ·T ′ = O(T) where T and T ′ denote
the running times of Verify and VerifyProp, respectively.

• Correctness: Fix a message M arbitrarily. Consider the
random procedure:
1) draw (vk,vk′,sk)← KeyGen(1n);
2) draw σ← Sign(M,sk,vk);

3) draw σ′← Prop(M,vk,vk′,σ).
Then,

Verify(M,vk,σ) = VerifyProp(M,vk,vk′,σ′) = 1

holds with probability 1.
• Security: There are efficient reductions from an adversary
who wins the standard existential unforgeability game for
(KeyGen,Sign,Verify) (resp. G, below) to an adversary who
solves P (resp. P ′). The game G is between a challenger C
and adversary A and works as follows:
The Signature Propagations Game G:

1. C draws (vk,vk′,sk)← KeyGen(1n) and sends (vk,vk′)
to A .

2. For i = 1, . . . ,poly(n): A sends query messages, Mi, to
C ; C computes σi← Sign(Mi,sk,vk) and sends σi back
to A .

3. Finally, A sends a pair (M∗,σ∗) and wins if:

VerifyProp(M∗,vk,vk′,σ∗) = 1 and M∗ 6=Mi ∀ i.

Remark. So in a P−to−P ′ signature propagation scheme,
(KeyGen,Sign,Verify) is a standard signature scheme assum-
ing the hardness of the problem P ; and (KeyGen,Prop ◦
Sign,VerifyProp) is a signature scheme assuming hardness
of P ′; moreover, VerifyProp is R−times faster than Verify.
Thus, signature propagation gives a way to improve verifi-
cation efficiency while still maintaining security assuming
hardness of P ′ (a possibly stronger assumption, which we
will demonstrate for RSA).
Propagation for ciphertexts (used for to propagate encryption)
is defined similarly.

3.1.2 Ciphertext Propagation

Definition. A P−to−P ′ ciphertext propagation scheme of
rate R is a set of efficient algorithms:(

KeyGen,Enc,Dec,Prop,DecProp)

satisfying the following syntax, efficiency, correctness, and
security requirements.
• Syntax:
- KeyGen: this algorithm is used to generate the keys nec-
essary for ciphertext propagation. Its syntax is as follows:
KeyGen(1n) outputs (pk,pk′,sk).
- Enc and Dec: the syntax for these algorithms is the
same as for standard public-key encryption and decryption:
Enc(M,pk) outputs C; and Dec(C,sk) outputs a message M.
- Prop: is used to generate the propagated ciphertext, complet-
ing the encryption: Prop(C,pk,pk′) outputs C′.
- DecProp: standard public-key decryption is used to decrypt
the propagated ciphertext: DecProp(C′,sk) outputs a message
M.

612 30th USENIX Security Symposium USENIX Association

• Efficiency: We have R ·T = O(T ′) where T and T ′ denote
the running times of Enc and Prop, respectively.
• Correctness and Security: (KeyGen,Enc,Dec) is a stan-
dard encryption scheme assuming the hardness of P ′;
(KeyGen,Prop◦Enc,DecProp) is an encryption scheme as-
suming the hardness of P ; correctness and security are inher-
ited.

3.2 Propagating with RSA
In this section, we provide the instantiation of CSProp based
on RSA.

3.2.1 Propagating RSA Signatures

We instantiate a P−to−P ′ signature propagation scheme
where P is standard RSA and P ′ is RSA with low public
exponent, specifically with exponent elow. Our construction
uses a hash function H, modeled as a random oracle.

• KeyGen(1n) generates an RSA modulus N = p · q for
secret primes p and q and draws a random e such that
elow|e; find d such that e ·d = 1 (mod φ(N)). Output:

(vk,vk′,sk) =
(
(N,e),(N,elow),(N,d)

)
.

• Sign(M,sk,vk) computes h = H(M,vk), and outputs
σ = hd (mod N).

• Verify(M,vk,σ) computes h = H(M,vk) and outputs 1
if σe = h (mod N), 0 otherwise.

• Prop(M,vk,vk′,σ) outputs σ′ = σe/elow (mod N).

• VerifyProp(M,vk,vk′,σ′) computes h = H(M,vk) and
outputs 1 if (σ′)elow = h (mod N), 0 otherwise.

Theorem. Let R = |e|/|elow|, where |e| and |elow| are the bit-
lengths of e and elow, respectively. Then,

(KeyGen,Sign,Verify,Prop,VerifyProp)

is a P−to−P ′ signature propagation scheme with rate R, in
the random oracle model [20]. The random oracle is a stan-
dard strong assumption on perfectly random hash functions
supporting the collision resistance property, which we inherit
from the use of RSA. Such hash functions require that for
every unique input the function generates a unique output
chosen with equal probability from the output domain.

3.2.2 Propagating RSA Ciphertexts

We instantiate a P ′−to−P ciphertext propagation scheme,
where P ′ (P) correspond to the RSA problem with low-public
exponent and standard RSA respectively.

• The KeyGen(1n) algorithm is the same as for
signature propagation. Output: (pk,pk′,sk) =(
(N,e),(N,elow),(N,d)

)
.

• The Enc and Dec algorithms are RSA encryption and
decryption with low public exponent:

– Enc(M,pk′) outputs C=M
elow (mod N), where M

denotes a padded version of M.
– Dec(C,sk) computes M = Cde/elow (mod N), and

recovers M from M.

• Prop(C,pk,pk′) outputs C′ = Ce/elow (mod N).

• DecProp(C′,sk) computes M= (C′)d (mod N), and re-
covers M from M.

3.2.3 How to choose elow

Choosing the value of elow is an implementation issue that can
either be standardized or can be chosen by the origin server.
In both cases, the lowest possible exponent recommended
is e = 3 [26], but e = 5, e = 17, and e = 216 + 1 = 65,537
are also common. For example, RFC3110 [45] recommends
choosing e = 3 in order to optimize signature verification
in DNSSEC, and Ferguson and Schneier [49] suggest using
e = 3 for signatures and e = 5 for encryption. As discussed
in Section 2.2, the security of σ′ and C′ depends on the RSA
assumption with low public exponent which is a widely stud-
ied hardness assumption. The consensus in the community
is that RSA with low public exponent is a stronger assump-
tion than plain RSA (since any algorithm which breaks RSA
would also presumably break RSA with low public exponent).
However, RSA with low public exponent is a commonly used
assumption. There is no currently known method to break
RSA with low public exponent, such a method would be a
major breakthrough.

3.3 Security Proof
In this section, we present the security proof of the P−to−P ′
signature propagation scheme under the RSA-based instan-
tation. We omit the security proof for ciphertext propagation
since it is analogous. We first prove that the existential un-
forgeability property of (KeyGen,Sign,Verify) holds, which
implies security with respect to signatures. We also discuss
the security of the scheme relative to attacks on low public
exponents. Finally, using cryptographic game theory, we show
that the security of the signature propagation game depends
on the security of the standard RSA game only (i.e., CSProp is
secure if RSA is secure). Note that the proof is also applied to
the instantiation of P−to−P ′ ciphertext propagation scheme
using RSA.
Proof. Correctness follows from verifying the equation:(

(hd)e/elow
)elow = (hd·(e/elow)·elow = hd·e = h (mod N)

using d · e = 1 (mod φ(N)). The subroutines Verify and
VerifyProp are dominated by computing e−th and elow−th
powers mod N, which require executing the “square mod N”
function O(|e|) and O(|elow|) times, respectively; thus, the
efficiency property holds. Note that (KeyGen,Sign,Verify)
is the standard RSA signature scheme, except that the expo-
nent e is chosen randomly subject to the condition that elow|e.

USENIX Association 30th USENIX Security Symposium 613

This event naturally occurs with probability roughly 1/elow
in the plain RSA scheme, and so existential unforgeability of
(KeyGen,Sign,Verify) holds since the standard RSA problem
is hard [26].

Similarly, attacks on RSA with low public exponent do not
apply to our propagation scheme. In particular, because the
strength of VerifyProp(M,vk,vk′,σ′) holds depending on the
hardness of the standard RSA signature verification proce-
dure: Verify(M,vk,σ) the attacks do not apply to CSProp. In
other words, the original signature σ is verified using both
exponents e/elow and elow, and so VerifyProp(M,vk,vk′,σ′)
holds iff σ′ is generated using the propagation procedure:
Prop(M,vk,vk′,σ). Technically, this means that a malicious
proxy that attempts to forge a propagated signature fails by
the construction of VerifyProp (Section 3.2) assuming the
standard RSA problem to solve subroutine Verify is hard.
Note that the proof of security also applies to the RSA cipher-
text propagation scheme. Thus, a malicious proxy can cause
denial of service but cannot forge a signature on falsified or
incorrect data. We elaborate on this case to show how to use
an adversary who wins the signature propagation game to
solve the RSA problem with public exponent elow, implying
the impossibility of this attack provided RSA is secure. The
security proof is as follows:

So suppose A is an efficient adversary who wins the sig-
nature propagation game with probability ε > 0. We design
another adversary A ′ which, given (N,elow) and a random h∗

(mod N), outputs (h∗)dlow (mod N) also with probability ε,
where dlow is such that dlow · elow = 1 (mod φ(N)). A ′ works
as follows:

• Upon receiving (N,elow,h∗), A ′ chooses a large random
integer e′ and sends (N,e,elow) to A where e = elow · e′.

• Instantiate Q, a set of queries of A to Q = { }. Each time
A ′ queries a signature of a message M do:

– check if M has been asked by A ; if so return σ to
A ′ where (M,σ) is the pair appearing in Q;

– otherwise, choose a random number σ (mod N)
and return σ to A ′;

– add (M,σ) to Q;
– set h = σe (mod N) and program the input/output

pair
(
(M,N,e),h

)
into H, so that if H(M,N,e) is

computed again at any point in the experiment, h
will be returned.

• Finally, when A is ready to return its forgery of the
message M∗, A ′ works as follows:

– if M∗ appears as the first coordinate of some pair
in Q, A ′ aborts giving no output;

– otherwise, when A queries H on the input
(M∗,N,e), A ′ returns h∗;

– finally A sends (M∗,σ∗), A ′ outputs σ∗ and halts.

Notice that A ′ answers the queries of A correctly because
σe = H(M,N,e) holds for them all. Furthermore, if h∗ is a
random number (mod N) then the response to A’s hash query
H(M∗,N,e) is uniformly distributed. These two observations
mean that A ′ properly simulates the signature propagation
game for A , and so by assumption, A wins this game with
probability ε. Finally, note that whenever A wins the signa-
ture propagation game, (σ∗)elow = h∗ (mod N) holds, which
implies σ∗ = (h∗)dlow (mod N), and so A ′ breaks low public
exponent RSA. �

4 Applications of CSProp

We illustrate the use and advantages of CSProp on two im-
portant Internet protocols: DNSSEC and TLS, which are core
protocols with respect to securely connecting end devices to
the Internet. Both DNSSEC and TLS are used extensively
to provide integrity, confidentiality, and/or authentication for
critical data. Such operations are computationally expensive,
for instance, Miranda et al. [78] analyzes the energy con-
sumption of the Transport Layer Security (TLS) protocol
transactions on a mobile device and found that more than
60% of total energy is consumed by TLS overhead. Often
real-world configurations force end devices to rely on third
parties (e.g., DNS resolver and default gateway) to perform
cryptographic functionality such as decryption or verification
on their behalf. Although such a setup reduces the require-
ment on the energy-constrained end devices, it compromises
security: if the third party is compromised or spoofed, the
end devices are completely compromised. Moreover, the last
hop between the third party and the end devices becomes
vulnerable to attacks (e.g., a recent client-side attack on DNS
bypasses DNSSEC [9]). In this section, we show how we can
use CSProp to extend DNSSEC and TLS verification to the
end devices, providing security with acceptable overhead.

4.1 CSProp over DNSSEC
The Domain Name System (DNS) is an essential networking
protocol. It is responsible for mapping Fully Qualified Do-
main Names (FQDNs) to their corresponding IP addresses. To
defeat certain DNS attacks (e.g., cache poisoning [63] and am-
plification [1] attacks), DNS SECurity Extension (DNSSEC)
[13] is proposed as a form of cryptographic defense to authen-
ticate DNS responses with digital signatures. DNSSEC is stan-
dardized by the Internet Engineering Task Force (IETF). With-
out DNSSEC, DNS becomes vulnerable to different classes of
attacks where an attacker attempts to provide false responses
to queries [63]. DNSSEC operates by adding cryptographic
signatures to existing DNS records to prove that they are le-
gitimate responses from trusted servers. Specifically, these
signatures provide DNS clients origin authentication and in-
tegrity of data (but not confidentiality). Typically, verification
of the signatures is implemented by resolvers, rather than
the end devices themselves, to reduce the overhead on the

614 30th USENIX Security Symposium USENIX Association

Table 2: DNSSEC Algorithm Use Statistics

Algorithm # of DS records Signed

Code Name TLDs Alexa
3 DSA/SHA1 0 7
5 RSA/SHA-1 163 1305
7 RSASHA1-NSEC3-SHA1 539 5669
8 RSA/SHA-256 2157 10962

10 RSA/SHA-512 37 758
12 ECC-GOST 0 3
13 ECDSAP256SHA256 5 6017
14 ECDSAP384SHA384 0 202

end devices. When an end device performs a DNS query, it
sends the query to its resolver. If the data is not present in
the resolver’s DNS cache, the resolver starts the resolution
process by traversing the DNS hierarchy from the root server
and down to the corresponding authoritative name server.

Unfortunately, to shield the end devices from these expen-
sive operations, this design leaves opportunities for attackers
on the last hop between the resolver and the end device. For
example, a resolver that is compromised can arbitrarily falsify
information. Moreover, an attacker can spoof the resolver or
otherwise inject responses to attack the end devices [9].

Without end-to-end authentication, DNS security cannot be
guaranteed. A trivial solution is to ask the end devices to carry
out the authentication, but this requires multiple expensive
cryptographic operations as discussed in the next section. To
secure DNS against attacks [9] we use CSProp to provide low
overhead end-to-end DNSSEC validation.

4.1.1 DNSSEC Signing Algorithm

There has been no standardization of a specific zone
signing algorithm. The usable algorithms usually appear
in DNSKEY, RRSIG, and DS RRsets [14, 58, 85, 97]. In
practice, root servers always use Algorithm 8 (which is
RSA/SHA256) [85]. However, to the best of our knowledge,
there is no documentation of the algorithm used to sign the
zones of TLDs and authoritative name servers. For that, we
conducted a measurement study to analyze the DS records
of the TLDs by examining the root DNS zone2. Similarly,
we conducted the measurement study on the top 1 million
sites based on Alexa Traffic Rank3. As shown in Table 2,
we confirm the findings in [85] that Algorithm 8 is indeed
the most widely used algorithm in DNSSEC. Our CSProp
protocol supports this algorithm, making it straightforward to
deply within the current ecosystem.

4.1.2 Design of DNSSEC with CSProp

DNSSEC using CSProp provides efficient end-to-end authen-
tication from the origin server to the end device. CSProp
provides signature validation over the entire chain of trust
of DNSSEC. The design is illustrated in Figure 2. The com-
ponents in red represent additions for CSProp. Moreover, in

2The dataset is available online at:
https://www.internic.net/domain/root.zone and managed by the Inter-
net Corporation for Assigned Names and Numbers (ICANN)

3Alexa Top Sites (ATS) web service: https://aws.amazon.com/alexa-top-
sites/

this figure, the end device takes charge of the authentication,
whereas in a conventional implementation, the verification
traffic is initiated by the resolver. We assume the records are
not present at the resolver’s cache. We explain the steps in
detail as follows:

After the DNS resolution process is completed and be-
fore the legitimate response of the requested query (e.g., A
record of www.example.com) is forwarded to the end device,
in step 1 the DNS resolver receives an RRset of type A
along with the corresponding RRSIG record from the au-
thoritative name server (Auth). To compute the partial val-
idated signature (RRSIG′) of the above RRsetDNSKEY, the
resolver needs the DNSKEY record of AuthZSK and sends
a query to Auth as shown in 2 . In step 3 , Auth re-
sponds back and sends both RRsetDNSKEYAuth and the cor-
responding RRSIGRRsetAAuth . In step 4 , the resolver com-
putes (RRSIGRRsetAAuth)

′ using vk and vk′ of AuthZSK and
(RRSIGRRsetDNSKEYAuth)

′ using vk and vk′ of AuthKSK and
forwards them to the end device along with RRsetA and
RRsetDNSKEYAuth. The end device completes the validation
process of (RRSIGRRsetAAuth)

′ and (RRSIGRRsetDNSKEYAuth)
′

using vk′ of AuthZSK and AuthKSK, respectively. Then, the
end device needs to verify the RRSIG of the DNSKEY record
of AuthKSK. As shown in step 5 , it sends a query to the

resolver and requests RRsetDSAuth. In step 6 , the resolver
forwards the query to the .com T LD server which responds
with RRsetDSAuth and RRSIGRRsetDSAuth as shown in step
7 . To partially verify RRSIGRRsetDSAuth , the resolver in step

8 sends a query to the .com T LD server for the T LD’s
DNSKEY records. Then, the T LD server responds in step
9 with RRsetDNSKEYT LD and RRSIGRRsetDNSKEYT LD .

As in step 3 , the resolver computes in step 10
(RRSIGRRsetDSAuth)

′ using vk and vk′ of T LDZSK and
(RRSIGRRsetDNSKEYT LD)

′ using vk and vk′ of T LDKSK and
forwards the partial verified RRSIGs to the end device along

with RRsetDSAuth and RRsetDNSKEYT LD. Steps 11 - 16

are similar to steps 5 - 10 to verify RRsetDST LD and
RRsetDNSKEYRoot . Finally, the end device compares the
DNSKEYRootKSK record with the publicly available version,
and this completes the DNSSEC validation process.

The ability to establish trust between child and parent zones is
an integral part of DNSSEC. We cannot trust any of the DNS
records if part of the chain is broken. CSProp over DNSSEC
provides complete end-to-end protection and secures DNS
records from being altered by MitM attackers. Furthermore,
the steps of the protocol, and the number of packets exchanged
between the parties is the same as in regular DNSSEC with
changes isolated to the last hop between the DNS resolver
and the end device (in addition to the choice of the public
key). These properties make it practical to deploy the design.

USENIX Association 30th USENIX Security Symposium 615

Figure 2: CSProp over DNSSEC — Design

Figure 3: CSProp over TLS — Design

4.2 Optimizing TLS handshakes with CSProp

In the second application, we consider using CSProp to opti-
mize the operation of TLS. The underlying security of TLS
protocol relies on the implementation of the cryptographic al-
gorithms during the handshake phase. The cryptographic algo-
rithms provide authentication and integrity between the com-
municating entities (i.e., in our case, the web server and the
end device). To offer these security services, the end device
has to handle complex cryptographic operations for validation
which are computationally expensive. By using CSProp, we
can substantially reduce the computational cost incurred by
the handshake phase without compromising security.

TLS is a core security protocol on the Internet and has
undergone several revisions over the years to address security
and performance flaws specifically in the handshake proto-
col [83]. We design CSProp to work with TLS 1.3, which is
the latest version improving both the performance and secu-
rity of TLS 1.2. Authenticating the communicating parties
to each other is typically done by validating their PKI certifi-
cates. The most commonly used certificate is X.509 which is
based on the RSA cryptosystem [10]. In common cases, only
the web server needs to be authenticated by the client (unless
client authentication is required by the server).

CSProp can help reduce the computation cost needed for
TLS on the end device by securely offloading a considerable
part of the encryption and validation processes to the default
gateway. Initially, the communication is between the web
server and the end device; however, the default gateway is

present in typical scenarios of constrained environments (e.g.,
IoT environment) as shown in Figure 3. The protocol is
described in detail as follows:

In step 1 , the end device commences the handshake and
sends the "Client Hello" message followed by the cipher
suite, key agreement and key share messages to the default
gateway in which the latter forwards the messages to the
designated web server. In reply, the web server sends in step
2 the “Server Hello” message comprised of the chosen

key agreement, server’s X.509 certificate and its associated
signature σ, and the server’s key share associated with the
“Server Finished” message. Then in step 3 , the default
gateway forwards all messages received in step 2 to the end
device — with one significant change. It substitutes σ with σ′

which is the partial verified signature of the server’s certificate
and σ′ is computed using vk and vk′. Now, the end device
partially verifies σ′ using vk′ as shown in step 4 . In step
5 , the end device generates the pre-master secret key K

using the web server’s key share. K is encrypted using pk′

to generate the partial ciphertext C′. The end device sends
C′, the cipher suite change (if it is applicable) along with the
“Client Finished” message to the default gateway. Finally in
step 6 , the default gateway completely encrypts K using pk
and pk′ and forwards messages received in step 5 to the web
server along with the full ciphertext C. Upon receiving the
messages, the web server using its secret key sk decrypts C to
retrieve K, and this concludes the handshake. From here on,
all the messages are securely exchanged between the entities.

Similar to CSProp over DNSSEC, CSProp over TLS does
not require any additional messages to be exchanged between
the three parties that are involved in the handshake phase.
This ensures a zero-round trip handshake as in TLS 1.3.

4.3 Propagator Deployment in Practice
CSProp is a general mechanism that can be incorporated
within systems with different network and protocol dependent
choices for the propagators. For example, it may make sense
to have a local uplink router (e.g., a wireless router in a home
network or a wireless LAN setting, or a service node on a

616 30th USENIX Security Symposium USENIX Association

Table 3: Experimental Setup and Platforms.

Device Model Role Processor (CPU) CPU Clock (GHz) RAM Cores
Dell XPS 8700 Origin Server Intel(R) Core(TM) i7-4790 3.6 16GB 4

Sony VAIO VPCEA390X DNS resolver/Default gateway Intel(R) Core(TM) i5 2.53 8GB 2
Microsoft Surface Pro 6 End device Intel(R) Core(TM) i7-8650U 1.9 16GB 4

Raspberry Pi
Zero W End device (IoT) ARM11 Broadcom 1 512MB 1

3 Model B End device (IoT) Arm Cortex-A53 (ARMv8) 1.2 1GB 4
3 Model B+ End device (IoT) Cortex-A53 (ARMv8) 1.4 1GB 4

110V

1Gbps Ethernet1Gbps Ethernet

VCC Arduino MKR WiFi 1010

End Device

Wi-Fi

Router/AP

Windows 10 PC

Propagator

Ubuntu 16.04 LTS PC

Origin Server

Wi-Fi

5V Power

Supply

Watts UP?

Pro AC Meter

GND110V

Figure 4: Testbed Architecture Configurations

Radio Access Network in a cellular network setting) serve as
a propagator. For more ad hoc network settings, connected
nodes or those with larger batteries may serve as propagators,
perhaps discoverable using Service Discovery Protocols (e.g.,
SDP) [71], or reachable using anycast operations [6]. Criti-
cally, a man in the middle can only attempt denial of service
since any illegal propagation will cause failure of signature
verification.

The stateless property of our propagator means that we have
the flexibility of changing propagators (e.g., different access
points in a wireless LAN as a device moves [61,65], different
road side units [93], or different cluster heads in a sensor
network setting [69, 77]). We agree that in a true peer-to-peer
setting incentives are a difficult problem to solve especially
in the presence of freeloading and Sybil attacks [44].

Key generation distribution for CSProp are similar to their
traditional counterparts for PKC ciphers such as RSA. We
added an additional field in the exchange packet to include
elow, with negligible effect on the packet size.

5 Evaluation

In this section, we experimentally assess the effectiveness of
CSProp over DNSSEC and TLS. We compare the protocols
under realistic settings and with respect to a number of end
devices representative of IoT and embedded devices. We also
compare CSProp with ECC cipher suite. We also present a
measurement study on a home IoT camera demonstrating the
prevelance of operations that use public keys and that can
benefit from CSProp.

5.1 Experimental Setup
We evaluate CSProp on four end devices: (1) Microsoft Sur-
face Pro 6; (2) Raspberry Pi Zero W; (3) Raspberry Pi 3 Model
B; and (4) Raspberry Pi 3 Model B+ as shown in Table 3.
These devices provide a range of embedded/mobile platforms
typical of those used in constrained environments [86]. All
three Raspberry Pi devices run Raspbian operating system,

while Surface Pro 6 runs Windows 10 Home edition operat-
ing system. We also evaluate CSProp as a primitive on the
Arduino MKR WiFi 1010 [5] as a respresentative of a true
constrained IoT device [76]. It uses a 32-bit low power ARM
MCU processor (SAMD21) with a clock speed of 48 MHz,
32 KB of SRAM, and 256 KB of flash memory. The hardware
acceleration engine for cryptographic algorithms supports the
hashing algorithm SHA-256 which we use in our prototype.

We implemented CSprop over DNSSEC and TLS, based
on the security library, dnsjava4, and Bouncy Castle [72],
which is a widely used library for cryptography. The dns-
java library is an implementation of DNS in Java and is used
by a number of major android applications, such as Netflix,
Skype, Samsung Email, and Dailyhunt [42]. For program-
ming the Arduino platform, we use the Arduino-IDE [12]
release/v1.8.12, which is the official development framework
for Arduino devices. The Arduino prototype is implemented
based on the Cryptographic-Protocols-Arduino-and-PC [34]
library which has been used by previous work to measure
the performance of RSA on IoT devices [66, 90]. We use an
Arris router [15] as the gateway communication device. The
desktop machines and the Raspberry pis, except Raspberry
Pi Zero W, are connected using 1Gbps Ethernet, while the
Arduino and the Raspberry Pi Zero W use WiFi.

To measure energy consumption, we use the Watts Up? Pro
AC meter [80]. This power meter supports several displays,
computer software, and PC interfaces. Its data logger function
records all data into non-volatile memory, which we collect
to measure the consumed power.

We use a desktop machine running Ubuntu 16.04.6 LTS
operating system as an origin server (i.e., DNS servers in
DNSSEC, web servers in TLS, and default gateway in IoT
environments). For reasons of backward compatibility with
middleboxes, we use the recommended key size of 2048-bit
and hashing algorithm SHA-256 [68, 83]. We do not consider
key and distribution issues which can be difficult at scale. We
assume that RSA keys are generated by the origin server and
not the end device. We consider the problem of vulnerable
keys that are generated by resource-constrained devices [55]
to be an orthogonal problem. Our propagator is a desktop
machine running Windows 10. Figure 4 shows the main
components of the testbed.

We compare CSProp with traditional implementations of
DNSSEC validation, TLS handshakes, and RSA public-key
operations. We also compare CSProp with current real-world
configurations where the public exponent is 216 +1 = 65537.

5.2 CSProp over DNSSEC
In this section, we show measurement results of CSProp over
DNSSEC based on two metrics: (1) Latency; and (2) Energy
consumption. We configure a private network (simulating
the topology in Figure 1a) to represent the DNS hierarchy.
More precisely, we configure the Root (.), the T LD (.com),

4Available at: http://www.xbill.org/dnsjava/

USENIX Association 30th USENIX Security Symposium 617

Figure 5: CSProp over DNSSEC — Latency

Figure 6: CSProp over DNSSEC — Energy Consumption

and the Auth (example) name servers internally in the origin
server. We use www.example.com as the target domain name
in our experiments. In addition, the DNSKEYRootKSK record
(i.e., the trust anchor) is pre-installed at the DNS resolver
and all four end devices used in the prototype. To optimize
DNSSEC resolution process, the DNS resolver supports the
caching property.

We performed the measurements when caching is enabled
and disabled at the DNS resolver to get an insight of the im-
pact of caching on the protocol (each experiment is repeated
10 times to bound confidence intervals).

Figure 5 shows a break down of the latency incurred by
CSProp over DNSSEC. The latency is broken down into the
time consumed by end devices and by the network. The latter
time includes: (1) the network overhead caused by sending
and receiving packets between the communicated parties; and
(2) the time required by the DNS resolver to compute the
propagated signature. The results show a significant reduction
in latency compared to traditional DNSSEC validation, with
a minor impact on latency when the cache is disabled at the
DNS resolver. Additionally, we see how device specifications
affect performance. For example, in case e= 65463 and cache
is disabled, we find that CSProp reduces latency by 91x, 21x,
35x, and 10x on Raspberry Pi Zero W, Raspberry Pi 3 Model
B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively,
compared to traditional DNSSEC validation. Note that the
reductions are approximately the same when DNS cache is
enabled. We also compared CSProp with current DNSSEC
implementations where the used public exponent is 65537.

CSProp outperforms this setting, reducing latency by 78x on
Raspberry Pi Zero compared to conventional DNSSEC when
e = 65537. The results are marginally better than those when
e= 65463 in the case of traditional DNSSEC validation, since
65537 is a Fermat number (2n +1 primes). Fermat numbers
are recommended [85] since only the first and last bits of their
binary representation are ones (100...001) which minimizes
computation cost. Figure 6 shows a significant reduction in
energy consumption when CSProp is used; energy is reduced
by 53x, 10x, 9x, and 4x on Raspberry Pi Zero W, Raspberry
Pi 3 Model B, Raspberry Pi 3 Model B+, and Surface Pro 6,
respectively.

5.3 CSProp over TLS
Similar to the setup phase with DNSSEC, we configure a
private network (with the topology in Figure 1b) where the
origin server is a destination web server.We use TLS 1.3 for
the handshake phase. The web server’s certificate is of type
X.509 and is signed by a root CA which its certificate is al-
ready pre-installed at the default gateway and end devices. The
pre-master secret key (K) is generated using the Advanced En-
cryption Standard (AES) algorithm as recommended in [83]
with 128-bit as the key size.

The latency of the TLS operations are shown in Figure 7.
We show the latency incurred by CSProp over TLS but based
on the handshake messages: "Client Hello", "Server Hello",
and "Client Finished". We use this approach to clearly under-
stand the advantage of our protocol over the existing imple-
mentations; specifically when e = 65537. CSProp provides
8x, 4x, 3x, and 2x reductions in latency (vs. traditional TLS
handshake) on Raspberry pi Zero W, Raspberry Pi 3 Model B,
Raspberry Pi 3 Model B+, and Surface Pro 6, respectively. We
note that these numbers are the full handshake numbers, in-
cluding the network delays (which are not helped by CSProp).

For energy consumption measurements, we measured the
rate at which power is being used at a specific moment in
watts (as shown in Figure 8). We found that CSProp, on
average, reduces the consumed energy by a factor of 8x, 3x,
3x, and 2x on Raspberry Pi Zero W, Raspberry Pi 3 Model
B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively.

618 30th USENIX Security Symposium USENIX Association

Figure 7: CSProp over TLS — Latency

Figure 8: CSProp over TLS — Energy Consumption

Again, these numbers include the energy consumed across
the full handshake, with long periods of time taken up for
network communication in which the energy consumed is not
affected by CSProp.

We note that the less resources the embedded device has,
the larger the advantage from CSProp. We conjecture that
this occurs since deeply embedded devices are likely not to
have energy saving features such as Dynamic Voltage and
Frequency Scaling (DVFS) [88], which can help optimize
energy efficiency.

5.4 Comparison with Elliptic Curve Cryptog-
raphy (ECC) Cipher Suites

When power and latency are a consideration, Elliptic Curve
Cryptography (ECC) is often considered: it has an approxi-
mate equivalent strength to RSA and, in fact, has some ad-
vantages relative to using RSA. In particular, key sizes are
much shorter: e.g., Elliptic Curve Digital Signature Algorithm
(ECDSA) with curve P-256 (which is the standard curve by
NIST [7]) has a key size of 256 bits, whereas RSA commonly
uses key sizes of 1024 or 2048 bits. Additionally, ECC sig-
natures are much shorter than RSA signatures. However, as
mentioned by RFC 6605 [57], even though signing is signifi-

Table 4: Comparing CSProp with Elliptic Curve Cryptography
(ECC) for TLS handshake latency (in µ-seconds)

Raspberry Pi 3 B+ Raspberry Pi B Raspberry Pi Zero W
CSProp e = 65463, elow = 3 1063.24 1066 1093.56
ECDH-ECDSA P-256 2658.18 2984.66 3171.32

cantly faster when using ECC than RSA, the opposite is true
for signatures validation (RSA is ' 5 times faster in some
implementations). For DNSSEC, this is apparently the most
serious challenge when using ECC due to the latency of sig-
nature validation. Interestingly, Rijswijk-Deij et al. [96] show
that even when using the optimized version of OpenSSL by
CloudFlare5 (in which ECDSA and RSA are sped up by a fac-
tor of 8 and 2, respectively), ECDSA is still 6.6 and 3.4 times
slower than 1024-bit RSA and 2048-bit RSA, receptively, in
terms of signatures validation. More importantly, the actual
adoption of ECC by DNSSEC operators is very low [59, 95],
raising concerns in regards to backward compatibility if ECC
were to be proposed for IoT devices.

For TLS, Gupta et al. [53] conducted a study to analyze
the performance of ECC and RSA for SSL (Secure Socket
Layer) on resource constrained devices. Their experiments
show that TLS handshake using RSA outperform ECC. For
completeness, we conducted experimental measurements to
compare ECC with CSProp. In our experiments, we used
ECDHE-ECDSA (Ephemeral Elliptic Curve Diffie-Hellman
key agreement with ECDSA signatures) [79] cipher suite with
curve P-256. We run our experiments on three different IoT
devices: Raspberry Pi 3 B+, Raspberry Pi B, and Raspberry
Pi Zero W (see Table 3 for devices specifications). As shown
in Table 4, TLS handshake using CSProp is faster by a fac-
tor of ' 2.7x than when using ECC. This will impose an
additional burden on end devices with the increased CPU
load, especially if deployment of ECC-based TLS handshake
accelerates. In 2014, Bos et al. [29] surveyed the adoption
of ECC and found that only 10% of hosts supported ECC-

5https://ripe70.ripe.net/presentations/85-Alg-13-support.pdf

USENIX Association 30th USENIX Security Symposium 619

based TLS. On a larger-scale study, the International Com-
puter Science Institute (ICSI) Certificate Notary [60] reported
that 11.5% and 2.4% of observed SSL\TLS connections used
ECDHE-ECDSA with curves P-256 and P-384, respectively,
in June/July 2018. We note also that a variety of attacks on
ECC cipher exist [94].

5.5 Performance on Arduino IoT board
Next, we evaluate CSProp on an Arduino MKR WiFi 1010
board, which is a true IoT class system. We were not able
to find cryptographic library support to implement the full
integration with DNSSEC and TLS. Since we are particularly
interested in two RSA public-key operations: verification for
signature propagation and encryption for ciphertext propaga-
tion, we implement and evaluate the performance for CSProp
and traditional RSA public-key operations for these two op-
erations. The measurements reflect the performance of three
different RSA key lengths: 512, 1024, and 2048 bits. The code
size is ≈ 8 KB while the message size (for encryption or veri-
fication) is 128 Bytes for all test cases. It is also worth noting
that in our implementation we considered basic mathematical
operations (e.g., exponentiation and multiplication) without
using any optimizations (e.g., montgomery multiplication and
optimized squaring as described in [67]). All results are from
50 runs each consisting of 1000 verifications/encryptions in a
row to eliminate the code launch/startup effects.

Table 5 summarizes the results of the experiments. For
all RSA key sizes, CSProp outperforms the traditional RSA
public-key operations in all scenarios. The results show sub-
stantial differences in latency, power consumption, and mem-
ory footprint; for the same security level, CSProp is clearly
a more efficeint alternative for resource-constrained devices.
For instance, the execution time for CSProp-encryption and
CSProp-verification is 57 and 61 times faster, respectively,
compared to traditional RSA encryption for all key sizes.
CSProp reduces energy consumption by 36x and 42x for
encryption and verification, respectively. Modular exponen-
tiation of CSProp requires little memory (a crucial design
decision in designing lightweight cryptosystems) compared
to a traditional RSA implementation. More importantly, the
results also present interesting findings when different key
sizes of the same algorithm are compared. The results show
consistent advantage comparing with traditional RSA, mak-
ing PKI cryptography more practical on resource-constrained
environments at all key sizes we considered.

5.6 Importance of Public Key Operations
CSProp can be used to optimize the performance of public
key operations. Intuitively, these operations should be com-
mon in IoT devices: as a client, rather than a server, it is often
verifying signatures of responses from servers. Moreover, as
a producer of data, it is often encrypting data that is sent up-
stream rather than decrypting data. To validate this intuition
and study the prevalence of these operations in IoT devices,

we analyzed the traffic on an IoT device used in a home envi-
ronment. Our testbed consists of Wyze Cam V2 (an Amazon
choice smart home camera [4]) connected to a wireless home
network via an Arris router [15]. The wireless network uses
WPA2-AES-128-bit protocol [70] (know as WPA2-Personal)
for encryption and a Pre Shared Key (e.g., an 8-character
password) for authentication. Our client is a Wyze app down-
loaded to an iPhone X running iOS 13.3.1. Our results show
that the camera uses cryptographic operations continuously.
Table 6 shows a trace of collected packets obtained during a
live-streaming event for a period of 2-hours, which included
more than 60K (i.e., ≈ 4.2% of packets exchanges) of RSA
public-key operations. Almost exclusively, all operations are
public key operations. Although this percentage is small, these
operations are substantially more expensive than symmetric
key operations and therefore account for a much larger share
of the computational power and energy consumed to support.
According to benchmarking numbers reported by the eBACS
project [2, 3], RSA encryption (a public key operation) re-
quires 2-3 orders of magnitude more time compared to AES
encryption; making public key operations cost dominate.

Furthermore, to support end-to-end data protection, we
found that transmitted data packets between the camera and
the app were frequently encrypted and decrypted using the
AES protocol. However, since it is a WPA2-Personal network,
this setting secures the network only against outsiders. In
particular, this network is vulnerable to Man-in-the-Middle
(MitM) attacks if an adversary is an insider who already
knows the PSK key. Consequently, she would be able to derive
the same secret keys —i.e., Paiwise Transient Key (PTK) and
Group Temporal Key (GTK) used to encrypt/decrypt unicast
and multicast data packets, respectively, between clients and
their associated access point (AP)—that are shared among
all users and generated during the 4-Way Handshake proto-
col [51]6. We found that≈ 87.5 of data packets are vulnerable
to this type of attack. What is worse, in case Domain Name
System SECurity Extension (DNSSEC) [13] validation is en-
abled, more cryptographic operations are required; increasing
the computational burden on the IoT camera since chains of
DNS RRsets signatures need validation.

6 Related Work

Lightweight cryptography is a term that refers to low
overhead cryptographic algorithms designed for energy- or
computationally-constrained machines, specially in IoT envi-
ronments. This is an active area of research in both academia
and industry [17, 23, 25, 30, 31, 43, 48, 64, 84, 89].
Symmetric Lightweight Cryptography. With few excep-
tions, most lightweight cryptography work focuses on sym-
metric cryptography due to its lower overheads. Lim et al.

6Note that using 802.1X [35] for authentication, which is used in WPA2-
Enterprise networks, closes this vulnerability. This is because each user is
assigned a unique PSK key.

620 30th USENIX Security Symposium USENIX Association

Table 5: Comparison of CSProp VS. traditional RSA public-key operations. Latency is measured in ms, memory footprint in
bytes, and energy consumption in mJ. Memory usages for SRAM and ROM are summed for total memory footprint.

CSProp

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 11 42 15 15 49 21
1024 29 69 23 35 82 36
2048 61 125 39 71 134 48

Traditional RSA

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 634 320 540 915 441 882
1024 1665 552 828 2135 738 1512
2048 3502 1006 1404 4331 1206 2016

Table 6: Profile of the Data Exchanged Between an Iot Device and a Client in a Wireless Home Network

IoT Device Operation Total # of Captured Packets DNS RRsets RSA AES 128-bit

TLS Handshake Encryption Decryption Signing Verifying Encryption Decryption

WYZE CAM V2 (camera)
Setup 897 68 32 168 0 104 90 232 180

Pairing 25 2 3 9 0 0 2 5 7
Live Streaming (2 Hrs) 1460282 108933 29535 30191 0 318 31239 964083 313664

introduce mCrypton [74], following the architecture of Cryp-
ton, but reducing key sizes [73]. Similarly, the Scalable Secu-
rity with Symmetric Keys (S3K) scheme [81], which is a key
management architecture, was proposed to provide a scalable
energy efficient mechanism to establish trust relationships
among entities in IoT environments. These schemes depend
on pre-shared keys which might increase the risk to key dis-
closure and endanger the security services (this is not required
in CSProp). Another proposal is Hummingbird [46] which
uses a hybrid structure of block and stream ciphers with 16-bit
block size and 256-bit key length; an improved version of
this work has been developed by Engels et al. [47]. However,
Zhang et al. [99] show that the key can be recovered.
Asymmetric Lightweight Cryptography. Relatively fewer
efforts target lightweight cryptographic algorithm based on
asymmetric ciphers, due to the much higher cost of these
operations. Lithe [82] is proposed to provide integration of
security between the DLTS protocol at the transport layer
and the CoAP protocol at the application layer.The system in-
volves expensive cryptographic processing for both the record
and the handshake protocols. In contrast, CSProp requires
lightweight cryptographic operations suitable for resource-
constrained devices, optimizing TLS handshake latency and
energy consumption. Zhang et al. [100] propose a scheme
to provide resilience against a large number of sensor node
compromises. The scheme incurs lower overhead and higher
adaptability than existing techniques that utilize traditional
asymmetric algorithms. However, Albrecht et al. [8] show an
attack that fundamentally undermines the viability of using
perturbation polynomials for designing secure cryptographic
schemes. This attack does not apply to our case since the
security of CSProp is equivalent to the security of RSA.

Some similar works use cryptographic signature schemes
where a powerful server assists in helping a weak client. Bel-

lare and Sandhu [22] consider a group of two-party collabora-
tive RSA signature computation schemes. In contrast, CSProp
focuses on efficient signature verification (not generation),
which is a public key operation. The proposed protocols fol-
low a similar technique of partitioning the private key into
shares. In addition, the security of each protocol in [22] relies
on different assumptions on the underlying primitives which
make them susceptible to forgery attacks: we showed that
CSProp is immune to such attacks in Section 3.3. MacKenzie
and Reiter [75] also consider the problem of two-party sig-
nature generation. They assume that a user should have and
provide a personal password in addition to the split secretkey,
making them unsuitable for automated propagation. Damgård
and Mikkelsen [40] consider a protocol scenario where four
players collaborate to generate a digital signature considering
at least one player is malicious. They combine multiple tech-
niques including threshold cryptography signatures where a
secret RSA exponent is partitioned between the players. In
CSProp, we utilize the RSA public exponent instead of thresh-
old signature. Camenisch et al. [33] propose a scheme where a
client is authenticated by utilizing a password (similar to [75]),
along with a shared secret key split between an end-user and a
back-end server. Generating the signing key is initiated at the
client side after validating client’s password. CSProp neither
requires a password nor creates the key at the client side: keys
are generated by origin servers. Buldas et al. [32] propose a
smart-ID scheme where a private exponent is shared between
a client and a server for generating signatures. In comparison
with CSProp, like the other works discussed here, the scheme
is used to optimize private key operations rather than public
key operations as with CSProp. We believe our work is the
first to enable server aided verification and encryption, which
should be useful for weak edge devices in a larger network.

Proxy Assisted Cryptography. Our work bears similarity,

USENIX Association 30th USENIX Security Symposium 621

with prior work on proxy-based re-signature schemes, first
introduced by Blaze et al. [24] and later revisited by Ateniese
and Hohenberge [16]. A significant difference from these
works is that CSProp provides security by construction and
therefore does not require a trusted proxy to propagate signa-
tures. In contrast, these prior works require a trusted proxy
to take a signature as input and generate a new signature as
output using the public keys of both parties (the signer and
the verifier). We note that this setting is also vulnerable to a
known attack on RSA [26, 91, 92].

Joye et al. [62] propose a solution to overcome hardware
restrictions enforced by vendors such as Intel Software Guard
Extensions (SGX). Although it uses a proxy, the application
is different: for CSProp, Patty is helping a weak Alice verify
a signature from a more powerful Bob. On the other hand,
in this work, Patty is helping a weak Bob sign a message
and transmit the signature to a powerful Alice, which is not a
common scenario for IoT settings. Critically, Patty needs to
know Bob’s private key, which is not required in our scheme.
For this reason, the warning in [62] that e′|e is problematic
does not apply in our setting. This is because e′ in [62] is
generated using knowledge of Bob’s private key, whereas for
us e′ is computed publicly. Another major difference between
this work and ours is the model of security they consider: in
addition to the proxy being trusted in this scheme, both public
keys must be kept secret, which is incompatible with the
requirements of our target applications and the assumptions
in our threat model.

7 Concluding Remarks

IoT and embedded devices, in general, are resources-
constrained forcing designers to choose either security (e.g.,
by offloading security to gateway nodes) or performance (per-
forming the expensive cryptographic operations required for
end to end security). This paper contributes a new crypto-
graphic primitive, CSProp, that uses a low public exponent
to reduce the computational load required by the end devices.
We use CSProp to optimize the operation of two core security
protocols on the Internet: DNSSEC, and TLS resulting in
substantial improvements in latency and energy efficiency.
In Section 3.3, we presented the security proof of CSProp
using the existential unforgeability property and the crypto-
graphic game theory. One of our future research directions
is to implement propagation schemes lattice-based crypto-
graphic signature and encryption. Several recent proposals for
lattice-based signature and encryption exist, each one making
use of a slightly different hardness assumption and offering
slightly different functionality. It would be interesting to try
to design propagation schemes to transfer cryptographic con-
tent between the schemes so that the schemes with lower
overhead/less functionality can be used by the weak com-
putational devices in the network without sacrificing secu-
rity/functionality for the stronger devices in the network. A

limitation of CSProp is that it helps only with operations that
use the public key (signature verification, authentication, as
well as encryption). For that, other research extensions in-
clude integration with support for private key operations to
provide a complete solution for PKC in constrained devices;
we believe there is substantial need for such support since the
vast majority of lightweight cryptography focuses on symmet-
ric ciphers. We also plan to investigate models of propagator
deployment and discovery to enable systematic leveraging of
CSProp with applications that use PKC.

Acknowledgements

This material is based on work supported by Taibah University
(TU) and the Saudi Ministry of Education (MOE). This work
is partially supported by the University of California Office
of the President UC Lab Fees grant number LFR-18-548554.
Any opinions, findings, and conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

[1] Dns amplification attacks. US-CERT, 2016. Avail-
able at https://www.us-cert.gov/ncas/alerts/
TA13-088A.

[2] ebacs: Ecrypt benchmarking of cryptographic sys-
tems, 2020. Available at http://bench.cr.yp.to/
results-encrypt.html.

[3] ebacs: Ecrypt benchmarking of cryptographic sys-
tems, 2020. Available at http://bench.cr.yp.to/
results-stream.html.

[4] Wyze cam v2 smart home camera, Visited on 2020-
03-28. Available at https://www.amazon.com/
Wyze-Indoor-Wireless-Detection-Assistant/
dp/B076H3SRXG/ref=sr_1_3?dchild=1&
keywords=wyze+cam+v2&qid=1585439194&s=
electronics&sr=1-3.

[5] Arduino mkr wifi 1010, Visited on 2020-04-01.
Available at https://store.arduino.cc/usa/
mkr-wifi-1010.

[6] Joe Abley, K Lindqvist, et al. Operation of anycast
services. Technical report, BCP 126, RFC 4786, De-
cember, 2006.

[7] Mehmet Adalier et al. Efficient and secure elliptic
curve cryptography implementation of curve p-256. In
Workshop on Elliptic Curve Cryptography Standards,
volume 66, 2015.

622 30th USENIX Security Symposium USENIX Association

https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://bench.cr.yp.to/results-encrypt.html
http://bench.cr.yp.to/results-encrypt.html
http://bench.cr.yp.to/results-stream.html
http://bench.cr.yp.to/results-stream.html
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://www.amazon.com/Wyze-Indoor-Wireless-Detection-Assistant/dp/B076H3SRXG/ref=sr_1_3?dchild=1&keywords=wyze+cam+v2&qid=1585439194&s=electronics&sr=1-3
https://store.arduino.cc/usa/mkr-wifi-1010
https://store.arduino.cc/usa/mkr-wifi-1010

[8] Martin Albrecht, Craig Gentry, Shai Halevi, and
Jonathan Katz. Attacking cryptographic schemes based
on perturbation polynomials. In Proceedings of the
16th ACM conference on Computer and communica-
tions security, pages 1–10. ACM, 2009.

[9] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian,
Zhiyun Qian, and Nael Abu-Ghazaleh. Collaborative
client-side dns cache poisoning attack. In IEEE INFO-
COM 2019-IEEE Conference on Computer Communi-
cations, pages 1153–1161. IEEE, 2019.

[10] Arwa Alrawais, Abdulrahman Alhothaily, Xiuzhen
Cheng, Chunqiang Hu, and Jiguo Yu. Secureguard:
A certificate validation system in public key infras-
tructure. IEEE Transactions on Vehicular Technology,
67(6):5399–5408, 2018.

[11] P Antonov and V Antonova. Development of the
attack against rsa with low public exponent and related
messages. In Proceedings of the 2007 international
conference on Computer systems and technologies,
page 50. ACM, 2007.

[12] Arduino. Arduino software, Visited on 2020-04-
01. Available at https://www.arduino.cc/en/
main/software.

[13] Roy Arends, Rob Austein, Matt Larson, Dan Massey,
and Scott Rose. Rfc4033:dns security introduction and
requirements. Technical report, 2005.

[14] Roy Arends, Rob Austein, Matt Larson, Dan Massey,
and Scott Rose. Rfc4034:resource records for the dns
security extensions. Technical report, 2005.

[15] Arris Router. Watts up pro portable power me-
ter, Visited on 2020-03-28. Available at https:
//www.amazon.com/NVG468MQ-802-11ac-MoCA%
C2%AE2-0-Frontier-Wireless-AC/dp/
B073F17BSG/ref=sr_1_1?dchild=1&keywords=
Arris+NVG468MQ&qid=1585441528&sr=8-1.

[16] Giuseppe Ateniese and Susan Hohenberger. Proxy
re-signatures: new definitions, algorithms, and appli-
cations. In Proceedings of the 12th ACM conference
on Computer and communications security, pages 310–
319. ACM, 2005.

[17] Jean-Philippe Aumasson, Luca Henzen, Willi Meier,
and María Naya-Plasencia. Quark: A lightweight hash.
In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 1–15. Springer,
2010.

[18] Sven Bauer. Attacking exponent blinding in rsa with-
out crt. In International Workshop on Constructive
Side-Channel Analysis and Secure Design, pages 82–
88. Springer, 2012.

[19] M Bellare and P Rogaway. Optimal asymmetric en-
cryption padding–how to encrypt with rsa. In Advances
in Cryptology–EUROCRYPT’94, pages 92–111.

[20] Mihir Bellare and Phillip Rogaway. Random oracles
are practical: A paradigm for designing efficient pro-
tocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73.
ACM, 1993.

[21] Mihir Bellare and Phillip Rogaway. The exact security
of digital signatures-how to sign with rsa and rabin.
In International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 399–416.
Springer, 1996.

[22] Mihir Bellare and Ravi S Sandhu. The security of prac-
tical two-party rsa signature schemes. IACR Cryptol.
ePrint Arch., 2001:60, 2001.

[23] Alex Biryukov and Léo Paul Perrin. State of the art in
lightweight symmetric cryptography. 2017.

[24] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divert-
ible protocols and atomic proxy cryptography. In Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pages 127–144. Springer,
1998.

[25] Andrey Bogdanov, Lars R Knudsen, Gregor Leander,
Christof Paar, Axel Poschmann, Matthew JB Robshaw,
Yannick Seurin, and Charlotte Vikkelsoe. Present:
An ultra-lightweight block cipher. In International
Workshop on Cryptographic Hardware and Embedded
Systems, pages 450–466. Springer, 2007.

[26] Dan Boneh. Twenty years of attacks on the rsa cryp-
tosystem. Notices of the AMS, 46(2):203–213, 1999.

[27] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack
on RSA given a small fraction of the private key bits.
In Advances in Cryptology - ASIACRYPT ’98, Interna-
tional Conference on the Theory and Applications of
Cryptology and Information Security, Beijing, China,
October 18-22, 1998, Proceedings, pages 25–34, 1998.

[28] Dan Boneh and Shay Gueron. Surnaming schemes,
fast verification, and applications to sgx technology. In
Cryptographers’ Track at the RSA Conference, pages
149–164. Springer, 2017.

[29] Joppe W Bos, J Alex Halderman, Nadia Heninger,
Jonathan Moore, Michael Naehrig, and Eric Wustrow.
Elliptic curve cryptography in practice. In Interna-
tional Conference on Financial Cryptography and
Data Security, pages 157–175. Springer, 2014.

USENIX Association 30th USENIX Security Symposium 623

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1
https://www.amazon.com/NVG468MQ-802-11ac-MoCA%C2%AE2-0-Frontier-Wireless-AC/dp/B073F17BSG/ref=sr_1_1?dchild=1&keywords=Arris+NVG468MQ&qid=1585441528&sr=8-1

[30] Michael Braun, Erwin Hess, and Bernd Meyer. Using
elliptic curves on rfid tags. International Journal of
Computer Science and Network Security, 2:1–9, 2008.

[31] William J Buchanan, Shancang Li, and Rameez Asif.
Lightweight cryptography methods. Journal of Cyber
Security Technology, 1(3-4):187–201, 2017.

[32] Ahto Buldas, Aivo Kalu, Peeter Laud, and Mart Oruaas.
Server-supported rsa signatures for mobile devices.
In European Symposium on Research in Computer
Security, pages 315–333. Springer, 2017.

[33] Jan Camenisch, Anja Lehmann, Gregory Neven, and
Kai Samelin. Virtual smart cards: How to sign with a
password and a server. In International Conference on
Security and Cryptography for Networks, pages 353–
371. Springer, 2016.

[34] Arpit Chauhan, Inderjit Sidhu, and Archit
Pandey. Cryptographic-protocols-arduino-
and-pc library, Visited on 2020-04-02. Avail-
able at https://github.com/arpitchauhan/
cryptographic-protocols-arduino-and-PC.

[35] P Congdon, M Sanchez, and B Aboba. Radius at-
tributes for virtual lan and priority support. Internet
Engineering Task Force, Request for Comment, 4675:1–
13, 2006.

[36] Don Coppersmith. Small solutions to polynomial equa-
tions, and low exponent rsa vulnerabilities. Journal of
Cryptology, 10(4):233–260, 1997.

[37] Don Coppersmith, Matthew Franklin, Jacques Patarin,
and Michael Reiter. Low-exponent rsa with related
messages. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages
1–9. Springer, 1996.

[38] Dave Crocker, Tony Hansen, and Murray Kucherawy.
Domainkeys identified mail (dkim) signatures. Techni-
cal report, RFC 6376, September, 2011.

[39] Tianxiang Dai, Haya Shulman, and Michael Waidner.
Dnssec misconfigurations in popular domains. In In-
ternational Conference on Cryptology and Network
Security, pages 651–660. Springer, 2016.

[40] Ivan Damgård and Gert Læssøe Mikkelsen. On the
theory and practice of personal digital signatures. In
International Workshop on Public Key Cryptography,
pages 277–296. Springer, 2009.

[41] Statista Research Department. Internet of
things - number of connected devices world-
wide 2015-2025, 2019. Available at https:
//www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/.

[42] dnsjava Library Statistics on Andriod. nsjava li-
brary statistics on andriod, Visited on 2020-01-09.
Available at https://www.appbrain.com/stats/
libraries/details/dnsjava/dnsjava.

[43] Qingkuan Dong, Wenxiu Ding, and Lili Wei. Improve-
ment and optimized implementation of cryptogps pro-
tocol for low-cost radio-frequency identification au-
thentication. Security and Communication Networks,
8(8):1474–1484, 2015.

[44] John R Douceur. The sybil attack. In International
workshop on peer-to-peer systems, pages 251–260.
Springer, 2002.

[45] D Eastlake 3rd. Rfc3110:rsa/sha-1 sigs and rsa keys
in the domain name system (dns). Technical report,
2001.

[46] Daniel Engels, Xinxin Fan, Guang Gong, Honggang
Hu, and Eric M Smith. Hummingbird: ultra-
lightweight cryptography for resource-constrained de-
vices. In International Conference on Financial Cryp-
tography and Data Security, pages 3–18. Springer,
2010.

[47] Daniel Engels, Markku-Juhani O Saarinen, Peter
Schweitzer, and Eric M Smith. The hummingbird-
2 lightweight authenticated encryption algorithm. In
International Workshop on Radio Frequency Identi-
fication: Security and Privacy Issues, pages 19–31.
Springer, 2011.

[48] Chun-I Fan, Tsung-Pin Chiang, and Ruei-Hau Hsu.
Light-weight authentication and key exchange proto-
cols with forward secrecy for digital home. Journal of
Computers, 18(2):61–74, 2007.

[49] Niels Ferguson and Bruce Schneier. Practical cryptog-
raphy, volume 141. Wiley New York, 2003.

[50] Pierre-Alain Fouque, Sébastien Kunz-Jacques, Gwe-
naëlle Martinet, Frédéric Muller, and Frédéric Valette.
Power attack on small rsa public exponent. In Inter-
national Workshop on Cryptographic Hardware and
Embedded Systems, pages 339–353. Springer, 2006.

[51] IEEE 802.11 Working Group et al. Ieee standard
for information technology–telecommunications and
information exchange between systems–local and
metropolitan area networks–specific requirements–part
11: Wireless lan medium access control (mac) and
physical layer (phy) specifications amendment 6: Wire-
less access in vehicular environments. IEEE Std,
802(11), 2010.

624 30th USENIX Security Symposium USENIX Association

https://github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC
https://github.com/arpitchauhan/cryptographic-protocols-arduino-and-PC
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.appbrain.com/stats/libraries/details/dnsjava/dnsjava
https://www.appbrain.com/stats/libraries/details/dnsjava/dnsjava

[52] Shay Gueron. Quick verification of rsa signatures. In
2011 Eighth International Conference on Information
Technology: New Generations, pages 382–386. IEEE,
2011.

[53] Vipul Gupta, Sumit Gupta, Sheueling Chang, and Dou-
glas Stebila. Performance analysis of elliptic curve
cryptography for ssl. In Proceedings of the 1st ACM
workshop on Wireless security, pages 87–94. ACM,
2002.

[54] Johan Hastad. Solving simultaneous modular equa-
tions of low degree. siam Journal on Computing,
17(2):336–341, 1988.

[55] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and
J Alex Halderman. Mining your ps and qs: Detection
of widespread weak keys in network devices. In Pre-
sented as part of the 21st {USENIX} Security Sympo-
sium ({USENIX} Security 12), pages 205–220, 2012.

[56] M Jason Hinek. Cryptanalysis of RSA and its variants.
Chapman and Hall/CRC, 2009.

[57] P Hoffman and W Wijngaards. Rfc 6605: Elliptic curve
digital signature algorithm (dsa) for dnssec. internet
engineering task force (ietf), 2012.

[58] Paul Hoffman. Rfc6014:cryptographic algorithm iden-
tifier allocation for dnssec. Technical report, 2010.

[59] Geoff Huston. Apnic, 2018. Available
at https://blog.apnic.net/2018/08/23/
measuring-ecdsa-in-dnssec-an-update/.

[60] International Computer Science Institute. The icsi
certificate notary, 2018. Available at https://notary.
icsi.berkeley.edu/#statistics.

[61] Suman Jana and Sneha K Kasera. On fast and accurate
detection of unauthorized wireless access points using
clock skews. IEEE transactions on Mobile Computing,
9(3):449–462, 2009.

[62] Marc Joye and Yan Michalevsky. Rsa signatures under
hardware restrictions. In Proceedings of the 2018 Work-
shop on Attacks and Solutions in Hardware Security,
pages 51–54. ACM, 2018.

[63] Dan Kaminsky. Black ops 2008: It’s the end of the
cache as we know it. Black Hat USA, 2008.

[64] Masanobu Katagi, Shiho Moriai, et al. Lightweight
cryptography for the internet of things. Sony Corpora-
tion, pages 7–10, 2008.

[65] Vytautas Robertas Kezys. Adaptive beamforming con-
figuration methods and apparatus for wireless access
points serving as handoff indication mechanisms in

wireless local area networks, March 23 2010. US
Patent 7,684,370.

[66] Olha Khomlyak. An investigation of lightweight cryp-
tography and using the key derivation function for a
hybrid scheme for security in iot, 2017.

[67] Cetin Kaya Koc. High-speed rsa implementation ver-
sion 2.0. RSA Security, 1994.

[68] Olaf Kolkman, W Mekking, and R Gieben.
Rfc6781:dnssec operational practices, version 2.
Technical report, 2012.

[69] Dilip Kumar, Trilok C Aseri, and RB2009 Patel. Eehc:
Energy efficient heterogeneous clustered scheme for
wireless sensor networks. computer communications,
32(4):662–667, 2009.

[70] Arash Habibi Lashkari, Mir Mohammad Seyed Danesh,
and Behrang Samadi. A survey on wireless security
protocols (wep, wpa and wpa2/802.11 i). In 2009
2nd IEEE International Conference on Computer Sci-
ence and Information Technology, pages 48–52. IEEE,
2009.

[71] Choonhwa Lee and Sumi Helal. Protocols for service
discovery in dynamic and mobile networks. Inter-
national Journal of Computer Research, 11(1):1–12,
2002.

[72] Legion of the Bouncy Castle. Bouncy castle crypto
apis, Visited on 2020-01-09. Available at https://
www.bouncycastle.org/java.html.

[73] Chae Hoon Lim. Crypton: A new 128-bit block cipher.
NIsT AEs Proposal, 1998.

[74] Chae Hoon Lim and Tymur Korkishko. mcrypton–a
lightweight block cipher for security of low-cost rfid
tags and sensors. In International Workshop on Infor-
mation Security Applications, pages 243–258. Springer,
2005.

[75] Philip MacKenzie and Michael K Reiter. Networked
cryptographic devices resilient to capture. Inter-
national Journal of Information Security, 2(1):1–20,
2003.

[76] Lukas Malina, Jan Hajny, Radek Fujdiak, and Jiri
Hosek. On perspective of security and privacy-
preserving solutions in the internet of things. Computer
Networks, 102, 03 2016.

[77] Vivek Mhatre and Catherine Rosenberg. Homoge-
neous vs heterogeneous clustered sensor networks: a
comparative study. In 2004 IEEE international confer-
ence on communications (IEEE Cat. No. 04CH37577),
volume 6, pages 3646–3651. IEEE, 2004.

USENIX Association 30th USENIX Security Symposium 625

https://blog.apnic.net/2018/08/23/measuring-ecdsa-in-dnssec-an-update/
https://blog.apnic.net/2018/08/23/measuring-ecdsa-in-dnssec-an-update/
https://notary.icsi.berkeley.edu/#statistics
https://notary.icsi.berkeley.edu/#statistics
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html

[78] Pedro Miranda, Matti Siekkinen, and Heikki Waris.
Tls and energy consumption on a mobile device: A
measurement study. In 2011 IEEE Symposium on
Computers and Communications (ISCC), pages 983–
989. IEEE, 2011.

[79] Yoav Nir, Simon Josefsson, and Manuel Pegourie-
Gonnard. Elliptic curve cryptography (ecc) cipher
suites for transport layer security (tls) versions 1.2 and
earlier. Internet Requests for Comments, RFC Editor,
RFC 8422, 2018.

[80] Power Meter Store. Watts up pro portable power
meter, Visited on 2020-01-09. Available at
https://www.powermeterstore.com/p1206/
watts_up_pro.php.

[81] Shahid Raza, Ludwig Seitz, Denis Sitenkov, and Göran
Selander. S3k: Scalable security with symmetric
keys—dtls key establishment for the internet of things.
IEEE Transactions on Automation Science and Engi-
neering, 13(3):1270–1280, 2016.

[82] Shahid Raza, Hossein Shafagh, Kasun Hewage, René
Hummen, and Thiemo Voigt. Lithe: Lightweight se-
cure coap for the internet of things. IEEE Sensors
Journal, 13(10):3711–3720, 2013.

[83] Eric Rescorla. Rfc8446:the transport layer security
(tls) protocol version 1.3. Technical report, 2018.

[84] Matthew Robshaw. The estream project. In New
Stream Cipher Designs, pages 1–6. Springer, 2008.

[85] Scott Rose. Rfc6944:applicability statement: Dns secu-
rity (dnssec) dnskey algorithm implementation status.
2013.

[86] Musa Samaila, Bernardo Sequeiros, AcÃ¡cio Correia,
Mario Freire, and Pedro InÃ¡cio. IoT Hardware De-
velopment Platforms: Past, Present, and Future, pages
107–139. 03 2018.

[87] Werner Schindler and Kouichi Itoh. Exponent blinding
does not always lift (partial) spa resistance to higher-
level security. In International Conference on Ap-
plied Cryptography and Network Security, pages 73–
90. Springer, 2011.

[88] Greg Semeraro, Grigorios Magklis, Rajeev Balasubra-
monian, David H Albonesi, Sandhya Dwarkadas, and
Michael L Scott. Energy-efficient processor design
using multiple clock domains with dynamic voltage
and frequency scaling. In Proceedings Eighth Inter-
national Symposium on High Performance Computer
Architecture, pages 29–40. IEEE, 2002.

[89] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho
Moriai, and Tetsu Iwata. The 128-bit blockcipher clefia.
In International workshop on fast software encryption,
pages 181–195. Springer, 2007.

[90] John C Shovic. Computer security and the iot. In
Raspberry Pi IoT Projects, pages 213–228. Springer,
2016.

[91] Gustavus J Simmons. A “weak” privacy protocol using
the rsa crypto algorithm. Cryptologia, 7(2):180–182,
1983.

[92] Gustavus J Simmons. The prisoners’ problem and the
subliminal channel. In Advances in Cryptology, pages
51–67. Springer, 1984.

[93] Sok-Ian Sou and Ozan K Tonguz. Enhancing vanet
connectivity through roadside units on highways. IEEE
transactions on vehicular technology, 60(8):3586–
3602, 2011.

[94] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia
Heninger. In search of curveswap: Measuring elliptic
curve implementations in the wild. In 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P),
pages 384–398. IEEE, 2018.

[95] Roland van Rijswijk-Deij, Mattijs Jonker, and Anna
Sperotto. On the adoption of the elliptic curve dig-
ital signature algorithm (ecdsa) in dnssec. In 2016
12th International Conference on Network and Service
Management (CNSM), pages 258–262. IEEE, 2016.

[96] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko
Pras. Making the case for elliptic curves in dnssec.
ACM SIGCOMM Computer Communication Review,
45(5):13–19, 2015.

[97] S Weiler. Rfc3755:legacy resolver compatibility for
delegation signer (ds). Technical report, 2004.

[98] Michael J Wiener. Cryptanalysis of short rsa secret
exponents. IEEE Transactions on Information theory,
36(3):553–558, 1990.

[99] Kai Zhang, Lin Ding, and Jie Guan. Cryptanalysis of
hummingbird-2. Technical report, Cryptology ePrint
Archive, Report 2012/207, 2012.

[100] Wensheng Zhang, Nalin Subramanian, and Guiling
Wang. Lightweight and compromise-resilient message
authentication in sensor networks. In IEEE INFOCOM
2008-The 27th Conference on Computer Communica-
tions, pages 1418–1426. IEEE, 2008.

626 30th USENIX Security Symposium USENIX Association

https://www.powermeterstore.com/p1206/watts_up_pro.php
https://www.powermeterstore.com/p1206/watts_up_pro.php

	Introduction and Roadmap
	Background and Preliminaries
	The RSA Problem
	Low Public Exponent RSA

	Ciphertext and Signature Propagation
	Definitions
	Signature Propagation
	Ciphertext Propagation

	Propagating with RSA
	Propagating RSA Signatures
	Propagating RSA Ciphertexts
	How to choose elow

	Security Proof

	Applications of CSProp
	CSProp over DNSSEC
	DNSSEC Signing Algorithm
	Design of DNSSEC with CSProp

	Optimizing TLS handshakes with CSProp
	Propagator Deployment in Practice

	Evaluation
	Experimental Setup
	CSProp over DNSSEC
	CSProp over TLS
	Comparison with Elliptic Curve Cryptography (ECC) Cipher Suites
	Performance on Arduino IoT board
	Importance of Public Key Operations

	Related Work
	Concluding Remarks

