
SpecFuzz

Bringing Spectre-type vulnerabilities to the surface

Oleksii Oleksenko†, Bohdan Trach†, Mark Silberstein‡, and Christof Fetzer†

†TU Dresden, ‡ Technion

Abstract
SpecFuzz is the first tool that enables dynamic testing for

speculative execution vulnerabilities (e.g., Spectre). The key

is a novel concept of speculation exposure: The program is

instrumented to simulate speculative execution in software by

forcefully executing the code paths that could be triggered due

to mispredictions, thereby making the speculative memory

accesses visible to integrity checkers (e.g., AddressSanitizer).

Combined with the conventional fuzzing techniques, specula-

tion exposure enables more precise identification of potential

vulnerabilities compared to state-of-the-art static analyzers.

Our prototype for detecting Spectre V1 vulnerabilities suc-

cessfully identifies all known variations of Spectre V1 and

decreases the mitigation overheads across the evaluated appli-

cations, reducing the amount of instrumented branches by up

to 77% given a sufficient test coverage.

1 Introduction

Spectre [22, 33, 34, 48] is a class of attacks that poses a sig-

nificant threat to system security. It is a microarchitectural

attack, an attack where a malicious actor extracts secrets by

exploiting security flaws in the CPU architecture rather than

in software. Such attacks are particularly dangerous as they

compromise the security of bug-free programs.

Spectre-type microarchitectural attacks exploit branch spec-

ulations to access victim’s memory. For example, if an array

access is guarded by an index bounds check, the CPU branch

predictor might speculate that the check will pass and thus

perform the memory access before the index is validated. If

the speculation turns out to be wrong, the CPU rolls back the

respective changes in the architectural state (e.g., in registers),

but it does not cleanse its microarchitectural state (e.g., cached

data). Spectre-type attacks use this property to exfiltrate the

results of computations executed on this mispredicted path.

Unfortunately, many variants of Spectre hardware vulner-

abilities are not expected to be fixed by hardware vendors,

most notably Intel [18]. Therefore, the burden of protecting

programs lies entirely on software developers [40].

This observation led to the development of software tools

for Spectre mitigation. They identify the code snippets pur-

ported to be vulnerable to the Spectre attacks and instrument

them to prevent or eliminate unsafe speculation. Inherently,

the instrumentation incurs runtime overheads, thereby leading

to the apparent tradeoff between security and performance.

Currently, all the existing tools exercise only the extreme

points in this tradeoff, offering either poor performance with

high security, or poor security with high performance.

Specifically, conservative techniques [3, 21, 28, 53] pes-

simistically harden every speculatable instruction (e.g., every

conditional branch) to either prevent the speculation or make

it provably benign. This approach is secure, but may signifi-

cantly hurt program performance [44].

On the other hand, static analysis tools [17, 27, 41] reduce

the performance costs by instrumenting only known Spectre

gadgets—the code patterns that are typical for the attacks.

However, the analysis is imprecise and may overlook vulner-

abilities, either because the vulnerable code does not match

the expected patterns [32], or due to the limitations of the

analysis itself (e.g., considers each function only in isolation).

We seek to build a tool that exercises a different point on

the security-performance tradeoff curve by eliding unneces-

sary instrumentation without restricting ourselves to specific

gadgets. Arguably, a key challenge is to precisely identify

vulnerable code regions, yet this task is hard to achieve via

static analysis. Instead, in this work we harness dynamic

testing (e.g., fuzzing) to detect Spectre-type vulnerabilities.

Fuzzing [63] is a well-established testing technique. The

basic idea of fuzzing is simple: Add integrity checks to the

tested software (e.g., with AddressSanitizer [49]) and feed it

with randomized inputs to find cases that trigger a bug. This

technique is commonly used to detect stability issues and

memory errors [50].

In principle, Spectre-type attacks effectively perform unau-

thorized accesses to data via out-of-bound reads, thus they

are supposed to be caught via fuzzing. Unfortunately, this is

not the case because the accesses are invoked speculatively,

on a mispredicted path, therefore are discarded by hardware

without being exposed to software. As a result, they remain

invisible to runtime integrity checkers.

We introduce speculation exposure, the first technique to

enable dynamic testing for Spectre-type vulnerabilities. Spec-

ulation exposure leverages software simulation of speculative

paths to turn speculative vulnerabilities into conventional ones

and, thus, make them detectable by memory safety checkers.

The concept is generic and can be applied to different Spectre

attacks.

Speculation exposure consists of four phases executed for

every speculatable instruction: 1© take a checkpoint of the

process state, 2© simulate a misprediction, 3© execute the

speculative path, and 4© rollback the process to the checkpoint

and continue normal execution. This way, we temporarily

redirect the normal application flow into the speculative path

so that all invalid memory accesses on it become visible to

software. This method simulates the worst-case scenario by

examining each possible mispredicted path, without making

assumptions about the way the underlying hardware decides

whether to speculate or not.

We further extend speculation exposure to nested specu-

lation, which occurs when a CPU begins a new speculation

before resolving the previous one. To simulate it, for each

speculatable instruction, we dynamically generate a tree of

all possible speculative paths starting from this instruction

and branching on every next speculatable instruction. The

complete nested simulation, however, has proven to be too

slow. To make fuzzing practical we develop a heuristic which

prioritizes traversal of the speculation sub-trees with high

likelihood of detecting new vulnerabilities.

To showcase our method, we implement SpecFuzz, a tool

for detecting Bounds Check Bypass (BCB) vulnerabilities.

SpecFuzz simulates conditional jump mispredictions by plac-

ing an additional jump with an inverted condition before every

conditional jump. During the simulation it executes the in-

verted jump and then rolls back to return to the original control

flow. To detect invalid accesses on the simulated speculative

path, SpecFuzz relies on AddressSanitizer [49].

SpecFuzz may serve as a tool for both offensive and de-

fensive security. For the former (e.g., penetration testing),

it finds vulnerabilities in software, records their parameters,

and generates test cases. For the latter, the fuzzing results are

passed to automated hardening tools (e.g., Speculative Load

Hardening [3]) to elide unnecessary instrumentation of the

instructions deemed safe. Note that the code not covered by

fuzzing remains instrumented and protected conservatively

as before, hence lower fuzzing coverage might affect perfor-

mance but not security.

Our evaluation shows that SpecFuzz successfully detects

vulnerable gadgets in all test programs. It detects more po-

tential vulnerabilities than the state-of-the-art and reduces the

overheads of conservative instrumentation of all conditional

branches. For example, it elides the instrumentation from

about a half of branches in the security-focused libHTP li-

1 i = input[0];

2 if (i < size) {

3 secret = foo[i];

4 baz = bar[secret]; }

Figure 1: A potential Bounds Check Bypass vulnerability.

brary, and improves the performance of hardened OpenSSL

RSA function, resulting in only 3% slowdown over its vanilla

version, compared to the 22% slower conservative hardening.

Our contributions include:

• Speculation exposure, a generic simulation method for

Spectre-type vulnerabilities that makes them detectable

through dynamic testing.

• SpecFuzz, an implementation of the method applied to

detection of Bounds Check Bypass vulnerabilities.

• A fuzzing strategy that makes nested speculative expo-

sure feasible by prioritizing the paths that are the most

likely to contain vulnerabilities.

• An analysis technique for processing and ranking the

results of dynamic testing with SpecFuzz.

• Evaluation of SpecFuzz on a set of popular libraries.

2 Background

2.1 Speculative Execution and Attacks

Speculative Execution. In modern processors, execution of

a single instruction is carried out in several stages, such as

fetching, decoding, and reading. To improve performance,

nearly all modern CPUs execute them in a pipelined fashion:

When one instruction passes a stage, the next instruction can

enter the stage without waiting for the first one to pass all the

following stages. This allows for much higher levels of in-

struction parallelism and for better utilization of the hardware

resources.

However, in certain situations—called hazards—it is not

possible to begin executing the next instruction immediately.

A hazard may happen in three cases: a structural hazard

appears when there are no available execution units, a data

hazard—when there is a data dependency between the instruc-

tions, and control hazard—when the first instruction modifies

the control flow (e.g., at a conditional branch) and the CPU

does not know what instruction will run next. As the haz-

ards are stalling the CPU, they can significantly reduce its

performance.

To deal with control hazards (and sometimes, with data

hazards), modern CPUs try to predict the outcome of the

situation and start speculatively executing the instructions

assumed next. For example, when the CPU encounters an

indirect jump, it predicts the jump target based on the history

of recently used targets and redirects the control flow to it.

While the CPU does not know if the prediction was correct,

it keeps track of the speculative instructions in a temporary

storage, called Reorder Buffer (ROB). The results of these

speculative computations are kept in internal buffers or regis-

ters and are architecturally invisible (i.e., the software does

not have access to them). Eventually, the CPU resolves the

hazard and, depending on the outcome, either commits the

results to the architectural state or discards them.

Speculative Execution Attacks. In a speculative execution

attack (in short, speculative attack), the attacker intentionally

forces the CPU into making a wrong prediction and execut-

ing a wrong speculative path (i.e., executing a mispredicted

path). Because taking the path violates the application se-

mantics, it may bypass security checks within the application.

Moreover, should any exceptions appear on the mispredicted

path, they will be handled only during the last pipeline stage

(retirement).

For a long time, this behavior was considered safe because

the CPU never commits the results of a wrong speculation.

However, as the authors of Spectre [33] and Meltdown [36]

discovered, some traces of speculative execution are visible

on the microarchitectural level. For example, the data loaded

on the mispredicted path will not show up in the CPU registers,

but will be cached in the CPU caches. The attacker can later

launch a side-channel attack [56,62] to retrieve the traces and,

based on them, deduce the speculative results.

Bounds Check Bypass. In this paper, we will showcase our

dynamic testing technique on one of the speculative attacks—

Bounds Check Bypass (BCB, also called Spectre v1) [33].

In essence, BCB is a conventional out-of-bounds memory

access (e.g., buffer overflow) that happens on a mispredicted

path, triggered by a wrong prediction of a conditional jump.

Consider the code snippet in Figure 1. Assuming that the

attacker can control the input value, she can send several

in-bounds inputs that would train the branch predictor to an-

ticipate that the check at line 2 will pass. Then, the attacker

sends an out-of-bounds input, the branch predictor makes

a wrong prediction, and the program speculatively executes

lines 3–4 even though the program’s semantics forbid so. It

causes a speculative buffer overread at line 3 and the read

value is used as an index at line 4.

Later, the CPU finds out that the prediction was wrong and

discards the speculated load, but not its cache traces. The

adversary can access the traces by launching a side-channel

attack and use them to deduce the secret value: The address

read at line 4 depends on the secret and, correspondingly,

finding out which cache line was used for this memory access

allows the attacker to also find out the secret value loaded

on the speculative path.

Note that without the bounds check at line 2, this vulner-

ability would be a conventional buffer overflow which can

be detected by memory safety techniques, such as Address-

Sanitizer [49] or Intel MPX [12]. However, since the CPU

Figure 2: Speculative execution. Due to a misprediction, the

program executes basic blocks BB3 and BB4, then detects the

mistake, discards the results, and continues execution starting

from BB2.

cancels the speculation after detecting a misprediction, these

techniques turn ineffective.

2.2 Fuzzing

Fuzzing is a technique for discovering bugs and vulnerabili-

ties in software by exposing it to diverse conditions and inputs.

A fuzzing tool (fuzzer) automatically generates randomized

inputs either from scratch, based on input grammars, or by

mutating an existing input corpus. The fuzzer then feeds

these inputs to the application and monitors its behavior: If

an abnormal behavior (e.g., a crash) is observed, the fuzzer

reports a bug. Since many bugs do not manifest themselves

in externally-visible failures, fuzzing is often used in combi-

nation with memory safety techniques that can detect internal

errors.

One important parameter of fuzzing is its coverage, which

indicates how extensively the software was tested during

fuzzing. Coverage can be defined in many ways, but the

most common is to define it as a ratio of the control-flow

graph edges that were executed at least once during fuzzing

to the total number of edges in the application. Coverage

mainly depends on the effectiveness of the input generator,

that is, on how effectively it can generate inputs that trigger

new control-flow paths. It is also highly dependent on the

quality of the fuzzing driver, the wrapper that interfaces the

application to the fuzzer. If the driver does not call some

of the application’s functions, they will never be covered by

fuzzing, regardless of how effective the generator is.

3 Speculation Exposure

Speculative vulnerabilities are notoriously hard to find be-

cause hardware strives to hide the effects of speculative ex-

ecution from software, making it impossible to detect such

vulnerabilities with conventional testing methods. In this

paper, we approach the problem by simulating the unsafe

hardware optimization in software. We call this approach

speculation exposure.

To understand how we construct the simulation, first con-

sider how speculative execution is implemented in hard-

ware (§2.1). When a hazard appears (e.g., at a conditional

or an indirect jump), the CPU 1© makes a prediction of its

outcome, 2© executes the speculative path while temporarily

keeping the results in internal buffers, 3© eventually elimi-

nates the hazard and either commits the results (correct pre-

diction) or discards them (wrong prediction), and 4© proceeds

with the correct path.

For example, in Figure 2, the CPU might make a wrong

prediction that BB1 (Basic Block 1) will proceed into BB3.

It will start executing BB3, BB4, and maybe even further,

depending on how long it takes to resolve the hazard. When

the hazard is resolved, the CPU determines that the prediction

was wrong and discards all changes made on the speculative

path. Afterward, it redirects the control flow to the correct

path and proceeds with the execution starting from BB2.

The core idea behind speculation exposure is to simu-

late this behavior in software with a checkpoint-mispredict-

rollback scheme: At a potential hazard, we 1© take a check-

point of the current process state. Then, we 2© diverge the

control flow into a wrong (mispredicted) path and start ex-

ecuting it. When a termination condition is reached (e.g.,

a serializing instruction is executed), we 3© rollback to the

checkpoint and 4© proceed with normal execution. The pat-

tern can be applied to data hazards too: Instead of diverging

the control flow, we would replace a memory/register value

with a mispredicted one.

This basic mechanism simulates the worst case scenario

when a CPU always mispredicts and always speculates to

the greatest possible depth. Such a pessimistic approach

makes the testing results universally applicable to different

CPU models and any execution conditions. Moreover, it

also covers all possible combinations of correct and incorrect

predictions that could happen at runtime (see §3.2).

3.1 Components of Speculation Exposure

There are four core components: a checkpointing mechanism,

a simulation of mispredictions, a detection of faults on the

simulated path, and a mechanism for detecting termination

conditions.

Checkpointing. For storing the process state, we could use

any of the existing checkpointing mechanisms, ranging from

full-process checkpoint (e.g., CRIU [1]) to transactional mem-

ory techniques (e.g., Intel TSX [12]). However, checkpointing

is on the critical path in our case, thus heavy-weight mech-

anism would either increase the testing time, or reduce the

number of inputs used in fuzzing under a fixed time bud-

get. We describe the checkpointing mechanism used in our

implementation in §4.1.

Simulating Misprediction. To simulate misprediction, we

instrument basic blocks in a way that forces control flow to en-

ter the paths that the CPU would otherwise take speculatively.

The nature of the instrumentation depends on the exact type

of the speculative execution attack being simulated (see §4

and §7 for a detailed discussion about applying this technique

to different Spectre attacks).

Detection of Vulnerabilities. In Spectre-type attacks, the

data is leaked when a program speculatively reads from or

writes to a wrong object. Therefore, when we have a mech-

anism for simulating speculative execution, the detection of

actual vulnerabilities boils down to the conventional memory

safety problem; detecting bounds violations. This is a well-

developed field with many existing solutions [12, 42, 49]. In

this work, we rely on AddressSanitizer [49].

Terminating Simulation. The simulation mimics the termi-

nation of the speculative execution by hardware. Speculative

execution terminates: (i) upon certain serializing instructions

(e.g., LFENCE, CPUID, SYSCALL, as listed in the CPU docu-

mentation [12]), and (ii) after the speculation exhausts certain

hardware resources. Thus, the simulation terminates when

one of those conditions is satisfied.

Note that terminating the simulation earlier results in faster

fuzzing and could be used as an optimization, but it could miss

vulnerabilities. Below we discuss the hardware resources

used in speculation to determine the simulation termination

conditions.

3.1.1 Termination conditions

All program state changes made during the speculative execu-

tion must be temporarily stored in internal hardware buffers,

so that they can be reverted if the prediction is incorrect. Ac-

cordingly, once at least one of these buffers becomes full the

speculation stops.

On modern Intel CPUs, there are several buffers that can be

exhausted [12]: Reorder Buffer (ROB), Branch Order Buffer

(BOB), Load Buffer (LB), Store Buffer (SB), Reservation Sta-

tion (RS), Load Matrix (LM), and Physical Register Reclaim

Table (PRRT). We seek to find the one that overflows first.

LM and PRRT are not documented by Intel. LB, SB, and

RS are also not useful for practical simulations as their entries

could be reclaimed dynamically (policy is undocumented)

during speculative execution. Therefore, we do not simulate

these buffers and assume that they do not restrict the depth of

the speculation.

We are left with ROB, which keeps track of all speculative

microoperations (µops), and BOB, which tracks unresolved

branch predictions. We choose ROB because BOB is not

portable as it is a specific optimization of Intel CPUs [15].

In Intel x86, any speculative path can contain at most as

many µops as there are entries in ROB1. In modern CPUs, its

size is under 250 µops (the largest we know is 224 entries, on

Intel Skylake architecture [11]).

The simulation terminates after reaching 250 instructions,

which is a conservative estimate because one instruction is

1Some CPU architectures (e.g., CPR [13]) could speculate beyond the

ROB size. However, to the best of our knowledge, that is not the case for the

existing x86 CPUs

Figure 3: Nested speculation exposure for the flow A→B→D.

Dashed lines are mispredicted speculative paths.

typically mapped into one or more µops. The only exception

is µops fusion, when CPU merges several instructions into

one. However, on Intel CPUs, it is limited to a small set of

instruction combinations [11]. To account for this effect, we

count these combinations as a single instruction.

Note that a tighter bound on the number of speculated in-

structions (e.g., through simulation of a smaller buffer) could

have improved the fuzzing time without affecting correctness.

3.2 Nested Speculation Exposure

The CPU may perform nested speculation; that is, it can make

a prediction while already executing a speculative path. Since

we do not make any assumptions about the predictions, every

speculatable instruction triggers not a single simulation, but a

series of nested simulations. We refer to a tree of all possible

speculative paths as a simulation tree. A simulation tree for

each speculatable instruction is regenerated for each program

input.

Instead of traversing the complete simulation tree (complete

simulation), we could simulate only a subset of all mispredic-

tions. Then, an order of a simulation is the maximum number

of nested mispredictions it simulates. In other words, an order

is the maximum depth of the simulation tree. Accordingly,

an order of a vulnerability is defined as the minimum order

of a simulation that triggers this vulnerability. An order of a

speculative path is the number of mispredictions required to

enter it.

Consider the example in Figure 3. The left side (Figure 3a)

is a control-flow graph. Suppose that the correct flow is ABD.

If we simulate branch mispredictions, then the simulation

tree of branch A would be as shown in Figure 3b. The simula-

tion of order 1 for that branch traverses only the path (ACBD),

simulating only the first misprediction, and then following

the original flow graph. The simulation of order 3 would

traverse three additional paths: ACBB, ACCB and ACCC, accord-

ing to misspeculation of A and B; A and C; and A,C and C

respectively. The four paths constitute a complete simulation

tree of the branch A. Every branch (or, more generally, every

speculatable instruction) has its own simulation tree and the

tree has to be traversed every time the branch is executed.

1

2

3

4 if x < array_size:

5

6 result = array[x]

7 ...

8

9

(a) Native version

checkpoint()

if x >= array_size:

goto skip_branch

if x < array_size

skip_branch:

result = array[x]

...

if terminate_simulation():

rollback() // to line 4

(b) Simulation of conditional branch

misprediction

Figure 4: SpecFuzz instrumentation.

Nested simulation dramatically increases the fuzzing time.

However, in SpecFuzz we use a heuristic which, while travers-

ing only a small portion of the speculation tree on each input,

shows high detection rates. We discuss it in detail in §4.2.

4 SpecFuzz

To showcase speculative exposure on a specific class of vul-

nerabilities, we develop SpecFuzz, a tool for simulating and

detecting Bounds Check Bypass (BCB) [33]. We discuss

other Spectre-type attacks in §7.

As described in §2.1, BCB in its core contains a specu-

lative out-of-bounds access caused by a conditional jump

misprediction. To expose such accesses, we create a modi-

fied (instrumented) version of the application which executes

not only the normal control flow but also enters all possible

speculative paths.

SpecFuzz works as follows (see Figure 4): Before every

conditional branch (line 4), it inserts a call to a checkpointing

function (line 1) that stores the process state and initializes

simulation. Then, it adds a sequence of instructions that

simulate a misprediction (lines 2–3) and force the control flow

into the mispredicted path. Specifically, SpecFuzz inserts a

jump with an inverted condition (line 2), followed by a jump

into the body of the conditional block, thus skipping the

original branch (line 3). During the simulation, SpecFuzz

periodically checks if a termination condition has appeared

(line 8). If the check passes, SpecFuzz restores the process

state from the previous checkpoint (line 9) and continues the

program execution.

We implement this design as a combination of an

LLVM [35] compiler backend pass for the x86 architecture

and a runtime library.

4.1 Basic Simulation

Simulating Branch Misprediction. SpecFuzz simulates

mispredictions by forcing the application into taking a wrong

branch at every conditional jump. We implement this behav-

ior by replacing all conditional terminators in the program

Figure 5: Simulation of conditional branch mispredictions:

On simulated speculative paths, all conditional terminators

are replaced by terminators with inverse conditions.

with the ones that have an inverted condition (see Figure 5).

Now, when the original basic block (BB) would proceed into

the successor S1, the modified terminator diverges the control

flow into S2. The original terminator is moved into a sepa-

rate BB, and the control flow returns to normal execution by

rolling back into this BB after the simulation.

As a result, every time the program reaches this BB, it first

executes the simulated path, then rolls back to the BB and

continues with normal execution.

Saving and Restoring Process State. The main requirement

to the rollback mechanism used in SpecFuzz was to have low

performance impact so that the fuzzing time is kept short. To

this end, we implement a light-weight in-process mechanism

that snapshots the CPU state before starting a simulation and

records the memory changes during the simulation.

To store the CPU state, we add a call to a checkpointing

function (a part of the runtime library) before every condi-

tional jump. The function takes a snapshot of the register

values (including GPRs, flags, SIMD, floating-point registers,

etc.) and stores it into memory. During the rollback, we re-

store the register values based on the snapshot. The function

also stores the address of the original conditional jump (i.e.,

original terminator) that we later use as a rollback address.

This approach, however, is not efficient when applied to

saving the memory state because it would require dumping

the memory contents into disk at every conditional jump. To

avoid the performance overhead linked with this expensive

operation, we instead rely on logging the memory changes

that happen during the simulation. Before every instruction

that modifies memory (e.g., mov, push, call), we store the

address it modifies and its previous value onto a stack-like

data structure. Then, to do a rollback, we go through this data

structure in the reverse order and restore the previous memory

values.

Currently, SpecFuzz supports only fixed-width writes; If

the pass encounters REP MOV, compilation fails with an error.

Yet, we did not encounter any issues with that during our

experiments because Clang in its default configuration does

not use these instructions.

Detecting and Handling Errors. With the simulation mech-

anism at hand, we now need a mechanism to detect invalid

accesses on speculative paths. In SpecFuzz, we utilize Ad-

dressSanitizer [49] (ASan) to detect out-of-bounds accesses

and a custom signal handler to handle the errors that inevitably

appear during the simulations.

We had to modify the behavior of ASan to our needs. In

contrast to normal, non-speculative execution, the process

does not crash if an error happens during the speculation.

Instead, the CPU silences the error by discarding its effects

when the misprediction is detected. To simulate this behav-

ior in SpecFuzz, we adjusted the error response mechanism

in ASan to record the violation in a log and continue the

simulation. Accordingly, one test run might detect several

(sometimes, hundreds of) violations.

Similarly, we have to recover from runtime faults. We reg-

ister a custom signal handler that logs and rolls back after the

signals that could be caused by an out-of-bounds access, such

as SIGSEGV and SIGBUS. We also rollback after other faults

(e.g., division by zero), but we do not record them in the log

as they are irrelevant to the BCB vulnerability. We perform

an immediate rollback because hardware exceptions are sup-

posed to terminate speculative execution. Even though on

some CPU models exceptions may not terminate speculation

(see Meltdown-type attacks [16, 36]), we ignore such cases

assuming they will be fixed at the hardware level similarly to

Meltdown.

Terminating Simulation. As discussed in §3, we terminate

the simulation either when we encounter a serializing instruc-

tion or when the maximum depth of speculation is reached.

To implement the first case, we simply insert a call to the

rollback function before every serializing instruction. As

serializing, we consider the instructions listed as such in the

Intel documentation [12] (e.g., LFENCE, CPUID, SYSCALL).

To count instructions at runtime, we keep a global instruc-

tion counter and set it to zero when a simulation begins. At

the beginning of every basic block, we add its length to the

counter. (We know the length at compile time because Spec-

Fuzz is a backend pass). When the counter value reaches

250 (maximum ROB size, see §3), we invoke the rollback

function.

4.2 Nested Simulation

To implement nested simulation, we maintain a stack of check-

points: Every time we encounter a conditional branch, we

push the checkpoint on the stack, as well as the current value

of the instruction counter and a pointer to the previous stack

Order JSMN Brotli HTTP libHTP YAML SSL

1 6 74 6 221 77 1254

2 5 9 4 64 92 366

3 7 12 2 33 14 253

4 1 6 3 5 16 91

5 1 2 1 2 6 -

6 0 0 0 2 2 -

Total 20 103 16 327 207 1964

Iterations 933 3252 1582 540 1040 227

Table 1: Distribution (by order) of the vulnerabilities de-

tected by 24 hours of fuzzing non-prioritized 6th-order sim-

ulation. This experiment motivates prioritized simulation:

Even though all fuzzing rounds simulated all 6 orders of mis-

prediction, most of the detected vulnerabilities required only

a few mispredictions. Since execution of OpenSSL was too

slow, we simulated it only to the 4th order.

frame. All later writes will be logged into the new stack frame.

At rollback, we restore the topmost checkpoint and revoke

the corresponding memory changes. This way, SpecFuzz

traverses all possible combinations of correct and incorrect

predictions in the depth-first fashion.

Coverage Trade-off. The number of paths to traverse in-

creases exponentially with the order of the simulation. In

most programs, the density of conditional branches is approx-

imately one in ten instructions. If we assume the maximum

depth of speculative execution to be 250 instructions, then it

creates over 30 million speculative paths on average per con-

ditional branch. Often the actual number of paths is smaller

because the tree is not balanced, or because the tree is shallow

due to serializing instructions (e.g., system calls), however

the costs are still high, slowing down the fuzzing driver by

orders of magnitude. It could be acceptable for very small

fuzzing drivers (e.g., when fuzzing a single function), but not

for larger libraries.

The trade-off between the fuzzing speed and the complete-

ness of nested simulation is a non-trivial one. In particular, it

is not clear to what extent added depth of the simulation im-

proves the detection of speculative vulnerabilities compared

to the loss in input coverage.

To estimate the effectiveness of deeper simulation we com-

piled our test libraries (see §6) with SpecFuzz configured for

a 6th-order simulation and fuzzed them for 24 hours. Table 1

contains a breakdown of the vulnerabilities we detected by

their order. Clearly, the bulk of the vulnerabilities is detected

with only few levels of nesting, and the higher the order the

fewer vulnerabilities we find2.

2The real distribution is even more contrasting. Here, the 6th-order sim-

ulation caused a high overhead and few iterations were executed (Table 1).

Therefore, the fuzzer could not generate the inputs to trigger the vulnerabili-

ties with fewer mispredictions. In fact, in §6.2, many of these vulnerabilities

were discovered by lower-order simulations with more iterations.

A plausible explanation of this result is as follows. Most

memory accesses are guarded by only one safety check (e.g.,

a bounds check) which we would need to bypass specula-

tively (first order vulnerabilities). More rarely, the bounds

checks would be duplicated across functions or, for example,

accompanied by an object type check; In this case, detecting

such a vulnerability would require two mispredictions (sec-

ond order). Higher order vulnerabilities usually require the

speculative path to cross several function boundaries.

We can conclude that the speed of fuzzing is a higher prior-

ity than the order of simulation. Most of the vulnerabilities

have low orders and we are likely to find more vulnerabilities

if we have many iterations of low-order simulation compared

to running few iterations of high-order simulation. In fact, in

our later experiments (§6.2), SpecFuzz detected more vulner-

abilities withing an hour of low-order fuzzing compared to

24 hours with a 6th order simulation.

Prioritized Simulation. Based on this observation, we pro-

pose the following fuzzing heuristic. Our prioritized simula-

tion tests the low-order paths more rigorously, allocating less

time to higher-order paths.

A simple approach would be to always run the simulation at

a baseline order and once every N iterations run a higher-order

simulation. For example, all runs simulate order 1, every 4th

run simulates up to order 2, every 16th up to order 3, and so

on.

However, since not all runs invoke all the branches, the

distribution would be uneven. Instead, we should calculate

the shares per branch.

Suppose we have only two branches—X and Y—in the

program under test, and we test the program with six inputs.

X is executed in every run, but Y is invoked only in the runs

1, 2, 3, and 5. With the prioritized simulation, we simulate

only the first-order paths of the branch X in the runs (1, 2, 3,

5, 6) and both the first and the second order paths in the run 4.

As of the branch Y, we simulate the first order in runs (1, 2,

3) and up to the second order in the run 5.

We implemented this strategy in SpecFuzz and used it in

our evaluation.

Simulation Coverage. Because prioritized simulation begins

by traversing only one speculative path in every simulation

tree and only gradually enters more and more paths, it would

be important to know which share of all possible speculative

paths it managed to cover within a given fuzzing round. We

call this metric a simulation coverage. This metric provides

an estimate of the portion of the covered speculated paths out

of all possible paths for all the branches.

The trade-off different simulation heuristics might explore

is a trade-off between fuzzing coverage and simulation cover-

age. For example, prioritized simulation gives preference to

the fuzzing coverage. Unfortunately, estimating the precise

number of speculative paths for each branch is a complex

problem because the trees are not balanced. Solving it would

Figure 6: The workflow of testing an application with SpecFuzz.

require detailed program analysis, which we leave to future

work.

4.3 Other Implementation Details

External calls and indirect calls. By the virtue of being im-

plemented as a compiler pass, SpecFuzz cannot correctly run

the simulation beyond the instrumented code. Therefore, we

have to consider all calls to external (non-instrumented) func-

tions as serialization points, even though it is not necessarily

a correct behavior (see §8).

Since the complete list of instrumented functions is not

known at compile time, SpecFuzz works in two stages: It first

runs a dummy compilation that collects the function list, and

only then does the full instrumentation. The list can be reused

for further compilations if the source does not change.

This approach, however, does not work for indirect calls

as we do not know the call target at compile time. Instead,

we have to detect the callee type at run time. To this end,

SpecFuzz inserts a NOP instruction with a predefined argument

into every function entry. Before indirect calls, it adds a

sequence that fetches the first instructions and compares it

with the opcode of this NOP. If they match, we know that

the function is instrumented and it is safe to continue the

simulation.

Callbacks. There could be a situation where a non-

instrumented function calls an instrumented one (e.g., when a

function pointer is passed as an argument). In this case, the

instrumented function might return while executing a sim-

ulation and the simulation will enter the non-instrumented

code, thus corrupting the process state. To avoid it, SpecFuzz

globally disables simulation before calling external functions

and re-enables it afterward. Accordingly, our current imple-

mentation does not support simulation in callbacks (see a

potential solution to this problem in §8).

Long Basic Blocks. In the end of every basic block (BB),

SpecFuzz checks if the speculation window has expired (i.e.,

if the instruction counter has reached 250). This could un-

necessarily prolong the simulation when we encounter a long

BB, which could be created, for example, by loop unrolling.

To avoid this situation, SpecFuzz inserts additional checks

every 50 instructions in the long BBs.

Preserving the Process State. When a function returns while

executing a simulation, the value of the stack pointer becomes

above its checkpointed value. Therefore, if we call a function

from the SpecFuzz runtime library or from ASan, it would

corrupt the checkpointed stack frame. This could be avoided

by logging all changes that these functions do to the memory,

but it would have a high performance cost. Instead, we use a

disjoint stack frame for these functions and replace the stack

pointer before calling them.

The same applies to the code that SpecFuzz compiler pass

inserts: We had to ensure that the code that could be executed

on a speculative pass never makes any changes to memory be-

sides modifying dedicated variables of the SpecFuzz runtime.

Code pointer checks. Besides causing out-of-bounds ac-

cesses, misprediction of conditional branches may also

change the program’s control flow. This happens when a

corrupted code pointer is dereferenced. For example, if spec-

ulative execution overwrites a return address or the stack

pointer, the program can speculatively return into a wrong

function or even attempt to execute a data object. This vulner-

ability type is especially dangerous as it may allow to launch

a ROP-like attack [51]. To detect such corruptions, we insert

integrity checks before returning from functions and before

executing indirect jumps.

5 Fuzzing with SpecFuzz

The workflow is depicted in Figure 6.

1. Compile the software under test with Clang and apply

the SpecFuzz pass (§4), thus producing an instrumented

binary that simulates branch mispredictions.

2. Fuzz the binary. We used HonggFuzz [5], an evolution-

ary coverage-driven fuzzer, and we relied on a combi-

nation of custom coverage tracking and Intel Processor

Trace [29] for measuring coverage.

3. Aggregate the traces and analyze the detected vulnera-

bilities to produce a whitelist of conditional jumps that

were deemed safe by our analysis.

4. Patch the application with a pass that hardens all but the

whitelisted jumps.

We now describe these stages in detail.

5.1 Coverage and Fuzzing Feedback

Using existing coverage estimation techniques (e.g., Sanitiz-

erCoverage [37], Intel PT [29]) with SpecFuzz is incorrect:

the values become artificially inflated because SpecFuzz adds

the speculative paths that do not belong to normal program

execution.

Instead, we implement a custom coverage mechanism that

counts executed conditional branches only outside the specu-

lative paths and when the simulation is globally enabled (i.e.,

not in callbacks). We implement the mechanism through a

hashmap that tracks the executed branches as well as the num-

ber of unique inputs that triggered every branch. In addition

to coverage, this map is also used for prioritized simulation

(§4.2).

We also maintain a hashmap of vulnerabilities as an addi-

tional feedback source for evolutionary fuzzing. This way,

every time we detect a new vulnerability, HonggFuzz stores

the input that triggered it and adds it to the input corpus. On

top of providing a better feedback to the fuzzer, this feature

also allows us to preserve the test cases that trigger specific

vulnerabilities.

5.2 Aggregation of Results

As a result of fuzzing, we get a trace of detected speculative

out-of-bounds accesses. Each entry in the trace has a form:

(Accessed address; Offset; Offending instruction;

mispredicted branches)

Here, offending instruction is an address of the instruction

that tried to access a memory outside the intended object’s

bounds (accessed address), and mispredicted branches are

the addresses of the mispredicted branches which triggered

the access. Offset is the distance to the nearest valid object, if

we found one.

To make the trace usable, we aggregate the results per run

and per instruction. That is, for every test run, we collect all

the addresses that every unique offending instruction accessed

as well as the addresses of the mispredicted branches.

5.3 Vulnerability Analysis

After the aggregation, we have a list of out-of-bounds accesses

with an approximate range of accessed addresses for each of

them. As we will see in §6.2, the list may be rather verbose

and contain up to thousands of entries. Yet, we argue that

most of them are not realistically exploitable.

In many cases, the violation occurs as a result of accessing

an address that remains constant regardless of the program

input. Therefore, the attacker cannot control the accessed

address, and cannot leak secrets located in other parts of the

application memory. This could happen, for example, when

the application tries to speculatively dereference a field of

an uninitialized structure. In this case, the attacker would

be able to leak values from only one address, which is nor-

mally not useful unless the desired secret information happens

to be located at this address3. We call such vulnerabilities

uncontrolled.

3In this work, we do not consider this corner case and leave it to future

work. Its identification would require more complex program analysis (e.g.,

taint analysis).

We identify the uncontrolled vulnerabilities by analyzing

the aggregated traces. We estimate the presence of the at-

tacker’s control by comparing the accessed addresses in ev-

ery run (i.e., every new fuzzing input). If a given offending

instruction always accesses the same set of addresses, we

assume that the attacker does not have control over it. Note,

however, that the heuristic is valid only after a large enough

number of test runs.

After the analysis, we collect a list of safe conditional

branches (whitelist). The safety criteria is defined by the user

of SpecFuzz. In our experiments, the criteria were: (i) the

branch was executed at least 100 times; (ii) it never triggered

a non-benign vulnerability. The criteria for defining whether

a vulnerability is benign could be controlled too. In our

experiments, they were: (i) the vulnerability was triggered at

least 100 times; (ii) the vulnerability is uncontrolled. In the

future, additional criteria could be added to reduce the rate of

false positives.

The resulting whitelist is a plaint-text file with a list of

corresponding code location, which we get based on accom-

panying DWARF debugging symbols.

5.4 Patching

Finally, we pass the whitelist created at the analysis stage to a

tool that would harden those parts of the application that are

not in the list. We opted for this approach (in contrast to di-

rectly patching the detected vulnerabilities) because it ensures

that we do not leave the non-tested parts of the application

vulnerable.

In our experiments, we used two hardening techniques:

adding serializing instructions (LFENCEs) and adding data

dependencies (SLH [3]).

LFENCE Pass. The simplest method of patching a BCB

vulnerability is to add an LFENCE—a serializing instruction in

Intel x86 architecture that prevents [12] speculation beyond it.

Adding an LFENCE after a conditional branch ensures that the

speculative out-of-bounds access will not happen. We used

an LLVM pass (shipped as a part of SLH) that instruments all

conditional branches with this technique and modified it to

accept the whitelist.

Speculative Load Hardening (SLH). An alternative mecha-

nism is to introduce a data dependency between a conditional

branch and the memory accesses that follow it. This mecha-

nism is implemented in another LLVM pass called SLH. We

similarly modified the pass to accept the whitelist.

5.5 Investigating Vulnerabilities

Often, it is necessary to go beyond automated analysis and in-

vestigate the vulnerabilities manually. For example, this may

be required for penetration testing, for weeding out false posi-

tives, or for creating minimal patches where the performance

cost of automated instrumentation is not acceptable.

MSVC RH Scanner Spectector SpecFuzz Total

7 12 15 15 15

Table 2: BCB variants detected by different tools.

To facilitate the analysis, SpecFuzz reports all the informa-

tion gathered during fuzzing. For vulnerabilities, this informa-

tion includes: all accessed invalid addresses and their distance

to nearby valid objects (when available); all sequences of mis-

predicted branches that triggered the vulnerability; the order

(i.e., the minimal number of mispredictions that can trigger

it); the code location of the fault (based on debug symbols);

whether different inputs triggered accesses to different ad-

dresses (controllability); the execution count. For branches,

the SpecFuzz reports: which vulnerabilities this branch can

trigger; the code location of the branch; its execution count

(how many unique inputs covered this branch).

SpecFuzz also stores the inputs that triggered the vulnera-

bilities, which could later be used as test cases.

Finally, when the gathered information is not sufficient,

SpecFuzz can instrument a subset of branches instead of the

whole application. This way, we can quickly re-fuzz the lo-

cations of interest because such targeted simulation normally

runs at close-to-native speed.

6 Evaluation

In this section, we focus on the following questions:

• How effective is SpecFuzz at detecting BCB?

• How many vulnerabilities does it find compared to the

existing static analysis tools?

• How much performance does SpecFuzz recover over

conservative instrumentation of all the branches?

Applications. We use SpecFuzz to examine six popular li-

braries: a cryptographic library (OpenSSL [2] v3.0.0, server

driver), a compression algorithm (Brotli [6] v1.0.7), and

four parsing libraries, JSON (JSMN [7] v1.1.0), HTTP [10]

(v2.9.2), libHTP [8] (v0.5.30), and libYAML [9] (v0.2.2). We

chose them because they directly process unsanitized input

from the network, potentially giving an attacker the opportu-

nity to control memory accesses within the libraries, which

together with BCB enables random read access to victim’s

memory by the attacker.

Other tools. To put the results into a context, we compare

SpecFuzz against two existing mitigation and detection tools:

• RedHat Scanner [17]: Spectre V1 Scanner, a static anal-

ysis tool from RedHat.

• Respectre [27]: a static analysis tool from GRSecurity.

Tested only on libHTP as we did not have a direct access

to the tool.

JSMN Brotli HTTP libHTP YAML SSL

Native 370 392 463 251 457 84

SpecFuzz 2.8 6.6 20.4 2.4 5 0.15

Table 3: Average number of fuzzing iterations executed by

native version and by SpecFuzz simulation per hour, in thou-

sands.

As a baseline we use LFENCE instrumentation and Specu-

lative Load Hardening (SLH) [3] (shipped with Clang 7.0.1)

described in §5.4.

In §6.1, we additionally tested the /Qspectre pass of

MSVC [41] (v19.23.28106.4) and a symbolic execution tool

Spectector [24] (commit 839bec7). Due to low effectiveness,

we did not perform further experiments with MSVC. As of

Spectector, we report results only for microbenchmarks be-

cause larger libraries (Brotli, HTTP, JSMN) exhibited large

number of unsupported instructions.

Testbed. We use a 4-core (8 hyper-threads) Intel Core i7

3.4 GHz Skylake CPU, 32 KB L1 and 256 KB L2 private

caches, 8 MB L3 shared cache, and 32 GB of RAM, running

Linux kernel 4.16.

6.1 Detection of BCB Gadgets

We tested 15 BCB gadgets by Paul Kocher [32]. They were

originally designed to illustrate the shortcomings of the BCB

mitigation mechanism in MSVC [41]. While the suite is not

exhaustive, this is a plausible microbenchmark for the basic

detection capabilities.

Table 2 shows the results. SpecFuzz and Spectector ex-

pose all speculative out-of-bounds accesses. MSVC and Red-

Hat Scanner rely on pattern matching and overlook a few

cases.

6.2 Fuzzing Results

To see how effective SpecFuzz is at detecting vulnerabilities

in the wild, we instrumented the libraries with SpecFuzz

configured for prioritized simulation (§4.2) and fuzzed them

for varying duration of time: 1, 2, 4, 8, 16, and 32 hours (63

hours in total). We used one machine and fuzzed on a single

thread. Every next round used the input corpus generated

by the previous ones. The initial input corpus was created

by fuzzing the native versions of the libraries for an hour.

Where available, we also added the test inputs shipped with

the libraries.

Fuzzing iterations. Over the experiment, the average rate of

fuzzing was as presented in Table 3. Compared to native, non-

instrumented version, SpecFuzz is definitely much slower.

Yet, the rate is still acceptable: For example, we managed to

test over 400’000 inputs within 63 hours of fuzzing Brotli.

JSMN Brotli HTTP libHTP YAML SSL

Native 96.6 84.1 64.1 60.6 63.9 24.0

SpecFuzz 96.6 84.1 63.5 60.6 63.3 24.0

Table 4: The highest reached coverage of the libraries. In

percent, out of all branches.

Duration JSMN Brotli HTTP libHTP YAML SSL

1 hr. 20 96 16 322 175 1940

2 hr. 20 101 16 330 202 1997

4 hr. 20 104 16 332 211 2060

8 hr. 20 106 16 334 230 2104

16 hr. 20 108 16 337 244 2139

32 hr. 20 108 16 344 251 2155

Table 5: Total number of detected vulnerabilities in each

experiment.

Coverage. The final coverage of the libraries is shown in

Table 4. The presented numbers are branch coverages; that is,

which portion of all branches in the libraries was tested during

the fuzzing. We show only the final number (i.e., after 63

hours of fuzzing) because we started with an already extensive

input corpus and the coverage was almost not changing across

the experiments. The largest difference was in OpenSSL

compiled with SpecFuzz, where after one hour the coverage

was 22.9% and, in the end, it reached 24%.

The difference between the native and the SpecFuzz ver-

sions is caused by our handling of callbacks. As discussed in

§4.3, we globally disable the simulation before calling non-

instrumented functions. Hence, some parts of the application

are left untested. However, it affects only performance, not se-

curity – the untested branches remain protected by exhaustive

instrumentation.

Detected Vulnerabilities. The total numbers of vulnerabili-

ties detected in each experiment is presented in Table 5. There

is a vast difference between the results, ranging from thou-

sands of violations detected in OpenSSL to only 16 found in

the HTTP parser. The main factor is the code size: OpenSSL

has ~330000 LoC while HTTP has fewer than 2000 LoC.

Vulnerability types. For most of the vulnerabilities, however,

we did not observe any correlation between the input and

the accessed address, which puts them into the category of

uncontrolled vulnerabilities (see §5.3). The results of the

analysis are in Table 6. Note that we marked the violations

as uncontrolled only if they were triggered by at least 100

different inputs. Those under the threshold are in the row

unknown. SpecFuzz also detected several cases where the

vulnerability corrupted a code pointer (code).

Vulnerability orders. Finally, Table 7 shows a distribution

of the detected vulnerabilities by order. As we can see, priori-

tized simulation successfully managed to surface the vulnera-

bilities up to the 6th order.

Type JSMN Brotli HTTP libHTP YAML SSL

code 0 2 1 2 3 16

cont. 16 68 9 91 140 589

uncont. 34 36 6 222 49 1127

unknown 0 4 0 29 59 423

Table 6: Breakdown of the detected vulnerabilities by type.

Here, code are speculative corruptions of code pointers (e.g.,

of a return address) and the rest are corruptions of data point-

ers. Cont. are controlled vulnerabilities and uncont. are un-

controlled. Unknown are likely uncontrolled vulnerabilities,

but they were triggered too few times (less than 100 times).

Order JSMN Brotli HTTP libHTP YAML SSL

1 6 79 6 232 97 1344

2 7 9 4 66 81 428

3 5 14 3 33 33 216

4 2 4 3 5 28 91

5 0 2 0 6 6 55

6 0 0 0 2 6 21

7 0 0 0 0 0 0

Table 7: Breakdown (by order) of the detected vulnerabilities.

6.3 Performance Impact

We used the whitelists produced in the previous experiment to

patch the libraries with LFENCEs and with a modified version

of Speculative Load Hardening (see §5.4). Specifically, we

used two whitelists for every library: a list based on all out-of-

bounds accesses detected by SpecFuzz and a list that excludes

uncontrolled vulnerabilities.

Table 8 shows the shares of the branches that were not

instrumented because of whitelisting (out of the total number

of branches in the application). Naturally, the shares directly

correlate with the fuzzing coverage and with the number of

detected vulnerabilities. If the coverage is large, the whitelist-

ing proves to be very effective: In JSMN, SpecFuzz reduced

the necessary instrumentation by ~77%.

Based on these builds, we evaluated the performance im-

pact of the patches. For the measurements, we used bench-

marks included in the libraries, where available; Otherwise,

we used example applications. As such, we executed: the

speed benchmark in OpenSSL (specifically, RSA, DSA,

and ECDSA ciphers); unbrotli in Brotli; bench in HTTP;

test_bench in libHTP; run-loader in libYAML; and a

sample parser in JSMN.

The results are presented in Figure 7. For clarity, Table 9

shows the same results but interpreted as a speedup of a

whitelisted patch compared to full hardening. As we can

see, the overhead is considerably reduced. The performance

cost was, on average, reduced by 23% for SLH and by 29%

for LFENCE.

An overall tendency is the higher the coverage of fuzzing,

JSMN Brotli HTTP libHTP libYAML OpenSSL
RSA

OpenSSL
DSA

OpenSSL
ECDSA

mean
1.00

2.00

4.00

8.00

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e
(w

.r
.t
.
n

a
ti
v
e

)

11.3 11.7

LFENCE LFENCE+SF(all) LFENCE+SF(cont) SLH SLH+SF(all) SLH+SF(cont)

Figure 7: Performance overheads of hardening (Lower is better). +SF(all) means that we patched all detected out-of-bounds

accesses, regardless of the type; +SF(cont) means that we did not patch uncontrolled vulnerabilities that were triggered at least

100 times.

JSMN Brotli HTTP libHTP YAML SSL

SLH (all) 65% 48% 44% 41% 26% 15%

SLH (c,100) 69% 49% 44% 50% 27% 16%

SLH (c,10) 69% 49% 44% 51% 37% 18%

LFENCE (all) 73% 50% 56% 43% 27% 16%

LFENCE (c,100) 77% 51% 56% 52% 28% 18%

LFENCE (c,10) 77% 51% 56% 53% 39% 20%

Table 8: Shares of branches that avoided instrumentation

based on the results of fuzzing. All means that we patched all

detected out-of-bounds accesses, regardless of the type; c,100

means that we did not patch uncontrolled vulnerabilities that

were triggered at least 100 times, and c,10—uncontrolled that

were triggered at least 10 times.

the lower the overhead becomes. It stems from our bench-

marks executing some of the code paths that could not be

reached by the fuzzing drivers.

Another parameter is the number and the location of de-

tected vulnerabilities. In ECDSA, SpecFuzz detected vulnera-

bilities on the hot path and, hence, we were not able to remove

instrumentation from the places where it caused the highest

performance overhead. SpecFuzz was also not effective at

improving the LFENCE instrumentation of OpenSSL because

it detected speculative bounds violations in the bignum func-

tions that are located on the hot path.

A major reasons for relatively high overheads is an issue

with debug symbols that we encountered in LLVM. Some-

times, the debug symbols of the same code location would

mismatch between compilations with different flags or would

be completely absent for some instructions. Accordingly,

some of the whitelisted locations would still be hardened.

Note that this bug only impacts the performance, not the se-

curity guarantees. Nevertheless, when the issue is resolved,

the overheads are likely to get lower.

One interesting example is JSMN, which experienced 5x

slowdown with SLH and 11x with the LFENCE instrumenta-

tion. It is caused by an extremely high density of branches

in the application (approximately one branch executed every

cycle) and, thus, high reliance on branch prediction to effi-

SLH LFENCE

+SF(all) +SF(cont) +SF(all) +SF(cont)

JSMN 233% 234% 131% 132%

Brotli 20% 22% 66% 67%

HTTP 34% 34% 243% 242%

libHTP 15% 15% 40% 52%

YAML 30% 33% 93% 110%

RSA 17% 19% 2% 2%

DSA 13% 14% 8% 9%

ECDSA 5% 5% 2% 2%

Table 9: Performance improvement of SpecFuzz-based

patches compared to full hardening. +SF(all) means that

we patched all detected out-of-bounds accesses, regardless of

the type; +SF(cont) means that we did not patch uncontrolled

vulnerabilities that were triggered at least 100 times.

ciently utilize instruction parallelism. Complete hardening

effectively disables this optimization and makes the execu-

tion much more sequential. At the same time, SpecFuzz

found very few vulnerabilities in JSMN and had high cover-

age (96%). Hence, the patches improved the performance by

230% (LFENCE) and 130% (SLH)

6.4 Comparison with Other Tools

Spectre Scanner. For comparison, we also tested the libraries

with RedHat Scanner (Table 10). Although it detected fewer

vulnerabilities than SpecFuzz, it found many vulnerabilities

that SpecFuzz did not (second row). The reason behind it

is almost all of them were located in the parts of code not

covered during fuzzing. There were only two exceptions (row

three), but both turned out to be false positives. (Because

of the overwhelming amount of data, we did not investigate

which share of the second row were false positives).

Respectre. Thanks to a cooperation with GRSecurity, we

were able to also compare our results to a commercial static

analysis tool Respectre [27]. As a test case we selected lib-

HTP. In total, Respectre detected 167 vulnerabilities, out

of which SpecFuzz found 79. Similarly to the previous ex-

Order JSMN Brotli HTTP libHTP YAML SSL

Both 1 6 1 78 3 992

RHS 0 4 3 36 3 601

RHS/covered 0 (1) 0 0 0 (1)

Table 10: Vulnerabilities detected by SpecFuzz and RH Scan-

ner. The first row are the vulnerabilities detected by both

tools; the second—only by RH Scanner; the third row are the

vulnerabilities detected only by RH Scanner and located on

the paths covered during our fuzzing experiments.

periment, the other 88 are located in the parts of libHTP not

covered by fuzzing.

SpecFuzz was able to detect more vulnerabilities due to its

more generic nature: For example, it can detect vulnerabilities

that span multiple functions. On the other hand, Respectre is

not confined by coverage and it can detect vulnerabilities in

the parts of the application that cannot be reached by fuzzing.

6.5 Case Studies

In this section, we present a detailed overview of three poten-

tial vulnerabilities found by SpecFuzz. Note that we did not

test them in practice.

Speculative Overflow in libHTP base64 decoder. One

of the utility functions that libHTP provides is base64

decoder, which is used to receive user data or param-

eters that may be sent in text format. This function-

ality is implemented in function htp_base64_decode,

which calls function base64_decode_single in a loop.

base64_decode_single decodes a Base64 encoded sym-

bol by looking it up in a table of precomputed values (array

decoding, lines 2–3). Before fetching the decoded symbol,

the function checks the value for over- and underflows. The

attacker can bypass the check by training the branch predictor

and, thus, trigger a speculative overread at line 7.

Two properties make this vulnerability realistically ex-

ploitable. First, the attacker has control over the accessed

address because the array index (value_in) is a part of the

HTTP request. Second, the fetched value is further used for

defining the control flow of the program (see the comparison

at line 16), which allows the attacker to infer a part of the

value (specifically, its sign) by observing the cache state.

The attacker could execute the attack as follows. She begins

by sending a probing message to find out which cache line

the first element of the array decoding uses. Then, she sends

a valid message to train the branch predictor on predicting

the bounds check (line 5) as true. Finally, she resets the

cache state (e.g., flushes the cache) and sends a message that

contains a symbol that triggers an overread, followed by a

symbol that triggers a read from the first array element. If

the read value is negative, the loop will do one more iteration,

execute the second read, and the attacker will see a change in

1 int base64_decode_single(signed char value_in) {

2 static signed char decoding[] =

3 {62, -1, ...}; // 80 elements

4 value_in -= 43;

5 if ((value_in < 0) || (value_in > decoding_size - 1))

6 return -1;

7 return decoding[(int) value_in];

8 }

9 ...

10 int htp_base64_decode(const void *code_in, ...) {

11 signed char fragment;

12 ...

13 do {

14 ...

15 fragment = base64_decode_single(*code_in++);

16 } while (fragment < 0);

17 ...}

Figure 8: A BCB vulnerability in a Base64 decoding function.

the state of the corresponding cache line. Otherwise, the loop

will be terminated and the state will not change.

Speculative Overflow in OpenSSL ASN1 decoding. An-

other vulnerability is in OpenSSL ASN1 decoder. It is used

to decode, for example, certificates that clients send to the

server.

The attacker sends malicious ASN1 data to the victim.

The victim uses asn_∗_d2i family of functions to parse the

message. One of the functions is asn1_item_embed_d2i,

which, among others, decodes components of type MSTRING,

verifying its tag in the process. The tag of the mes-

sage is extracted through a call to asn1_check_tlen func-

tion, which delegates this calculation to ASN1_get_object.

asn1_check_tlen verifies if the received tag matches the

expected one (lines 22 and 23), however a misspecula-

tion on any of these lines can nullify this check. Later,

asn1_item_embed_d2i calls ASN1_tag2bit on the decoded

tag value. If misspeculation happens in this function as well

(line 4), the array tag2bit will be indexed with a potentially

unbounded 4-byte integer. Later, this value is used to derive

the control flow of the application (line 14), which may be

used to leak user information.

Jump address corruption in OpenSSL ASN1. SpecFuzz

detected a vulnerability that may speculatively change the

control flow of the program in asn1_ex_i2c. This function

includes a switch statement with a tight range of values. Such

switches are often compiled as jump tables (if this optimiza-

tion is not disabled explicitly).

A misprediction in the switch statement may cause an out-

of-bounds read from the jump table. Accordingly, a later

indirect jump would dereference a corrupted code pointer

and the program will jump into a wrong location. In our

experiments, we saw it jumping into the functions that were

nearby in the binary (e.g., into asn1_primitive_free), but,

with careful manipulation of the object and data layouts, this

may be extended to a speculative ROP attack.

1 const unsigned long tag2bit[32] = {...};

2 unsigned long ASN1_tag2bit(int tag) {

3 // misspeculation required

4 if ((tag < 0) || (tag > 30)) return 0;

5 return tag2bit[tag];

6 }

7 int asn1_item_embed_d2i(ASN1_VALUE **pval, ...) {

8 int otag;

9 ...

10 switch (it->itype) {

11 case ASN1_ITYPE_MSTRING:

12 ret = asn1_check_tlen(..., &otag, ...);

13 ...

14 if (!(ASN1_tag2bit(otag) & it->utype)) {...}

15 }

16 }

17 int asn1_check_tlen(..., int *otag, int expclass) {

18 ...

19 // decodes the ptag from message

20 i = ASN1_get_object(..., &ptag);

21 ...

22 if (exptag >= 0) {

23 if ((exptag != ptag) || (expclass != pclass)) {

24 // misspeculation required

25 ...

Figure 9: A BCB vulnerability in a ASN1 decoding function.

7 Other Spectre Attacks

Bounds Check Bypass is not the only type of speculative

vulnerabilities that could be detected by speculative exposure.

Below we give an overview of instrumentation that can be

used for other Spectre-type attacks.

Branch Target Injection [33] is a Spectre variant targeting

speculation at indirect jumps. When an indirect jump instruc-

tion is executed, the CPU speculates the jump target using the

branch predictor without waiting for the actual target address

computation to finish. The attacker can exploit this behavior

by training the branch predictor to execute a jump to a code

snippet that would leak program data via a side channel.

SpecFuzz could be modified to simulate BTI by maintain-

ing a software history buffer for every indirect branch in the

application. Then, at an indirect branch, SpecFuzz would (i)

record the current branch target into the history buffer and (ii)

run a simulation for every previously recorded target. This

approach works, however, only under the assumption that

attacker can train the branch predictor only by providing data

to the application and cannot inject arbitrary targets into the

branch predictor’s history buffer from another application on

the same core.

Return Address Misprediction [34,39] attack is a variant of

Branch Target Injection. The CPU maintains a small number

of most recently used return addresses in a dedicated cache,

pushing the return address into this cache on each call instruc-

tion and popping it from the cache on each return instruction.

When this cache becomes empty, the CPU will speculate the

return address using the indirect Branch Target Buffer. To sim-

ulate this vulnerability, SpecFuzz could instrument call and

return instructions to, correspondingly, increment and decre-

ment a counter, jumping to an address from history buffer on

return addresses with negative or zero counter value. This

simulation should be combined with the previous one as the

return address prediction could fall back to indirect branch

target prediction.

Speculative Store Bypass. [22] is a microarchitectural vul-

nerability caused by CPU ignoring the potential dependencies

between load and store instructions during speculation. When

a store operation is delayed, a subsequent load from the same

address may speculatively reuse the old value from the cache.

To simulate this attack, SpecFuzz could be extended to start

a simulation before every write to memory. Then, SpecFuzz

would skip the store during the simulation, but execute it after

the rollback.

8 Limitations

In this section, we discuss the conceptual problems we have

discovered while developing SpecFuzz as well as potential

solutions to them.

Reducing the Complexity of Nested Simulation. As we dis-

cussed in §4.2, complete nested simulation is too expensive

and limiting the order of simulation may lead to false nega-

tives. One way we could resolve this problem is by statically

analyzing the program before fuzzing it, such that the typical

vulnerable patterns as well as typical false positives would be

purged from the simulation, thus reducing its cost.

False Negatives. SpecFuzz will not find a vulnerability if

the fuzzer does not generate an input that would trigger it.

Unfortunately, it is an inherent problem of fuzzing.

Fuzzing Driver. Another inherent issue of all fuzzing tech-

niques is their coverage. As we saw in §6, it highly depends

on the fuzzing driver and a bad driver may severely limit the

reach of testing. Since we use whitelist-based patching, low

coverage may cause high performance overhead in patched

applications. It could be improved by applying tools that

generate drivers automatically, such as FUDGE [14].

Mislabeling. During the evaluation, we discovered that our

vulnerability analysis technique (see §2.2) sometimes gives a

false result and mistakenly labels an uncontrolled vulnerabil-

ity as a controlled one. It happens because AddressSanitizer

reports only the accessed address and not the distance between

the address and the referent object (i.e., offset). Therefore,

if the object size differs among the test runs, the accessed

address will also be different, even if the offset is the same.

For example, one common case of mislabeling is off-by-

one accesses. If an array is read in a loop, our simulation

will force the loop to take a few additional iterations and read

a few elements beyond the array’s bounds. If the array size

differs from one test run to another, the analysis would mark

this vulnerability as controllable.

To avoid this issue, we could use a more complete mem-

ory safety technique (e.g., Intel MPX [12]) that maintains

metadata about referent objects. Unfortunately, none of such

techniques is supported by LLVM out-of-the-box. To resolve

this issue, we would have to implement MPX support or mi-

grate SpecFuzz to another compiler.

An even better solution would be to use a program analysis

technique (e.g., taint analysis or symbolic execution) to verify

the attacker’s control. We leave it to future work.

Legacy Code and Callbacks. Because we implemented

SpecFuzz as a compiler pass, it cannot run the simulation

in non-instrumented parts of the application (e.g., in system

libraries) as well as in the calls from these parts (callbacks).

To overcome this problem, we could have implemented Spec-

Fuzz as a binary instrumentation tool (e.g., with PIN [38]).

Yet, techniques of this type are normally heavy-weight and it

would considerably increase the required fuzzing time.

9 Related Work

The most conservative solution to Spectre-type attacks is to

disable prediction entirely [4] (although not all processors

support it) or on a targeted basis, with serializing instructions

(e.g., LFENCE on Intel CPUs or DSBSY on ARM). Speculation

can also be delayed by adding a data dependency, as imple-

mented in SLH [3] and YSNB [44]). As we saw in §6, it

causes a considerable slowdown.

Static analysis is often used to detect the Spectre-type vul-

nerabilities and avoid the high performance cost of full hard-

ening. Tools like Spectre 1 Scanner [17], MSVC Spectre 1

pass [41], and Respectre [27] analyze the binary and search for

Spectre gadgets. Although mature tools like Respectre can de-

tect many vulnerabilities (see §6), the reliance on predefined

patterns may leave an unexpected variant to stay unnoticed.

Alternatively, oo7 [59] relies on static taint analysis to

detect the memory accesses that are dependent on the program

input. (This is the same criteria that we used to identify

uncontrolled vulnerabilities.) This approach is more universal

than the pattern-matching techniques, but it is affected by the

inherent problems of static taint analysis. Namely, limited

analysis depth may cause false positives and overtainting

causes false negatives.

Tools like Spectector [24], Pitchfork [19], and

SpecuSym [25] apply symbolic execution to detect

Spectre-type vulnerabilities. Although they often provide

stronger security guarantees compared to fuzzing, an inherent

problem of symbolic execution is combinatorial explosion,

which is further exacerbated by nested speculation.

A long-term solution to the problem lays in modifications

to the hardware. InvisiSpec [61] and SafeSpec [30] propose

separate hardware modules dedicated to speculation. Cleanup-

Spec [46] cleanses the cache traces when a misprediction is

detected. NDA [60] restricts speculation to only “safe” paths.

Context-Sensitive Fencing [55] inserts serialization barriers

at decoding stage upon detecting a potentially dangerous in-

struction pattern. ConTExT [47] proposes an extension to the

memory management mechanism that isolates safety-critical

data. These techniques, however, do not protect the existing

processors vulnerable to Spectre-type attacks.

Classical memory safety techniques (e.g., Intel MPX [12],

SoftBound [42]) do not protect from BCB, but can be

retrofitted to disable speculative accesses. A variant of it—

index masking—is now used in JavaScript engines [58] where,

before accessing an array element, the index is masked with

the array size. As it is an arithmetic operation, it does not

create a control hazard and is not predicted by the CPU. How-

ever, this defense is vulnerable to the attacks where the data

type is mispredicted and a wrong mask is used [26].

Another approach is to eliminate the possibility of leaking

speculative results through a side channel (SC). There is an

extensive body of research in this direction, ranging from

cache isolation [31, 54], to attack detection [23], enforcing

non-interrupted execution [43, 57], and cache coloring [52].

Yet, they protect only against specific SC and speculative

attacks may use various channels [48]. A relatively complete

isolation can be achieved with a specialized microkernel [20],

but it requires a complete system redesign.

In practice, browsers mitigate SCs by reducing the reso-

lution of timers [58], disabling shared memory or using site

isolation [45]. These techniques prevent only cross-site at-

tacks, and are not effective at the presence of a local attacker.

10 Conclusion

We presented a technique to make speculative execution

vulnerabilities visible by simulating them in software. We

demonstrated the technique by implementing a Bounds Check

Bypass detection tool called SpecFuzz. During the evaluation,

the tool has proven to be more effective at finding vulnerabil-

ities than the available static analysis tools and the patches

produced based on the fuzzing results had better performance

than conservative hardening techniques.

Yet, this work is only a first attempt at applying dynamic

testing techniques to detection of speculative execution vul-

nerabilities. We hope that it will show the promise of this

research direction and will help pave the way for future, even

more efficient vulnerability detection tools.

Availability. Source code of SpecFuzz is publicly available

under https://github.com/tudinfse/SpecFuzz.

Acknowledgments. This work was funded by the Federal

Ministry of Education and Research of the Federal Republic

of Germany (03ZZ0517A, FastCloud); the EU H2020 Pro-

gramme under the LEGaTO Project (legato-project.eu), grant

agreement No. 780681; and with support from the Technion

Hiroshi Fujiwara Cybersecurity.

References

[1] Checkpoint/Restore In Userspace. http://criu.org/.

Accessed: March, 2020.

[2] OpenSSL: Cryptography and SSL/TLS Toolkit. https:

//www.openssl.org/. Accessed: March, 2020.

[3] Speculative Load Hardening: A Spectre Variant

1 Mitigation Technique. https://docs.google.

com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_

61e_Ko3TmoCS3uXLcJR0/edit#heading=h.

phdehs44eom6, 2018. Accessed: March, 2020.

[4] SUSE Security update for kernel-firmware.

https://www.suse.com/de-de/support/update/

announcement/2018/suse-su-20180008-1/, 2018.

Accessed: March, 2020.

[5] Honggfuzz. http://honggfuzz.com/, 2019. Ac-

cessed: March, 2020.

[6] Brotli. https://brotli.org/, 2020. Accessed:

March, 2020.

[7] JSMN. https://github.com/zserge/jsmn, 2020.

Accessed: March, 2020.

[8] LibHTP. https://github.com/OISF/libhtp, 2020.

Accessed: March, 2020.

[9] libyaml. https://pyyaml.org/wiki/LibYAML, 2020.

Accessed: March, 2020.

[10] Node.js HTTP parser. https://github.com/

nodejs/http-parser, 2020. Accessed: March, 2020.

[11] Intel Corporation. Intel R© 64 and IA-32 Architectures

Optimization Reference Manual. 2019.

[12] Intel Corporation. Intel R© 64 and IA-32 Architectures

Software Developer’s Manual. 2019.

[13] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srini-

vasan. Checkpoint processing and recovery: Towards

scalable large instruction window processors. In

IEEE/ACM MICRO, 2003.

[14] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo

Ivancic, Tim King, Markus Kusano, Caroline Lemieux,

László Szekeres, and Wei Wang. Fudge: Fuzz driver

generation at scale. In ACM ESEC/FSE, 2019.

[15] Darrell D. Boggs, Shlomit Weiss, and Alan Kyker. U.S.

Patent #6799268: Branch Ordering Buffer, 2004.

[16] Claudio Canella, Jo Van Bulck, Michael Schwarz,

Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank

Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-

tematic Evaluation of Transient Execution Attacks and

Defenses. In USENIX Security, 2019.

[17] Nick Clifton. SPECTRE Variant 1 scanning

tool. https://access.redhat.com/blogs/766093/

posts/3510331, 2018. Accessed: March, 2020.

[18] Intel Corporation. Side Channel Mitigation by Product

CPU Model. https://www.intel.com/content/

www/us/en/architecture-and-technology/

engineering-new-protections-into-hardware.

html, 2020. Accessed: March, 2020.

[19] Craig Disselkoen. Pitchfork: Detecting Spectre vulner-

abilities using symbolic execution. https://github.

com/cdisselkoen/pitchfork. Accessed: March,

2020.

[20] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser.

Time protection: the missing OS abstraction. In Eu-

roSys, 2019.

[21] Google. More details about mitigations for

the CPU Speculative Execution issue. https:

//security.googleblog.com/2018/01/more-

details-about-mitigations-for-cpu_4.html,

2018. Accessed: March, 2020.

[22] Project Zero Google. Speculative Execution, Variant 4:

Speculative Store Bypass. https://bugs.chromium.

org/p/project-zero/issues/detail?id=1528,

2018. Accessed: March, 2020.

[23] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohri-

menko, Istvan Haller, and Manuel Costa. Strong and Ef-

ficient Cache Side-Channel Protection using Hardware

Transactional Memory. In USENIX Security, 2017.

[24] Marco Guarnieri, Boris Kopf, Jose F. Morales, Jan

Reineke, and Andres Sanchez. SPECTECTOR: Princi-

pled Detection of Speculative Information Flows. arXiv

preprint arXiv:1812.08639, 2018.

[25] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng,

Huibo Wang, Meng Wu, and Zhiqiang Zuo. SpecuSym:

Speculative Symbolic Execution for Cache Timing Leak

Detection. arXiv preprint arXiv:1911.00507, 2019.

[26] Noam Hadad and Jonathan Afek. Over-

coming (some) Spectre browser mitigations.

https://alephsecurity.com/2018/06/26/

spectre-browser-query-cache/, 2018. Ac-

cessed: March, 2020.

[27] Open Source Security Inc. Respectre: The State of the

Art in Spectre Defenses. https://www.grsecurity.

net/respectre_announce.php, 2018. Accessed:

March, 2020.

[28] Intel Corporation. Analysis of Speculative Execution

Side Channels. White Paper, 2018.

[29] Reinders James. Intel Process Trace.

https://software.intel.com/en-us/blogs/

2013/09/18/processor-tracing, 2013. Accessed:

March, 2020.

[30] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-

ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry

Ponomarev, and Nael B. Abu - Ghazaleh. SafeSpec:

Banishing the Spectre of a Meltdown with Leakage-Free

Speculation. In ACM/IEEE DAC, 2019.

[31] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,

Srinivas Devadas, and Joel Emer. DAWG : A defense

against cache timing attacks in speculative execution

processors. In IEEE/ACM MICRO, 2018.

[32] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++

Compiler. https://www.paulkocher.com/doc/

MicrosoftCompilerSpectreMitigation.html,

2018. Accessed: March, 2020.

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting

Speculative Execution. In IEEE S&P, 2019.

[34] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-

sawneh, Chengyu Song, and Nael B. Abu - Ghazaleh.

Spectre Returns! Speculation Attacks using the Return

Stack Buffer. In USENIX WOOT, 2018.

[35] Chris Lattner and Vikram Adve. LLVM: A Compi-

lation Framework for Lifelong Program Analysis and

Transformation. In IEEE/ACM CGO, 2004.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

and Mike Hamburg. Meltdown: Reading Kernel Mem-

ory from User Space. In USENIX Security, 2018.

[37] LLVM. LLVM SanitizerCoverage. https://clang.

llvm.org/docs/SanitizerCoverage.html. Ac-

cessed: March, 2020.

[38] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish

Patil, Artur Klauser, Geoff Lowney, Steven Wallace,

Vijay Janapa Reddi, and Kim Hazelwood. PIN : build-

ing customized program analysis tools with dynamic

instrumentation. In ACM Sigplan Notices, 2005.

[39] Giorgi Maisuradze and Christian Rossow. ret2spec:

Speculative Execution Using Return Stack Buffers. In

ACM CCS, 2018.

[40] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L.

Titzer, and Toon Verwaest. Spectre is here to stay:

An analysis of side-channels and speculative execution.

arXiv preprint arXiv:1902.05178, 2019.

[41] Microsoft. MSVC compiler reference: /Qspec-

tre. https://docs.microsoft.com/en-us/cpp/

build/reference/qspectre?view=vs-2019, 2018.

Accessed: March, 2020.

[42] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,

and Steve Zdancewic. SoftBound: Highly Compatible

and Complete Spatial Memory Safety for C. In ACM

PLDI, 2009.

[43] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre

Martin, Mark Silberstein, and Christof Fetzer. Varys:

Protecting SGX Enclaves from Practical Side-Channel

Attacks. In USENIX ATC, 2018.

[44] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark

Silberstein, and Christof Fetzer. You Shall Not Bypass:

Employing data dependencies to prevent bounds check

bypass. arXiv preprint arXiv:1805.08506, 2018.

[45] The Chromium Projects. Site Isolation.

http://www.chromium.org/Home/chromium-

security/site-isolation, 2018. Accessed: March,

2020.

[46] Gururaj Saileshwar and Moinuddin K. Qureshi.

CleanupSpec: An Undo Approach to Safe Speculation.

In IEEE/ACM MICRO, 2019.

[47] Michael Schwarz, Robert Schilling, Florian Kargl,

Moritz Lipp, Claudio Canella, and Daniel Gruss. Con-

TExT: Leakage-Free Transient Execution. arXiv

preprint arXiv:1905.09100v1, 2019.

[48] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon

Masters, and Daniel Gruss. NetSpectre: Read Arbitrary

Memory over Network. In ESORICS, 2019.

[49] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: a

fast address sanity checker. In USENIX ATC, 2012.

[50] Kostya Serebryany. OSS-Fuzz - Google’s continuous

fuzzing service for open source software. In USENIX

Security, 2017.

[51] Hovav Shacham. The geometry of innocent flesh on the

bone: Return-into-Libc without function calls (on the

X86). In CCS, 2007.

[52] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang.

Limiting cache-based side-channel in multi-tenant cloud

using dynamic page coloring. In IEEE/IFIP DSN-W,

2011.

[53] Mark Silberstein, Oleksii Oleksenko, and Christof

Fetzer. Speculating about speculation: on the

(lack of) security guarantees of Spectre-V1 mitiga-

tions. https://www.sigarch.org/speculating-

about-speculation-on-the-lack-of-security-

guarantees-of-spectre-v1-mitigations/, 2018.

Accessed: March, 2020.

[54] Read Sprabery, Konstantin Evchenko, Abhilash Raj,

Rakesh B. Bobba, Sibin Mohan, and Roy Campbell.

Scheduling, Isolation, and Cache Allocation: A Side-

channel Defense. In IEEE IC2E, 2018.

[55] Mohammadkazem Taram and Dean Tullsen. Context-

Sensitive Fencing: Securing Speculative Execution via

Microcode Customization. In ACM ASPLOS, 2019.

[56] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Ef-

ficient Cache Attacks on AES, and Countermeasures.

Journal of Cryptology, 2010.

[57] Venkatanathan Varadarajan, Thomas Ristenpart, and

Michael Swift. Scheduler-based Defenses against Cross-

VM Side-channels. In USENIX Security, 2014.

[58] Luke Wagner. Mozilla Security Blog: Miti-

gations landing for new class of timing attack.

https://blog.mozilla.org/security/2018/01/

03/mitigations-landing-new-class-timing-

attack/, 2018. Accessed: March, 2020.

[59] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotov-

chits, Tulika Mitra, and Abhik Roychoudhury. oo7:

Low-overhead Defense against Spectre Attacks. arXiv

preprint arXiv:1807.05843, 2018.

[60] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F.

Wenisch, and Baris Kasikci. NDA: Preventing Specula-

tive Execution Attacks at Their Source. In IEEE/ACM

MICRO, 2019.

[61] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam

Morrison, Christopher W Fletcher, and Josep Torrellas.

InvisiSpec: Making Speculative Execution Invisible in

the Cache Hierarchy. In IEEE/ACM MICRO, 2018.

[62] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD :

A High Resolution, Low Noise, L3 Cache Side-channel

Attack. In USENIX Security, 2014.

[63] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor-

don Fraser, and Christian Holler. Generating Soft-

ware Tests. Saarland University, 2019. Accessed:

March, 2020.

	Introduction
	Background
	Speculative Execution and Attacks
	Fuzzing

	Speculation Exposure
	Components of Speculation Exposure
	Termination conditions

	Nested Speculation Exposure

	SpecFuzz
	Basic Simulation
	Nested Simulation
	Other Implementation Details

	Fuzzing with SpecFuzz
	Coverage and Fuzzing Feedback
	Aggregation of Results
	Vulnerability Analysis
	Patching
	Investigating Vulnerabilities

	Evaluation
	Detection of BCB Gadgets
	Fuzzing Results
	Performance Impact
	Comparison with Other Tools
	Case Studies

	Other Spectre Attacks
	Limitations
	Related Work
	Conclusion

