
ETHBMC: A Bounded Model Checker for Smart Contracts

Joel Frank, Cornelius Aschermann, Thorsten Holz

Ruhr University Bochum

Abstract
The introduction of smart contracts has significantly advanced
the state-of-the-art in cryptocurrencies. Smart contracts are
programs who live on the blockchain, governing the flow of
money. However, the promise of monetary gain has attracted
miscreants, resulting in spectacular hacks which resulted in
the loss of millions worth of currency. In response, several
powerful static analysis tools were developed to address these
problems. We surveyed eight recently proposed static ana-
lyzers for Ethereum smart contracts and found that none of
them captures all relevant features of the Ethereum ecosystem.
For example, we discovered that a precise memory model is
missing and inter-contract analysis is only partially supported.

Based on these insights, we present the design and im-
plementation of ETHBMC, a bounded model checker based
on symbolic execution which provides a precise model of
the Ethereum network. We demonstrate its capabilities in a
series of experiments. First, we compare against the eight
aforementioned tools, showing that even relatively simple toy
examples can obstruct other analyzers. Further proving that
precise modeling is indispensable, we leverage ETHBMC ca-
pabilities for automatic vulnerability scanning.We perform a
large-scale analysis of roughly 2.2 million accounts currently
active on the blockchain and automatically generate 5,905
valid inputs which trigger a vulnerability. From these, 1,989
can destroy a contract at will (so called suicidal contracts)
and the rest can be used by an adversary to arbitrarily extract
money. Finally, we compare our large-scale analysis against
two previous analysis runs, finding significantly more inputs
(22.8%) than previous approaches.

1 Introduction

Cryptocurrencies have gained considerable traction in both
academia and industry since the introduction of Bitcoin in
2008 [42]. The underlying technology, called blockchain, was
originally designed to be a decentralized peer-to-peer payment
protocol without the need for trusted parties [42]. Recently,

this technology also found applications in many different
areas such as supply chain management, asset transfer, or
health care (e.g., [6,38,52,63]). A blockchain is a distributed,
append-only ledger maintained by all participants of the net-
work. The participants run a consensus protocol to append
new data, so called blocks, to the ledger, making transactions
in the network possible.

Smart contracts, programs deployed directly on the
blockchainallow users to encode complex sets of rules on how
and when transactions should happen. For instance, a contract
can transfer funds when a specific event takes place. It is
even possible that multiple contracts are chained together to
express more complicated logic. The idea was first introduced
by Szabo in 1997 [57], but the first real-world implementa-
tion was provided by Ethereum in 2014 [5]. The actual smart
contract is typically written in a high-level language, in the
case of Ethereum most often Solidity [13]. These high-level
languages then get compiled to bytecode which is executed on
a transaction-based state machine [64], the Ethereum Virtual
Machine (EVM).

This offers a great degree of control and the promise
of a multitude of use cases, e.g., state or payment chan-
nels [16, 24, 58], decentralized crypto exchanges [19], and
multi-signature wallets [49]. On the downside, smart con-
tracts suffer from software failures in a similar way as other
kinds of programs do. While in traditional programs this may
“only” lead to a crash, in the world of Ethereum a simple bug
can have more direct—typically financial—consequences. A
good example are the infamous Parity incidents [50, 59]. In
the first event, an attacker exploited a bug in shared library
code to steal over 150,000 worth of Ether, the cryptocurrency
behind the Ethereum blockchain. At the time of the hack,
this was worth around 30M USD. In the second event, the
then-patched library was exploited again, this time rendering
over 514,000 Ether (around 155M USD) inaccessible.

Several proposal have been made to detect software faults
in an automated way. We surveyed 8 of these automated anal-
ysis tools [4,23,33,36,39,41,46,62], both from academia and
industry, and found all of them lacking in at least one category:

(i) inter-contract reasoning, (ii) memory modelling, especially
memcopy-style operations, or (iii) handling of cryptographic
hash functions.

In this paper, we address these shortcomings and present
the design and implementation of ETHBMC, an automated
analysis framework for smart contracts based on a symbolic
executor which employs stronger, more precise reasoning over
EVM internals compared to state-of-the-art tools. ETHBMC
is designed as a bounded model checker, offering the ability to
check predefined models against the smart contract’s code. In
the case a model gets violated, ETHBMC can automatically
generate concrete inputs to ease further analysis (i.e., we gen-
erate a chain of transactions which demonstrates the detected
vulnerability). As a result, ETHBMC is the first method ca-
pable of identifying the Parity vulnerability in a completely
automated way. We are even able to generate a second exploit
not used in the original attack. To demonstrate the capabilities
of our tool, we perform a series of experiments in which we
compare our approach to the surveyed analyzers. Our main in-
sight is that the imprecise analysis of other approaches can be
impeded by even simple toy examples. Continuing, we lever-
age ETHBMC capabilities as an automated way to generate
exploits, scanning all accounts on the Ethereum blockchain
(as of December 2018) generating 5,905 exploits. From these
5,905 exploits, we find that 1,989 could be used to arbitrar-
ily destroy contracts (so called suicidal contracts) and the
remaining ones can be used to extract money. Additionally,
we compare our large-scale analysis with two prior works
on this topic. First, we compare our analysis results against
teEther [33], the state-of-the-art automatic exploit generation
tool. We demonstrate that our approach can find significantly
more exploits (22.8%) in less time, while also identifying
false positives in teEther. Second, we compare against MA-
IAN [46], a concolic executor, which can be used to find
suicidal contracts, and, again find that ETHBMC finds more
exploits. Finally, we perform an ablation study on the tech-
niques ETHBMC introduces to show the improvements in a
qualitative way. We systematically disable its features while
rescanning vulnerable contracts, giving us insights how the
different techniques contribute to the analysis results.

Contributions In summary, we make the following three
contributions in this paper:

• We provide a survey of the current state-of-the-art ana-
lyzers for the Ethereum network, finding all of them to
lack precise reasoning over EVM internals.
• We present the design and implementation of ETHBMC,

a bounded model checker which handles the identified
issues by more precisely reasoning about the internals
of EVM. In particular, we demonstrate that a more pre-
cise analysis can be achieved by analyzing symbolic
memcopy-style operations, inter-contract communica-
tion, and by introducing a new encoding scheme for
precisely reasoning about cryptographic hash functions.

• We implemented a prototype of ETHBMC in 13,000
lines of Rust code and demonstrate its capabilities in
several experiments. More specifically, we compare
ETHBMC against all the previously surveyed tools and
we also perform a large-scale analysis of the entire
blockchain. We show that ETHBMC can be used in
an isolated contract environment to increase analysis
precision for single contracts, but also scales to large
contract analyses where we need to reason about com-
plex interactions of different contracts.

To foster research on smart contract security, the code of
ETHBMC is available at github.com/RUB-SysSec/EthBMC.

2 Background

Before diving into the technical details of our analysis process,
we briefly introduce the required background information on
cryptocurrencies and the Ethereum Virtual Machine (EVM).

2.1 Cryptocurrencies

In 2008, Satoshi Nakamoto introduced Bitcoin and the con-
cept of the blockchain [42], a decentralized ledger running on
a peer-to-peer network. Informally speaking, a blockchain is
a public, append-only ledger that stores all events happening
within the system. The participant run a consensus protocol
which ensures, as long as the majority of the network behaves
honestly, that the ledger is correct and secured [1].

Ethereum can, in many ways, be considered a “Bitcoin 2.0”.
Introduced by Buterin in 2013, it is a cryptocurrency with
a Turing-complete bytecode language to orchestrate value
transfer in the system [64]. The participants in the network are
identified by a 160-bit address, derived from the public part
of an ECDSA asymmetric key pair. These so called accounts
might, in the case of Ethereum, also have code attached to
them. Such accounts are called smart contracts, encoding
complex behaviour as bytecode programs. The users can send
each other money—in the form of Ether—or execute smart
contract code by submitting transactions to the peer-to-peer
network and signing them with their private key, thus proving
the correctness of the transaction. While the length of the
execution of a smart contracts is bounded by a parameter
called gas, i.e., a fee to guarantee that the program eventually
terminates, contracts can achieve quite complex behaviours
by either chaining transactions together or using multiple
contracts to split up the logic.

2.2 Ethereum Virtual Machine

Ethereum defines a special-purpose, stack-based virtual ma-
chine termed the Ethereum Virtual Machine (EVM) to deter-
mine the outcome of a smart contract execution. Ethereum
offers a formal specification in a yellow paper [64] where

https://github.com/RUB-SysSec/EthBMC

the entire inner workings of the EVM are defined. The ma-
chine operates on bytecode where each operand either pops or
pushes values to a data stack, each value having a 256-bit word
size. Additionally, the EVM is augmented with several mech-
anisms tailored towards the cryptocurrency environment.

World State The Ethereum world state is the state of the
overall system. For the remainder of this paper we will refer to
it as the environment. It consists of two parts, a mapping from
account addresses to an account state as well as the current
block information. The account state is a tuple holding several
information, such as the current balance of the account [64].
Additionally, if the account is a smart contract, the account
state also contains the fields code and storage. The code
field holds the smart contract’s code, while the storage is a
persistent memory used for keeping values across multiple
contract invocations.

Memory The EVM differentiates between three different
types of memory:
• Storage: The storage is a persistent key-value store, map-

ping 256-bit keys to 256-bit values.
• Calldata: The data section of a transaction is used to

supply user input to contracts. Note that this is a byte-
addressable data array and immutable during execution.
• Execution Memory: This memory is a volatile byte

array which only persists throughout one execution. It is
used like a heap in classical computer programs, e.g., to
store intermediate results during computation.

This setup creates a Harvard-style architecture with sepa-
rate instruction and data memory. In addition, the EVM offers
memcopy-style operations, e.g., CALLDATACOPY which copies
part of the calldata to execution memory.

2.3 Symbolic Execution and SMT Solving
While the tools we examine in Section 3.3 are based on multi-
ple different program analysis techniques, ETHBMC is based
on symbolic execution, thus we provide a brief introduction.
Symbolic execution was originally designed as a software
testing technique [30], but has since been adopted by the secu-
rity community for program analysis (e.g., [7,8,54]). Instead
of concrete inputs, symbolic execution treats all inputs as sym-
bolic variables, which range over the entire input domain of
the program. Intuitively speaking, for a function f (x), instead
of considering one concrete execution trace, e.g., f (10), sym-
bolic execution considers an symbolic input ϕ. Resulting in
a symbolic function execution f (ϕ), where ϕ is of the entire
input domain, e.g., a 32-bit integer, thus exploring all possible
paths a program can take. When arriving at a branch, e.g.,
an if-statement, execution is forked to explore both possible
paths. To keep the explored state space low, symbolic execu-
tors encode the current state of the program as well as the path
condition (e.g., x <= 3) as a first-order logic formula and use

a Satisfiability Modulo Theory (SMT) solver to check if the
program path is feasible, refraining from further exploring
impossible ones.

SMT formulas are stated in first-order logic, an extension
of propositional logic (also known as boolean logic) which
offers multiple different theories for formulating problems [2].
The most relevant for our work are the theory of arrays [21]
as well as an extension by Falke et al. [17] for addressing
memcopy-like operations. A SMT solver performs proof by
enumeration: it tries to find a satisfying (concrete) assignment
for the constraint system, thus proving it can be solved. When
modeling the execution of a program, this concrete assign-
ments provides an input to the program, which can be used
to reach a given state. When we additionally encode fault
conditions as logical formulas and we find a satisfying assign-
ment for both (i.e., the execution and the fault condition), this
concrete assignment is an input to the program which triggers
the corresponding software fault.

3 Challenges in Analyzing Smart Contracts

We now present our review of current state-of-the-art tools.
We first illustrate common obstacles encountered during an-
alyzing smart contracts by walking through a series of toy
examples. We then expand upon this knowledge and examine
the infamous Parity wallet, as this bug represents a real-world
example where all patterns intertwine. Finally, we present the
systematic review of current state-of-the-art tools, finding that
none of them deals with all obstacles we identified.

3.1 Common Obstacles in Smart Contracts
We first walk through the identified obstacles in toy examples
to better understand the crucial concepts in isolation.

3.1.1 The Keccak256 Function

The EVM offers a specific instruction for computing a kec-
cak hash over a region of execution memory. Solidity-based
smart contracts make intensive use of this instruction when
implementing the mapping data type, essentially a hash table-
like data structure. Moreover, the function can be invoked
by a smart contract developer manually, e.g., to implement
cryptographic protocols like commitment schemes [10].

1 f u n c t i o n s o l v e (uint256 i n p u t) {
2 i f (keccak256 (i n p u t) == 0 x315dd8 . . .)
3 s e l f d e s t r u c t (msg . s e n d e r) ;
4 }
5 }

Listing 1: The direct use of the keccak function.

Listing 1 demonstrates the plain usage of the keccak func-
tion which can be invoked by the keccak256 keyword. A
more “hidden” usage of the function is presented in Listing 2,
where the instruction is used to calculate a memory location.

Remember that the storage of the EVM is word addressable
memory. Fixed size data types have a fixed memory slot al-
located. However, when dealing with dynamic data types,
i.e., types whose size can grow during execution, we do not
know how many memory slots to allocate. Solidity-based
smart contracts resort to calculating the memory offset on the
fly. When writing to the mapping (line 3), the corresponding
memory location gets calculated as keccak256(k ‖ p), where
k is the key to the mapping (map) and p is a constant value
chosen at compile time [14]. Note if one could generate a
valid hash collision utilizing this scheme, prior values would
be overwritten.

1 mapping (u i n t => address) map ;
2 f u n c t i o n c r e a t e U s e r (address addr , u i n t i d) p u b l i c {
3 map [i d] = add r ;
4 }
5 f u n c t i o n d e s t r u c t (u i n t i d) p u b l i c {
6 i f (map [i d] == msg . s e n d e r) {
7 s e l f d e s t r u c t (msg . s e n d e r) ;
8 }
9 }

Listing 2: Using the mapping data. type

3.1.2 Memcopy-like Instructions

The EVM cannot access calldata directly, it can only operate
on data residing within execution memory, i.e., the input data
gets copied. In Listing 3, string is an unbounded data type,
resulting in the EVM utilizing the CALLDATACOPY instruction
to copy the entire input to execution memory. This is in
contrast to data types with a fixed width (e.g., uint256) which
can be accessed with a plain read from calldata.

1 f u n c t i o n s o l v e (s t r i n g i n p u t) {
2 i f (i n p u t [0] == "A" && i n p u t [1] == "B") {
3 s e l f d e s t r u c t (msg . s e n d e r) ;
4 }
5 }

Listing 3: Memcopy-like operation to access input.

3.1.3 Inter-Contract Communication

Ethereum is a decentralized system, offering the ability for
multiple contracts to interact with each another. On the down-
side, these techniques increase complexity of smart contract
systems and might lead to unforeseen (security) consequences.
A simple example is provided in Listing 4. During the exe-
cution of Target, a library contract gets called to simulate a
simple interaction between two contracts.

The need for inter-contract analysis is furthered by a recent
survey by Kiffer et al. [29] on the current contract topology
of Ethereum. They state that most contracts are not deployed
by humans, but rather are created by other contracts, making
these contracts part of intra-contract interactions.

1 c o n t r a c t T a r g e t {
2 L i b r a r y p r i v a t e l i b = 0xAABBCC . . . ;
3 f u n c t i o n s o l v e (uint256 i n p u t) {
4 i f (l i b . r (i n p u t) == 123) {

5 s e l f d e s t r u c t (msg . s e n d e r) ;
6 }
7 }
8 }
9 c o n t r a c t L i b r a r y {

10 f u n c t i o n r (uint256 i n p u t) r e t u r n s (uint256) {
11 re turn i n p u t ;
12 }
13 }

Listing 4: A simple interaction between two contracts.

3.2 The Parity Wallet Bug
Based on these examples, we now examine the original Par-
ity wallet bug as a real-world example where all previous
issues need to be addressed to obtain a comprehensive analy-
sis. While other types of smart contract vulnerabilities were
already studied [4, 29, 36, 46, 62], the question how to detect
the Parity incident in an automated fashion remained an un-
solved challenge. Note that we only present snippets relevant
to this analysis which we simplified for easier reading; a full
source code listing can be found online [49].

1 c o n t r a c t W a l l e t L i b r a r y {
2 address [2 5 6] owners ;
3 mapping (b y t e s => uint256) a p p r o v a l s ;
4 f u n c t i o n c o n f i r m (bytes32 _op) i n t e r n a l bool {
5 /* logic for confirmation */
6 }
7 f u n c t i o n i n i t W a l l e t (address [] _owners) {
8 /* initialize the wallet owners */
9 }

10 f u n c t i o n pay (address to , u i n t amount) {
11 i f (c o n f i r m (keccak256 (msg . d a t a)))
12 t o . t r a n s f e r (amount) ;
13 }
14 }
15 c o n t r a c t W a l l e t {
16 address l i b r a r y = 0xAABB . . . ;
17 // constructor
18 f u n c t i o n W a l l e t (address [] _owners) {
19 l i b r a r y . d e l e g a t e c a l l ("initWallet" , _owners)
20 }
21 f u n c t i o n () payable {
22 l i b r a r y . d e l e g a t e c a l l (msg . d a t a) ;
23 }

Listing 5: A simplified source code from the Parity wallet.

The Parity wallet is split across two contracts, a library
contract holding the majority of the code base and a client
contract deployed by the user. Once deployed, smart contracts
are immutable, as a result, when changing (or fixing) a con-
tract, one has to redeploy and thus repay for the entire contract.
In order to lessen the burden on the user, when splitting up
the logic, only the library has to be redeployed. The EVM
offers the DELEGATECALL instruction, an instruction for us-
ing another account’s code while executing. The instructions
switches the code to be exeuted, while still using the original
account context and storage. Consider Listing 5, assume the
user Alice wants to use the Parity wallet library. She deploys
her client code (line 15-23) with a storage variable containing
the library contract’s account address (line 16). When later
calling her client contract, it delegates the transaction to the
library code (line 22), forwarding the transaction’s calldata

(msg.data). Note that this also implies that if an attacker can
redirect the control flow of a contract to an address of her
liking, they has the ability to arbitrarily execute code (e.g.,
extract all the funds).

Since everyone on the blockchain can call into any contract,
smart contract developers have invented the concept of the
owner, a variable which is usually set during contract creation,
specifying the address of the contract owner. In the case of
the Parity multi-signature wallet, there even exists an array
of owners (line 2) initialized during the creation of the wallet
(line 7-9). Albeit the variable is defined in the library code,
since the execution context resides with the original account,
the variables is set on the client contract.

Analysis Hurdles Besides inter-contract communication,
the Parity wallet utilizes the keccak function, both as a plain
call (line 11) as well as in the mapping data type (line 3).
When hashing the msg.data (line 11), due to its (theoreti-
cally) unlimited size, the entire data gets copied to execution
memory. Thus a static analyzer must be able to reason about
inter-contract communication to analyze the distributed con-
tracts as well as memcopy-like instructions and cryptographic
hash functions to thoroughly analyze the pay function.

The attacker exploited the fact that the initWallet func-
tion was not marked as private. In Solidity, this implies that it
defaults to public, i.e. it is callable by anyone. Thus, the at-
tacker first called the initWallet function, making himself
the owner, and then transferred all funds of the wallet to his
account using the pay function. Note that the attacker has to
perform two transactions, thus only analyzing initWallet

is not sufficient since the actual exploit happens in the pay

function.

3.3 State-of-the-Art Techniques
For our survey of existing methods, we chose a variety
of tools based on different principles from the program
analysis domain, ranging from data-flow analysis (Secu-
rify), over symbolic execution (Manticore, Mythril, MA-
IAN, Oyente, and teEther), to abstract interpretation (Van-
dal and MadMax). We cannot give a sufficient introduc-
tion to every technique, however, the interested reader is re-
ferred to the excellent book by Nielson et al. [43]. All discus-
sions concerning specific tools are based on their respective
publications [4, 23, 33, 36, 39, 41, 46, 62] and their source
code [3, 22, 32, 35, 40, 45, 48, 61] at the time of writing.

During our review, we have found that all tools use some
kind of overapproximation which may introduce false posi-
tives. As a result, we define Validation as an additional po-
tential obstacle; i.e., are any overapproxmiations correctly
validated afterwards? An overview of our analysis results is
presented in Table 1. Note that MadMax is based on Vandal,
thus it inherits its limitations and we only discuss Vandal in
detail in the following.

Table 1: Feature comparison between existing tools and our approach.

Tool Inter-Contract Memory Keccak Validation

Manticore [39] G# G# G# #
Mythril [41] G# G# G# #
MAIAN [46] # G# G#
Oyente [36] # G# # #
teEther [33] # G# G#
Vandal [4] # G# # #
MadMax [23] # G# # #
Securify [62] # G# G# #

ETHBMC

 Correctly implemented G# Partially implemented
Incorrectly implemented or missing

3.3.1 The Keccak256 Function

Due to the prevalence of keccak computations, most tools we
analyzed offer some kind of strategy to deal with them during
analysis, but all of them in an imprecise way. All tools offer
support for computing keccak values over constant execution
memory regions with constant parameters (i.e., every value
of memory is non-symbolic). This allows them to extract the
corresponding memory regions and compute the actual hash
value.

Securify considers during symbolic computations every
memory location as a potential dependency, even those who
are infeasible in practice. Mythril, on encountering a symbolic
offset or a symbolic portion of memory, overapproximates the
keccak value with fresh unconstrained symbolic one instead.
When any memory value or argument is symbolic, Manticore
uses a concolic strategy and fixes the values to constant ones.
However, they keep a mapping of all previously computed
hashes and try to match the current one to already seen ones.
In a similar vein, teEther stores a placeholder object during
symbolic execution and then applies a concolic strategy to
resolve all seen placeholders. Vandal does not attempt any
concrete or symbolic handling, but ignores the instruction and
treats the outcome as a new symbolic variable. The outlier to
the above schemes is Oyente, it only support concrete keccak
computation, but makes no effort in computing the actual
values. It rather extracts the string representation of the mem-
ory region, compresses and base64 encodes it, and uses this
encoding as a mapping to match later hash computations [37].

Our Solution: When encountering a symbolic keccak
value, we utilize a special encoding scheme presented in Sec-
tion 4.6. The scheme is based on the idea that keccak is a
binding function, i.e., when the same input is supplied to
the function, it will produce the same output. We utilize this
behaviour by adding constraints to the execution, encoding
different keccak computations to be the same, when their
input memory regions can be identical.

3.3.2 Memory Modelling

Our review revealed that none of the examined tools fully
supports a precise memory model. Some revert to overapprox-
imation or concolic strategies to circumvent complications
regarding symbolic memcopy-style operation, while others
simply choose not to support them. More specifically, MA-
IAN supports symbolic read operations, but drops any sym-
bolic write or memcopy-style operation. Mythril supports
standard read/write operations, but flounders when encoun-
tering copy instructions. It handles concrete ones correctly,
yet, when for instance a symbolic offset is supplied to the
memcopy operation, it either drops the path or fixes its size to
a value of one. Similarly, Manticore and teEther fully support
simple memory operations, but resort to concolic strategies
otherwise. When encountering any symbolic memory write,
Securify behaves conservatively and clears the entire mem-
ory, since it cannot reason about specifics anymore. Neither
Oyente nor Vandal support any copy-based instruction.

Our Solution: In contrast to previous work, we employ a
fully symbolic memory model. We represent the memory as
a graph representation, connecting different memory regions
when we copy from one to the other (see Section 4.4). When
we need to assess the feasibility of a given path, we encode the
memory graph as constraints, utilizing the well known theory
of arrays [21], as well as the extension by Falke et al. [17], for
addressing memcopy-like operations.

3.3.3 Inter-Contract Analysis

Mythril and Manticore are the only two tools supporting inter-
contract analysis, however, both do so in an imprecise way.
When a contract interacts with another contract, the input for
the next execution stems from the execution memory of the
callee. Both Mythril and Manticore support fully concrete
contract calls, i.e., if the part of execution memory which is
used as calldata completely corresponds to concrete values,
execution continues as normal. Nonetheless, when any value
in the concerning memory region is symbolic, both tools ap-
ply different strategies to tackle the problem. Mythril ignores
the content of execution memory and overapproximates call-
data by creating a new unconstraint array object. In contrast,
Manticore utilizes a concolic approach, fixing any symbolic
values to constant ones.

Our Solution: We utilize our memory model, which sup-
ports symbolic copy instructions, to correctly model the input
memory to the call operation (see Section 4.5 for details).

3.3.4 Validation

All tools discussed in this section heavily rely on overapprox-
imation. We want to stress that this is a common approach

and is necessary to combat state explosion [9]. Nonetheless,
these design choices can obviously lead to false positives.
Recognizing these problems, both MAIAN and teEther use
private chains to simulate their bug findings in a controlled en-
vironment. None of the other approaches makes any attempt
at pruning potential false positives.

Our Solution: We follow previous work and simulate each
potential bug as a concrete offline execution to weed out false
positives. We will discuss details in Section 5.3.

4 Modelling Ethereum

In the following, we provide an overview of the theoretical
model underpinning ETHBMC. We start with an overview of
attack vectors and a general introduction, move on to our en-
vironmental modelling, cover our memcopy-supporting mem-
ory model extensively, and finally describe our handling of
call and keccak instructions.

4.1 Attacker Model
ETHBMC provides a symbolic, multi-account capable rep-
resentation of the Ethereum ecosystem which can be used
to check arbitrary models. To demonstrate its capabilities,
we model three specific attack vectors which we deem most
critical: First, an attacker who wants to extract Ether from the
analyzed contract. Second, an attacker who wants to redirect
the control flow of the analyzed contract to her own account.
Third, an attacker who wants to selfdestruct the analyzed con-
tract. Note that we only require our attacker to be able to
participate in the Ethereum protocol, giving her a live view of
the network and the blockchain, including storage and byte-
code level access to contracts (i.e., access to the world state).

4.2 High-level Overview
We want to reason about smart contracts as precisely as possi-
ble. This involves an accurate model of the EVM including
multiple contracts interacting. However, as all static analyzers
do, we have to make choices what to model precisely and
what to overapproximate. We decided to neither model the
consensus protocol, as well as gas usage. Invalid transactions
are guaranteed to not be executed, thus do not influence smart
contract state. Moreover, the code we want to analyze has to
be executable in practice, i.e., it must have reasonable gas con-
sumption. Note that a series of gas-related issues exists [23],
we leave the extension to a gas framework for future work.

We model the EVM as an Abstract State Machine (ASM) Γ,
giving us an execution context in which we can reason about
a contract’s execution. The ASM Γ takes the bytecode array Σ

as input, i.e., the contract code, and starts execution at the first
instruction. When finishing execution, the machine returns
the set of all halting states σh, i.e., the set of all states, where

Γ reached a non-exceptional halting condition, as defined by
the yellow paper [64].

Additionally, we define a state σ = (µ, pc, Π), where µ
represents the stack, pc is the program counter pointing to the
next instruction, and Π is the set of path constraints for the
given path. We also define µ[0] to be first (topmost) argument
of the stack, µ[1] the second, and so forth.

4.3 Modelling the Environment
We want to caputre a rich environment model (i.e., the world
state) in our executor. Thus, we define an account state to be
the tuple α = (balance, code, storage). Where balance is a
symbolic value, representing the balance of an account. code
is the (optional) code belonging to an account, and storage
is a 256-bit to 256-bit key-value-store, holding the persistent
account state (also optional).

Additionally, we define a transaction (tx) to be the tuple
(origin, recipient, callvalue, calldata, calldatasize). origin be-
ing the origin account address of the transaction, recipient
being the recipient, callvalue being the value attached to the
transaction, calldata being the (optional) calldata attached to
the transaction, and, calldatasize being a symbolic variable
representing the size of the calldata array (again optional).

We expand the definition of Γ by adding a mapping
accounts : address→ α mapping account addresses to their
respective states, i.e., the world state. Additionally, we intro-
duce the set transactions which represents all transactions
issued in the system. When analyzing a specific contract, we
set up an attacker account and (possibly multiple) victim ac-
count(s). We then simulate a chain of transactions t1, t2, . . . , tk.
For each transaction, we execute an entire run of Γ yielding
the halting states σh. Then, for each σi ∈ σh, we fork execu-
tion and proceed with the next t j up to tk.

4.4 Memory Model
Our memory model is based on the work of Sinz et al. [55].
It models memory as a series of updates called the memory
modification graph. We extend this graph notation to accom-
modate for the EVM characteristics, such as multiple memory
regions.

4.4.1 Memory Graph

The graph itself is used to keep track of all modifications to
memory. It starts with an initial node and gets updated at
every read/write to memory. More formally, we introduce
the memory graph ∆ = (V,E) which holds all memory nodes
and add it to our state definition, i.e., σ = (µ, pc, Π, ∆). We
assign every node a unique index. Thus, we denote the node
with index i as ni. Additionally, we assign every node a label,
either init or a memory altering operation (write, copy, or
set), to keep track of which operation created the node.

For now, we only consider one memory region, e.g., stor-
age. We start from an initial node s0, updating the graph every
time we encounter a write to memory (e.g., SSTORE) by cre-
ating a new node st connected to its parent’s node su. This
gives us a unique memory image at any state during execution
(akin to static single assignment (SSA) form known from
compiler theory). When translating the memory layout to
constraints, we start from the newest node st , traversing the
graph in a backwards fashion collecting all memory updates,
and encoding them as logical formulas based on their respec-
tive label [17, 21]. This approach enables us to reason about
symbolic memory operations.

When considering multiple memory regions, e.g., execu-
tion memory and calldata, we introduce an initial node for
each region, i.e., the graph starts as a forest, and remains as
such as long as memory operations only operate on single
memory regions. It can get connected in two different ways.
First, indirectly by loading from one region and storing to
the other, linking two parts of the graph implicitly through
a constraint. Second, directly by a memcopy style operation
(e.g., CALLDATACOPY), linking two parts of the graph explic-
itly through a node and edges. Loading and storing introduce
constraints in the system, linking the memory regions when
they are translated to first-order-logic. Copying introduces a
new node in the destination tree of the forest (e.g., the execu-
tion memory for CALLDATACOPY). This node gets connected
to both source and destination regions of memory, explicitly
linking the two parts of the graph.

4.4.2 General Memory Operations

During execution, for every account, we create a new stor-
age memory node n j and store the corresponding index in its
account state α.storage← n j. In the same vein, every transac-
tion creates a new calldata and stores its identifier. Addition-
ally, we assign our ASM Γ an execution memory Γ.m← nk.
We define reading and writing to memory as follows:
• ∆.write(ni, p,v) 7→ n j: Writes the value v to the address

p with the memory node ni as parent node, returning the
new node n j.
• ∆.read(ni, p) 7→ v: Reads the value v from memory ni at

position p.
This makes modelling the SSTORE instruction straightforward:

α.storage← ∆.write(α.storage, µ[0], µ[1])

In this example, we write to the current storage of the account
(α.storage) the value µ[1] to the address µ[0]. This is repre-
sented by creating a new memory node n j in the memory
store ∆. We then assign the index of this new memory node
to be the current account storage α.storage.

Modelling other memory operations is more difficult, since
the word size of the EVM is 256-bit. However, both calldata,
as well as execution memory, are byte-addressable memories.

As a result, we have to translate between 256- and multiple
8-bit chunks.

n0← ∆.write(Γ.m,µ[0],µ[1][31])
. . .

n31← ∆.write(n30,µ[0]+31,µ[1][0])
Γ.m← n31

We denote the lowest byte of µ[i] with µ[i][0] and the highest
(leftmost) with µ[i][31]. We model MSTORE as a sequence of
32 8-bit writes to execution memory, shifting the address and
the extracted 8-bit sized chunks, accordingly. Reading from
execution memory is done similarly, reading 8-bit chunks
while shifting the read index, concatenating the result.

When modelling CALLDATALOAD, the EVM defines calldata
as a theoretically unbounded array. Thus when a memory
operation reads out of bound, i.e., a location greater than
calldatasize, the EVM simply ”reads“ zeros. Thus for
every read from calldata, we wrap it in an ite (IF-THEN-
ELSE) operation, which constraints the load to evaluate to
zero when the supplied address reads out of bounds.

4.4.3 Supporting Memcopy- and Memset-Style Instruc-
tions

The EVM offers multiple instructions which behave in a
memcopy-like fashion. We define the following functions
on ∆:
• ∆.set∞(ni, p,v) 7→ v: Sets all values in memory ni, start-

ing at position p, to value v
• ∆.copy(ni, p,n j,q,s) 7→ nk: Copies a size s chunk from

node n j, starting at position q until q+ s, to node ni,
starting at position p until position p+ s

These functions enable an implementation of memcopy-
style operation and simplify memory initialization. Both stor-
age and execution memory are assumed zero at the start of
their lifetime. Utilizing the set∞ function, we can initialize
these regions. We utilize the Theory-of-Memcopy introduced
by Falke et al. [18] to implement these operations efficiently.
This theory extends the Theory-of-Arrays [21] to support
C-style memcopy operations, making the translation to con-
straints possible.

4.5 Modelling Calls
As previously introduced, the EVM offers contracts to interact
with one another. Consider Figure 1 assuming we simulate a
user transaction targeting contract A.

We would first setup an ASMA to simulate the execution of
contract A, resulting in an execution tree for A. Now assume
that—during the execution—we encounter a message call to
contract B. We then set up ASMB, run through the entire exe-
cution and then fork the execution tree for each state σi ∈ σh.
This enables us to simulate each possible outcome for the mes-
sage call. Note that this technique can be applied recursively

Figure 1: Message call into another account.

to simulate nested message calls. Similarly, when executing
DELEGATECALL or CALLCODE instructions, we switch the ac-
count’s code and proceed as outlined above. When calling into
another account, the EVM uses part of the execution memory
as input to the new execution. Continuing our running exam-
ple, when executing the message call from ASMA to ASMB,
we create a new calldata node in ∆ and then utilize the copy
function to copy over the input from the execution memory
of ASMA. When execution of ASMB finishes, we copy over
some of the execution memory from ASMB to ASMA, serving
as return data [64].

4.6 Handling Keccak Instructions
The EVM offers a specific instruction for computing a keccak-
256 hash over a portion of execution memory. However, these
functions have been proven difficult for static analysis in the
past [56]. One common technique is to use an Ackerman
encoding, used for encoding non-interpretable functions [2].
It exploits the fact that cryptographic hash functions are bind-
ing functions [10], i.e., under the same input the function is
guaranteed to produce the same output. We can leverage this
property as follows:

x = y ⇒ hash(x) = hash(y) ∧
x 6= y ⇒ hash(x) 6= hash(y).

(1)

However, since the EVM computes the keccak function over
execution memory, we cannot directly utilize this encoding
for our purpose. When encountering a keccak computation,
we proceed as follows: If all dependent variables and memory
regions are constant, we simply compute the constant hash
value. Otherwise, we replace the outcome with a placeholder
object, which stores a current image of the execution memory,
as well as, the starting and end addresses of the keccak com-
putation. When we want to assess the feasibility of a given
execution path, instead of directly encoding Equation (1) on
the inputs, we encode it for each memory address instead.

More formally, we define the tuple keccak with three fields:
(i) keccak.addr, the starting memory address, (ii) keccak.len,
the length of the memory range to be considered, and (iii)
keccak.m, which is the index of the execution memory present

Algorithm 1: EncodeKeccak
Input :Two distinct keccak tuples i and j, the execution constraint

set Π, the memory graph ∆

Output :A modified constraint set Π′

1 begin
2 if isSymbolic(i.len) or isSymbolic(j.len) then
3 return

Π
⋃
{(i.len = j.len ⇒ i = j)∧ (i.len 6= j.len ⇒ i 6= j)}

4 if i.len 6= j.len then Π′←Π
⋃
{i 6= j}

5

6 else
7 γ← (i = j)
8 for k ∈ 0...i.len do
9 if ∆[i.m, i.addr + k] 6= ∆[j.m, j.addr + k] then

10 γ = /0; break
11 cond← (∆[i.m, i.addr + k] = ∆[j.m, j.addr + k])
12 γ← ite(cond, γ, i 6= j)
13

14 if γ 6= /0 then Π′←Π
⋃
{γ}

15 else Π′←Π
⋃
{i 6= j}

16

17 return Π′

at the time of computation. We encode all possible pairs of
keccak tuples using Algorithm 1. Assume two distinct tu-
ples i and j which we want to translate to first-order logic
and add to the path constraints Π. We first try to utilize more
sophisticated encodings. However, in cases where we cannot
argue over the len parameter (e.g., one parameter is an uncon-
strained symbolic variable), we resort to a fallback encoding
(line 2-3).

Assuming both i.len and j.len to be constant, we can utilize
a more sophisticated scheme. First, we can trivially disprove
that two values compute to the same hash if i.len 6= j.len (line
4) and thus simply add i 6= j to Π. Second, when both values
match (line 6-16), we construct a nested ITE (IF-THEN-ELSE)
expression over the possible memory location (line 9-13) used
for the hash computation. When constructing the encoding, at
each level we check if we can trivially disprove two memory
locations to be equal (line 9), otherwise we can instantly
abort (line 10) and encode both keccak values to be unequal
(line 15). Otherwise we keep iterating along the range of
the len parameter (line 8). Traversing each memory location
(line 9-12), we construct the condition ∆[i.m, i.addr + k] =
∆[j.m, j.addr + k], encoding that the memory position for
i must be same as j to compute to the same hash. At each
iteration, we assign the true branch of the ITE expression to
the encoding from the previous iteration of the loop, a special
case being the first iteration of the loop, where we supply
i = j. Thus, if our backend SMT solver traverses the nested
encoding and it can prove all memory locations to be equal, it
will eventually arrive at the final predicate i = j. However, if
it disproves any condition, it arrives at the negated predicate
i 6= j which we assign at every iteration of the construction.

At first glance, requiring that both keccak tuples depend on
constant length parameters might seem like a strong assump-

tion. In practice however, this is often the case, e.g., keccak
values computed over fixed size data structures always have a
fixed length, the same is true for calculating memory offset
for the mapping data type. As introduced in Section 3.1.1,
it gets accessed by a keccak operation. Hence, we addition-
ally extract the key part of the computation to later match
read/writes.

Additionally, when we encounter an equality check with a
constant variable, i.e., keccak== c, where c is constant, we
can immediately conclude that the result must be non-equal.
Otherwise, we would assume that we could calculate hash
collisions. In other words, we would assume that we could
compute the one specific input, which leads to the (constant)
output of the keccak function. Note: in specific circumstances
an attacker might know the correct input which generates c;
we elaborate more on this in Section 7.

5 Design and Implementation

We now provide an overview of the architecture of ETHBMC,
a graphical overview is provided in Figure 2. The tool consists
of three main modules, the symbolic executor, a detection
module, and a validation module. ETHBMC is implemented
in around 13,000 lines of Rust code.

Figure 2: High-level overview of ETHBMC and its inner workings.

ETHBMC utilizes its symbolic execution engine to explore
the available state space a program can reach (Section 5.1).
During this exploration, we can, at any time, translate the
necessary conditions (or constraints) needed to reach this
state into first-order logic. When the exploration finishes, i.e.,
the execution terminates in a halting state, we encode the
attacker’s goal using additional constraints (Section 5.2). As
an example, we encode a constraint that the balance of the
attacker’s account must be higher at the last state of execution
than at the first state. We then utilize our backend SMT solver
to solve the constraint system. As introduced in Section 2.3,
an SMT solver performs proof by enumeration: it tries to find
a satisfying (concrete) assignment for the constraint system,
thus proving it can be solved. We model the full execution
of smart contracts. Thus, a satisfying assignment that both
reaches a valid halting state and fulfills the attacker model,
proves a vulnerability in the contract. Additionally, the con-

crete assignment, found by the SMT solver, is a valid input
(i.e., transaction) to the smart contract, which triggers the ex-
ploit. Finally, we verify that the exploit is a true positive by
running a concrete offline execution (see Section 5.3).

5.1 Symbolic Executor

The executor explores the contract in a breadth-first search.
Whenever the executor needs to assert satisfiability of a given
code path, we query our backend SMT solver. We evaluated
different solvers and found that Yices2 [15] outperforms other
approaches such as Boolector [44], and Z3 [12] in this prob-
lem domain (see Section 6.5). We explore all code paths until
either they reach a halting state, or the solver times out or
disproves the path. If we encounter a loop during execution,
we use loop-unrolling, i.e., we execute the loop n number of
times, after which we drop out of the loop. We use the same
strategy in limiting call depth, since in an environment with
multiple accounts, contracts could keep calling each other
in infinite loops. Additionally, we employ several standard
symbolic execution optimization techniques: constant fold-
ing, arithmetic rewriting, and constraint set caching [7]. When
the executor comes to a hold, all end states are passed to the
detection module for further analysis.

5.2 Detection Module

We encode the attacker’s goal using additional path con-
straints, e.g., we push an additional constraint specifying that
after the current transaction executed, the balance of the at-
tacker account must be higher than at the start of the entire
analysis. When encountering a DELEGATECALL or CALLCODE
instruction, we create an additional state hijack, where we
try to hijack the control flow of the contract. We add a
constraint to hijack, constraining the target address of the
CALLCODE/DELEGATECALL to be the attacker’s account ad-
dress. If this constraint is satisfiable, we can redirect the con-
trol flow. In a similar vein, we flag states which execute a
SELFDESTRUCT instruction, to detect contracts that can be de-
stroyed by an outside attacker. Note that if the SELFDESTRUCT
instruction can be used to steal money from the account,
ETHBMC detects both cases. If we detect any type of vul-
nerability, we pass the corresponding state to the validation
module.

If we cannot detect any attack, we compute the set of
state altering states, i.e., the subset of σh which experienced
changes to their environment. Only these states can provoke
new paths in the executor, other states would result in the
same initial states as explored in the previous round. Thus,
we only explore these states further.

Table 2: Results of evaluating different analyzers on toy examples.

Tool Keccak Mapping Memcopy Inter-Contract Parity

teEther # # #
Manticore # # #
Mythril # # # n/a #
Vandal # # # # #
MadMax # # # # #
Securify # # # #
ETHBMC

 Correct # Incorrect or not supported

5.3 Validation Module

In the last step, we try to generate valid transactions for every
state which has a feasible attack path. We utilize our the SMT
solver to generate the transaction data needed to trigger the
vulnerability. After successfully generating attack data, we
leverage the go-ethereum [20] tool suite, especially the EVM
utility, to simulate the attack in an offline fashion. This allows
us to simulate all the generated transactions and check if they
indeed match their required attack vector.

6 Evaluation

We evaluated ETHBMC in several different experiments and
focus on the main results in the following.

6.1 Empirical Analysis of Current Techniques

We start with comparing ETHBMC against the static analy-
sis tools examined in Section 3.3. We use the toy examples
presented in Section 3.1 as a set of trials. We embedded a
SELFDESTRUCT instruction in each contract, since all tools
offer a detection module for this. Additionally, we recreated
the Parity account hack examined in Section 3.2 to simulate
a complex, real-world scenario. A general overview of our
findings is presented in Table 2.

Analysis Setup Unfortunately, we could not get MAIAN
to work properly; multiple libraries required by the analyzer
are by now incompatible. The authors neither specified which
version they used in the original publication, nor responded to
multiple GitHub issues regarding these problems [47]. Again,
we only discuss Vandal since MadMax inherits its capabilities.

We evaluated against the latest version of the tools at the
time of writing. This corresponds to teEther at github commit
d7b7fd1 [32], Manticore in version 0.2.4 [48], Mythril in
0.20.0 [40], Vandal at github commit f7bfee7 [3], securify
at github commit 8fd230 [61] and Oyente at github commit
6c9d382 [40]. While Oyente offers a mode to detect exposed
SELFDESTRUCT instructions, we discovered during testing that
the mode seems to be inherently broken. As a sanity check
we tested a simple contract with a simply one line function
which selfdestructs the contract (i.e., Listing 1 without the

surrounding if clause). Oyente flags the contracts as non-
vulnerable. Thus, we exclude it from the experiment.

For the evaluation, we compiled all contracts to bytecode
and used this as input to the different analyzers. This guaran-
tees that the comparison is fair among all tools and no one
can get an advantage by leveraging source code information.

Keccak256 Function We start with the simple contract test-
ing the analyzer’s abilities to model hash functions, i.e. List-
ing 1. The contract compares the hashed input to a randomly-
chosen constant value. If the attacker wanted to pass the check
(line 2), they would have to supply a preimage. Since keccak
is a cryptographically secure hash function, this is infeasible
in practice and the contract is not vulnerable.

Manticore, Securify, and ETHBMC correctly identify the
contract as secure, all other tools report a vulnerability. How-
ever, according to our source code review, teEther should pass
the experiment. In a first pass over the contract, teEther uses
binary slicing to find paths resulting in potentially vulnerable
states. In a second path, it executes these paths symbolically to
find an input which can potentially reach this state. However,
for this experiment, teEther reports that it cannot find a poten-
tial path containing a SELFDESTRUCT instruction. According
to our understanding, it should only discard the possibility
of an exploitable contract in the second pass. Thus we list
teEther as incorrect for this experiment.

Due to the prevalence of the mapping data type, we con-
tinue our analysis with the contract listed in Listing 2, an at-
tacker could exploit the contract by first calling createUser,
supplying her own account address as input, then calling
destruct with her assigned id. Only teEther and ETHBMC
find the vulnerable state.

Memcopy-Style Operations The next experiment is meant
to test the executors’ handling of memcopy-style operations.
We use the contract depicted in Listing 3. Since the input is
defined as string, the calldata gets copied to memory, using
a memcopy-like instruction.

On first glance, Securify seemed to pass the experiment,
reporting a vulnerable state. However, this is in direct conflict
with our source code review in Section 3.3 as we discovered
that it simply ignores memcopy-esque instructions. We thus
perform a second validating experiment as follows:

1 f u n c t i o n a l i a s (s t r i n g i n p u t , u i n t x , u i n t y) p u b l i c {
2 r e q u i r e (x == y) ;
3 i f (i n p u t [x] != i n p u t [y]) {
4 s e l f d e s t r u c t (msg . s e n d e r) ;
5 }
6 }

Running the experiment two times, one as is, and one where
the condition on line 2 is negated, resulted in Securify flagging
both instances as vulnerable. This confirms our suspicion that
Securify does not correctly reason about this program, since
the instance presented above is clearly non-vulnerable. We
repeat this experiment for all tools with no change in outcome.

All tools except teEther and ETHBMC fail to find a vulnerable
state.

Inter-Contract Analysis Analyzing inter-contract analysis
proved tricky for Mythril; the tool supports inter-contract
analysis, but the contract has to be already deployed on a
blockchain. Thus we exclude them from this test, only leaving
Manticore for evaluation since none of the other tools support
inter-contract analysis. The experiment is simulated using two
contracts Library and Target, mirroring the toy example
presented in Listing 4. We assume Target to be the contract
which gets analyzed. Both Manticore and ETHBMC find
correct inputs for this example.

Parity Finally, we recreate the Parity account hack exam-
ined in Section 3.2 to simulate a complex, real-world scenario.
We run an archive Ethereum node which stores all past infor-
mation of the network. This allows us to retrieve state and
environment information for any past block. We use this in-
formation to analyze one of the exploited accounts, 10 blocks
before the hack took place.

Mythril offers an on-chain analysis mode, where it down-
loads all necessary live information from the blockchain. Un-
fortunately, it only supports analysis at the currently newest
block. We extend the tool to work with past blocks and are
currently in the process of submitting this patch to the up-
stream repository. However, when analyzing the parity con-
tract, Mythril does not report any vulnerabilities.

ETHBMC does support a mode similar to Mythril: we
extract the storage information at the specific block and pre-
configure the environment with them. When reaching any
call-based instruction, we extract any constant arguments and
load the corresponding receiver contract. ETHBMC finishes
analysis and correctly reports two ways to exploit the contract.
In the actual parity code, the constructor and initialization
code are split across two functions. Thus, an attacker can ei-
ther call the exposed constructor or the initialization method
directly. ETHBMC generates valid attack code for both vul-
nerabilities.

Manticore does not support any kind of online analysis.
Therefore, we extract the storage parameters at the correspond-
ing blocks and set up a test environment with both accounts
by utilizing their API. After processing the first transaction,
Manticore reports that it has not detected any state which can
be explored further and finishes the analysis without reporting
any issues.

6.2 Large-Scale Analysis
To further evaluate ETHBMC, we conducted a large-scale
scan of all 2,194,650 accounts listed on Google BigQuery [11]
as of 24. December 2018. We split the scan into three stages,
enabling us to directly compare it against two previous
large-scale experiments performed: the first by Krupp and

Table 3: Large-scale analysis results displaying the amount of contracts found (with the amount of unique exploits generated in brackets)

Analyzer Steal Ether Hijack Suicidal Total

ETHBMC 1,681 (1,893) 51 (54) 1,431 (1,474) 2,856 (3,367)
teEther 1,509 (1,541) 8 - 1,509 (1,541)

ETHBMC 1,693 (1,964) 51 (54) 1,439 (1,482) 2,921 (3,448)
MAIAN - - 1,423 1,423

ETHBMC 2,708 (3,916) 97 (123) 1,924 (1,989) 4,301 (5,905)

Rossow [33] and a second one by Nikolic et al. [46]. Krupp
and Rossow presented teEther which uses binary slicing in
conjunction with symbolic execution. The tool focuses on ex-
tracting Ether, as well as as redirecting control flow. Nikolic
et al. developed MAIAN, a concolic executor, to study sui-
cidal accounts, i.e., accounts which could be destroyed by
anyone. An overview of our findings is presented in Table 3
and discussed in detail below. Note that, as in the Parity ex-
ample, ETHBMC often found multiple ways to exploit the
same vulnerability, thus we list the number of unique exploits
found during analysis in brackets.

Experiment Design Since we run an archive node, we
can freely recreate account environments at any given block
height. We utilize this capability to first recreate the environ-
ment at which Krupp and Rossow conducted their scan, ana-
lyzing all accounts listed by their dataset. Subsequently, we
extracted all contract addresses present at the time of Nikolic’s
scan. Since we want to avoid unnecessary rescanning of con-
tracts, we continue with only scanning the difference between
the teEther and MAIAN account set. We calculated this dif-
ference by collecting all newly created accounts, as well as
all accounts whose account state changed between the two
blocks, thus “updating” our view of the blockchain to the
newer block. Finally, we used the same method to calculate
the difference between the MAIAN scan and all the accounts
listed on Google BigQuery as of December 2018, giving us a
complete picture of the current Ethereum vulnerability land-
scape. Note we chose both the teEther and MAIAN scans
since both tools provide false positive pruning, enabling a fair
comparison.

Due to the scale of our analysis, we have to impose some
restrictions on ETHBMC. The analysis is configured to use
a 30 minute timeout. Moreover, we bound loop execution to
one iteration, use a two minute timeout for our backend SMT
solver, as well as only loading up to 10,000 storage variables.
When an accounts has zero balance on chain, we assume a
substitute of 10 Ether so the model checker can reason about
extracted Ether. Additionally, we limit transaction depth to
three transactions and introduce an additional constraint to our
execution to limit memcopy operations to size 256, mimicking
teEther’s behaviour.

We used a cluster of machines for our experiments: 20
virtual machines in our university’s internal cloud running 6
× 2.5 Ghz virtualized cores with 12 GB of memory assigned
each. Additionally, we ran 12 ETHBMC instances on two
servers, each equipped with an Intel Xeon E5-2667 and 96GB
of memory. Scanning 2,193,697 unique accounts took the
entire cluster around 3.5 months in total, which equals to
roughly 39 CPU years.

teEther We contacted the authors of teEther [33] and got
access to their experimental data and performed an analysis of
all 784,344 accounts listed by their dataset on the same date
(Nov 30, 2017). Note that Krupp and Rossow first assumed an
empty storage during their analysis. This, in conjunction with
only single contract analysis, allowed them to skip analyzing
duplicate contract codes resulting in a reduced initial analy-
sis set of 38,757 contracts. They first analyzed this reduced
contract set for vulnerabilities. When their tool flagged an
account as vulnerable, they searched the bigger set for all ac-
counts which share this contract code. Subsequently, they than
reran their analysis for these accounts while also extracting
the corresponding environment (e.g., the storage variables of
these accounts). However, note that this shortcut might miss
vulnerable contracts since they may behave differently based
on initialized storage variables and accounts they interact
with. To avoid this, we scan all 784,344 accounts separately,
extracting initial storage variables, as well as called accounts
discovered during the analysis. We want to stress that both
scans target the same set of contracts, we only differ in the
approach.

Our analysis finished successfully for the majority of
contracts (91.21%), with only a small number of time-
outs (2.41%). In comparison, teEther successfully analyzed
85.65% of the contracts. Due to the large-scale nature of our
analysis, we did encounter multiple errors during analysis
(6.38%). Some are the result of a bug in EVM, the framework
used for validation. Some are related to us not being able to
load the account from the blockchain which is an issue we
are currently still investigating. However, in any case we are
conservative and flag the corresponding account as an error,
excluding it from analysis.

After both stages of their analysis, Krupp and Rossow
report 1,532 vulnerable accounts. During our analysis, we

discovered 2,856 vulnerable contracts, 1,681 contract from
which we could extract Ether, 51 whose control flow we could
redirect, and 1,431 which we could kill at any time (i.e., suici-
dal contracts). Note that an account can be flagged in multiple
categories, e.g., 255 accounts are both flagged as suicidal
and able to extract Ether. During their evaluation, the teEther
authors list accounts which are vulnerable to hijacked con-
trol flow, both in a separate category, as well as in the steal
ether category. The reasoning being, that once an attacker
can redirect the control flow, they can easily extract all funds
from the account [33]. We follow their lead to enable better
comparability.

We examined how our results directly compare to the ac-
counts flagged as vulnerable by teEther. During our analysis,
we flagged 1,493 out of the 1,532 accounts as vulnerable.
The remaining 39 are either timeouts (16) or reported benign
by ETHBMC (23). We discovered that teEther does not cor-
rectly model the environment, i.e., during analysis they treat
all environmental information (e.g., the block hash or block
number) as fully symbolic. When their framework flags an
account as potentially vulnerable, they try to correct these
overapproximations by simulating the environment with a
private development chain. However, they start the private
chain with the default initial parameters, beginning the chain
at block number one. In contrast, we simulate the execution at
the corresponding real-world blocks and supply the environ-
ment we discovered during live analysis. The authors stated
that this also caused problems while generating exploits in the
original publications [33] and, after contacting them, they con-
firmed our suspicion about such false positives, leaving 1,509
vulnerable accounts with 1,541 valid exploits. In summary,
ETHBMC is able to find 10.3 % more vulnerable accounts
and 22.8 % more exploits than teEther.

MAIAN Nikolic et al. conducted their own analysis by scan-
ning 970,898 contracts on a later date than teEther [46]. Un-
fortunately, their data set is not available to us and we could
not recreate their experiments due to the problems described
in Section 6.1. We scanned up to the same blocknumber
and found a total of 1,439 (+1.1%) accounts to be suicidal,
MAIAN found 1,423. As we do not have access to the exper-
imental data, we speculate that the concolic execution used
by MAIAN underapproximates several contracts. Our analy-
sis successfully finished for 92.46% of all accounts, a slight
improvement compared to the teEther results.

Current Vulnerability Landscape Finally, our last scan
revealed a total of 4,301 vulnerable, active contracts on the
Ethereum blockchain as of December 2018. These are split
between 2,708 contracts from which we could extract Ether,
97 accounts whose control flow can be redirected, and 1,924
contracts which we could selfdestruct at will. Our technique
still finished successfully for around 92.49% of all contracts.

Figure 3: Cumulative overview of analysis time of 10,000 randomly sampled
contracts. Note that the x-axis is not linearly scaled.

6.3 Performance Analysis
In Section 6.2, we demonstrated ETHBMC’s ability to scale
to large datasets. However, we are also interested in its per-
formance when analyzing individual contracts. We randomly
sampled 10,000 contracts from our dataset and conduct a
study of our analysis time. Note that if the contract interacts
with other contracts, we still load them from the blockchain.
The results are presented in Figure 3.

From the 10,000 contracts, we successfully analyzed 5,577
in the first 5 seconds and an additional 2,006 in 5 to 10 sec-
onds(i.e., a total of 7,583 in 10 seconds). Afterwards, the
number of solved contracts gradually increases, with 8,471 of
10,000 contracts being solved in the first 2 minutes. After 30
minutes, we have successfully analyzed 9,031 out of 10,000
accounts, i.e., around 90%, which mirrors our performance
during the large-scale analysis. Note that we plotted errors
and timeouts together in Figure 3 for a better presentation.

6.4 Ablation Study
We perform an ablation study to gain a better insight into
ETHBMC’s inner workings and how the enhancements pre-
sented in Section 4 affect the model checker’s ability to detect
vulnerabilities. We re-scan all vulnerable accounts found in
the first phase of our experiments, i.e., our evaluation com-
paring against teEther, while successively disabling different
features. This gives us a clear picture which feature con-
tributes to finding additional bugs. Note that we chose the
teEther contracts to gain a frame of reference with a different
approach, i.e., concolic execution. Since ETHBMC is a multi-
threaded system, we raise the timeout limit to one hour ensur-
ing the difference it not by chance. We disabled the memcopy
feature, leaving us with a memory model similar to other
memory models discussed in Section 3.3. When disabling
inter-contract calls, we still simulate a full environment with
transaction (and thus Ether transfer), i.e., we still simulate an

Table 4: Ablation Study of ETHBMC

Features Steal Ether Hijack Suicidal Total

teEther 1,509 8 - -

Baseline ETHBMC 1,543 50 1,403 2,709
+ Memory 1,557 (+0.91%) 51 (+2%) 1,409 (+0.43%) 2,725 (+0.6%)
+ Keccak 1,628 (+4.56%) 51 1,425 (+1.13%) 2,803 (+2.86%)
+ Calls 1,681 (+3.36%) 51 1,431 (+0.42%) 2,856 (+1.89%)

attacker account executing the victim account. However, the
analyzed contract cannot call (or DELEGATECALL) into other
accounts. Lastly, we disable the keccak handling presented
in Section 4.6, overapproximating every keccak computation
with a fresh symbolic variable.

The results are presented in Table 6.4. Note the Baseline
ETHBMC row refers to ETHBMC with all three features
turned off. The percentages are calculated relative to the pre-
vious row, read top to bottom, i.e., additionally enabling the
keccak handling resulted in a 4.56% increase compared to
only enabling a full memory model. The study clearly shows
that all three features play a crucial role in discovering addi-
tional bugs when compared to previous approaches. While the
memory feature might not seem too important, note that the
memory model is so precise to enable inter-contract analysis.
As presented in Section 4.5, when executing an inter-contract
call, the calldata of the new call is copied from the old exe-
cution memory. In the same vein, the returndata of the call
gets copied back to execution memory. Thus, one might also
interpret these features as one, which puts them to an about
equal contribution to the keccak handling.

6.5 SMT Solver

All executors evaluated in Section 3.3 use Z3 as their back-
end solver [33, 36, 39, 41, 46]. However, during our research
we empirically discovered that using other SMT solvers re-
sulted in a drastic performance gain. We compare three par-
ticipants of the 2018 SMT competition [26] in the category
QF_ABV (quantifier-free theory of arrays and bitvectors),
Boolector [44], Z3 [12], and Yices2 [15]. From the account
addresses computed in Section 6.2, we randomly sampled
1,000 addresses to evaluate our backend SMT solver. All ex-
periments were run on a server with an Intel Xeon X5650
CPU and 48GB Memory. We run ETHBMC on the 1,000
addresses and recorded all queries sent to the SMT solver
resulting in 1,161,498 unique queries. From these queries, we
randomly sampled 10,000 queries and ran them on each solver
5 times, with a two minute timeout, averaging the results.

The results are plotted in Figure 4. We omit some smaller
formulas since all solver handle them almost instantly. The
best performing solver in our experiments is by a wide margin
Yices2, followed by Boolector and Z3 being the worst. From
anecdotal evidence, we can report that switching our backend

102 103 104 1050

100

101

102

Z3

Boolector

Yices

Formula Size

S
ol

vi
n

g
T

im
e

Figure 4: Solving time for a sample of formulas produced by ETHBMC
across various common solvers.

solver to Yices2 cut our analysis time down by a third. Thus,
we highly encourage other projects to evaluate this change as
well and test different SMT solvers.

7 Discussion

In the following, we discuss the underlying assumptions and
limitations of ETHBMC.

Environment Model While our environment model is pre-
cise, we still have to impose some limitations on it. When
executing an instruction which interacts with other accounts
in the environment, e.g., the instruction BALANCE or CALL, we
only consider accounts in the currently loaded environment
as valid targets. Otherwise, we would have to consider every
single account in the Ethereum ecosystem as a valid target.
While we could simply model the execution fully symbol-
ically, this would also introduce the drawback that such an

account constellation might never even be possible. Thus,
we decided to only consider accounts supplied to the envi-
ronment or discovered during live analysis. Also, we do not
model account creation. At the time of writing and to the best
of our knowledge, no one has evaluated account creation as
an attack vector.

Restrictions During our evaluation, we had to impose some
restrictions on our framework, such as bounding loops and
setting a time limit. While some of these restrictions cannot
be lifted completely, e.g., we always have to impose an upper
limit on loops, raising the timeout limit or loop count may
lead to discovering bugs hidden deeper in programs. The same
applies for contract invocations, i.e., ETHBMC cannot find
bugs, which require more than three transactions. Also, we
only model one attacker account at the moment. However,
since smart contracts are used to model complex systems,
actually including additional attacker or user accounts might
lead to discovering interactions which may only be triggered
when multiple parties are using the contract. Note that since
ETHBMC already supports a full environment, it has the
capabilities to be used in this fashion.

Extending to Other Vulnerabilities Our model checking
approach can detect new attack vectors by modeling new
vulnerabilities as constraints. Additionally, EthBMC can be
utilized to provide formal guarantees over contracts. An an-
alyst would model the correct behavior of the contract as a
constraint system. In a standard model checking procedure,
EthBMC would then be used to check if there exists a state
which is both reachable, as well as satisfying the negation of
the constraint system. These properties prove a violation of
the correct behavior. The reachability assesses that the state
is feasible in practice. The constraint system of the correct
behavior is a subset of all feasible program states. When we
find a state outside of this subset (i.e., the negation), which is
also feasible in practice, we found a violation of this behavior.

Comparison to Other Analysis Techniques The differ-
ence between analysis techniques is typically characterized
by a trade-off between flagging more bugs, but at the same
time introducing more false positives. For example crypto-
graphic schemes [16] are a common occurrence on Ethereum.
Assuming our example in Listing 1, where an attacker has to
supply a correct pre-image for a keccak value. If an attacker
knows the particular value, e.g., it is a publicly known value,
they could bypass the check and destroy the contract. We
assume in the general case that an attacker is oblivious to this
value. However, approaches which overapproximate keccak
computations, e.g., by simply assuming it could result in any
value (see for example Securify or Vandal), flag the contract
as vulnerable accordingly. Thus, these approaches might de-
tect bugs “hidden” behind these code constructs. Yet, at the

same time they burden an analyst with more false positives,
resulting in wasting valuable audit time.

Scalability Similar arguments can be made for scalability:
Again, assuming the keccak example. We encode these com-
putations with our strict encoding scheme, which results in
higher analysis time due to the added complexity. If we would
simply assume that the computation could have any results,
i.e., overapproximate it, this makes reasoning straight forward.
This is demonstrated when examining the analysis time of
tools like MadMax: While we solve about 80 % of all con-
tracts in the first minute, these tools analyze about 90 % in
the first 20 seconds. Similar performance is reported by a
comparison conducted by Brent et al. [4] for Vandal, Mythril,
and Oyente. However, this faster analysis comes at the cost
of more false positives to evaluate. During a normal develop-
ment cycle of a smart contract, where the developer quickly
iterates over many versions of the contract, they could utilize
“faster” tools. Finally, before deploying to the blockchain, a
final precise analysis could be conducted using ETHBMC.

Impact Giving a fair assessment of the practical impact
EthBMC could have is quite hard. Since the Ethereum system
is fully transparent to the outside world, an attacker could
monitor the blockchain and extract funds from the accounts
when they contain an attractive amount of Ether. Thus, we
performed an analysis of the highest value recorded for each
vulnerable account we identified, giving us an upper bound
on the potential impact. This yielded a maximum impact of
around 155,000 Ether at risk. However, EthBMC can recreate
the Parity hack. If the tool had been around at the time, we
could have extracted more than 370,000 Ether. These equal
about 40 Million USD and 89 Million USD, respectively, at
the rate in the end of February 2020.

8 Related Work

Beyond the static analyzers discussed in Section 3.3, we now
review other works closely related to ours. ZEUS [28] ana-
lyzes Solidity source code using abstract interpretation and
deploys its own policy language, which can be used to specify
violations to check against. In the same vein, VerX [51] is
a recently proposed framework for verifying temporal prop-
erties. They utilize symbolic execution as well as abstract
interpretation based predicate abstraction in conjunction with
their own policy language to check these properties. However,
since the source code of neither ZEUS nor Verx is available,
we exclude them from our survey. Two other approaches for
detecting vulnerabilities are Osiris [60] and EthRacer [31].
Osiris utilizes symbolic execution and taint tracking to dis-
cover integer overflow bugs. Osiris is built on top of Oyente,
first analyzing contracts symbolically and afterwards utiliz-
ing taint tracking to check a source-sink pattern for integer

overflows. EthRacer [31] is another approach to analyzing
multi-transaction relationships. They focus on event order-
ing bugs, i.e., events which exhibit different behaviours when
executed in different order. They utilize symbolic analysis
to first extract happens-before relations [34]. Based on these
findings, they perform fuzz testing to generate long chains of
transactions searching for different outputs, thus, detecting
event ordering bugs.

A different approach is taken by formal verification. In-
stead of checking a contract against a predefined set of bugs,
the contract is validated against a handwritten formal specifi-
cation. The K-Framework [27] provides full semantics for the
EVM. These allow users to specify properties in reachability
logic, which in turn gets checked against the formal semantics.
Grishchenko et. al. [25] formalize the EVM semantics in in
the F* proof assistance, also finding multiple flaws in existing
verification tools for Ethereum smart contracts. Furthermore
they define multiple security properties, which can be utilized
while verifying one’s contract.

Zhou et al. [65] introduce ERAYS, a reverse engineering
tool for the EVM. They additionally conduct an analysis on
function reuse in the Solidity ecosystem, finding that some
functions reappear in over 10,000 contracts. Rodler et al. [53]
utilize taint tracking to discover reentrancy attacks while exe-
cuting smart contracts. In their setting, miners run an extended
Ethereum node which protects against attacks at runtime.

9 Conclusion

In this paper, we first presented a survey of recent static anal-
ysis tools for smart contracts. We demonstrated that all of
these tools employ imprecise reasoning in at least one cat-
egory. Recognizing these flaws, we presented ETHBMC, a
symbolic executor able to capture inter-contract relations,
cryptographic hash functions, and memcopy-style operations.
We demonstrated its effectiveness by evaluating the imple-
mentation against several previous works and showed that
ETHBMC’s accuracy significantly outperforms them. Addi-
tionally, we presented a vulnerability analysis of the current
contract landscape, as well as multiple studies into the inner
workings of ETHBMC.

Acknowledgements We would like to thank our shep-
herd Jelena Mirkovic, our colleagues Moritz Contag, Andre
Pawlowski, Emre Güler, Ali Abbasi, Tim Blazytko, Moritz
Schlögel, Thorsten Eisenhofer, Lukas Bernhard, and our
anonymous reviewers for their valuable feedback. This work
was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy – EXC-2092 CASA – 390781972, and the
German Federal Ministry of Education and Research (BMBF,
project iBlockchain – 16KIS0901K).

References

[1] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam,
Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and
George Danezis. Sok: Consensus in the age of
blockchains. In ACM Conference on Advances in Finan-
cial Technologies (AFT), 2019.

[2] Aaron R Bradley and Zohar Manna. The Calculus of
Computation: Decision Procedures with Applications to
Verification. Springer-Verlag, 2007.

[3] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Static program analysis framework for
ethereum smart contract bytecode. github.com/vandal.

[4] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[5] Vitalik Buterin et al. A next-generation smart
contract and decentralized application platform.
github.com/ethereum/whitepaper, 2014.

[6] Christian Cachin. Architecture of the hyperledger
blockchain fabric. In Workshop on Distributed Cryp-
tocurrencies and Consensus Ledgers, 2008.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2008.

[8] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski,
David L Dill, and Dawson R Engler. EXE: Automati-
cally Generating Inputs of Death. ACM Transactions on
Information and System Security (TISSEC), 2008.

[9] Cristian Cadar and Koushik Sen. Symbolic execution for
software testing: Three decades later. Communications
of the ACM (CACM), 2013.

[10] Ran Canetti and Marc Fischlin. Universally compos-
able commitments. In Annual International Cryptology
Conference, 2001.

[11] Allen Day and Evgeny Medvedev. Ethereum in big-
query: a public dataset for smart contract analytics.
cloud.google.com/ethereum-bigquery.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, 2008.

https://github.com/usyd-blockchain/vandal
https://github.com/ethereum/wiki/wiki/White-Paper
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

[13] Solidity Documentation. Solidity. solid-
ity.readthedocs.io/overview, 2017.

[14] Solidity Documentation. Solidity in depth. solid-
ity.readthedocs.io/indepth, 2017.

[15] Bruno Dutertre. Yices 2.2. In International Confernce
on Computer-Aided Verification (CAV), 2014.

[16] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In IEEE Symposium on Security and
Privacy (S&P), 2019.

[17] Stephan Falke, Florian Merz, and Carsten Sinz. Extend-
ing the theory of arrays: memset, memcpy, and beyond.
In Conference on Verified Software: Theories, Tools and
Experiments (VSTTE), 2013.

[18] Stephan Falke, Carsten Sinz, and Florian Merz. A theory
of arrays with set and copy operations. In SMT@ IJCAR,
2012.

[19] David Floyd. The top 5 ethereum dapps by daily active
users. coindesk.com/top-applications, 2018.

[20] Ethereum Foundation. Go-ethereum. github.com/go-
ethereum, 2015.

[21] Vijay Ganesh and David L Dill. A decision procedure
for bit-vectors and arrays. In International Confernce
on Computer-Aided Verification (CAV), 2007.

[22] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. github.com/MadMax.

[23] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis. Mad-
max: Surviving out-of-gas conditions in ethereum smart
contracts. In ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), 2018.

[24] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. In ACM
Conference on Computer and Communications Security
(CCS), 2017.

[25] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. A Semantic Framework for the Security Anal-
ysis of Ethereum Smart Contracts. In International
Conference on Principles of Security and Trust, 2018.

[26] Matthias Heizmann, Aina Niemetz, Giles Reger,
and Tjark Weber. Smt-comp 2018. smt-
comp.sourceforge.net/2018, 2018.

[27] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu,
Nishant Rodrigues, Philip Daian, Dwight Guth, and
Grigore Rosu. Kevm: A complete semantics of the
ethereum virtual machine. In IEEE Computer Security
Foundations Symposium (CSF), 2017.

[28] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. Zeus: Analyzing safety of smart contracts. In
Symposium on Network and Distributed System Security
(NDSS), 2018.

[29] Lucianna Kiffer, Dave Levin, and Alan Mislove. Analyz-
ing ethereum’s contract topology. In ACM SIGCOMM
Conference on Internet Measurement (IMC), 2018.

[30] James C King. Symbolic execution and program testing.
Communications of the ACM (CACM), 1976.

[31] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Ho-
bor, and Prateek Saxena. Exploiting the laws of order
in smart contracts. In International Symposium on Soft-
ware Testing and Analysis (ISSTA), 2019.

[32] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
github.com/teether.

[33] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In USENIX Security Symposium, 2018.

[34] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM
(CACM), 1978.

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. An analysis tool for smart contracts.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[36] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[37] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
Aquinas Hobor, and Melonport Security. Oyente sha3
computation. github.com/oyente, 2018.

[38] Microsoft. Microsoft and Bank of America Merrill
Lynch collaborate to transform trade finance transacting
with Azure Blockchain as a Service. Microsoft News
Center, 2016.

[39] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex
Groce, Gustavo Grieco, Josselin Feist, Trent Brunson,
and Artem Dinaburg. Manticore: A user-friendly sym-
bolic execution framework for binaries and smart con-
tracts. In ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE), 2019.

https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/develop/miscellaneous.html
https://solidity.readthedocs.io/en/develop/miscellaneous.html
https://www.coindesk.com/scramble-fix-digital-identity-uport-project-watch/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/nevillegrech/MadMax
http://smtcomp.sourceforge.net/2018/
http://smtcomp.sourceforge.net/2018/
https://github.com/nescio007/teether/tree/d7b7fd111d48a682a3479f2271cef2c63c1e1b83
https://github.com/melonproject/oyente/blob/master/oyente/symExec.pyL1307

[40] Bernhard Mueller. Mythril - security analysis tool for
ethereum smart contracts. github.com/mythril, 2018.

[41] Bernhard Mueller. Smashing ethereum smart contracts
for fun and real profit. github.com/smashing-smart-
contracts, 2018.

[42] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. www.bitcoin.org, 2008.

[43] Flemming Nielson, Hanne R Nielson, and Chris Hankin.
Principles of Program Analysis. Springer-Verlag, 2015.

[44] Aina Niemetz, Mathias Preiner, and Armin Biere.
Boolector 2.0 system description. Journal on Satis-
fiability, Boolean Modeling and Computation, 2014.

[45] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Maian: Automatic tool for
finding trace vulnerabilities in ethereum smart contracts.
github.com/MAIAN.

[46] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding the greedy, prodigal,
and suicidal contracts at scale. In Annual Computer
Security Applications Conference (ACSAC), 2018.

[47] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Maian: Automatic tool for
finding trace vulnerabilities in ethereum smart contracts.
github.com/MAIAN/issues, 2018.

[48] Trail of Bits. Maticore symbolic execution tool.
github.com/manticore, 2017.

[49] Trail of Bits. Not so-smart-contracts.
github.com/trailofbits/not-so-smart-contracts, 2018.

[50] Santiago Palladino. The parity wallet hack explained.
zeppelin.solutions/parity-wallet-hack, 2017.

[51] Anton Permenev, Dimitar Dimitrov, Petar Tsankov,
Dana Drachsler-Cohen, and Martin Vechev. Verx: Safety
verification of smart contracts. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[52] Nathaniel Popper and Steve Lohr. Blockchain: A better
way to track pork chops, bonds, bad peanut butter? New
York Times, 2017.

[53] Michael Rodler, Wenting Li, Ghassan O Karame, and
Lucas Davi. Sereum: Protecting existing smart contracts
against re-entrancy attacks. In Symposium on Network
and Distributed System Security (NDSS), 2018.

[54] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In IEEE Symposium on Secu-
rity and Privacy (S&P), 2010.

[55] Carsten Sinz, Stephan Falke, and Florian Merz. A pre-
cise memory model for low-level bounded model check-
ing. In International Conference on Systems Software
Verification, 2010.

[56] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[57] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 1997.

[58] The Raiden Team. Raiden network. raiden.network.

[59] Parity Tech. A postmortem on the parity multi-sig li-
brary self-destruct. paritytech.io/postmortem, 2017.

[60] Christof Ferreira Torres, Julian Schütte, et al. Osiris:
Hunting for integer bugs in ethereum smart contracts.
In ACM Conference on Computer and Communications
Security (CCS), 2018.

[61] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts.
github.com/securify.

[62] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical security analysis of smart contracts. In
ACM Conference on Computer and Communications
Security (CCS), 2018.

[63] Oscar Williams-Grut. Goldman Sachs: 5 Practical Uses
for Blockchain — from Airbnb to Stock Markets. Busi-
ness Insider, 2016.

[64] Gavin Wood. Ethereum: A secure decen-
tralised generalised transaction ledger, eip-
150 revision (commit 759dccd - 2017-08-07).
github.com/ethereum/yellowpaper, 2014.

[65] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason,
Andrew Miller, and Michael Bailey. Erays: Reverse engi-
neering ethereum’s opaque smart contracts. In USENIX
Security Symposium, 2018.

https://github.com/ConsenSys/mythril/tree/deb98df7c5d4bd6467f06073ddb0f545f15154c6
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https:///bitcoin.pdf
https://github.com/MAIAN-tool/MAIAN
https://github.com/MAIAN-tool/MAIAN/issues
https://github.com/trailofbits/manticore/tree/61270a2bda980f79280a44407aa57b9da16f8e7d
https://github.com/trailofbits/not-so-smart-contracts/blob/master/unprotected_function/WalletLibrary_source_code/WalletLibrary.sol
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://raiden.network/
https://paritytech.io/blog/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct.html
https://github.com/eth-sri/securify/
https://github.com/ethereum/yellowpaper

	Introduction
	Background
	Cryptocurrencies
	Ethereum Virtual Machine
	Symbolic Execution and SMT Solving

	Challenges in Analyzing Smart Contracts
	Common Obstacles in Smart Contracts
	The Keccak256 Function
	Memcopy-like Instructions
	Inter-Contract Communication

	The Parity Wallet Bug
	State-of-the-Art Techniques
	The Keccak256 Function
	Memory Modelling
	Inter-Contract Analysis
	Validation

	Modelling Ethereum
	Attacker Model
	High-level Overview
	Modelling the Environment
	Memory Model
	Memory Graph
	General Memory Operations
	Supporting Memcopy- and Memset-Style Instructions

	Modelling Calls
	Handling Keccak Instructions

	Design and Implementation
	Symbolic Executor
	Detection Module
	Validation Module

	Evaluation
	Empirical Analysis of Current Techniques
	Large-Scale Analysis
	Performance Analysis
	Ablation Study
	SMT Solver

	Discussion
	Related Work
	Conclusion

