
RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks

Samira Briongos1, Pedro Malagón1, José M. Moya1 and Thomas Eisenbarth2,3

1Integrated Systems Laboratory, Universidad Politécnica de Madrid, Madrid, Spain
2University of Lübeck, Lübeck, Germany

3Worcester Polytechnic Institute, Worcester, MA, USA

Abstract
Caches have become the prime method for unintended infor-
mation extraction across logical isolation boundaries. They
are widely available on all major CPU platforms and, as a
side channel, caches provide great resolution, making them
the most convenient channel for Spectre and Meltdown. As a
consequence, several methods to stop cache attacks by detect-
ing them have been proposed. Detection is strongly aided by
the fact that observing cache activity of co-resident processes
is not possible without altering the cache state and thereby
forcing evictions on the observed processes. In this work, we
show that this widely held assumption is incorrect. Through
clever usage of the cache replacement policy, it is possible
to track cache accesses of a victim's process without forcing
evictions on the victim's data. Hence, online detection mecha-
nisms that rely on these evictions can be circumvented as they
would not detect the introduced RELOAD+REFRESH attack.
The attack requires a profound understanding of the cache
replacement policy. We present a methodology to recover
the replacement policy and apply it to the last five genera-
tions of Intel processors. We further show empirically that
the performance of RELOAD+REFRESH on cryptographic
implementations is comparable to that of other widely used
cache attacks, while detection methods that rely on L3 cache
events are successfully thwarted.

1 Introduction

The microarchitecture of modern CPUs shares resources
among concurrent processes. This sharing may result in un-
intended information flows between concurrent processes.
Microarchitectural attacks, which exploit these information
flows, have received a lot of attention in academia, indus-
try and, with Spectre and Meltdown [34, 39], even in the
public news. The OS or the hypervisor in virtual environ-
ments provide strict logical isolation among processes to en-
able secure multi threading. Yet, a malicious process can
intentionally create contention to gain information about co-
resident processes. Exploitable hardware resources include

the branch prediction unit [3–5], the DRAM [33, 50, 54] and
the cache [7,15,22,47,48,61]. Last level caches (LLC) provide
very high temporal and spatial resolution to observe and track
memory access patterns. As a consequence, any code that
generates cache utilization patterns dependent on secret data
is vulnerable. Cache attacks can trespass VM boundaries to
infer secret keys from neighboring processes or VMs [23,52],
break security protocols [28,53] or compromise the end users
privacy [47], and they can leak information from within a
victim memory address space [34] when combined with other
techniques.

Cache and other microarchitectural attacks pose a great
threat and consequently, different techniques have been pro-
posed for their detection and/or mitigation [16]. Among
these proposals, hardware countermeasures take years to in-
tegrate and deploy, may induce performance penalties and
currently, we are not aware of any manufacturer that has im-
plemented them. Other proposals are meant for cloud hyper-
visors [32, 37, 56] and require making small modifications to
the kernel configuration. Similarly, to the best of our knowl-
edge, no hypervisor implements them, presumably due to the
overhead they entail.

As a result, the only solution that seems practical for users
that want to protect themselves against this kind of threat,
is to detect ongoing attacks and then react in some way. To
this end, several proposals [10, 13, 36, 49, 64] use hardware
performance counters (HPCs) to detect ongoing microarchi-
tectural attacks. These counters are special registers available
in all modern CPUs that monitor hardware events such as
cache misses. Some of these proposals are able to detect even
attacks that were specially designed to bypass other counter-
measures [20]. The common assumption in these works is
that the attacker induces measurable effects on the victim. We,
on the contrary, demonstrate that it is possible to obtain in-
formation from the victim while keeping its data in the cache
and, consequently, not significantly altering its behavior, thus
making attack detection harder.



Our Contribution: We analyze the replacement policy of
current Intel CPUs and identify a new strategy that allows
an attacker to monitor cache set accesses without forcing
evictions of the victim 's data, thereby creating a new and
stealthier cache-based microarchitectural attack. To achieve
this goal, we perform the first full reverse engineering of
different replacement policies present in various generations
of Intel Core processors. We propose a technique that can be
extended to study replacement policies of other processors.
Using this technique, we demonstrate that it is possible to
accurately predict which element of the set will be replaced
in case of a cache miss. Then, we show that it is possible
to exploit these deterministic cache replacement policies to
derive a sophisticated cache attack: RELOAD+REFRESH,
which is able to monitor the memory accesses of the desired
victim without generating LLC misses.

We analyze the covert channel that this attack creates, and
demonstrate that it has similar performance to state-of-the-art
attacks, with a slightly decreased temporal resolution. As a
proof of concept, we demonstrate how RELOAD+REFRESH
works by retrieving the key of a T-Table implementation of
AES and attacking the square and multiply version of RSA.
We verify that our attack has a negligible effect on LLC re-
lated events, which makes it stealthy for countermeasures
monitoring the LLC behavior. Instead, the attack changes the
behavior of L1/L2 caches. Thus, our work stresses the need
for detection mechanisms to also consider such events. Which,
in turn, highlights the hardness of the performance counters
set selection to detect all possible cache attacks, including
ours and possible future attacks. To sum up, this work:

• introduces a methodology to test different replacement
policies in modern caches.

• uncovers the replacement policy currently implemented
in modern Intel Core processor generations, from fourth
to eighth generation.

• expands the understanding of modern caches and lays
the basis for improving traditional cache attacks.

• presents RELOAD+REFRESH, a new attack that ex-
ploits Intel cache replacement policies to extract infor-
mation referring to a victim memory accesses.

• shows that the proposed attack causes negligible cache
misses on the victim, which renders it undetectable by
state-of-the-art countermeasures.

2 Background and related work

2.1 Cache architecture
CPU caches are small banks of fast memory located between
the CPU cores and the RAM. As they are placed on the CPU
die and close to the cores, they have low access latencies and

thus reduce memory access times observed by the processor,
improving the overall performance. Modern processors in-
clude cache memories that are hierarchically organized; low
level caches (L1 and L2) are core private, smaller and closer
to the processor, whereas the last level cache (LLC or L3)
is bigger and shared among all the cores. It is divided into
slices interconnected by a ring bus. The physical address of
each element determines its mapping to a slice by a complex
addressing function [44].

Intel’s processors traditionally have included L3 inclusive
caches: all the data which is present in the private lower caches
has to be in the shared L3 cache. This approach makes cache
coherence much easier to implement. However, presumably
due to cache attacks, the newest Intel Skylake Server micro
architecture uses a non-inclusive Last Level Cache [24].

In most modern processors caches are W -way set-
associative. The cache is organized into multiple sets (S),
each of them containing W lines of usually 64 bytes of data.
The set in which each line is placed is derived from its ad-
dress. The address bits are divided into offset (lowest-order
bits used to locate data within a line), index (log2(S) consecu-
tive bits starting from the offset bits that address the set) and
tag (remaining bits which identify if the data is cached).

2.2 Cache replacement policies

When the processor requests some data, it first tries to retrieve
this data from the cache (it starts looking in the lowest levels
up to the last level). In the event of a cache hit, the data is
loaded from the cache. On the contrary, in the event of a cache
miss, the data is retrieved from the main memory and it is also
placed in the cache assuming that it will be re-used in the near
future. If there is no free space in the cache set, the memory
controller has to decide which element in the cache has to
be evicted. Since the processor may stall for several cycles
whenever there is a cache miss, the decision of which data is
evicted and which data stays is crucial for the performance.

Many replacement policies are possible including, for ex-
ample, FIFO (First in First Out), LRU (Least Recently Used)
or its approximations such as NRU [55] (Not Recently Used),
LFU (Least Frequently Used), CLOCK [29](keeps a circu-
lar list of the elements) or even pseudo-random replacement
policies. Modern high-performance processors implement
approximations to LRU, because a truly LRU policy is hard
to implement, as it requires complex hardware to track each
access.

LRU or pseudo-LRU policies have demonstrated to per-
form well in most situations. Nevertheless, LRU policy be-
haves poorly for memory-intensive workloads whose working
set is bigger than the available cache size or for scans (bursts
of one-time access requests). As a result, adaptive algorithms,
which are capable to adapt themselves to changes in the work-
loads, have been proposed. In 2003, Megiddo el al. [45] pro-
posed ARC (Adaptive Replacement Cache) a hybrid of LRU



and LFU. One year later, Bansal et al. [9] presented their so-
lution based on LFU and CLOCK, which they named CAR
(Clock with Adaptive Replacement).

In 2007 Quereshi et al. [51] suggested that performance
could be improved by changing the insertion policy while
maintaining the eviction policy. LIP (LRU Insertion Policy)
consists in inserting each new piece of data in the LRU po-
sition whereas BIP (Bimodal Insertion Policy) most of the
times places the new data in the LRU position and sometimes
(in-frequently) inserts it in the MRU position. In order to de-
cide which of the two policies behaves better, they proposed
a dynamic insertion policy (DIP). DIP chooses between LIP
and BIP depending on which one incurs fewer misses.

In 2010, Jaleel et al. [31] proposed a cache replacement
algorithm that makes use of Re-reference Interval Prediction
(RRIP). By using 2 bits per cache line, RRIP predicts if a
cache line is going to be re-referenced in the near future. In
case of eviction, the line with the longest interval prediction
will be selected. Analogously to Quereshi et al., they pre-
sented two different approaches: Static RRIP (SRRIP) which
inserts each new block with an intermediate re-reference, and
Bimodal RRIP (BRRIP) which inserts most blocks with a dis-
tant re-reference interval and sometimes with an intermediate
re-reference interval. They also proposed using set dueling
to decide which policy fits better for the running application
(Dynamic RRIP or DRRIP).

Regarding Intel processors, their replacement policy is
known as "Quad-Age LRU" [30] and it is undocumented.
The first serious attempt to reveal the cache replacement pol-
icy of different processors was made by Abel et al. [1]. In
their work, they were able to uncover the replacement policy
of an Intel Atom D525 processor and to infer a pseudo-LRU
policy in an Intel Core 2 Duo E6300 processor. They later
complemented their original work [2] and found a model that
explained the eviction policy in other machines (Intel Core
2 Duo E6750 and E8400). Later on, Wong [60] showed that
Intel's Ivy Bridge processors indeed implement a dynamic
insertion policy as suggested in previous proposals [31, 51].
He was able to identify the regions that apparently had a fixed
policy by measuring the average latency of the accesses to
arrays of different sizes and provided some test code. Such
regions were similarly observed by us in our experiments
(Figure 3). These works have in common that the authors
perform different sequences of memory accesses, and use a
mechanism to estimate/measure the number of misses and
later compare their measurements with the expected misses.
However, they did not explain which concrete element in the
cache would be evicted in the event of a miss.

Gruss et al. [19] studied cache eviction strategies on recent
Intel CPUs in order to replace the clflush instruction and
build a remote Rowhammer attack. As they mention, their
work is not strictly a reverse engineering of the replacement
policy, rather they test access patterns to find the best evic-
tion strategy. In a work concurrent to ours, Vila et al. [57]

tried to evaluate the influence of the replacement policy when
obtaining the eviction set. Their results also show that some
processors include adaptive policies whereas others do not.

To the best of our knowledge, our work is the first one
that provides a comprehensive description of the replacement
policies implemented on modern Intel processors up to the
point that we are able to accurately determine which element
of the set would be evicted using the information about the
sequence of accesses.

2.3 Cache attacks
Cache attacks monitor the utilization of the cache (the se-
quence of cache hits and misses) to retrieve information about
a co-resident victim. Whenever the pattern of memory ac-
cesses of a security-critical piece of software depends on the
actual value of sensible data, such as a secret key, this sensi-
tive data can be deduced by an attacker and will no longer be
private.

Traditionally, cache attacks have been grouped into three
categories [16]: FLUSH+RELOAD, PRIME+PROBE and
EVICT+TIME. From those, the FLUSH+RELOAD and the
PRIME+PROBE attacks (and their variants) stand over the
rest due to their higher resolution.

Both attacks target the LLC, selecting one memory location
that is expected to be accessed by the victim process. They
consist of three stages: initialization (the attacker pre-
pares the cache somehow), waiting (the attacker waits while
the victim executes) and recovering (the attacker checks the
state of the cache to retrieve information about the victim).

2.3.1 FLUSH+RELOAD

This attack relies on the existence of shared memory. Thus, it
requires memory deduplication to be enabled. Deduplication
is an optimization technique designed to improve memory
utilization by merging duplicate memory pages. Using the
clflush instruction the attacker removes the target lines from
the cache, then waits for the victim process to execute (or an
equivalent estimated time) and finally measures the time it
takes to reload the previously flushed data. Low reload times
mean the victim has used the data.

It was first introduced in [22], and was later extended to
target the LLC to retrieve cryptographic keys, TLS protocol
session messages or keyboard keystrokes across VMs [21, 28,
61]. Further, Zhang et al. [65] showed that it was applicable
in several commercial PaaS clouds.

Relying on the clflush instruction and with the same re-
quirements as FLUSH+RELOAD, Gruss et al. [20] proposed
the FLUSH+FLUSH attack. It was intended to be stealthy and
bypass existing monitoring systems. This variant recovers the
information by measuring the execution time of the clflush
instruction instead of the reload time, thus avoiding direct
cache accesses and, as a consequence, detection. However,



some works [10, 36] consider its effect also on the victim's
side and succeed in its detection.

2.3.2 PRIME+PROBE

Contrary to the FLUSH+RELOAD attack, PRIME+PROBE
is agnostic to special OS features in the system. Therefore,
it can be applied to virtually every system. Moreover, it can
recover information from dynamically allocated data. To do
so, the attacker first fills or primes the cache set in which the
victim data will be placed with its own data (initialization
stage). Then, he waits and finally probes the desired set look-
ing for time variations that carry information about the victim
activity.

This attack was first proposed for the L1 data cache in [48]
and was later expanded to the L1 instruction cache [6]. These
approaches required both victim and attacker to share the
same core, which diminishes practicality. However, it has
been recently shown to be applicable to LLC. Researchers
have bypassed several difficulties to target the LLC, as retriev-
ing its complex address mapping [25, 44, 62], and recovered
cryptographic keys, keyboard typed keystrokes [15, 26, 38] or
even a RSA key in the Amazon EC2 cloud [23].

In case a defense system tries to either restrict access to
the timers [35, 42] or to generate noise that could hide tim-
ing information, cache attacks are less likely to succeed. The
PRIME+ABORT attack [14] overcomes this difficulty. It ex-
ploits Intel’s implementation of Hardware Transactional Mem-
ory (TSX) to retrieve the information about cache accesses.
It first starts a transaction to prime the targeted set, waits and
finally it may or may not receive and abort depending on
whether the victim has or has not accessed this set.

2.4 Countermeasures

Researchers have tackled the problem of mitigating cache
attacks from different perspectives. Several proposals sug-
gest limiting the access to the shared resources that can be
exploited to infer information about a victim by modifying
the underlying hardware [41, 58]. System-level software ap-
proaches, on the other hand, require modification of the cur-
rent cloud infrastructure or the Linux kernel. STEALTHMEM
[32] uses private virtual pages that ensure the data located in
them is not evicted from the cache and avoid mapping any
other page with these private virtual pages. CATalyst [40]
uses Intel Cache Allocation Technology (CAT), which is a
technology that enables system administrators to control how
cores allocate data into the LLC. CACHEBAR [66] designs
a memory management subsystem that dynamically changes
the number of lines per cache set that a security domain can
occupy to defeat PRIME+PROBE attacks and changes the
state of the pages to avoid FLUSH+RELOAD. As we have
already stated, we are not aware of any CPU manufacturer,
cloud provider or OS implementing them.

A different approach to protect sensitive applications is to
specifically design them to be secure against side-channels (no
memory accesses depend on private information). Developers
can use specific tools [59, 63] to ensure the binary of such
applications does not leak information, even if it is under
attack. There are other tools, such as MASCAT [27], which
use code analysis techniques to detect potential attacks before
running a program. This kind of tools is effective before
malware distribution or execution, but their effectiveness is
reduced in cloud environments where the attacker does not
need to infect the victim.

For these reasons, we believe that the only countermeasures
that an attacker may have to face when trying to retrieve infor-
mation from a victim, are detection based countermeasures
that can be implemented at user level. Cache attacks exploit
the side effects of running a program in certain hardware to
gain information from it, and similarly, these countermeasures
employ monitoring mechanisms to observe these effects. De-
tection systems can use time measurements [12], hardware
performance counters [10, 13, 36, 64] or place data in trans-
actional regions [18] defined with the Intel TSX instructions.
These detection systems measure the effect of the last level
cache misses on the victim or on both the victim and the
attacker. As a consequence, an attack that does not generate
cache misses on the victim's side would be undetectable by
these systems.

Detection systems that use performance counters as a
source of information to infer anomalies in the execution
of a program, are limited by the number of counters that can
be monitored simultaneously. This number varies between
processors, but implies that such counters must be carefully
selected. As our work shows, although the monitoring ap-
proach can still consider more counters, it is limited and can
not be arbitrarily extended to detect upcoming attacks.

3 Retrieval of Intel cache eviction policies

This work focuses on the LLC. Since it is shared across cores,
the attacks targeting the LLC are not limited to the situation in
which the victim and the attacker share the same core. It is also
possible to extract fine-grained information from the LLC and
many researchers are concerned about the attacks targeting
the LLC. Attacks that assume a pseudo LRU eviction policy
such as PRIME+PROBE or EVICT+RELOAD can benefit
from detailed knowledge of the eviction policy, and can also
benefit one attacker wishing to carry out a “stealthy” attack
that does not cause cache misses on the victim.

In order to study the eviction policy, we try to emulate
the hardware in software. We ensure that we can fill one set
of the cache with our own data, access that data and force
a miss when desired, to observe which element of the set is
evicted. Thus, we have constructed an eviction set (a group
of w different addresses that map to one specific set in w-way
set-associative caches) and what we call a conflicting set (a



second eviction set that maps to exactly the same set and
is composed of disjoint addresses). Previous works have re-
trieved the complex addressing function [25,44,62] or demon-
strate how to create the aforementioned sets dynamically [15].
When the number of cores in our test systems is a power of 2,
we compute the set and slice number using the hash function
in [44] and use that information to construct the eviction and
conflicting sets. In the remaining situations such sets were
constructed following the procedure proposed by Liu et al.
in [15] (Algorithm 1).

For all the experiments, we have enabled the use of
hugepages in our systems. Note that the order of the accesses
is important to deduce the eviction policy. We enforce this
order using lfence instructions, which act as barriers that en-
sure all preceding load and store instructions have finished
before any load or store instruction that follows lfence. We
have observed that mfence does not always serialize the in-
struction stream, that is, it does not completely prevent out of
order execution.

3.1 Design of the experiments

Algorithm 1 Test of the desired eviction policy

Input: Eviction_set, Conflicting_set
Output: Accuracy of the policy . hits/trials

function TESTPOLICY(eviction_set, conflicting_set)
hits = 0;
while i≤ num_experiments do

j = 0,i++;
control_array←{};address_array←{};
initialize_set(); . Fills address and control arrays
lim = random();
while j ≤ lim do

lfence; j++;
next_data = eviction_set[random()];
measure time to read next_data;
if time≥ ll_threshold then . LLC access

update(control_array,next_data);
con f _element = con f licting_set[random()];
read(con f _element); . Force miss
candidate=getEvictionCandidate();
if (testDataEvicted() ==candidate) then

hits++;
return hits/num_experiments;

We have performed experiments in different machines, each
of them including an Intel processor from different genera-
tions. Table 1 presents a summary of the machines employed
in this work. It includes the processor name, its number of
cores, the cache size and associativity and the OS running on
each machine. We have started by studying the processors of
the fourth generation, which have been a common victim of

published PRIME+PROBE attacks. We have extended our
analysis to cover processors from fourth to eighth generation.

Before conducting the experiments to disclose the eviction
policy implemented in each of the used machines, we have
performed some experiments intended to verify that no cached
data is evicted in the event of a cache miss if there is free
room in the set. The procedure is quite straightforward: for
each of the sets, we first completely fill it with the data on
its corresponding eviction set. Next, we randomly flush one
of these lines to ensure there is free room in the set, and we
access one of the lines in the conflicting set checking that it is
indeed loaded from main memory (cache miss). Finally, we
make sure that all the lines in the eviction set (except for the
one evicted) still reside in the cache by measuring times when
re-accessing them. As expected, in all cases the incoming data
was loaded in replacement of the flushed line.

The procedure we propose to retrieve the replacement pol-
icy, compares the actual evolution of the data in each of the
sets with its theoretical evolution defined by an eviction policy
during the runtime. Algorithm 1 summarizes this procedure.
Each of the policies that has been tested had to be manually
defined. We have evaluated true LRU, Tree PLRU, CLOCK,
NRU, Static and Bimodal RRIP, self-defined policies using
four control bits, etc. among many other possible cache evic-
tion policies. After multiple experiments, we conclude that
the policy implemented on the processors corresponds to the
policy which best matches the experimental observations.

Algorithm 1 tries to emulate by software the behavior of
the hardware (of the cache). For this purpose, it uses two
arrays of size W . On the one hand, address_array mimics the
studied set, storing the memory addresses whose data is in
the cache set. On the other hand, control_array contains the
control bits used for deciding which address will be evicted
in case of conflict. Additionally, we need to manually define
one function that updates the content of the address_array,
one function that updates the control_array and another one
that provides the eviction candidate i.e. it returns the address
of the element that will be evicted in case of conflict. These
functions are defined based on the tested replacement policy.

Note that for all the experiments the initialize_set() func-
tion makes sure that the tested set is empty (by filling it and
then flushing all the elements that it holds) and later fills this
set with all the elements in the eviction set. That is, the ad-
dress_array contains the set of addresses of the eviction set
with their corresponding control bits initialized.

To set an example, we assume we want to test the NRU
policy [55], which turns out to match the policy implemented
in an Intel Xeon E5620 according to our experiments. Accord-
ing to its specification, NRU uses one bit per cache line, this
bit is set whenever a cache line is accessed. If setting one bit
implies that all the bits of a cache set will be equal to one, then
all the bits (except for the one that has just being accessed)
will be cleared. In case of conflict, NRU will remove from the
cache one element whose control bit is equal to zero. Thus,



Table 1: Details of the machines used in this work to retrieve their Replacement Policies

Generation Processor Number of cores Cache size Associativity OS
4th i7-4790 4 8Mb 16 CentOS Linux 7
4th i5-4460 4 6Mb 12 Kali Linux 2019.2
4th i7-4770K 4 8Mb 16 Kali Linux 2019.2
4th Xeon E3-1226 4 8Mb 16 CentOS Linux 7
5th i3-5010U 2 3Mb 12 Ubuntu 14
5th i5-5200U 2 3Mb 12 Kali Linux 2019.2
6th i7-6700K 4 8Mb 16 Ubuntu 16
6th i5-6400 4 6Mb 12 Kali Linux 2019.2
6th i7-6567U 2 4Mb 16 Kali Linux 2019.2
7th i5-7600K 4 6Mb 12 CentOS Linux 7
7th i7-7700HQ 4 6Mb 12 Ubuntu 16
7th i7-7700 4 8Mb 16 Kali Linux 2019.2
8th i7-8650U 4 8Mb 16 Debian 9.5
8th i5-8400 6 9Mb 12 Kali Linux 2019.2
8th i7-8550U 4 8Mb 16 Kali Linux 2019.2

in our procedure, the control bits would be -1 (line empty), 0
(line not recently used), and 1 (line recently used). When a
memory line is accessed, the update function first checks if
its address is already included in the address_array. If it is
not, our function will add it to the address_array and set the
corresponding bit in the control_array. On the contrary, the
function only updates the values of the control_array. The
getEvictionCandidate function will return one array position
whose control bit value is -1, or, if no control bit is equal
to -1, one whose control bit is equal to 0. In case multiple
addresses have control bits equal to -1 or to 0, the function
will return the first address whose control bits are -1 or 0,
that it encounters when traversing the control_array from the
beginning. Finally, after forcing a cache miss, the testDataE-
victed() checks if the element evicted is the predicted by the
NRU policy (the output of getEvictionCandidate).

We have noticed that only accesses to the LLC update
the values of the control bits of the accessed element. That
is, if the data is located in L1 or L2 caches when requested
(reload time lower than ll_threshold), we do not update the
values in the control_array. Figure 1 shows the distinction
between accesses to low and last level caches based on reload
times observed in the i7-4790 machine and validated with
performance counters. The value of the ll_threshold varies
between the different machines and requires calibration.

3.2 Results

The outcomes of our experiments highlight some differences
in the cache architecture of the machines, as also noticed
in [14]. Traditionally, the number of slices of the cache used
to be equal to the number of physical cores of the machine.
This is true for the 4th and 5th generation processors. On the
contrary, the newest ones have as many slices as virtual cores;
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Figure 1: Distribution of the access times to different data.
These times depend on which memory it was located.

that is, two times the number of physical cores. Cache sizes
are similar, so they also differ in the number of sets per slice
(2048 vs 1024).

Since several policies and previous works [60] suggest that
different sets perform differently, we have repeated the ex-
periment in Algorithm 1 for each of the sets in the last level
cache. As a result, we have found out that apparently only the
machines from the 4th and 5th generation implement set du-
eling to dynamically select the eviction policy. We conducted
several further experiments intended for determining which
sets implement a fixed policy and which others change their
policy based on the number of hits and misses. Locating the
sets with a fixed policy is interesting for various reasons: these
sets will allow us to accurately determine the two different
replacement policies, and they will allow favoring one policy
over the other depending on our interests. This also means
that monitoring one set belonging to the group of followers,
gives information about which policy is currently operating.

The strategies for locating the sets included different access
patterns that would lead to a different number of misses. For



Is D in the cache?

Data (D) request

Return D

Decrease the 
age of D

Fetch D from main memory and place it in the cache

Is there any empty block in the cache set?

Place D in the first empty one

Set the age of D to insertion age

Is the age of any block in the set equal to 3?

Replace the first block whose age is 3 with D

Set the age of D to insertion age

Increase the ages of all the elements

YES NO

YES NO

Return D

Is it in L1 or L2?
YES NO

YES NO

Figure 2: Diagram that represents the process of data (D) retrieval whenever the processor makes a request. The blocks with
green background represent a cache hit, whereas the blocks with red background represent a cache miss.
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Figure 3: Location of the sets controlling the eviction policy
within a slice of 2048 sets. Mode 1 (blue) and mode 2 (red).

example, we have simulated bursts by accessing the eviction
set in an ordered way, then the whole conflicting set, and
finally re-accessing the eviction set. The observed number
of misses depends on the policy. Pseudo LRU policies evict
all the data in the eviction set after accessing the elements in
the conflicting set. Whereas other policies intended for good
performance in these situations (burst accesses to memory)
cause fewer misses. As a result, we have located two regions
composed of 64 cache sets in each slice that control each
policy as did Wong before [60]. Figure 3 represents all the sets
of a cache slice with the control regions. The region coloured
in blue controls the policy 1, and the region coloured in red
controls the policy 2. Except for the Xeon machine, where
these regions are located in sets 1024-1088 and 1280-1344,
the remaining machines are consistent with Figure 3.

Not all the sets within the aforementioned regions imple-
ment a fixed policy. Particularly, only one of the sets in each
slice controls one policy. This fact was observed and discov-
ered after multiple experiments with different patterns. The
sets with a fixed policy for each of the slices are depicted in
figure 4. In processors with two slices, these control sets also
alternate between slices. As a result each slice has 32 control
sets. To obtain the actual control sets within the slice, it is
important to test the sets and slices without order, otherwise it
may seem that some sets have a fixed policy and they do not.

The policy we will uncover is the one implemented in the
L3 cache. The policies implemented in the L1 and L2 caches
can be different (actually, in L1 is different). We have been
able to uncover a policy that seems to explain the observed

Figure 4: Detailed representation of the sets with fixed policy
within each of the slices for the i7-4790 machine.

evictions. In fact, over 97% of the evictions have been cor-
rectly predicted in all cases 1, and it is likely that the errors
were due to noise.

Although we have observed differences between genera-
tions and some machines implement set dueling, the decision
of which data is going to be evicted is the same in all cases.
The replacement policy is always the same; what changes is
the insertion policy. Due to space limitations and to avoid cre-
ating confusion, we only include here the description of the
policies revealed by our experiments as the ones implemented
in the Intel processors. Assuming that the policy is named
Quad-Age LRU, in the following we refer to ages instead of
control bits. Figure 2 represents the procedure followed to
retrieve a piece of data when requested by the processor. It
summarizes the replacement policy and our observations. If
the data is retrieved from the LLC, the controller decreases the
age of the requested element when giving it to the processor.
If there is a cache miss and one element has to be evicted, the
replacement policy will select the oldest one.

Intel's processors use two bits to represent the age of the el-
ements in the cache. Consequently, the maximum age is three.
In the case that there are multiple blocks whose age is three,
the evicted one is the first one the processor finds. The cache
behaves somehow like an array of data, and when searching
for a block of data placed on it, the controller always starts
from the same location, which would be equivalent to index
0 in an array. We have observed that when all the elements in

1These results refer to the sets with fixed policy in the machines that
implement set dueling. The remaining sets were tested once the two policies
were known, and we checked they followed one of them.



a set reach age 0, the age of all of them is incremented so the
processor is still able to track the accesses.

As we have already stated, the machines used in our ex-
periments only differ in the insertion age; that is, the initial
value for the age of a cache line when it is first loaded into the
set or when it is reloaded after a cache miss. Particularly, the
processors from 4th and 5th generations that implement set
dueling, insert the elements with age 2 in one of the cases and
with age 3 in the other. We denote each of these situations
or working modes as mode 1 and mode 2, respectively. The
remaining processors (6th, 7th and 8th generations) always
insert the blocks with age 2, which is equivalent to the mode
1 in the previous generations.

In order to help the reader to understand how the cache
works, figure 5 shows an example of how the contents of
a cache set are updated with each access according to each
policy. When the processor requests the line “d”, there is an
empty block in the set, so “d” is placed in that set and it gets
age 2 (Mode 1) or age 3 (Mode 2). In mode 1, the eviction
candidate is now “a” because it is the only one with age 3,
whereas in mode 2 the eviction candidate is “d” as it has age
3 and is on the left of “a”. The processor then requests “d”,
so its age decreases from 2 to 1 in both cases. Accessing “g”
causes a miss. The aforementioned eviction candidates will be
replaced with “g”, and its age will be set to 2 or 3 respectively.
Eventually, when the processor requests “a”, it will cause a
miss in mode 1 (it was evicted on the previous step) and a
hit in mode 2, so it will decrease its age. Note that in this
example, we assume that all the requests are directly made to
the last level cache.

4 RELOAD+REFRESH

If any kind of sharing mechanism is implemented, an attacker
knowing the eviction policy can place some data that the
victim is likely to use in the cache (the target) and in the
desired position among the set. Since the position of the
blocks and their ages (which in turn depend on the sequence
of memory accesses) determine the exact eviction candidate,
the attacker can force the target to be the eviction candidate.
If the victim uses the target it will no longer be the eviction
candidate, because its age decreases with the access. The
attacker can force a miss and check afterwards if the target
is still in the cache. If it is, the attacker retrieves the desired
information, that is, the victim has used the data whereas
victim has loaded the data from the cache without suffering
any cache misses (no attack trace). This is the main idea of
the RELOAD+REFRESH attack.

OSs implement mechanisms such as Kernel Same-page
Merging (KSM) in Linux [8] that improve memory utiliza-
tion by merging multiple copies of identical memory pages
into one. This feature was originally designed for virtual
environments where multiple VMs are likely to place the
same data in memory, and was later included in the OSs.

Although most cloud providers have disabled it, it is still en-
abled in multiple OSs. When enabled, the attacker using the
RELOAD+REFRESH technique needs some reverse engi-
neering to retrieve the address he wants to monitor, and he
also needs to find an eviction set that maps to the same set as
this address.

We use Figure 6 to depict the stages of the attack and the
possible “states” of the cache set. The attacker first inserts
the target address into the cache and then all the elements
in the eviction set, except one, which will be used to force
an eviction. By the time the attacker has finished filling the
cache with data, the target address will be in level 3 cache. The
number of ways in low level caches is lower than the number
of ways in the L3 cache, and since the L3 cache is inclusive,
it will remove the target address from the low level caches
when loading the last elements of the eviction set. Even if the
victim and the attacker are located in the same core, an access
of the victim to the target address will update its age, so the
attacker would be able to retrieve this information.

The data is placed in such a way that the target becomes the
eviction candidate. The attacker then waits for the victim to
access the target. If it does, the element inserted in the second
place turns into the oldest one, and thus into the eviction
candidate. If it does not, the eviction candidate is still the
target address. The attacker then reads the element of the
eviction set (evW−1) that remains out of the cache, forcing
this way a conflict in the cache set, and the eviction of the
candidate. As a consequence, when reading (RELOAD) the
target address again, the attacker will know if the victim has
used the data (low reload time) or not (high reload time). The
state of the cache has to be reverted to the initial one, so all the
elements get the same age again (REFRESH). The element
evW−1 is forced out of the cache, so it could be used to create
a new conflict on the next iteration.

When the cache policy is working in mode 2, each element
is inserted with age 3. In this case, steps 1 to 5 are equivalent.
However, step 6 changes depending on whether the victim is
allocated in the same core as the attacker or not. When not,
the other elements have age 3 and the target is the eviction
candidate, so there is no need to refresh the data for the at-
tack. On the other hand, when they are on the same core, the
attacker needs to remove the target from the low level caches
by refreshing the other elements in the cache set. Note that in
this situation, the attacker could target the low level caches.
The RELOAD time reveals if both victim and attacker are
sharing the same core or not.

Additionally, the mode 2 policy enables a detectable fast
cross core cache attack that does not require shared memory.
Once the cache set is filled with the attacker’s data, all the
elements get age 3 and the eviction candidate is now the first
element inserted by the attacker. If the victim uses the ex-
pected data, the eviction candidate will be replaced. Even if
the victim uses the data multiple times, its age will not change,
since it will be fetched from the low level caches. Then, the
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Figure 5: Sequence of data accesses in a cache set updating their content and their associated ages for the two observed policies.
Mode 1 of the 4th and 5th generations behaves exactly the same as the 6th, 7th and 8th generations. The red arrow points the
eviction candidate, that is, the data that would be evicted in case of cache miss.

attacker only has to access the first element (eviction candi-
date) to check whether the victim has or has not accessed the
target data. Note that with this access the attacker replaces the
victim’s data (because it became the eviction candidate when
loaded with age 3) so it is equivalent to the REFRESH. If, on
the contrary, the victim does not use the data, the attacker’s
data will still be in the cache. The attacker will then flush and
reload this data to ensure it gets age 3 again.

Algorithm 2 Reload function

Input: Eviction_set, Target_address
Output: Reload time

function RELOAD(Target_address,eviction_set)
“rdtsc";
“lfence";
read(eviction_set[w−1]); . Forces a miss
“lfence";
f lush(eviction_set[w−1]);
“lfence";
read(Target_address);
f lush(Target_address);
“lfence";
read(Target_address); . Reload on first position
“lfence";
“rdtsc";
read(eviction_set[0]);
return time_reload;

Algorithms 2 and 3 summarize the steps of the
RELOAD+REFRESH attack when the insertion age is two

(newest Intel generations or mode 1 in oldest generations).
The cache set is filled with the target address plus W − 1
elements of the eviction set during initialization. Then, the
attacker waits for the victim to run the code. Later, he per-
forms the RELOAD and REFRESH steps. The RELOAD
step gives information about the victim accesses and the RE-
FRESH step gets the set ready to retrieve information from
the victim. When initializing the set, we first fill the set, then
flush the whole set and finally reload the data again to ensure
the insertion order and that the cache state is known by us.

In the RELOAD function it is not necessary to flush the
Target_address unless it has not been used by the victim. The
same assumption is true for the conflicting address or the
element W − 1 of the eviction set, which would have to be
flushed only in that situation. However, to avoid if conditions
in the code, we have chosen to implement the RELOAD
function this way. Low reload times mean the data was used
by the victim, whereas high reload times mean it was not.

The REFRESH function is meant for a 12 way set. Since
the target and the first element of the eviction set have been
loaded in the RELOAD step, the REFRESH function only has
to access the remaining 10 elements of the set. To avoid out
of order execution and ensure the order, which in turn ensures
the ages of the elements in the eviction set are updated, such
elements have to be accessed as a linked list (one element
contains the address of the following one). Thus, this function
is similar to the probe function in [15] except for the fact
that it loads W-2 elements of the linked list. Additionally, the
refresh time can be used to detect if any other process is also
using that set.
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Figure 6: Sequence of possible cache set states during the
attack for the mode 1 or the newest generations, starting with
all elements in the set with age 2.

4.1 Noise tolerance
The proposed attack relies on the order in which the elements
are inserted into the cache set to both avoid misses on the
victim side and to learn information about the data that has
been accessed. If other processes are running and using data
that maps to the same cache slice (introducing noise), the effi-
ciency of the attack can be lessened and also some detection
mechanisms can be triggered.

As mentioned before, the refresh step can reveal such situ-
ations. Then, the attacker can slightly change the approach.
Assuming that only one address is being used by the noise-
generating process, the attacker can easily handle noise, avoid
detection and still gain information about the victim. The
trick to deal with noise is placing the target on a different
place within the set (the second place in this example). In
case somebody else uses any data mapping to that set, the
replaced data belongs to the attacker; specifically it is the data
placed in first place in the set. When the attacker forces a
miss, the eviction candidate will be either the target address
(if the victim did not use it) or the element inserted in third
place (the victim did use the target data). The attacker can

Algorithm 3 Refresh function

Input: Eviction_set
Output: Refresh time

function REFRESH(Eviction_set)
volatile unsigned int time;
asm __volatile__(

“ lfence \n"
“ rdtsc \n"
“ movl %%eax, %%esi \n"
“ movq 8(%1), %%rdi \n" . Eviction_set[1]
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n"
“ movq (%%rdi), %%rdi \n" . Eviction_set[w-2]
“ lfence \n"
“ rdtsc \n"
“ subl %%esi, %%eax \n" . Time value on %eax

);
return time_re f resh;

gain information about the victim by reloading the target ad-
dress, and he must begin by refreshing the third element of
the eviction set and finish with the first one which will evict
the “noise” from the cache, so the age of all the blocks is set
to 2 again.

5 Comparison with previous approaches

5.1 Covert channel

In order to study the resolution of the proposed technique
and to characterize it, as well as to compare it with previous
approaches (FLUSH+RELOAD and PRIME+PROBE) we
construct a covert channel between two processes (referred as
sender and receiver) in a similar way as previous works have
done [15, 20, 43]. 2

The sender transmits a 1 by accessing a memory location
from a shared library and a 0 by not-accessing it. Once the
memory location is accessed, he waits for a fixed time and
reads that data again. The receiver monitors the cache utiliza-
tion using each of the aforementioned techniques and deter-
mines whether a 1 or a 0 was transmitted. That is, whether the
victim has used the data or not. The sender and the receiver
are not synchronized.

2The source code for this test can be found at https://github.com/
greenlsi/reload_refresh

https://github.com/greenlsi/reload_refresh
https://github.com/greenlsi/reload_refresh


In each of the experiments executed, the sender reads the
target memory location once during each fixed window of
time. That is, it accesses one memory location (sends 1) and
then waits (transmits 0) for a fixed time before the follow-
ing access. We consider as true positives when the sender
accesses a piece of data and the receiver detects that access.
Similarly, true negatives are non-accesses that are classified
as 0. In some situations, the processor appears to be perform-
ing other tasks that do not allow the retrieval of information.
Since we do not get these samples, we cannot classify them
and we do not consider them for evaluation.

The PRIME+PROBE attack can be conducted following
different approaches. We do not use the zig-zag pattern that
was intended to avoid changes in the replacement policy [15].
Accessing the elements in a cache set this way increases the
number of false positives since it sometimes fails to remove
the data from the cache. We access the eviction set of size
W always in the same order, and the elements are accessed
as a linked list. If the initial state of the cache is known, this
means that at most we need 2 probes to evict the data from the
cache, in the case when the access to the target happens in the
middle of a probing stage. We have also tested the proposal of
Gruss et al. [20] with the configuration parameters S=W , C=2
and D=2. This approach is faster than accessing the elements
in the eviction set as a linked list and thus, presents better
time resolution. In scenarios where victim and attacker do not
interfere with each other (such as the attack against AES in
section 5.2), the eviction rate of this approach is around 99%.
However, in a different scenario where interference is possible,
as in the case of the attack against RSA (section 5.3) or when
the interval between monitored accesses is low, the number
of false positives slightly increases with this approach. In any
case, both approaches yield to comparable results. We include
in this and the following subsections, results referring to the
PRIME+PROBE attack when the eviction set is accessed as a
linked list.

The results of these experiments in terms of the F-Score
for each fixed time window are presented in Table 2. These
experiments were performed in the i5-7600K machine (Ta-
ble 1). The statistics for each waiting time are computed for
50000 windows. As a result, the number of samples collected
for each experiment is different. Note that when the wait-
ing time between samples is low, both PRIME+PROBE and
RELOAD+REFRESH are not able to distinguish between 1
and 0. PRIME+PROBE presents a slightly better resolution
in our test system. Note that, in this case, we sometimes do
not get two samples for each window (access and idle), we
do not consider as false positives the samples classified as 1
in that window.

Even when RELOAD+REFRESH has lower resolution
than other attacks, it can be used to retrieve secret keys of
cryptographic implementations. We demonstrate this state-
ment and replicate two published attacks: one against the
T-Table implementation of AES (section 5.2) and one against

Table 2: F-Score for the different attacks when the sender
accesses the data at different and fixed intervals (ns). R+R
stands for RELOAD+REFRESH F+R for FLUSH+RELOAD
and P+P for PRIME+PROBE

Times > 50000 10000 1000 750 500 250
R+R 0.988 0.975 0.925 0.684 - -
F+R 0.999 0.995 0.996 0.991 0.989 0.981
P+P 0.934 0.911 0.873 0.716 0.548 -

the square and multiply exponentiation implementation in-
cluded in RSA (section 5.3). Although both implementations
have been replaced by new ones, we use them for comparison.

5.2 Attacking AES

The T-Table implementation used to be a popular software
implementation of AES. While still available, this implemen-
tation is not the default option when compiling the OpenSSL
library due to its susceptibility to microarchitectural attacks.
This implementation replaces the SubBytes, ShiftRows and
MixColumns operations with table lookups (memory accesses)
and XOR operations. Since the accesses to the T-Tables de-
pend on the secret key, an attacker monitoring just one line of
each T-Table is able to recover the full AES key.

Our scenario is similar to the one described by Irazoqui et
al. [7], which was later replicated by Briongos et al. [11]. They
focused on retrieving information about the last round of the
AES encryption process, in which the ciphertext is obtained by
performing one XOR operation between an element contained
in the tables and the secret key. As the content of the tables
is publicly available from the source code, they obtained the
secret final round key by xoring the table content hold in the
cache line, with the ciphertext.

Besides performing the attack against the AES T-Table
implementation (OpenSSL 1.0.1f compiled with gcc and the
no-asm and no-hw flags) using the RELOAD+REFRESH
(R+R) technique, we have performed the same attack using
the FLUSH+RELOAD (F+R) and PRIME+PROBE (P+P)
techniques, to provide a fair comparison regarding the number
of traces required to obtain the key. In order to retrieve the
whole key, the attacker has to monitor at least one line of each
T-Table. The attacker can monitor from one up to four lines at
a time. For this comparison, we monitor one table at a time.

Table 3 shows the results for each of the approaches. In this
scenario, the attacker performs one operation, then the vic-
tim performs the encryption, and finally the attacker retrieves
the information about the victim. That is, the victim and the
attacker do not interfere with each other while doing the dif-
ferent operations. To obtain the key we use cache misses [11],
so false positives are measured misses when the victim used
the data in the T-Table. We repeated each experiment until we
have recovered the key 1000 times.



Table 3: Mean number of samples required to retrieve each
four byte group of the whole AES key when monitoring one
line per encryption, and the corresponding F-Score.

Attack R+R F+R P+P
Samples 3800 3500 3900
F-Score 0.98 0.99 0.97

Figure 7: Distribution of the number of misses induced in the
victim process by the different attacks, and with no attack.
Each includes 1 million of samples

5.2.1 Measurement of LLC misses

RELOAD+REFRESH is able to retrieve an AES key with
a negligible impact on the victim process. We compare the
number of L3 cache misses that the victim suffers per encryp-
tion performed, for all the attacks and for normal executions.
We use the PAPI software interface [46] to read the counters
referring to the victim process. PAPI allows us to insert one in-
struction just before, and another one just after the encryption
process ending to read the L3 cache misses counter, which
is mainly the information used so far for cache attack detec-
tion [10, 13, 36, 64]. Figure 7 shows the resulting distribution
of the number of misses the victim sees for each attack and
for the normal execution of the encryption.

As implied by Figure 7, our attack cannot be distinguished
from the normal performance of the AES encryption process
by measuring the number of L3 cache misses. As we did
for the analysis of the covert channel, when performing the
PRIME+PROBE attack against AES, we access the data in
the same order every time. The reason is that in previous
experiments that we have conducted, the eviction rate we
achieved with the zig-zag pattern was below 80% using just
one probe per measurement.

Additionally, we use the rdtsc instruction to measure the
time it takes to complete each encryption and show the re-
sults in Figure 8. The differences observed in Figure 8 be-
tween the normal encryption and the RELOAD+REFRESH
approach are not significant, especially when compared with
the other attacks. The mean encryption time when there
is no attack is 595 cycles, whereas it increases up to 623
cycles when attacked with the RELOAD+REFRESH tech-
nique. This time difference exists because, when suffering the
RELOAD+REFRESH attack, the victim has to load the data
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Figure 8: Distribution of the encryption times in different
situations. Each distribution includes 1 million of samples.

(if used) from the L3 cache instead of loading it from the L1
or L2 caches.

5.3 Attacking RSA
RSA is the most widely used public key crypto system for
data encryption as well as for digital signatures. Its security
is based on the practical difficulty of the factorization of the
product of two large prime numbers. RSA involves a public
key (used for encryption) and a private key (used for decryp-
tion). There are many algorithms suitable for computing the
modular exponentiation required for both encryption and de-
cryption. In this work we focus on the square and multiply
exponentiation algorithm [17] as Yarom et al. did [61]. As
in the case of AES, this implementation has been replaced
by implementations with no key-dependent memory accesses
that attempt to achieve constant execution times.

Square and multiply computes x = be mod m as a sequence
of Square and Multiply operations that depend on the bits of
the exponent e. If the bit happens to be a 1, then the Square
operation is followed by a Multiply operation. If the bit is
a 0, only a Square operation is executed. As a consequence,
retrieving the sequence of operations executed means recov-
ering the exponent; that is, the key.

As a difference with the attack against AES, we monitor in-
structions instead of data. Additionally, an attack against RSA
needs to have enough time resolution to correctly retrieve
the sequence of operations. As we did before, we performed
the attack using our stealthy technique as well as using the
FLUSH+RELOAD and PRIME+PROBE techniques.

The targeted crypto library is libgcrypt version 1.5.0, which
includes the aforementioned square and multiply implementa-
tion. The key length in our experiments was 2048 bits, and we
collected information for 1000 decryptions per attack. When
attacking RSA, it is possible to monitor all the functions im-
plied in the exponentiation or just one. When monitoring
all the instructions, the attacker is able to reconstruct the se-
quence of observations. If the attacker monitors only one
instruction, he has to use the differences of times between
occurrences of the monitored event to retrieve the key. We
only monitor the Multiply operation.



Figure 9 compares part of a trace retrieved using the
RELOAD+REFRESH approach with the real execution of a
RSA decryption operation (we collect timestamps). The trace
corresponding to the real sequence of squares and multiplies
is represented as blue bars with different values: 800 means
a Square was executed and 700 it was a Multiply. The slight
misalignment between the two traces occurs because the RSA
execution timestamp is collected after each exponent bit has
been processed, and the timestamp of the attack samples after
the reload operation has finished.

The results of our experiments are summarized in table 4.
As in the case of the characterization of the covert channel,
we do not classify as false positive or false negative the sam-
ples that are lost, that is, not collected in time. This situation
happens for about 1-2% of the samples. Since we try to detect
Multiply operations, false positives refer to the situation in
which a Multiply was detected but not executed. The accuracy
is given as the number of correctly classified samples (True
positives+True negatives) divided by the number of collected
samples during the RSA decryption.

Table 4: Percentage of samples correctly retrieved and false
positives generated by each approach when attacking RSA.

Attack R+R F+R P+P
Accuracy 96.1% 98.6 % 95.4%
F-Score 0.952 0.99 0.945

5.3.1 Measurement of LLC misses

We have monitored the number of cache misses detected when
executing a complete RSA decryption. When trying different
keys, we have observed that the distributions change not only
depending on the attack, but on the secret key. For this reason,
the total amount of misses per encryption cannot be used
to detect ongoing attacks, thus the cache misses have to be
measured concurrently with the execution of the decryption.

We have also monitored the victim LLC misses period-
ically. We have collected samples for 1000 complete RSA
decryptions in each of the scenarios with a sampling rate
of 100 µs. The results obtained in this case show a varying
number of misses during the initialization steps. During this
initialization, considering exclusively the number of misses
caused in the different scenarios, is not possible to distin-
guish between attacks and the normal operation. Later on,
the number of misses gets stable and tends to zero during the
normal operation. Similarly, this trend can be observed dur-
ing the RELOAD+REFRESH attacks. On the contrary, both
FLUSH+RELOAD and PRIME+PROBE cause a noticeable
amount of misses. The concrete mean values of the misses
are presented in Table 5.

Since detection mechanisms such as CacheShield [10],
define a region in with some misses are tolerated to avoid
false positives, and only cache misses are considered, our

attack will not trigger an alarm. Figure 10 shows the section
of the decryption process in which the number of misses has
become stable for the different scenarios.

The RELOAD+REFRESH approach (as well as the other
attacks) are not synchronized with the decryption operation, as
a result, there are situations in which both victim and attacker
can try to access the target date simultaneously. If the victim
tries to execute the Multiply operation when the attacker is
flushing and reloading the mentioned line, the victim may get
a miss. Therefore, a few misses can be observed in Figure 10
for our approach.

6 Detection evaluation

RELOAD+REFRESH causes a negligible amount of LLC
misses on the victim process. Thus, existing detection tech-
niques would fail to detect the attack unless adapted. Our
attack highlights a problem that has not been considered be-
fore in performance-counter-based detection systems: the
selection of counters is a hard problem because it is unknown
if future attacks could similarly evade the concrete selection
of counters of such systems. Besides, the number of avail-
able counters that can be read in parallel in each platform,
is limited. As a consequence, detection systems cannot be
arbitrarily expanded to deal with future attacks.

With the aim of quantifying the effect that our proposal has
on the victim, and in order to provide some insights about
which counters should a detection system consider to deal
with RELOAD+REFRESH, we have periodically monitored
different counters when executing the attacks against AES
and RSA and analyzed the outcomes. We have used PAPI to
collect such information. The sampling rate was set to 100 µs.
Given that not all the counters can be read in parallel, we have
repeated the experiments multiple times. We have merged the
results when the sampling intervals were in a range defined
by the expected value ± a 10% of this sampling value. In the
particular case of RSA, the samples that refer to the beginning
of the execution have been removed (we focus on the stable
part). Finally, we have randomly selected 10000 samples per
algorithm and attack to conduct the analysis. The results of
the analysis are summarized in Table 5. Note that L2 cache
misses report the same value as L3 accesses, and similarly
L1 misses are L2 accesses, so only one of these values is
included in the Table.

As it can be inferred from the Table 5, a single counter re-
ferring to L3 misses or accesses cannot be used to distinguish
attacks and the normal operation for both target algorithms.
In the particular case of L3 accesses, it could be used for RSA
but not for AES. However, the L2 instruction misses counter,
could distinguish between attacks and non-attacks for both
algorithms. Note that if the sampling rate of the attack is re-
duced, the number of L2 misses would similarly be reduced.
As a solution, this value could be normalized with respect to
the total number of instructions executed.
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Table 5: Mean and variance of the different counters collected during the execution of the attacks against AES and RSA. The
results were obtained using 10000 samples collected each 100 µs for each scenario.

Cycles L3 misses L3 accesses L3 reads L2 instruction misses L2 accesses
AES Normal 152000±750 0±0.1 714±62 697±63 31±7 2050±74

AES R+R 148000±634 0±0.1 713±60 702±61 212±15 2035±114
AES F+R 184000±3000 10±2 676±65 676±66 186±12 2000±92
AES P+P 158000±1200 19±3 452±140 451±139 209±18 1810±95

RSA Normal 336000±11000 14±26 100 ±206 99±204 7±12 139±316
RSA R+R 374000±38000 26±14 233±114 231±113 60±23 308±163
RSA F+R 364000±50000 127±38 200±110 199±108 97±54 285±240
RSA P+P 363000±55000 112±61 177±159 174±156 78±83 211±222
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Figure 10: Detail of a trace of misses measured each 100 µs
for each of the approaches.

We can conclude that RELOAD+REFRESH changes the
performance of the system in an observable way in the low
level caches only. Consequently, counters referring to the LLC
are not enough to detect RELOAD+REFRESH. Then, the
assumption of previous detection mechanisms [10,13,64] that
LLC misses or accesses reveal the attacks does not hold for
RELOAD+REFRESH. Existing detection systems thus need
to be adapted or re-trained to include additional information
about low level cache events if they want to be able to detect it.
However, relying on low level cache events to detect the attack
can be tricky, since it is unknown how benign applications
that share the machine with the victim affect it. Therefore,
further analysis must be conducted to build a reliable detection
system.

7 Discussion of the results

The absence of randomness in the replacement algorithm
makes it possible to accurately determine which of the
elements located in a cache set will be evicted in case
of conflict. Also, the accurate timers included in Intel
processors, altogether with the cflush instruction, allow to
trace accesses to the different caches and to force the
cache lines to have the desired ages. We exploit these
facts to run RELOAD+REFRESH. In turn, the fact that
RELOAD+REFRESH works as expected, confirms some of
our results about the replacement policy.

RELOAD+REFRESH is just one way to exploit the evic-
tion policy assuming some kind of memory sharing mecha-
nism enabled. In the case that the victim and the attacker do
not share memory, our attack can be prevented. It could be
prevented as well with some other general countermeasures
against cache attacks that limit the sharing of resources. How-
ever, as mentioned in Section 4, RELOAD+REFRESH can
be adapted to work in the absence of shared memory. We did
not further explore this attack variant, as it requires to keep
the replacement policy in Mode 2, which is also not available
on the newest Intel processors.

The knowledge of the eviction policy enables the usage of a
different access pattern to gain the information about the vic-
tim and to ensure that its data is really evicted from the cache,
reducing the amount of false positives. Thus, PRIME+PROBE
attacks, EVICT+RELOAD attacks or any attack requiring to



evict some data from the cache can benefit from our results.
For instance, the PROBE step can, in some cases, be reduced
to just one access to the eviction candidate.

8 Conclusion

This work presented a thorough analysis of cache replacement
policies implemented in Intel processors covering from 4th
to 8th generations. To this end, we have developed a method-
ology that allows us to test the accuracy of different policies
by comparing the data that each policy selects as the eviction
candidate with the data truly evicted after forcing a miss.

The RELOAD+REFRESH attack builds on this deep un-
derstanding of the platforms replacement policy to stealthily
exploit cache accesses to extract information about a victim.
We have demonstrated the feasibility of our approach by tar-
geting AES and RSA and retrieving as much information
as we can retrieve with other state-of-the-art cache attacks.
Additionally, we have monitored the victim while running
these attacks to confirm that our attack causes a negligible
amount of last level cache misses, rendering it impossible to
detect with current countermeasures. Similarly, we show that
events in the L1/L2 caches can reveal the attack and should
be considered in detection systems. RELOAD+REFRESH
underlines a flaw on such systems; they are limited and they
do not scale.

These results are not only useful for broadening the under-
standing of modern CPU caches and their performance, but
also for improving previous attacks and eviction strategies.
Our work also demonstrates that new detection countermea-
sures have to be designed in order to protect users against
RELOAD+REFRESH.
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