Silhouette: Efficient Protected Shadow Stacks
for Embedded Systems

Jie Zhou Yufei Du Zhuojia Shen
University of Rochester University of Rochester University of Rochester
Lele Ma John Criswell Robert J. Walls
College of William & Mary University of Rochester Worcester Polytechnic Institute

\WTEC,
(P
LR

z
w
3
=
<
. . Q»
8

@ () UNIVERSITY of
&) ROCHESTER WILLIAM & MARY

CHARTERED 1693

Presented at USENIX Security 2020

Microcontroller-based Systems are Almost Everywhere

|

()

Bluetooth module

 soce
1L

Microcontroller-based Embedded Devices

e Limited CPU speed
Akl TET T * Limited memory
T * Frequent direct operations on hardware

et

s
| ¥

o Siaassisspasisasas@esiig a
gap % elin e

- ' T . = - -

So B s [
SRy s -

._..._:

THE

PROGRAMMING
LANGUAGE

C is Not Memory Safe

Control-flow Hijacking: corrupting control-data to divert
control flow to attacker-selected destinations

void foo(..) {

gar();

void bar(..) {

return;

}

C is Not Memory Safe

Control-flow Hijacking: corrupting control-data to divert
control flow to attacker-selected destinations

void foo(..) {

gar();

. attacker-selected destination

void bar(..) {

?eturn;///
s

Control-Flow Integrity (CFl)

void fool(..) { void f1(..) { void f2(..) { void f3(..) {
bar(); add .. call .. call ..
sub ..

Common weakness of practical CFI*: allowing a return instruction to return back to multiple places

“Exploited by Out of Control @0Oakland’14, ROP is Still Dangerous @QUSENIX Security’14, Control-flow Bending @QUSENIX Security’15, etc.

6

Silhouette

Silhouette: a compiler-based defense that

e guarantees the integrity of return addresses
e coarse-grained forward-edge CFl
e low performance overhead (1.3% and 3.4% overhead on two benchmark suites)

 Developed for ARMv7-M due to its popularity
* Also working on other ARM embedded processors

Outline

e Silhouette Design
 Evaluation

e Summary

Outline

e Silhouette Design

Shadow Stack

Protecting return addresses

Shadow stack itself
also needs protection!

0x40000000

SHADOW STACK

ret. addr. of foo

ret. addr. of bar

SSP

regular stack

ret. addr. of foo

ret. addr. of bar

0x36000000

SP

10

0x30000000

From a Shadow Stack’s Point of View

All Store Instructions

stores writing to the shadow stack all other stores

Legal lllegal

Can we make the shadow stack writable only by its legal stores?

11

Background on ARMv7-M

- Execution Mode: Privileged and Unprivileged.
(Embedded devices usually run everything in privileged mode.)
* Memory access permissions are configurable.

0x40000000

can b.e.conflgured to be writable only SHADOW STACK | ret. addr. of foo
by privileged stores ret. addr. of bar |, SSP

Can we make the shadow stack only writable by its legal stores?
l 0x36000000

Is it possible to make
® only the shadow-stack-legal stores privileged ret. addr. of foo
e all other stores unprivileged? regular stack . SP

ret. addr. of bar

Yes

0x30000000
12

Unprivileged Store

Act as if running in unprivileged mode when running in privileged mode.

// running in privileged mode
strt rl, [r@, #12] writable only by privileged stores

\ -

This instruction would fail!

13

Use Unprivileged Store to Protect Shadow Stack

 Configure the memory region for shadow stack to be writable
only by privileged stores.

* Transform all stores to be unprivileged stores except
 shadow-stack-legal stores
e those that require to run as privileged such as some |I/O-related operations.

Effect: even if memory is corrupted and control flow is diverted, illegal store instructions
do not have write access to corrupt the shadow stack.

Store Hardening

14

Store Instructions of ARMv7-M

: Number of
Addressing Mode
Types
Normal Store source register, base register, offset register, immmediate, left over 40
Instructions shift, write back, store multiple, floating-point stores
U“'?”‘"'ege_d Store source register, base register, immediate 3
nstructions

Comparison of Normal and Unprivileged Store Instructions

15

Store Hardening Examples

// example 1 // example 2
str r@, [rl, #4] str r@, [sp, #-12]

no performance overhead
no code size overhead

strt ro, [rl, #4] sub sp, #12
strt r@, [sp, #0]
add sp, #12

performance and code size overhead

16

Forward-edge Control-flow Issues

* Transform all stores to be unprivileged stores except
 shadow-stack-legal stores
* those that require to run as privileged

Forward-edge Control Flow How Silhouette Handles Them
Indirect Function Calls Restricted by Label-based Forward-edge CFlI
Large switch Statements Compiled to Bounds-checked TBB or TBH instructions

Computed goto Statements Transformed to switch statements

17

Silhouette Architecture

Executable
with Protected

Shadow Stack

Shadow Stack Store Hardenin Label-based
Transform 9 Forward-edge CFI

Simplified Architecture of Silhouette

Security guarantee:
» Return instruction always returns to its legal destination
» Forward-edge control flows are restricted to selected destinations

18

Outline

e Evaluation

19

Experiment Setup

Evaluated both performance and code size overhead

Development board: STM32F469

e Cortex-M4 processor, run at 180 MHz
e 384 KB SRAM

e 16 MB SDRAM

e 2MB Flash Memory

Benchmarks: all 9 programs in CoreMark-Pro
29 programs in BEEBS

Base compiler: Clang/LLVM 9.0

Optimization level: -O3

20

Normalized Performance

Performance on CoreMark-Pro Benchmarks

B Shadow Stack | Store Hardening CFlI B Silhouette

1.050
1.025
1.000
0.975 I l I
0.950
. o 5.

ye) Ve
S RA

/5 /4
O, //)G 2 /)/)
® % s, e RN 2
AN Q / Q // @@ \), N\
o . & 3

Min 0 0 -0.1% 0.1%

Max 1.3% 4.9% 0.1% 4.9%
Geo. Mean 0.2% 1% 0 1.3%

21

Normalized Code Size

Code Size on CoreMark-Pro Benchmarks

B Shadow Stack || Store Hardening CFI B Silhouette

1.200
1.150

1.100
1.050
s oo I‘I'I
0.950
% Q. 7 , 3 %,

%

: G 2 pe)
/)G Oo /)G Q 07 .
% S cs><(? 0@\(9 g S5 4?26 %, ’é&
O®®) (Q‘ //\ ks){%\ @\ ‘
: % &,
. %
Shadow Stack Store Hardening CFI Silhouette
Min 0.5% 2.8% 0.2% 3.6%
Max 1.7% 11.1% 9.4% 19.3%

Geo. Mean 0.8% 6.8% 1.2% @

22

Normalized Performance

Performance Overhead on BEEBS Benchmarks

B Shdaow Stack [Store Hardening CFl B Silhouette

1.25
1.2
1.15
1.1
1.05
T mullmllhlhlhlu
0.95
%,@%

Shadow Stack @ Store Hardening CFlI Silhouette
Min 0 -0.3% -0.3% -0.3%
Max 9.2% 24.7% 2.2% 24.8%

Geo. Mean 1.1% 1.8% 01% (34%)

23

Code Size on BEEBS Benchmarks

B Shdaow Stack | Store Hardening CFl B Silhouette

1.08
1.06
1.04

1.02

Normalized Code Size

% % ‘925 % 2
% % % © 0 Y %

O (o)

2}.@

Shadow Stack @ Store Hardening CFlI Silhouette
Min 0.3% 0.5% 0 0.9%
Max 0.6% 6.1% 1.3% 6.8%
0) 0) 0) (o)
Geo. Mean 0.4% 1.8% 0.1% @

24

Silhouette-Invert

SHADOW STACK

ret. addr. of foo

ret. addr. of bar

0x40000000

SSP |
<<

regular stack

ret. addr. of foo

ret. addr. of bar

0x36000000

SP

0x30000000

Writable only by unprivileged stores
but not by privileged stores?

Silhouette-Invert

* Configure shadow stack to be unprivileged-write-only
 Transform shadow-stack-legal stores to be unprivileged
* | eave all other stores unchanged

Not supported on ARMv7-M

Proposed two solutions with minor hardware changes.
See the paper for detalils.

25

Normalized Performance

Silhouette v.s. Silhouette-Invert on CoreMark-Pro

B Silhouette || Silhouette-Invert

1.050

1.025

1.000

0.975

0.950

Silhouette Silhouette-Invert

Min 0.1% 0
Max 4.9% 1.5%

Geo. Mean 1.3%

20

Normalized Performance

Silhouette v.s. Silhouette-Invert on BEEBS

B Silhouette " Silhouette-Invert

1.25
1.2
1.15
1.1
1.05
| I B I B I B
0.95
S,)) & Y.
’})) Qs* % 9,«0(,// ’6 6 % ’220 00\0 /%o
%, e} ke 2, by % ®0(9 7
% \/’?z G(/G /éé) @ N
Silhouette Silhouette-Invert
Min -0.3% 0
Max 24.8% 18.6%
Geo. Mean 3.4% 1.9%
; (1.9%)

27

Summary

e Silhouette: an efficient defense to protect return addresses
for ARM embedded systems

e | ow performance and code size overhead

e Silhouette-Invert:
e Further decreases performance and code size penalty

* Minor hardware change ARTIFACT
. . EVALUATED
 Open-Source: https://github.com/URSec/Silhouette §usenx

Jie Zhou (jzhou41@cs.rochester.edu) -
Zhuojia Shen (zshen10@cs.rochester.edu) Q U eStI on ?

John Criswell (criswell@cs.rochester.edu)

28

https://github.com/URSec/Silhouette
https://github.com/URSec/Silhouette
mailto:jiezhou@rochester.edu
mailto:zshen10@cs.rochester.edu
mailto:criswell@cs.rochester.edu
mailto:jiezhou@rochester.edu
mailto:zshen10@cs.rochester.edu
mailto:criswell@cs.rochester.edu

