Interpretable Deep Learning under Fire

Xinyang Zhang¹ Ningfei Wang² Hua Shen¹ Shouling Ji^{3,4} Xiapu Luo⁵ Ting Wang¹

¹Pennsylvania State University, ²UC Irvine, ³Zhejiang University, ⁴Ant Financial, ⁵Hong Kong Polytechnic University

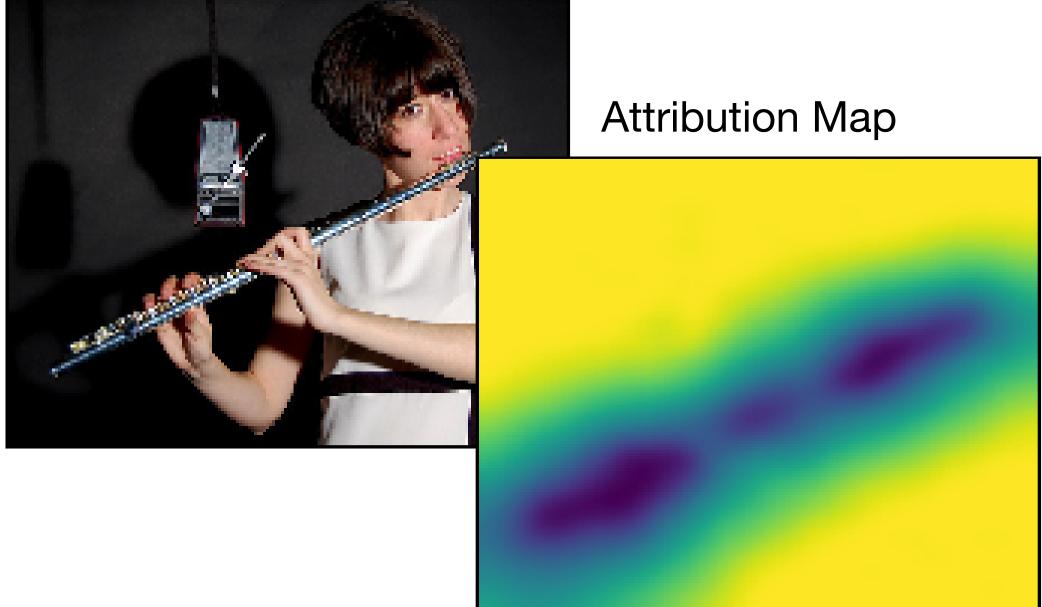
DNN Interpretability

Lack of interpretability

• How does a DNN arrive at a particular decision?

Intensive research on interpreting DNNs

- Backprop-guided
- Representation-guided
- Perturbation-guided
- Model-based

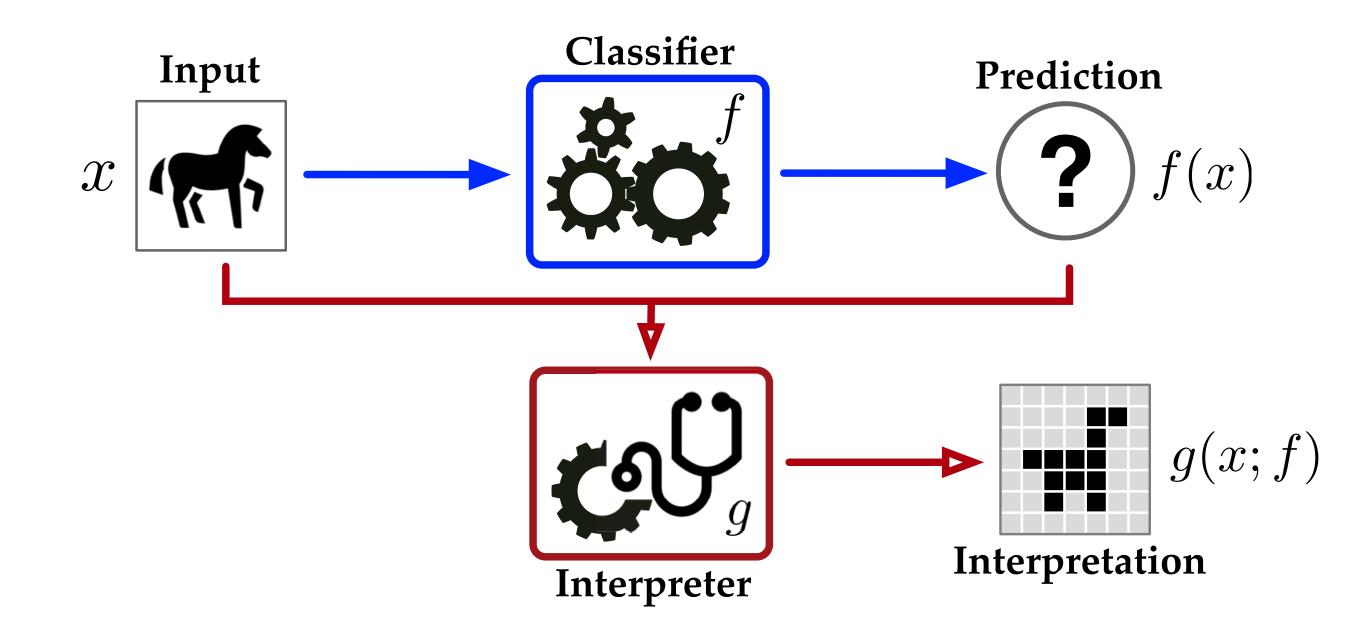


"flute": 0.9973

29th USENIX Interpretable Deep Learning System URITY SYMPOSIUM

Interpretable deep learning system (IDLS)

- Consisting of DNN (classifier) and interpretation model (interpreter)
- Involving humans in the decision-making process
- Requiring the adversary to fool both classifier and interpreter



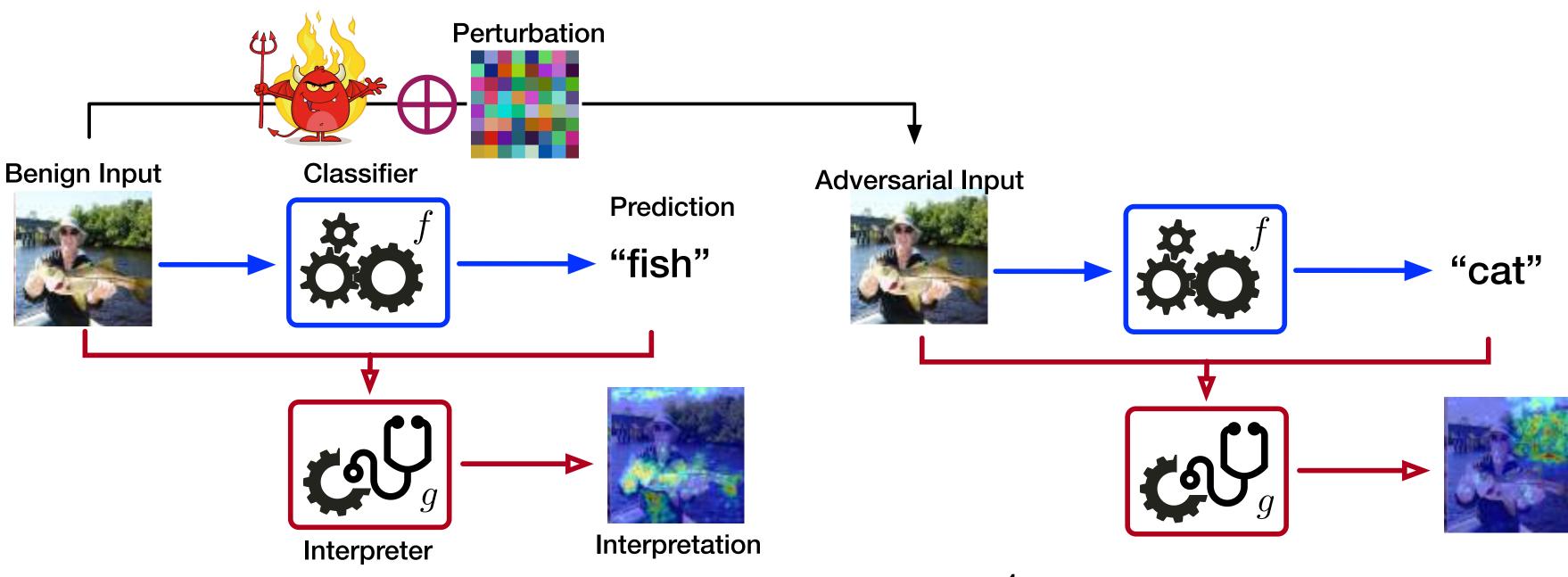
<u>2</u>9™ USENIX SECURITY SYMPOSIUM

Interpretability = Security?

Goal

Understanding the security vulnerabilities of IDLSes

Approach



Developing attacks that simultaneously fool classifier and interpreter

Overall formulation

- 1. Triggering target prediction c_t and target interpretation m_t
- 2. Minimizing perturbation magnitude $\Delta(x, x_{o})$

$$\min_{x} \Delta(x, x_{\circ}) \quad \text{s.t.}$$
Regularized optimization
$$\min_{x} \ell_{\text{prd}}(f(x), c_{t})$$

s.t. $\Delta(x,x_{\circ}) \leq \varepsilon$

ADV² Attack

$$\begin{cases} f(x) = c_t \\ g(x; f) = m_t \end{cases}$$

 $+\lambda \ell_{\text{int}}(g(x;f),m_t)$

Backprop-guided interpretation

• Gradient saliency (GRAD) interpreter

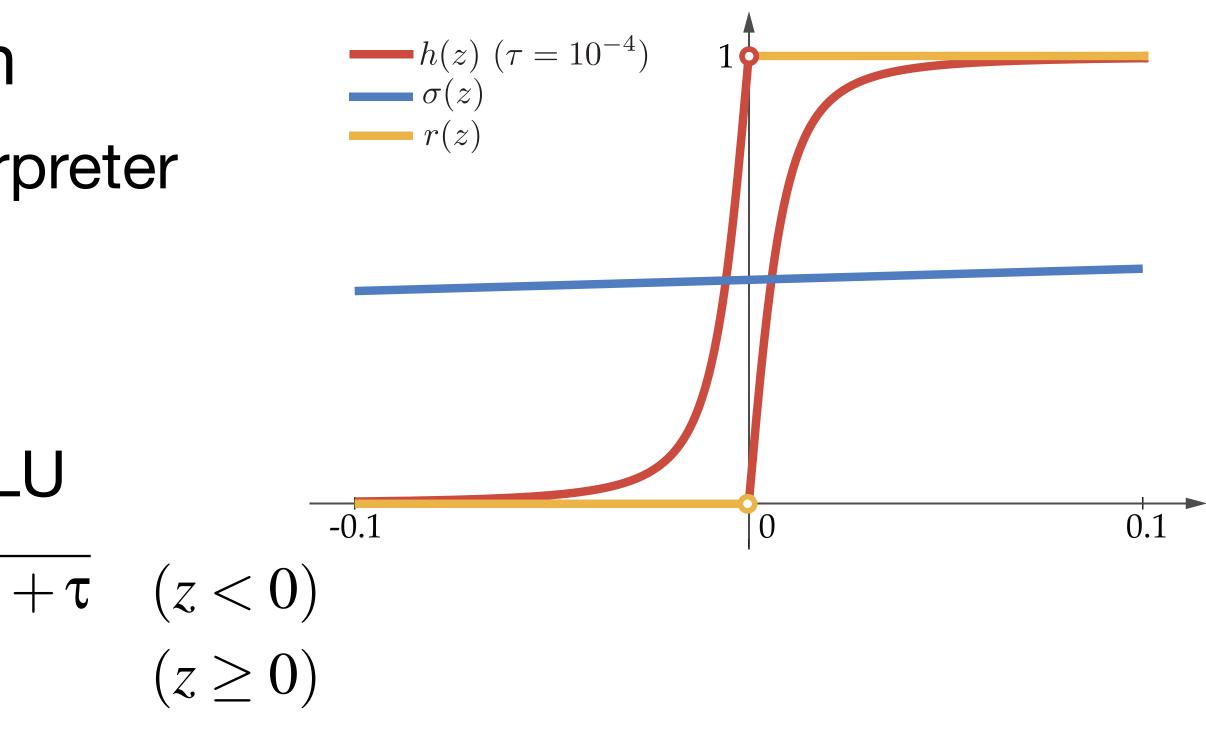
$$m = \left| \begin{array}{c} \partial f_c(x) \\ \partial x \end{array} \right|$$

Gradient enhancement for ReLU

$$h(z) \triangleq \begin{cases} (z + \sqrt{z^2 + \tau})' = 1 + z/\sqrt{z^2 + \tau} \\ (\sqrt{z^2 + \tau})' = z/\sqrt{z^2 + \tau} \end{cases}$$

Label smoothing to avoid gradient saturation

Attack Instantiation



6

29[™] USENIX SECURITY SYMPOSIUM

Attack Instantiation (cont.)

Perturbation-guided interpretation

MASK interpreter

 $\min_{m} f_{c}(\phi(x;m)) + \lambda \|1 - m\|_{1} \quad \text{s.t. } 0 \le m \le 1$

A bi-level optimization formulation

$$\min_{x} \quad \ell_{adv}(x, m_*(x))$$

s.t.
$$m_*(x) = \arg\min_{m} \ell_{map}(m; x)$$

- Updating *m*_{*} estimate and *x* alternatively
- Stabilizing optimization with imbalanced update and periodical reset

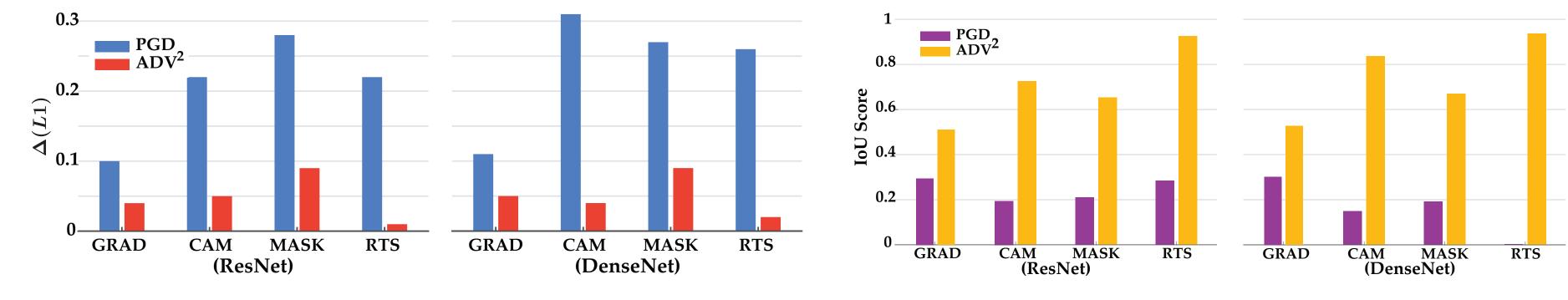
- \mathcal{X})

Attack effectiveness (misclassification)

Setting:

- Dataset ImageNet
- Classifier ResNet-50, DenseNet-169 \bullet
- Interpreter GRAD, CAM, MASK, RTS
- Attack model PGD, ADV² \bullet
- Target interpretation benign attribute map \bullet

Attack effectiveness (misinterpretation)



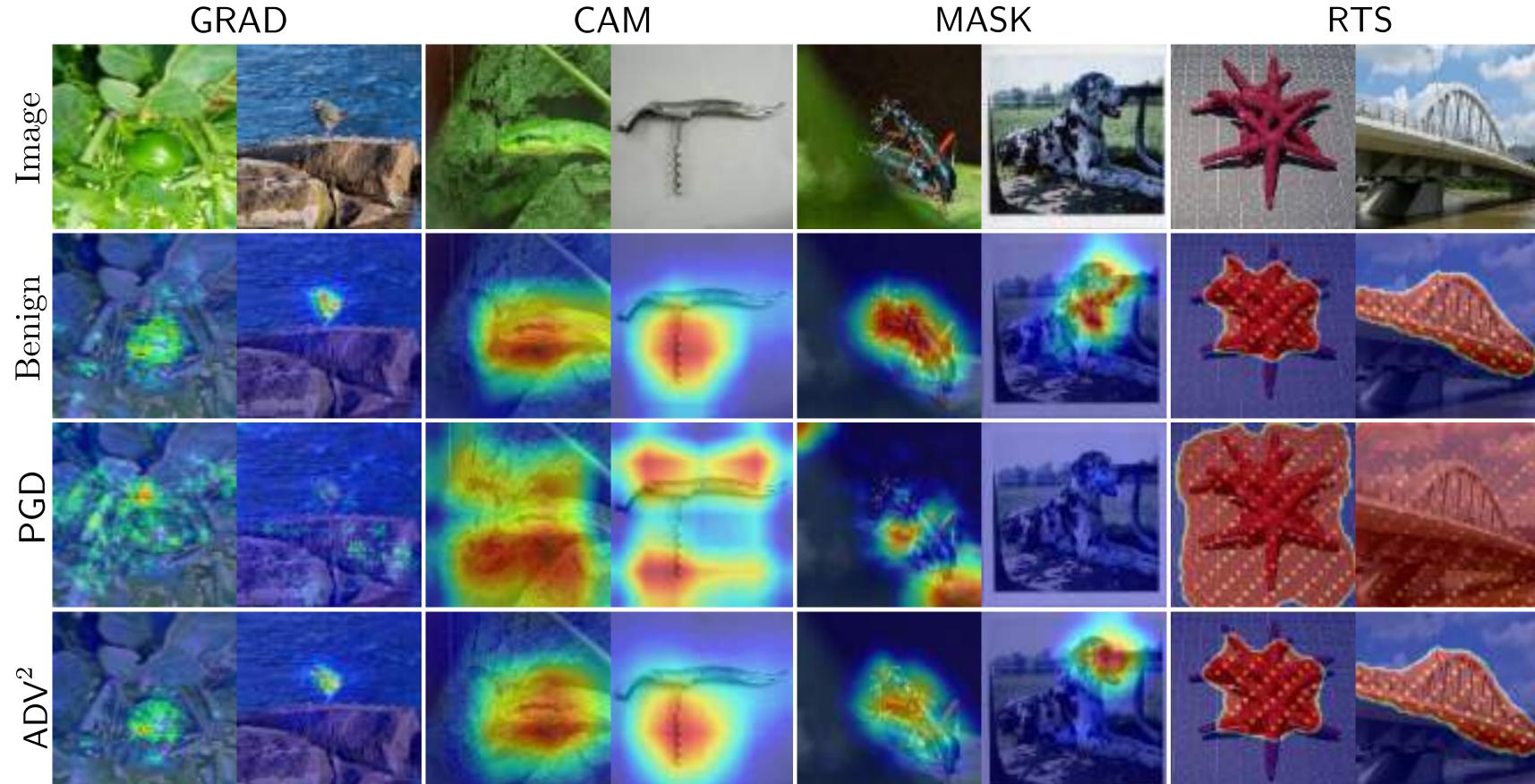
L₁ distance between benign and adversarial attribution maps.

Evaluation

Classifier	ResNet				DenseNet			
Interpreter	GRAD	CAM	MASK	RTS	GRAD	CAM	MASK	RTS
PGD	100% (1.0)				100% (1.0)			
ADV2	100% (0.99)	100% (1.0)	98% (0.99)	100% (1.0)	100% (0.98)	100% (1.0)	96% (0.98)	100% (1.0)

Intersection-of-union (IOU) of benign and adversarial attribution maps.

• Sample inputs, predictions, and interpretations



Evaluation (cont.)

MASK

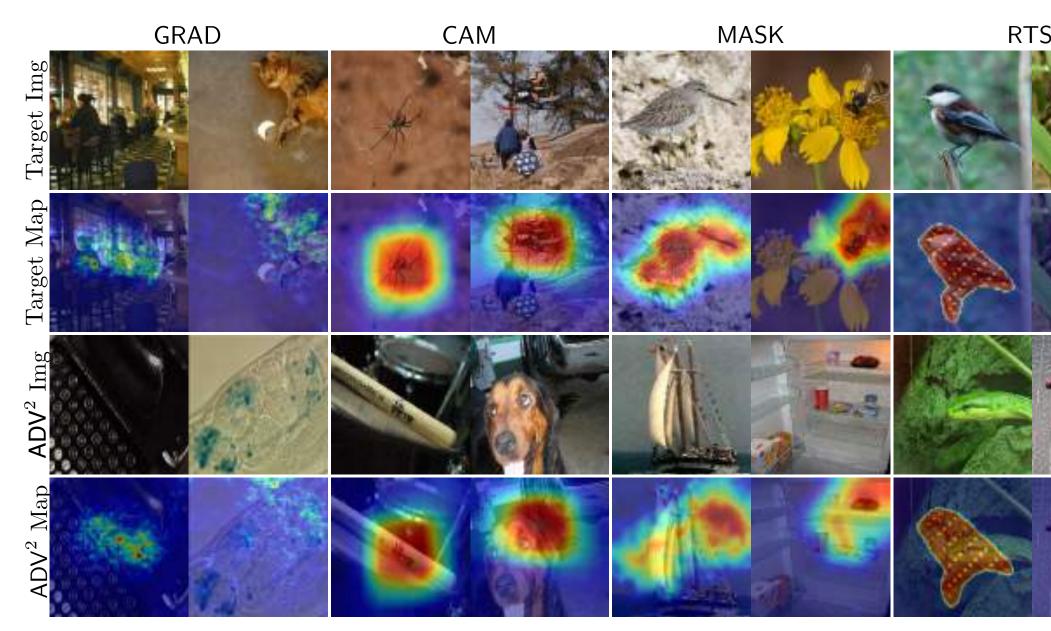
Root of Attack Vulnerability

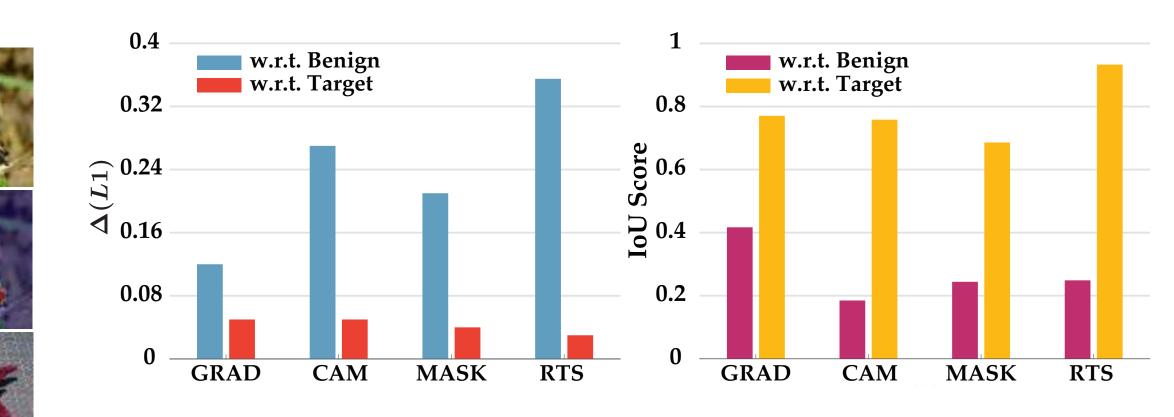
29th USENIX SECURITY SYMPOSIUM

Conjecture: prediction-interpretation gap

 Interpreter's explanations only partially describe classifier's predictions, making it practical to exploit both models simultaneously.

Observation: random class interpretation



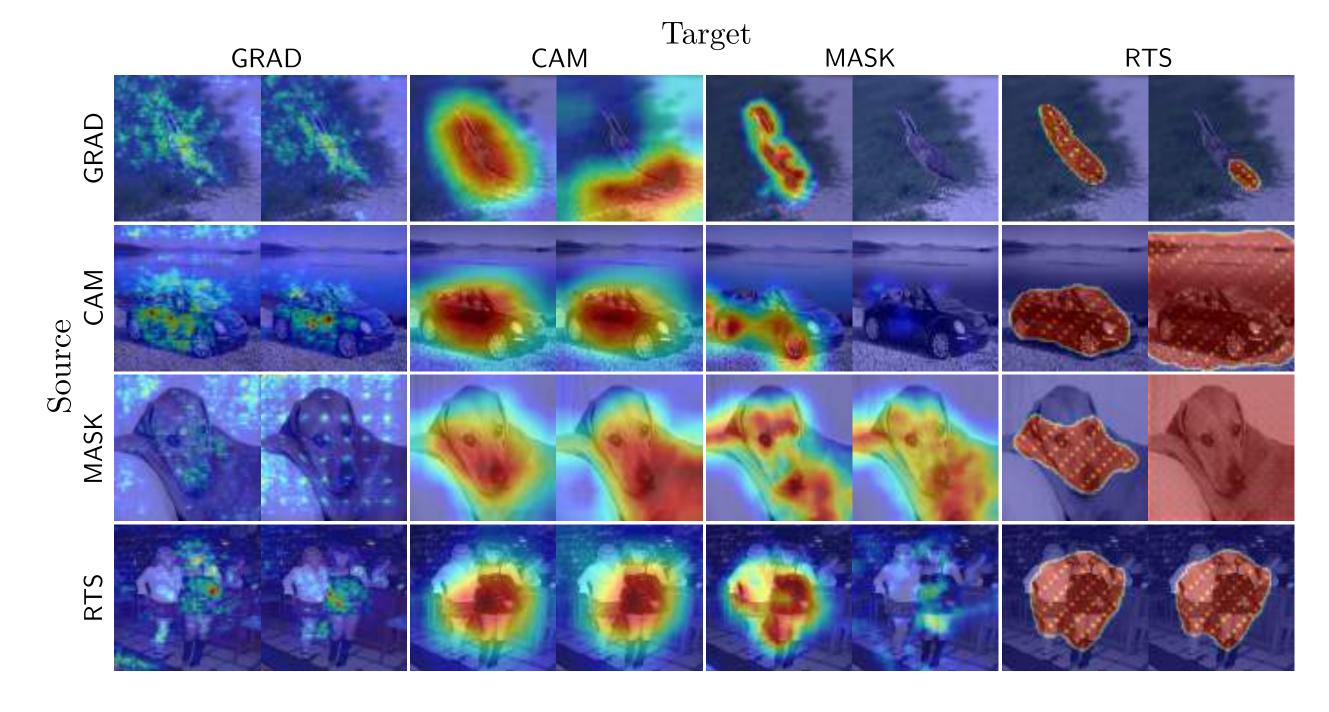


29[™] USENIX **Root of Prediction-Interpretation Gap** SECURITY SYMPOSIUM

Conjecture: limitations of existing interpretation models

 Different interpreters focus on distinct aspects of DNN behaviors (e.g., gradient, intermediate representations, etc.)

Observation: low attack transferability

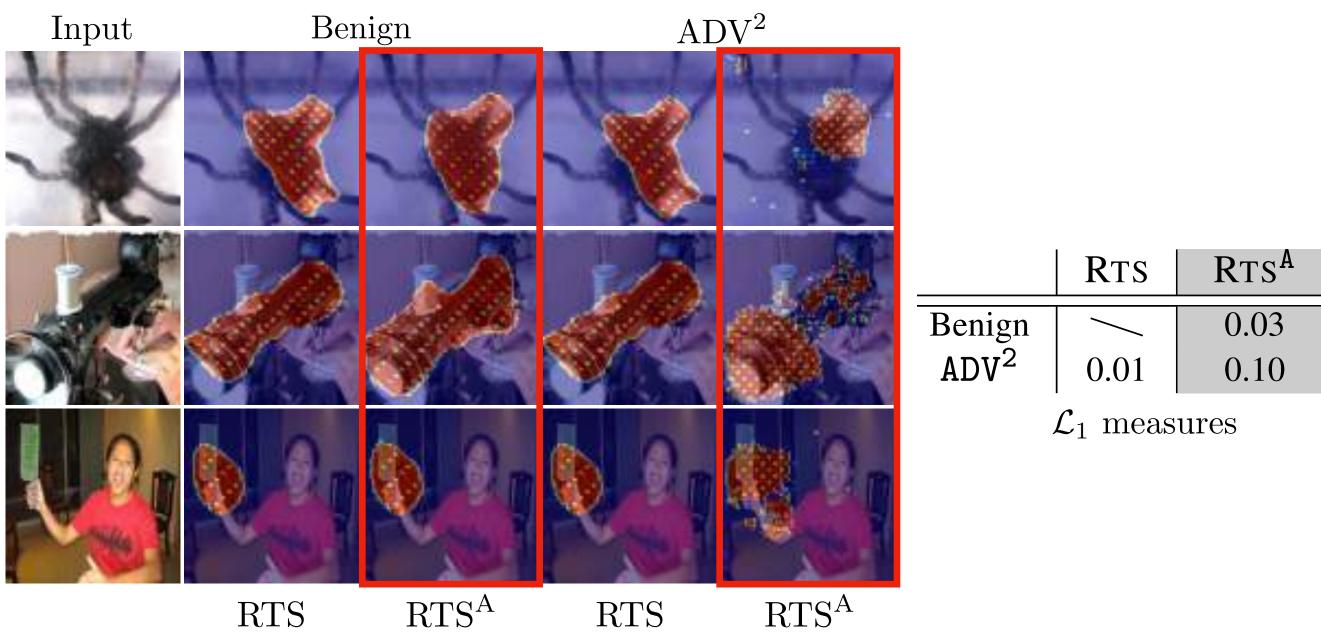


Potential Countermeasures

Ensemble interpretation

• Multiple, complimentary interpreters to fully cover DNN behaviors

Adversarial interpretation



Minimizing prediction-interpretation gap using adversarial examples

 $\mathrm{RTS}^{\mathrm{A}}$

Finding 1

- The interpretability of existing interpretable deep learning systems merely provides limited security assurance.
- Finding 2
 - The prediction-interpretation gap is one possible cause that the adversary is able to exploit both classifier and interpreter simultaneously.
- Finding 3
 - Adversarial training aiming to minimize the prediction-interpretation gap potentially improves the robustness of interpreters.

Key Findings

29th USENIX Security Symposium

Please direct your questions to zxydi1992@hotmail.com