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Security of Machine Learning

* Tremendous advances of machine learning (ML)
» Wide deployment of machine learning platforms (e.g., MLaaS)
- Amazon AWS Al, Google Cloud and Microsoft Azure ML
* DNN applications increasingly integrated in critical systems

- E.g., Medical diagnostics, access control and malware detection

+ DNN model integrity as a key concern

* Model tampering can introduce severe consequences

- E.g., Making wrong decisions during autonomous driving
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DNN Model Tampering Threats
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DNN Model Tampering Threats
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Are Deep Neural Networks vulnerable to Internal
Adversaries exploiting Hardware-based Faults?



Scope of Attack

* Focusing on Quantized DNNs
* Quantized models are more robust to bit flip (Hong et al. SEC’19)
» Quantization is a widely applied technique

* Leveraging Rowhammer to inject faults to DNN model weights
* Allow deterministic bit flips in memory by unprivileged software

+ We termed the attack: DeepHammer
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Degrade the inference accuracy to the level of Random Guess
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Objective of DeepHammer

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes
Before attack, Accuracy: ~10% (1/10)

Depleting the intelligence of well-trained DNNs



Attack Challenges

* Challenges to carry out attacks on quantized DNNs



Attack Challenges

* Challenges to carry out attacks on quantized DNNs

C1: How to identify the most vulnerable bits? — Algorithm challenge

C2: How to successfully flip the selected bits? — System challenge



Locating the Most Vulnerable Weight Bits

+ An iterative bit search process (one bit at a time) ! La| yErs

+ For each iteration:
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+ If accuracy target not reached: next iteration bit to target
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Locating the Most Vulnerable Weight Bits
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Rowhammer Framework in DeepHammer



Rowhammer Framework in DeepHammer

* Three advanced Rowhammer techniques
* Multi-page memory massaging
- Enables fast and efficient victim page relocation
* Precise rowhammering
- Ensures exact bit flips based on the targeted bit chain
* Online memory re-templating

- Allows fast correction of obsolete DRAM bit flip profile



Multi-page Memory Massaging

+ Goal: map multiple victim weight pages to exploitable DRAM rows
* In-row pages and compact aggressor rows
* Jlarget page positioning using per-cpu pageset
- Last In First Out (LIFO)

SKB DRAM Row
——_— m-ke o
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Logical Bank

Single channel single DIMM
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Multi-page Memory Massaging

+ Goal: map multiple victim weight pages to exploitable DRAM rows
* In-row pages and compact aggressor rows
* Jlarget page positioning using per-cpu pageset
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Multi-page Memory Massaging
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Precise Hammering
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* Unexpected bit flips could happen

/

* E.g., multiple vulnerable cells in one row

/
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Fast Memory Re-templating

* New issue: Bit flip profile can be obsolete
» After power cycle or reboot
+ Observations
 The location of vulnerable cells have not changed (page offset)
* Potential reason: data scrambling by memory controllers
* How to update the bit flip profile at runtime?
 Only re-template physical pages with desired exploitable offsets

* Drastically reduce templating time: days to minutes!
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Experimental Setup

+ DNN configurations
* Image processing dataset: Fashion MNIST, CIFAR-10 and ImageNet
 Speech recognition dataset: Google Speech Command
» DNN models: 11 mainstream architectures, including 2 mobile networks
+ Training platform (GPU)
* GeForce GTX 1080 Ti GPU, 11 GB dedicated memory
+ Inference platform (CPU)

* Intel Ivy-Bridge processors

» 4GB DDR3 DIMMs with single /dual channel setup
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Evaluation: Bit Search Results
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DeepHammer Runtime Exploitations
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DeepHammer Runtime Exploitations
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Refer to the paper for more details on

the attack and mitigation dicussions



Conclusions

* We highlighted that multiple deterministic bit flips are required to
tamper quantized DNN models.

* We proposed a new attack-DeepHammer-that depletes DNN
intelligence through DRAM fault injections.

* We designed novel algorithm- and system-level techniques that
enable internal tampering of DNNs with DeepHammer.

* Our work motivates the need to enhance the robustness of DNN5s

against hardware-based fault injections.
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