DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips

Fan Yao¹ Adnan Siraj Rakin² Deliang Fan²

¹University of Central Florida ²Arizona State University Orlando, FL Tempe, Arizona

29th USENIX Security Symposium, August, 2020

1

UNIVERSITY OF CENTRAL FLORIDA

Security of Machine Learning

- * Tremendous advances of machine learning (ML)
 - Wide deployment of machine learning platforms (e.g., MLaaS) - Amazon AWS AI, Google Cloud and Microsoft Azure ML
 - DNN applications increasingly integrated in **critical systems** - E.g., Medical diagnostics, access control and malware detection
- * DNN model integrity as a key concern • Model tampering can introduce severe consequences - E.g., Making wrong decisions during autonomous driving

DNN Model Tampering Threats

DNN Model Tampering Threats

* HW is prone to faults

- •Computing logic
- Caches
- DRAM modules (i.e.,
 Rowhammer)

Are Deep Neural Networks vulnerable to Internal Adversaries exploiting Hardware-based Faults?

Scope of Attack

- * Focusing on Quantized DNNs
- Quantized models are more robust to bit flip (Hong et al. SEC'19) • Quantization is a widely applied technique * Leveraging Rowhammer to inject faults to DNN model weights • Allow deterministic bit flips in memory by unprivileged software
- * We termed the attack: **DeepHammer**

Degrade the inference accuracy to the level of Random Guess

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, **10** output classes Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10)

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, **10** output classes Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10)

Attack Challenges

* Challenges to carry out attacks on quantized DNNs

Attack Challenges

* Challenges to carry out attacks on quantized DNNs

C2: How to successfully flip the selected bits? — System challenge

C1: How to identify the most vulnerable bits? — Algorithm challenge

- An iterative bit search process (one bit at a time)For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)\right)\right|$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- * If accuracy target not reached: next iteration

- An iterative bit search process (one bit at a time)For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)\right)\right|$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- * If accuracy target not reached: next iteration

- * An iterative bit search process (one bit at a time)
- * For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)\right)\right|$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- If accuracy target not reached: next iteration

- * An iterative bit search process (one bit at a time)
- * For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)\right)\right|$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- If accuracy target not reached: next iteration

- * An iterative bit search process (one bit at a time)
- * For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)\right)\right|$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- If accuracy target not reached: next iteration

- * An iterative bit search process (one bit at a time)
- * For each iteration:
 - Perform Gradient-based Bit Ranking (GBR)

$$\hat{\boldsymbol{b}}_{m}^{n-1} = \operatorname{Top}_{p} \left| \nabla_{\hat{\boldsymbol{B}}_{m}^{n-1}} \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n-1}\}_{m=1}^{l} \mathcal{L}_{m}^{n}\right) \right|_{m=1}^{l} \mathcal{L}_{i}^{n} = \mathcal{L}\left(f(\boldsymbol{x}; \{\hat{\boldsymbol{B}}_{m}^{n}\}_{i=1}^{l \times p}, \boldsymbol{t}\right)$$

- Flip-aware Bit Search (FBS), Select a bit that:
 Incurs most accuracy lost
 location flippable (checks bit flip profile)
- If accuracy target not reached: next iteration

Rowhammer Framework in DeepHammer

Rowhammer Framework in DeepHammer

- * Three advanced Rowhammer techniques
 - Multi-page memory massaging
 - Enables fast and efficient victim page relocation
 - Precise rowhammering
 - Ensures exact bit flips based on the targeted bit chain
 - Online memory re-templating
 - Allows fast correction of obsolete DRAM bit flip profile

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

8KB DRAM Row

P1	P2			
P3	P4			
P5	P6			
: Logical Bank				

Single channel single DIMM

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

P1 P2 P3 P4 P5 P6 Logical Bank

8KB DRAM Row

Single channel single DIMM

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

aggressor-1					
pp1: bop1	aggressor-1				
aggressor-2	pp2: bop2				
	aggressor-2				
aggressor-1	aggressor-1				
pp3: bop3	pp4: bop4				
aggressor-2	aggressor-2				
Logical Bank					

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

aggressor-1					
Released	aggressor-1				
aggressor-2	Released				
	aggressor-2				
aggressor-1	aggressor-1				
Released	Released				
aggressor-2	aggressor-2				
Logical Bank					

- * Goal: map multiple victim weight pages to exploitable DRAM rows
 - In-row pages and compact aggressor rows
 - Target page positioning using per-cpu pageset
 - Last In First Out (LIFO)

aggressor-1					
vp1	aggressor-1				
aggressor-2	vp2				
	aggressor-2				
aggressor-1	aggressor-1				
vp3	vp4				
aggressor-2	aggressor-2				
Logical Bank					

Precise Hammering

- * Motivation: need to flip the exact bits
 - Undesired bit flips can fail the attack

- * Unexpected bit flips could happen
 - E.g., multiple vulnerable cells in one row

Fast Memory Re-templating

- * New issue: Bit flip profile can be obsolete
 - After power cycle or reboot
- * Observations

 - The location of vulnerable cells have not changed (page offset) • Potential reason: data scrambling by memory controllers
- * How to update the bit flip profile at runtime?
 - Only re-template physical pages with desired exploitable offsets
 - Drastically reduce templating time: days to minutes!

Experimental Setup

- DNN configurations
 - Image processing dataset: Fashion MNIST, CIFAR-10 and ImageNet
 - Speech recognition dataset: Google Speech Command
 - DNN models: 11 mainstream architectures, including 2 mobile networks
- Training platform (GPU)
 - GeForce GTX 1080 Ti GPU, 11 GB dedicated memory
- Inference platform (CPU)
 - Intel Ivy-Bridge processors
 - 4GB DDR3 DIMMs with single/dual channel setup

Evaluation: Bit Search Results

Dataset	Architecture	Network Parameters	Acc. Before Attack (%)	Random Guess Acc. (%)	Acc. After Attack (%)	Min. # of Bit-flips
Fashion MNIST	LeNet	0.65M	90.20	10.00	10.00	3
Google Speech Command	VGG-11	132M	96.36	0 2 2	3.43	5
	VGG-13	133M	96.38	8.33	3.25	7
	ResNet-20	0.27M	90.70	10.00	10.92	21
	AlexNet	61M	84.40		10.46	5
CIFAR-10	VGG-11	132M	89.40		10.27	3
	VGG-16	138M	93.24		10.82	13
ImageNet	SqueezeNet	1.2M	57.00	0.10	0.16	18
	MobileNet-V2	2.1M	72.01		0.19	2
	ResNet-18	11M	69.52		0.19	24
	ResNet-34	21M	72.78		0.18	23
	ResNet-50	23M	75.56		0.17	23

Evaluation: Bit Search Results

Dataset	Architecture	Network Parameters	Acc. Before Attack (%)	Random Guess Acc. (%)	Acc. After Attack (%)	Min. # of Bit-flips
Fashion MNIST	LeNet	0.65M	90.20	10.00	10.00	3
Google Speech Command	VGG-11	132M	96.36	0 2 2	3.43	5
	VGG-13	133M	96.38	8.33	3.25	7
	ResNet-20	0.27M	90.70	10.00	10.92	21
	AlexNet	61M	84.40		10.46	5
CIFAR-10	VGG-11	132M	89.40		10.27	3
	VGG-16	138M	93.24		10.82	13
ImageNet	SqueezeNet	1.2M	57.00	0.10	0.16	18
	MobileNet-V2	2.1M	72.01		0.19	2
	ResNet-18	11M	69.52		0.19	24
	ResNet-34	21M	72.78		0.18	23
	ResNet-50	23M	75.56		0.17	23

Evaluation: Bit Search Results

Dataset	Architecture	Network Parameters	Acc. Before Attack (%)	Random Guess Acc. (%)	Acc. After Attack (%)	Min. # of Bit-flips
Fashion MNIST	LeNet	0.65M	90.20	10.00	10.00	3
Google Speech Command	VGG-11	132M	96.36	0 2 2	3.43	5
	VGG-13	133M	96.38	8.33	3.25	7
	ResNet-20	0.27M	90.70	10.00	10.92	21
	AlexNet	61M	84.40		10.46	5
CIFAR-10	VGG-11	132M	89.40		10.27	3
	VGG-16	138M	93.24		10.82	13
ImageNet	SqueezeNet	1.2M	57.00		0.16	18
	MobileNet-V2	2.1M	72.01		0.19	2
	ResNet-18	11M	69.52	0.10	0.19	24
	ResNet-34	21M	72.78		0.18	23
	ResNet-50	23M	75.56		0.17	23

DeepHammer Runtime Exploitations

DeepHammer re-templating time and hammering time

DeepHammer Runtime Exploitations

Conclusions

- * We highlighted that multiple deterministic bit flips are required to tamper quantized DNN models.
- * We proposed a new attack-**DeepHammer**-that depletes DNN intelligence through DRAM fault injections.
- * We designed novel algorithm- and system-level techniques that
 - enable internal tampering of DNNs with DeepHammer.
- * Our work motivates the need to enhance the robustness of DNNs against hardware-based fault injections.

Email: <u>fan.yao@ucf.edu</u>