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Anomaly Detection Systems (ADS)

User login histories (e.g., Login IP addresses,
useragent strings, device fingerprints)

This attempt is ABnormal.

Login attempt
>

AR
?

This attempt is normal.

ADS at Website

Naive ADS:

* Strange IPs = “abnormal”
* Strange devices = “abnormal”




Anomaly Detection Systems (ADS)

User login histories (e.g., Login IP addresses,
useragent strings, device fingerprints)

This attempt is ABnormal.

Login attempt
>

AR
?

This attempt is normal.

ADS at Website

More sophiscated ADS":

* Multiple login features
* Attackers’ different capability levels

*Freeman et al. [NDSS 2016]



Anomaly Detection Systems (ADS)

User login histories (e.g., Login IP addresses,
useragent strings, device fingerprints)

This attempt is ABnormal.

Login attempt
>

?

ADS at Website

This attempt is normal.

“Researching attacker””:

Hold users’ correct passwords
Try to access users’ accounts
from same countries of
legitimate users

“Phishing attacker””:
* Hold users’ correct passwords
* Try to access users’ accounts from
same countries with same browser
user-agent strings of legitimate users

*Freeman et al. [NDSS 2016]




Anomaly Detection Systems (ADS)

User login histories (e.g., Login IP addresses,
useragent strings, device fingerprints)

This attempt is ABnormal.

Login attempt
>

Al
?

This attempt is normal.

ADS at Website
ADS:

* leverages users’ login patterns (IPs, browser agentstrings, etc.)

* helps a website to distinguish malicious login attempts

* NOT an authentication factor that directly decides whether a login
attempt is successful or not.
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Evidence Trail from Credential Stuffing
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The “trail” left by credential stuffing attacks are those passwords
submitted in abnormal login attempts that fail:

Without 2FA
* ADS reports “abnormal”; the submitted password is incorrect

*  With 2FA:

* ADS reports “abnormal”; the submitted password is incorrect
 ADS reports “abnormal”; the submitted password is correct but 2FA fails
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Our Framework
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Our Framework
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Our Framework

= “alice@yyy.com : alicepwd”,
a leaked username-password pair
possessed by the credential stuffer

Websites where Alice
has accounts
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Our Framework

¢ = “alice@yyy.com : alicepwd”,
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Two important questions:

* False detection rate (FDR)

* What if a (forgetful) user "guesses" her own passwords at her
accounts?

* True detection rate (TDR)

* What if a credential stuffer tries to circumvent detection by trying
a smart attack strategy?




Conservatively Estimating FDR & TDR

= A forgetful user as a MDP’:

=  Maximizing the probability of triggering a false detection
(false detection rate)

" MDP: Markov decision process



Conservatively Estimating FDR & TDR

= A forgetful user as a MDP™;

=  Maximizing the probability of triggering a false detection
(false detection rate)

= A credential stuffer as a MDP":

= Minimizing the probability of getting detected while
maximizing the number of account takeovers (true detection
rate)

" MDP: Markov decision process



Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users

PN THE UNIVERSITY
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* Freeman et al. (NDSS 2016)
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them
* Blue curves: each for a different ADS threshold in the collecting phase

Baseline
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them

* Blue curves: each for a different ADS threshold in the collecting phase

* Black, dashed curves: corresponding ADS’s accuracy in detecting abnormal logins

Baseline
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-
agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them

* Blue curves: each for a different ADS threshold in the collecting phase
* Black, dashed curves: corresponding ADS’s accuracy in detecting suspicious logins
* Black, dotted lines: random guessing
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users
* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords

across 10 accounts (one per site) with no 2FA deployed among them
* Blue curves: each for a different ADS threshold in the collecting phase

* Black, dashed curves: corresponding ADS’s accuracy in detecting suspicious logins
* Black, dotted lines: random guessing

TDRcsd
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-
agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them

* Blue curves: each for a different ADS threshold in the collecting phase
* Black, dashed curves: corresponding ADS’s accuracy in detecting suspicious logins
* Black, dotted lines: random guessing

0.4
Baseline Less pwd # of pwds # of accnts # of 2FA Higher ADS
reuse +1 +10 +5 detection rates
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users
* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords

across 10 accounts (one per site) with no 2FA deployed among them
* Blue curves: each for a different ADS threshold in the collecting phase
* Black, dashed curves: corresponding ADS’s accuracy in detecting suspicious logins

* Black, dotted lines: random guessing

TDRcsd
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Conservatively Estimating FDR & TDR

Phishing attackers™: valid passwords from same countries with same browser user-

agent strings of legitimate users

* Default (baseline) setting: some level of password reuse in a set of 4 distinct passwords
across 10 accounts (one per site) with no 2FA deployed among them

* Blue curves: each for a different ADS threshold in the collecting phase

* Black, dashed curves: corresponding ADS’s accuracy in detecting suspicious logins

* Black, dotted lines: random guessing
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Researching attackers™: valid passwords from same countries of legitimate users.
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Account Security
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has accounts

AR alice@yyy.com : alicepwd0O
WWW

ADS: abnormal
b SUSPICIOUS: { alicepwd }

Have vou collected
”alicep Wd” fOI’ 2FA
“alice@yyy.com”? A

Yes WWWwW

\U ADS: abnormal

2FA: failed
SUSPICIOUS: { alicepwd }

alice@yyy.com : alicepwd

Yes

A alice@yyy.com : alicepwd

Attacker > WWW '
Login attempt with ¢ g’ ADS: abnormal

¢ = “alice@yyy.com : alicepwd”



Account Security

COUNTING phase Websites where Alice
has accounts

AR alice@yyy.com : alicepwd0O
WWW

ADS: abnormal
u SUSPICIOUS: { alicepwd }

Heveypoucotlectad
2FA
“eice@yyy-com’2 :::'Jonsew alice@yyy.com : alicepwd
Private membership A 4 ADS: abnormal
test (PMT) query PMT 2FA: failed
<res'°°"se SUSPICIOUS: { alicepwd }

A alice@yyy.com : alicepwd
Attacker : : gt t A ADS: abnormal
Login attempt with c & '
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Other features of our framework:

= Account security

* A new one-round two-party private membership test (PMT)
protocol
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Other features of our framework:

= Account security

A new one-round two-party private membership test (PMT)
protocol

= Directory
* A “look-up table” that maintains where a user has accounts



Directory

COUNTING phase Websites where Alice
has accounts
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Directory

- _ COUNTING phase Websites where Alice
alice@yyy.com: has accounts

Site #1, #2, ...

A alice@yyy.com : alicepwd0
bob@zzz.com: WWW: ADS: abnormal

uef\,

Site #1, #3, ... pmTQ ' suspicious: { alicepwd }
_E Py 2FA

Query, A alice@yyy.com : alicepwd

WWW

_ ADS: abnormal
Directory = 2FA: failed

SUSPICIOUS: { alicepwd }

A alice@yyy.com : alicepwd

Attacker > WWW .
Login attempt with ¢ g’ ADS: abnormal

¢ = “alice@yyy.com : alicepwd”



Directory

COUNTING phase Websites where Alice
has accounts

aIice@yyy.com : alicepwdO
W' ADS: abnormal
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protocol

= Directory
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= Login privacy



Other features of our framework:

= Account security

A new one-round two-party private membership test (PMT)
protocol

= Directory
A “look-up table” that maintains where a user has accounts

= Login privacy

* Trusted directory for login privacy



Login Privacy
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Other features of our framework:

= Account security

A new one-round two-party private membership test (PMT)
protocol

= Directory
A “look-up table” that maintains where a user has accounts

= Login privacy
e Trusted directory for login privacy
* Untrusted directory for login privacy



Login Privacy

COUNTING phase Websites where Alice
has accounts
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2FA: failed
N~ SUSPICIOUS: { alicepwd }

User
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Scalability

Credential-stuffing login Proportion that Proportion of all
attempts per day succeed login attempts
Airline 1.4 Million 1.00% 60%
Hotel 4.3 Million 1.00% 44%
Retail 131.5 Million 0.50% 91%
Consumer banking 232.2 Million 0.05% 58%

Table: Credential stuffing estimates for four major U.S. industries”
Total number of PMT queries per second:

- If ADS false & true detection rates are 0.30 & 0.95 (against phishing attackers): 660
- If ADS false & true detection rates are 0.10 & 0.99 (against researching attackers): 227

* Shape Security, “2018 Credential spill report”
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Summary

= A framework to detect credential stuffing
* Leverages ADS and evidence trail left by credential stuffing
* Account security achieved by a novel PMT protocol
* Login privacy enforced by the directory or by Tor

" First to detect active credential stuffing attacks across
multiple websites

" Even a minimal-infrastructure deployment of our
framework should support the combined login load
experienced by four major sectors of the U.S economy



Thank you!

Coby Wang
Email: kwang@cs.unc.edu




