

Fawkes: Protecting Privacy against Unauthorized Deep Learning Models

Shawn Shan[†] Emily Wenger[†] Jiayun Zhang Huiying Li Haitao Zheng Ben Y. Zhao

† denotes co-first authors with equal contribution

Less time to train larger/more powerful models

Less time to train larger/more powerful models

Cheaper, faster hardware

Less time to train larger/more powerful models

Cheaper, faster hardware

Labelled training data everywhere

Less time to train larger/more powerful models Cheaper, faster hardware

Labelled training data everywhere

 Anyone with limited coding knowledge and computational power can train powerful facial recognition models

Less time to train larger/more powerful models

Cheaper, faster hardware

Labelled training data everywhere

 Anyone with limited coding knowledge and computational power can train powerful facial recognition models

But what if the **wrong** people take advantage of this new accessibility?

Personal Images Co-opted to Train Facial Recognition Models

Personal Images Co-opted to Train Facial Recognition Models

Facial recognition model that recognizes Emily

Malicious entity

Personal info: employment decisions

Personal info: employment decisions

Other info could lead to:

- Racial discrimination
- Political oppression
- Religious persecution

. . .

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match photos of unknown people to their online images — and "might lead to a dystopian future or something," a backer says.

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match photos of unknown people to their online images — and "might lead to a dystopian future or something," a backer says.

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match photos of unknown people to their online images — and "might lead to a dystopian future or something," a backer says.

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match photos of unknown people to their online images — and "might lead to a dystopian future or something," a backer says.

Known Clearview.ai customers include government agencies, law enforcement departments, and private citizens.

In This Talk

Fawkes:

Privacy armor that protects privacy by preventing your images from being used to train ML models against you.

Tracker (e.g. Clearview)

Limited computational resources

Limited computational resources

feature extractor

Tracker (e.g. Clearview)

Tracker (e.g. Clearview)

56

Training Images

Key Intuition for Fawkes

To evade unwanted facial recognition, change the feature space representation of user images.

Key Intuition for Fawkes

To evade unwanted facial recognition, change the feature space representation of user images.

Intuition: Emily's cloaked images are perturbed to have similar feature space representations to Beyoncé's images, distinct from Emily's original feature space representation.

Key Intuition for Fawkes

To evade unwanted facial recognition, change the feature space representation of user images.

Intuition: Emily's cloaked images are perturbed to have similar feature space representations to Beyoncé's images, distinct from Emily's original feature space representation.
Key Intuition for Fawkes

To evade unwanted facial recognition, change the feature space representation of user images.

Intuition: Emily's cloaked images are perturbed to have similar feature space representations to Beyoncé's images, distinct from Emily's original feature space representation.

Compute cloak perturbation (Δ) by solving an optimization problem

- Goal: mimic feature representations of target class T
- Constraint: perturbation should be indistinguishable by humans

Compute cloak perturbation (Δ) by solving an optimization problem

- Goal: mimic feature representations of target class T
- Constraint: perturbation should be indistinguishable by humans

 $\Phi(X)$: internal representation in feature extractor Φ

Compute cloak perturbation (Δ) by solving an optimization problem

- Goal: mimic feature representations of target class T
- Constraint: perturbation should be indistinguishable by humans

 $\Phi(X)$: internal representation in feature extractor Φ

Compute cloak perturbation (Δ) by solving an optimization problem

- Goal: mimic feature representations of target class T
- Constraint: perturbation should be indistinguishable by humans

 $\Phi(X)$: internal representation in feature extractor Φ

Original Images

Tracker

Original Images

Tracker

Cloaked Images

Protection Success Rate: Percentage of real (unmodified) user images misclassified by tracker's model

Known Feature Extractor Fawkes knows tracker's FE, uses it to compute cloak

Protection Rate: 100%

Protection Rate: 100%

Transferability: models trained on different data (but same application domain) often share similarity in feature space representation, so effects of perturbations from one can transfer to a different feature extractor or model.

Transferability: models trained on different data (but same application domain) often share similarity in feature space representation, so effects of perturbations from one can transfer to a different feature extractor or model.

Unknown Feature Extractor Tracker uses unknown FE. Fawkes computes cloak on local FE & relies on transferability

Protection Rate: >95%

Train from scratch Tracker does not use FE. Fawkes computes cloak on local FE & relies on transferability

Protection Rate: >95%

Transferability: models trained on different data (but same application domain) often share similarity in feature space representation, so effects of perturbations from one can transfer to a different feature extractor or model.

• How well does Fawkes work on real world Face recognition APIs?

• How well does Fawkes work on real world Face recognition APIs?

• How well does Fawkes work on real world Face recognition APIs?

- 1. Train facial recognition model on public API
- Training data includes 1 cloaked user X (all their images are cloaked by Fawkes Using existing feature extractor)
- 3. Test result model with uncloaked images of user X

• How well does Fawkes work on real world Face recognition APIs?

• Result is 100% success (no clean images identified as the user, all misclassified)

- 1. Train facial recognition model on public API
- Training data includes 1 cloaked user X (all their images are cloaked by Fawkes Using existing feature extractor)
- 3. Test result model with uncloaked images of user X

Face Recognition API	Protection Success Rate	
	Without Protection	With Protection
AWS Rekognition	0%	100%
Microsoft Azure	0%	100%
Face++	0%	100%

- What if the tracker has original, uncloaked images?
- Pre-Fawkes images, public sources (newspapers, company page), images shared by friends

- What if the tracker has original, uncloaked images?
 - Pre-Fawkes images, public sources (newspapers, company page), images shared by friends
 - Cloaking can succeed if cloaked images outnumber uncloaked images
 - Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)

- What if the tracker has original, uncloaked images?
 - Pre-Fawkes images, public sources (newspapers, company page), images shared by friends
 - Cloaking can succeed if cloaked images outnumber uncloaked images
 - Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)
- What if the tracker tries to detect/remove cloaked effects?
 - Using tools like image transformation, anomaly detection
 - Ineffective against Fawkes

- What if the tracker has original, uncloaked images?
 - Pre-Fawkes images, public sources (newspapers, company page), images shared by friends
 - Cloaking can succeed if cloaked images outnumber uncloaked images
 - Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)
- What if the tracker tries to detect/remove cloaked effects?
 - Using tools like image transformation, anomaly detection
 - Ineffective against Fawkes
- Limitations of Fawkes

- What if the tracker has original, uncloaked images?
 - Pre-Fawkes images, public sources (newspapers, company page), images shared by friends
 - Cloaking can succeed if cloaked images outnumber uncloaked images
 - Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)
- What if the tracker tries to detect/remove cloaked effects?
 - Using tools like image transformation, anomaly detection
 - Ineffective against Fawkes
- Limitations of Fawkes
 - Not guaranteed to be effective against future models
 - Only a tip of the iceberg

- What if the tracker has original, uncloaked images?
 - Pre-Fawkes images, public sources (newspapers, company page), images shared by friends
 - Cloaking can succeed if cloaked images outnumber uncloaked images
 - Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)
- What if the tracker tries to detect/remove cloaked effects?
 - Using tools like image transformation, anomaly detection
 - Ineffective against Fawkes
- Limitations of Fawkes
 - Not guaranteed to be effective against future models
 - Only a tip of the iceberg
- More details in paper!

Thank You!

Thank You!

- More on http://sandlab.cs.uchicago.edu/fawkes
 - Source code
 - Binaries for MacOS/Windows/Linux
 - FAQs
- Encouraging initial response from users
 - 2.5K downloads as of July 20th

