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Facial Recognition Models are Easy to Build

Less time to train larger/more Cheaper, faster hardware Labelled training
powerful models data everywhere

* Anyone with limited coding knowledge and computational
power can train powerful facial recognition models

But what if the wrong people take advantage of this new accessibility?
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Facial Recognition Models Easily Misused

This is Emily W. Y Other info could lead to:
Malicious entity Here are more pics '

- Racial discrimination
and Google results

- Political oppression
J =3 - Religious persecution

Personal info:

employment decisions

Facial ID Service
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That Reality is Here, Today

/ User’s other images online

—— ([ Clearview /! \

Personal Information

L . | A Single User Image
['he Secretive Company X
That Might End Privacy as Database of 3B
We Know [t scraped images

Alittle-known start-up helps law enforcement match photos of
unknown people to their online images — and “might lead to a
dystopian future or something,” a backer says.

Known Clearview.ai customers include government agencies,
law enforcement departments, and private citizens.



In This Talk

Fawkes Design

Evaluation

Fawkes:
Privacy armor that protects

privacy by preventing your

. . Live Tests against
images from being used to
train ML models against Face Recognition
e Services
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Intuitive View of Facial Recognition Models
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Intuition: Emily's cloaked images are perturbed to have similar feature space representations
to Beyoncé's images, distinct from Emily's original feature space representation.
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How to Generate Cloak?

Compute cloak perturbation (A) by solving an optimization problem
* Goal: mimic feature representations of target class T

" Constraint: perturbation should be indistinguishable by humans

®d(X): internal representation
in feature extractor ®

Source image Target image

_ //J Minimize L2 distance between
min  Distance(® (X + A), <l>(XD)/ internal representations
s.t.  perturb_magnitude(Xs + A, Xs) < Ppyaget

I

DSSIM: an objective measure

for image distortion
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Protection Success Rate: Percentage of real (unmodified) user
images misclassified by tracker’s model




Protection under Baseline Conditions

User + Fawkes Tracker
Ny /™

Feature Extractor Used Protection
Success Rate

VGGFace?2 + InceptionResNet 100%
a 4 VGGFace2 + DenseNet 100% |
Originall Imges WebFace + InceptionResNet 100% N‘::::::';ed
WebFace + DenseNet 100% extractor

Protection Success Rate: Percentage of real (unmodified) user
images misclassified by tracker’s model

Face recognition
model
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Protection under Realistic Conditions

Known Feature Extractor Unknown Feature Extractor Train from scratch
Fawkes knows tracker's FE, uses Tracker uses unknown FE. Fawkes Tracker does not use FE. Fawkes
it fo compute cloak computes cloak on local FE & relies computes cloak on local FE & relies
on transferability on transferability

Protection Rate: 100% Protection Rate: >95% Protection Rate: >95%

Transferability: models trained on different data (but same application domain) often share
similarity in feature space representation, so effects of perturbations from one can transfer to
a different feature extractor or model.
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Protection against State of the Art APIs

* How well does Fawkes work on real world Face recognition APIls?

Atz @ Edppcen”

*Result is 100% success (no clean images identified as the user, all misclassified)

. Train facial recognition model on public API Face Recognition Protection Success Rate

2. Training data includes 1 cloaked user X API Without Protection With Protection
(all their images are cloaked by Fawkes

—

- . .
Using existing feature extractor) AWS Rekognition 0% 100%

3. Test result model with uncloaked images Microsoft Azure 0% 100%

of user X
Face++ 0% 100%
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* What if the tracker has original, uncloaked images?
* Pre-Fawkes images, public sources (newspapers, company page), images shared by friends

* Cloaking can succeed if cloaked images outhumber uncloaked images

* Sybil accounts help: boost protection from 30% to 95% (1:1 cloak:uncloaked ratio)

* What if the tracker tries to detect/remove cloaked effects?
* Using tools like image transformation, anomaly detection

* Ineffective against Fawkes

* Limitations of Fawkes
* Not guaranteed to be effective against future models

* Only a tip of the iceberg

* More details in paper!
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* More on http://sandlab.cs.uchicago.edu/fawkes

e Source code

* Binaries for MacOS /Windows /Linux
* FAQs

* Encouraging initial response from users
* 2.5K downloads as of July 20t
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