Symbolic execution with SymGC:
Don't interpret, compile!

Sebastian Poeplau, Aurélien Francillon

EURECOM

Compiling
symbolic-execution capabilities
into
executables

Recap: Symbolic Execution

Explore programs by keeping track of computations in terms of inputs

Target program

void f(int x, int y) {

int z = 2%y;
x # 100000 x = 100000

I if (x ==100000) {
if (x<z){ symbolic execution

assert(0); [* error */
i

j
|

Current approaches
(e.g., KLEE, S2E, angr)

Interpreter approach

while (true) {
auto instruction = getNextInstruction();

Target program (bitcode) | switch (instruction.type) {)
Il ...

case SHL: {
i auto result = instruction.operand(0) <<)
define i32 @is_double(i32, i32) { N instruction.operand(1);)
%3 = shl nsw i32 %1, 1 T auto resultExpr =)
%4 = icmp eqi32 %3, %0 buildLeftShift(instruction.operandExpr(0),
%5 = zext il %4 to i32 L instruction.operandExpr(1));)
reti32 %5 setResult(result, resultExpr);
] break;
1
i

SymGC
Compilation instead of
interpretation

.
SymCC: Overview

define i32 @is_double(i32, i32) {
/%3 = call i8* @_sym_get_parameter_expression(i8 0)\

Target program (bitcode) %4 = call i8* @_sym_get_parameter_expression(i8 1)
%5 = call i8* @_sym_build_integer(i64 1)
%6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)

%7 = call i8* @_sym_build_equal(i8* %6, i8* %3)
\%8 = call i8* @_sym_build_bool_to_bits(i8* %7) /

define i32 @is_double(i32, i32) {
%3 =shl nswi32 %1, 1
%4 =icmp eqi32 %3, %0
%5 = zext il %4 to i32
reti32 %5

1

%9 =shl nswi32 %1, 1
%10 = icmp eq i32 %9, %0
%11 = zext il %10 to i32

call void @_sym_set_return_expression(i8* %8)
ret 132 %11
!

SymCC: Implementation

e Compiler pass and run-time library

e Pass inserts calls to the run-time library at compile time
— Built on top of LLVM
— Easily integrate with all LLVM-based compilers
— Independent of CPU architecture and source language

e Run-time library builds up symbolic expressions and calls the solver
— Two options for run-time library
— “Simple backend”: wrapper around Z3, little optimization, good for debugging
— “QSYM backend”: reuse expressions and solver infrastructure from QSYM
(but NOT the instrumentation!)

QSYM is different

Analysis

e Yun et al, USENIX Security 2018 process
(QSYM)

e Based on dynamic binary instrumentation
— Rewrites binaries at run time using Intel Pin
— Inserts calls to functions that build symbolic
expressions and interacts with a solver

e Strengths

— No interpreter: higher performance than
interpreted systems
— Support for binaries

e But..

— Rewritten program is less efficient than compiled Target
programs process

— Binary level, ie, need to implement symbolic
handling for each x86 instruction

Recap

We compile symbolic-execution
capabilities right into the binary.

e Most others interpret

e (QSYM uses dynamic binary

instrumentation

Evaluation
Benchmark and real-world targets

SEHIET SN

e Goal: highly controlled environment
e DARPA CGC programs

e Concolic execution with fixed inputs

— Fixed code paths
— Single execution with generation of new inputs

e Intel Core i7 CPU and 32GB of RAM
e 30 minutes for a single execution

(regular, i.e. non-symbolic, execution takes milliseconds)
e Compared with KLEE and QSYM

— Excluded S2E: very similar to KLEE in aspects that matter here
— Excluded angr: not optimized for execution speed

12

Benchmark: Execution Speed

Fully concrete

No symbolic input provided

=

Native SymCC QSYM

Concolic

Input data is made symbolic

13

Benchmark: Coverage
Approach

After concolic execution, measure edge coverage
of newly generated inputs with afl-showmap.

Visualization

e Compare paths found by only one system
e More intense color: more unique paths
e Blue for SymCC, red for KLEE/QSYM

Comparison with KLEE (56 programs):
SymCC is better on 46 and worse on 10

¥

Comparison with QSYM (116 programs):
SymCC is better on 47, worse on 40, and

equal on 29
14

Real-world targets: Setup

e Goal: show scalability to real-world software
e Popular open-source projects: OpenJPEG, libarchive, tcpdump

e Hybrid fuzzing: AFL and concolic execution with SymCC/QSYM

— Same approach as Driller and QSYM
— 2 AFL processes, 1 SymCC/QSYM (like in QSYM’s evaluation)

e Intel Xeon Platinum 8260 CPU with 2GB of RAM per core
® 24 hours, 30 iterations (— roughly 17 CPU core months)
e Excluded KLEE: unsupported instructions in target programs

15

Real-world targets: Results

e Higher coverage than QSYM
Statistically significant coverage difference
(Mann-Whitney-U, p < 0.0002)
Found 2 CVEs in OpenJPEG

e Speed advantage correlates with

coverage gain

AFL map density (\%)

10h 10h

15h

Open)PEG libarchive

OpenjPEG

libarchive

tcpdump

10h

tcpdump

15h

16

Conclusion

We have shown that compilation makes
symbolic execution more efficient.

SymGC compiles symbolic-execution capabilities into binaries
Orders of magnitude faster than state of the art
Significantly more code coverage per time, 2 CVEs

Thank you!

sebastian.poeplau@eurecom.fr
aurelien.francillon@eurecom.fr

https://github.com/eurecom-s3/symcc
(code, docs, evaluation details)

