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Symbolic execution with SymCC:
Don’t interpret, compile!



Compiling 
symbolic-execution capabilities 

into 
executables
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Recap: Symbolic Execution
Explore programs by keeping track of computations in terms of inputs

Target program

void f(int x, int y) {

   int z = 2*y;

   if (x == 100000) {

       if (x < z) {

           assert(0); /* error */

       }

   }

}

symbolic execution
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Current approaches  
(e.g., KLEE, S2E, angr)
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Interpreter approach
Target program (bitcode)

define i32 @is_double(i32, i32) {

  %3 = shl nsw i32 %1, 1

  %4 = icmp eq i32 %3, %0

  %5 = zext i1 %4 to i32

  ret i32 %5

}

Interpreter (e.g., KLEE, S2E, angr)

while (true) {

    auto instruction = getNextInstruction();

    switch (instruction.type) {

        // …

        case SHL: {

            auto result = instruction.operand(0) <<

                                  instruction.operand(1);

            auto resultExpr =

                buildLeftShift(instruction.operandExpr(0),

                                         instruction.operandExpr(1));

            setResult(result, resultExpr);

            break;

        }

    }

}

N 

times
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SymCC  
Compilation instead of 
interpretation
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SymCC: Overview
Target program (bitcode)

define i32 @is_double(i32, i32) {

  %3 = shl nsw i32 %1, 1

  %4 = icmp eq i32 %3, %0

  %5 = zext i1 %4 to i32

  ret i32 %5

}

Instrumented target (bitcode)

define i32 @is_double(i32, i32) {

  %3 = call i8* @_sym_get_parameter_expression(i8 0)

  %4 = call i8* @_sym_get_parameter_expression(i8 1)

  %5 = call i8* @_sym_build_integer(i64 1)

  %6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)

  %7 = call i8* @_sym_build_equal(i8* %6, i8* %3)

  %8 = call i8* @_sym_build_bool_to_bits(i8* %7)

  %9 = shl nsw i32 %1, 1

  %10 = icmp eq i32 %9, %0

  %11 = zext i1 %10 to i32

  call void @_sym_set_return_expression(i8* %8)

  ret i32 %11

}

once
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SymCC: Implementation
● Compiler pass and run-time library

● Pass inserts calls to the run-time library at compile time

→ Built on top of LLVM

→ Easily integrate with all LLVM-based compilers

→ Independent of CPU architecture and source language

● Run-time library builds up symbolic expressions and calls the solver

→ Two options for run-time library

→ “Simple backend”: wrapper around Z3, little optimization, good for debugging

→ “QSYM backend”: reuse expressions and solver infrastructure from QSYM

(but NOT the instrumentation!)
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QSYM is different
● Yun et al., USENIX Security 2018

● Based on dynamic binary instrumentation

→ Rewrites binaries at run time using Intel Pin

→ Inserts calls to functions that build symbolic 

expressions and interacts with a solver

● Strengths

→ No interpreter: higher performance than 

interpreted systems

→ Support for binaries

● But…

→ Rewritten program is less efficient than compiled 

programs

→ Binary level, i.e., need to implement symbolic 

handling for each x86 instruction

Target 

process

Analysis 

process

(QSYM)

attach 

via 

ptrace
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Recap

We compile symbolic-execution 

capabilities right into the binary.

● Most others interpret

● QSYM uses dynamic binary 

instrumentation
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Evaluation
Benchmark and real-world targets
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Benchmark: Setup
● Goal: highly controlled environment

● DARPA CGC programs

● Concolic execution with fixed inputs

→ Fixed code paths

→ Single execution with generation of new inputs

● Intel Core i7 CPU and 32GB of RAM

● 30 minutes for a single execution

(regular, i.e. non-symbolic, execution takes milliseconds)

● Compared with KLEE and QSYM

→ Excluded S2E: very similar to KLEE in aspects that matter here

→ Excluded angr: not optimized for execution speed
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Benchmark: Execution Speed
Fully concrete
No symbolic input provided

Concolic
Input data is made symbolic
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Approach
After concolic execution, measure edge coverage 

of newly generated inputs with afl-showmap.

Visualization
● Compare paths found by only one system

● More intense color: more unique paths

● Blue for SymCC, red for KLEE/QSYM

Benchmark: Coverage

Comparison with KLEE (56 programs):

SymCC is better on 46 and worse on 10

Comparison with QSYM (116 programs):

SymCC is better on 47, worse on 40, and 

equal on 29
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Real-world targets: Setup

● Goal: show scalability to real-world software

● Popular open-source projects: OpenJPEG, libarchive, tcpdump

● Hybrid fuzzing: AFL and concolic execution with SymCC/QSYM

→ Same approach as Driller and QSYM

→ 2 AFL processes, 1 SymCC/QSYM (like in QSYM’s evaluation)

● Intel Xeon Platinum 8260 CPU with 2GB of RAM per core

● 24 hours, 30 iterations (→ roughly 17 CPU core months)

● Excluded KLEE: unsupported instructions in target programs
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Real-world targets: Results
● Higher coverage than QSYM

● Statistically significant coverage difference 

(Mann-Whitney-U, p < 0.0002)

● Found 2 CVEs in OpenJPEG

● Speed advantage correlates with 

coverage gain
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Conclusion
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We have shown that compilation makes 
symbolic execution more efficient.

SymCC compiles symbolic-execution capabilities into binaries
Orders of magnitude faster than state of the art

Significantly more code coverage per time, 2 CVEs
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Thank you!
sebastian.poeplau@eurecom.fr
aurelien.francillon@eurecom.fr

https://github.com/eurecom-s3/symcc
(code, docs, evaluation details)
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