
Sebastian Poeplau, Aurélien Francillon

Symbolic execution with SymCC:
Don’t interpret, compile!

Compiling
symbolic-execution capabilities

into
executables

2

Recap: Symbolic Execution
Explore programs by keeping track of computations in terms of inputs

Target program

void f(int x, int y) {

 int z = 2*y;

 if (x == 100000) {

 if (x < z) {

 assert(0); /* error */

 }

 }

}

symbolic execution

3

Current approaches
(e.g., KLEE, S2E, angr)

4

Interpreter approach
Target program (bitcode)

define i32 @is_double(i32, i32) {

 %3 = shl nsw i32 %1, 1

 %4 = icmp eq i32 %3, %0

 %5 = zext i1 %4 to i32

 ret i32 %5

}

Interpreter (e.g., KLEE, S2E, angr)

while (true) {

 auto instruction = getNextInstruction();

 switch (instruction.type) {

 // …

 case SHL: {

 auto result = instruction.operand(0) <<

 instruction.operand(1);

 auto resultExpr =

 buildLeftShift(instruction.operandExpr(0),

 instruction.operandExpr(1));

 setResult(result, resultExpr);

 break;

 }

 }

}

N

times

5

SymCC
Compilation instead of
interpretation

6

SymCC: Overview
Target program (bitcode)

define i32 @is_double(i32, i32) {

 %3 = shl nsw i32 %1, 1

 %4 = icmp eq i32 %3, %0

 %5 = zext i1 %4 to i32

 ret i32 %5

}

Instrumented target (bitcode)

define i32 @is_double(i32, i32) {

 %3 = call i8* @_sym_get_parameter_expression(i8 0)

 %4 = call i8* @_sym_get_parameter_expression(i8 1)

 %5 = call i8* @_sym_build_integer(i64 1)

 %6 = call i8* @_sym_build_shift_left(i8* %4, i8* %5)

 %7 = call i8* @_sym_build_equal(i8* %6, i8* %3)

 %8 = call i8* @_sym_build_bool_to_bits(i8* %7)

 %9 = shl nsw i32 %1, 1

 %10 = icmp eq i32 %9, %0

 %11 = zext i1 %10 to i32

 call void @_sym_set_return_expression(i8* %8)

 ret i32 %11

}

once

7

SymCC: Implementation
● Compiler pass and run-time library

● Pass inserts calls to the run-time library at compile time

→ Built on top of LLVM

→ Easily integrate with all LLVM-based compilers

→ Independent of CPU architecture and source language

● Run-time library builds up symbolic expressions and calls the solver

→ Two options for run-time library

→ “Simple backend”: wrapper around Z3, little optimization, good for debugging

→ “QSYM backend”: reuse expressions and solver infrastructure from QSYM

(but NOT the instrumentation!)

8

QSYM is different
● Yun et al., USENIX Security 2018

● Based on dynamic binary instrumentation

→ Rewrites binaries at run time using Intel Pin

→ Inserts calls to functions that build symbolic

expressions and interacts with a solver

● Strengths

→ No interpreter: higher performance than

interpreted systems

→ Support for binaries

● But…

→ Rewritten program is less efficient than compiled

programs

→ Binary level, i.e., need to implement symbolic

handling for each x86 instruction

Target

process

Analysis

process

(QSYM)

attach

via

ptrace

9

Recap

We compile symbolic-execution

capabilities right into the binary.

● Most others interpret

● QSYM uses dynamic binary

instrumentation

10

Evaluation
Benchmark and real-world targets

11

Benchmark: Setup
● Goal: highly controlled environment

● DARPA CGC programs

● Concolic execution with fixed inputs

→ Fixed code paths

→ Single execution with generation of new inputs

● Intel Core i7 CPU and 32GB of RAM

● 30 minutes for a single execution

(regular, i.e. non-symbolic, execution takes milliseconds)

● Compared with KLEE and QSYM

→ Excluded S2E: very similar to KLEE in aspects that matter here

→ Excluded angr: not optimized for execution speed

12

Benchmark: Execution Speed
Fully concrete
No symbolic input provided

Concolic
Input data is made symbolic

13

50x

1.5x

41x

7x 4x

Approach
After concolic execution, measure edge coverage

of newly generated inputs with afl-showmap.

Visualization
● Compare paths found by only one system

● More intense color: more unique paths

● Blue for SymCC, red for KLEE/QSYM

Benchmark: Coverage

Comparison with KLEE (56 programs):

SymCC is better on 46 and worse on 10

Comparison with QSYM (116 programs):

SymCC is better on 47, worse on 40, and

equal on 29

14

Real-world targets: Setup

● Goal: show scalability to real-world software

● Popular open-source projects: OpenJPEG, libarchive, tcpdump

● Hybrid fuzzing: AFL and concolic execution with SymCC/QSYM

→ Same approach as Driller and QSYM

→ 2 AFL processes, 1 SymCC/QSYM (like in QSYM’s evaluation)

● Intel Xeon Platinum 8260 CPU with 2GB of RAM per core

● 24 hours, 30 iterations (→ roughly 17 CPU core months)

● Excluded KLEE: unsupported instructions in target programs

15

Real-world targets: Results
● Higher coverage than QSYM

● Statistically significant coverage difference

(Mann-Whitney-U, p < 0.0002)

● Found 2 CVEs in OpenJPEG

● Speed advantage correlates with

coverage gain

16

Conclusion

17

We have shown that compilation makes
symbolic execution more efficient.

SymCC compiles symbolic-execution capabilities into binaries
Orders of magnitude faster than state of the art

Significantly more code coverage per time, 2 CVEs

18

Thank you!
sebastian.poeplau@eurecom.fr
aurelien.francillon@eurecom.fr

https://github.com/eurecom-s3/symcc
(code, docs, evaluation details)

19

