The Industrial Age of Hacking

Timothy Nosco¹ Jared Ziegler² Zechariah Clark¹ Davy Marrero¹ Todd Finkler¹ Andrew Barbarello¹ W. Michael Petullo¹

¹United States Cyber Command Fort Meade, Maryland USA

²National Security Agency Fort Meade, Maryland USA

July 13, 2020

Wouldn't it be great if everyone knew all of this?

The hacking process

Hackers vs. Testers: A Comparison of Software Vulnerability Discovery Processes

Daniel Votipka, Rock Stevens, Elissa M. Redmiles, Jeremy Hu, and Michelle L. Mazurek Department of Computer Science University of Maryalnd College Park, Maryland 20742 Email: {dvotipka,rstevens,eredmiles,jhu,mmazurek}@cs.umd.edu

Targeting and information gathering

Program understanding and attack surface analysis

- Identify program's functionality.
- ▶ Rehost, emulate, or run.
- ► Prepare the program for fuzzing.

Vulnerability recognition and reporting

- ► Explore corpus for bugs: crashes, ASan, valgrind errors.
- ▶ Prioritize, filter, and deduplicate.
- Write a report that indicates severity: likelihood of vulnerability, projected investment to convert bug into an exploit.

Combining hackers with machines

Human and machine working together, but how?

The prevailing method: depth-first search

CAUTION: Diamond Mining

$R = \frac{\mathbf{T} \times \mathbf{S}}{\mathbf{L} \times \mathbf{V}}$	Increases R isk:	Decreases R isk:	
	Increases R isk: Projected T ime investment Required S kill level	Liklihood of success Value of success	
	A deliberate risk formula		

Our method: breadth-first search

Our method: breadth-first search

Our vulnerability-discovery process adds targeting (*) to the steps of Votipka, et al. (\dagger)

Metaphor: fishing For bugs

There are fish out there. How do we best catch them?

Metaphor: fishing For bugs

Larger holes in net \implies less friction.

Metaphor: fishing For bugs

Some fish might escape, but we cover more area.

Experimental design

Individual skill differential

7

19/30

Something else entirely

Workflow

Strict schedules

Workflow

Target Program understanding Automated exploration Promote to journeyman Information gathering Attack surface ٠ Information Gathering Program Understanding Exploration Journeyman Open de zabbix-agent binutils crtmpserver 0 865 Mayhem Reviewed (forint) (print) (socket) Ready for Review Trial1 (print (forint) (socket) (sprint) (sprint) sprint system system something someth #920 #352 832 tcpdump look 55 dansquardian (Maybern) Reviewed Triall snprintf socket sprintf (print) (print) (soprint) Otropy (Mashem) (Reviewed) Trialt Cocket Coprint #344 #165 #267 zabbix-server openconnect namei coreutils-join (print) (print) cocket (Mayhem) Ready for R (print) print) suprintf Emprintil Socket Capri (Mayhem) Reviewed) [Inal] g101 CHANNE #728 #205 iwcap socket libubox #149 Ready for Review 8931 cshark (fprint) print) snprint) strep curl #224 Ready for Review Triall (print) #43 chat

Team	Method	Harnesses	T_0	T_1	T_2
A	S_D	8	3	2	3
A	S_B	42	31	23	40
В	S_B	61	42	49	40
В	S_D	12	4	4	4

Conclusion

We described a repeatable experiment for measuring a novel workflow that:

- ▶ efficiently uses human resources, both novice and expert,
- ► finds more bugs,
- ▶ produces more documentation and learning resources,
- better applies automated bug-finding tools, and
- clearly defines work roles.

Tim Nosco: usenix@jocular.us