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• Intel Software Guard eXtensions (SGX)
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Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU
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Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU

• Protects against system
level adversary

New Attacker Model:

Attacker gets full control over OS
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Intel SGX Attack Taxonomy
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• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery 
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.
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[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
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• Intel’s Responsibility
• Microcode Patches / Hardware mitigation
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• Old Keys are Revoked
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• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic 

SGX Attacks

Intel 

Hardware

Software Dev 

Responsibility

Foreshadow [1]

Plundervolt [2]

µarch Side 

Channel

Cache [3][4][5]

Branch Predictors 

[6][7]

Interrupt Latency [8]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.

[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.



Intel SGX Attack Taxonomy

8

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery 
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic 

• Deterministic Attacks
• Page Fault, A/D Bit, etc. (4kB Granularity)

SGX Attacks

Intel 

Hardware

Software Dev 

Responsibility

Foreshadow [1]

Plundervolt [2]

Deterministic 

– Ctrl Channel

µarch Side 

Channel

Cache [3][4][5]

Branch Predictors 

[6][7]

Interrupt Latency [8]

Page Fault [9]

A/D Bit [10]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.

[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.

[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.

[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

[9] Xu et al. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." IEEE S&P 2015.

[10] Wang, Wenhao, et al. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." ACM CCS 2017.



CopyCat 
Attack

9



CopyCat Attack

10

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

TimeEnclave 

Execution 

Thread 

Starts



CopyCat Attack

11

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1



CopyCat Attack

12

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

1



CopyCat Attack

13

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1



CopyCat Attack

14

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1



CopyCat Attack

15

NOP           ADD                  XOR                   MUL                            DIV                           ADD    MUL                         NOP           NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1



CopyCat Attack

16

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

I got 15 IRQs. 

How many 

zeros?



CopyCat Attack

17

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after
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• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful. 
• A Secondary oracle  

• Page table attack as a deterministic secondary oracle
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• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful. 
• A Secondary oracle  

• Page table attack as a deterministic secondary oracle
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• Previous Controlled Channel attacks leak Page Access Patterns

• CopyCat additionally leaks number of instructions per page
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• Previous attacks only leak some of 
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Binary Extended Euclidean Algorithm
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• Previous attacks only leak some of 
the branches w/ some noise

• CopyCat synchronously leaks all the 
branches wo/ any noise



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

30



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N

31



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N

• Branch and prune Algorithm with the help of the recovered trace

32

p = . . . X

q = . . . X

p = . . . 0

q = . . . 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . . 1

q = . . . 1



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

33

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

34

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0

p = . . 0 0

q = . . 1 0

p = . . 1 0

q = . . 0 0

p = . . 0 0

q = . . 1 0

p = . . 1 1

q = . . 0 1



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

35

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . X 0 0

q = . X 1 0

p = . X 1 1

q = . X 0 1

p = . 0 1 1

q = . 1 0 1

p = . 1 1 1

q = . 0 0 1

p = . 0 0 0 

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0

p = . 0 0 0

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

36

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0



CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p. q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

• Single-trace Attack during RSA Key Generation: 𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
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CopyCat on WolfSSL – Cryptanalysis Results

• Executed each attack 100 times.

• DSA 𝑘−1 𝑚𝑜𝑑 𝑛
• Average 22,000 IRQs 

• 75 ms to iterate over an average of 6,320 steps

• RSA 𝑞−1 𝑚𝑜𝑑 𝑝
• Average 106490 IRQs 

• 365 ms to iterate over an average of 39,400 steps

• RSA 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• Average 230,050 IRQs 

• 800ms to iterate over an average of 81,090 steps

• Experimental traces always match the leakage model in all experiments 
→ Successful single-trace key recovery
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How about other Crypto libraries?

• Libgcrypt uses a variant of BEEA
• Single trace attack on DSA, Elgamal, ECDSA, RSA Key generation

• OpenSSL uses BEEA for computing GCD
• Single trace attack on RSA Key generation when computing gcd 𝑞 − 1, 𝑝 − 1
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Responsible Disclosure

• WolfSSL fixed the issues in 4.3.0 and 4.4.0 
• Blinding for 𝑘−1 𝑚𝑜𝑑 𝑛 and 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁

• Alternate formulation for 𝑞−1 𝑚𝑜𝑑 𝑝: 𝑞𝑝−2 𝑚𝑜𝑑 𝑝

• Using a constant-time (branchless) modular inverse [11]

• Libgcrypt fixed the issues in 1.8.6
• Using a constant-time (branchless) modular inverse [11]

• OpenSSL fixed the issue in 1.1.1e 
• Using a constant-time (branchless) GCD algorithm [11]

40

[11] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." CHES 2019.



Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully Deterministic and reliable
• Millions of instructions tested

• Attacks match the exact leakage model of branches

• Easy to scale and replicate
• No reverse engineering of branches and 

microarchitectural components

• Tracking all the branches synchronously

• Branchless programming is hard!
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Questions?!
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https://github.com/j

ovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

