-verything Old is New Again:
Binary Security of WebAssembly

Daniel Lehmann* Johannes Kinder# Michael Pradel*
*University of Stuttgart ¥Bundeswehr University Munich
Germany Germany
der Bundeswehr
s University of Stuttgart Universitdt jc} Miinchen
e Germany 1

WebAssembl i Vosmer
y ﬂ‘@d@ 2 RlANcE

Server-side /

/ Standalone VMs
void vuln(char* src) { 6100 6d73 0001 0000
char buf[81; 0201 6002 7f01 6000
strepy(buf, src); > 702 007f 0d02
} 668 7473 ... \
Source program WebAssembly binary

Client-side

* Fast, low-level, portable bytecode

Support in browsers, Node.js, standalone VMs

Compiled from C, C++, Rust, Go, ...

AAAAAA

Security?

AAA. ..
void vuln(char* src) { 6100 6d73 0001 0000
_ char buf[81; 0ad1 6002 7f01 6000
| strepy(buf, src); > 7f02 007f 0d02
} 6f68 7473 ...
Source program WebAssembly binary

N

Virtual memory
457f 464c 0102 0001

0003 003e 0001 0@1810““ StaCk Canaries

0d70 0000 0000 Of e------ : .
PO Control-Flow Integrity (CFl)

TYTTTT e .

211l
TTTTTT

Native

Security?

void vuln(char* src) {
char buf[8];
| strepy(buf, src);

3

Source program

N

AAAAAA
AAA. ..

}

6100 6d73 0001 0000
0201 6002 7f01 6000

7f02 007f 0d02
6f68 7473 ...

WebAssembly binary

457f 464c 0102 0001
0003 003e 0001 0000
Abllll

0d70 0000 0000 Qf e-rwes
0040 0000 ...

211l

TTTTTT

Native

TTTTTT

“Data execution prevention and stack

smashing protection are not needed

by WebAssembly programs.”
github.com/WebAssembly/design

"At worst, a buggy or exploited Web-
Assembly program can make a mess
of the data in its own memory.

Haas et al., PLDI 2017

Contributions

S . In-depth security analysis of WebAssembly
 Linear memory
« Mitigations
_!lé Il. Library of attack primitives
Cﬁz lll. Proof-of-concept exploits on three platforms

V. Measurements on real-world binaries

Contributions

S . |/As we go security analysis of WebAssembly
 Linear memory
« Mitigations

-i@- . Example attack primitives

Cﬁz lIl. Proof-of-concept exploits ¢ gn one platform;

Attack Outline

Buffer overflow on
unmanaged stack

Stack Canaries

Mitigations? !

1. Write Primitive

Managed vs. Unmanaged Data

« Managed by VM: scalar variables, return addresses +/

(local $1 i32) call $func +—
« Unmanaged data in memory: [1 Unmanaged
char array[10] StGC/(,
malloc(...) struct Type complex used by 33%
Heap allocations Arrays, structs of all functions
const char* string = "..." void function(int* out)
Global data, e.qg., Address taken, e.qg.,
string literals out parameters
L J

Buffer Overtlow — Native

void vuln(char* src) {
char buf[8];

|strcpy(buf, src);

}

Legacy code base

rsp —

return address

stack canary

buf

Native stack,
e.g. x86-64

{

l Overflow

Butfer Overtlow — WebAssembly

void caller() {
char other[8];
vuln(src);

}

void vuln(char* src) {
char buf[8];

|strcpy(buf, src);

}

Legacy code base

10

other

buf

$sp —

Unmanaged stack

return address

Managed data

I Overflow

Attack Outline

Mitigations? !
Unmapped Pages
v

2. Overwrite Data Sensitive heap data
I

11

Linear Memory

* Single 32-bit memory space
« Contains all unmanaged data
* No "holes", ptr € [0, max_mem]

* No page protections
* No unmapped pages
 Always writable

* No ASLR, fully deterministic

12

higher
addresses

Heap

Stack

\7

Static

I Overflow

Attack Outline

v

XSS in the browser

document.write(str)

3. Malicious Action

13

XSS In Browser: Demo

14

std::string html = "<img..";
pnm2png(input, output);
html += output + ">";
document.write(html);

void pnm2png(char* input) {
// CVE-2018-14550
}

C++ web application

higher
addresses

Heap
alert(...)

Stack
AAAA. ..

Static

Stack-to-heap
overflow

XSS In Browser: Demo

15

. @ localhost:8000/out/main.. x | + X
€ -2 C @ localhost:8000/out/main.html Qa v 6
| @ localhost:8000/out/main.| X | +
€ -5 C @ localhost:8000/out/main.html a %« 6

Sclioct g

localhost:8000 says

ASS!

More Primitives...

1. Write Primitive

2. Overwrite Data

3. Malicious Action

16

Stack-based
buffer overflow

Stack canaries

Heap data
Browser: Node,js:
XSS exec()

Stack
overflow

Heap metadata
corruption

Unmapped pages Safe unlinking

Other stack frames Constant data

Wasm CFl
WASI:

fwrite()
Redirect calls

Stack — Heap Overwrite — XSS

Stack-based
buffer overflow

— | —

1. Write Primitive

Stack canaries—=———=—tINmapped pages
2. Overwrite Data Heap data
Browser:

3. Malicious Action —

17

Heap Overtlow — Function Ptr — RCE

) .. Heap metadata
1. Write Primitive i

corruption
Saf ing
|
v
2. Overwrite Data Other stack frames
|
|
O Bl
.. : Node,js:
3. Malicious Action v

exec()
T Redirect calls

18

Stack — String Literal — File Write

Stack-based
buffer overflow

[— | —

1. Write Primitive

Stack canaries—===R—fTNmapped pages l
2. Overwrite Data const charx filename = "benign.txt" Constant data
|
WASI:

3. Malicious Action e

19

20

Everything Old is New Again: Binary Security of WebAssembly

Daniel Lehmann

Johannes Kinder Michael Pradel

University of Stuttgart Bundeswehr University Munich University of Stuttgart

Abstract

WebAssembly is an increasingly popular compilation target
designed to run code in browsers and on other platforms safely
and securely, by strictly separating code and data, enforcing
types, and limiting indirect control flow. Still, vulnerabilities
in memory-unsafe source languages can translate to vulnera-
bilities in WebAssembly binaries. In this paper, we analyze to
what extent vulnerabilities are exploitable in WebAssembly
binaries, and how this compares to native code. We find that
many classic vulnerabilities which, due to common mitiga-
tions, are no longer exploitable in native binaries, are com-
pletely exposed in WebAssembly. Moreover, WebAssembly
enables unique attacks, such as overwriting supposedly con-
stant data or manipulating the heap using a stack overflow. We
present a set of attack primitives that enable an attacker (i) to
write arbitrary memory, (ii) to overwrite sensitive data, and
(ii1) to trigger unexpected behavior by diverting control flow
or manipulating the host environment. We provide a set of
vulnerable proof-of-concept applications along with complete
end-to-end exnloite which cover three Web A ccembly nlat-

both based on LLVM. Originally devised for client-side com-
putation in browsers, WebAssembly’s simplicity and general-
ity has sparked interest to use it as a platform for many other
domains, e.g., on the server side in conjunction with Node.js,
for “serverless™ cloud computing [33-35, 64], Internet of
Things and embedded devices [31], smart contracts [44, 53],
or even as a standalone runtime [4, 23]. WebAssembly and
its ecosystem, although still evolving, have already gathered
significant momentum and will be an important computing
platform for years to come.

WebAssembly is often touted for its safety and security. For
example, both the initial publication [32] and the official web-
site [12] highlight security on the first page. Indeed, in Web-
Assembly’s core application domains, security is paramount:
on the client side, users run untrusted code from websites in
their browser; on the server side in Node.js, WebAssembly
modules operate on untrusted inputs from clients; in cloud
computing, providers run untrusted code from users; and in
smart contracts, programs may handle large sums of money.

There are two main aspects to the cecuritv of the Weh A<-

Summary

6100 6d73 0001 0000
0a01 6002 7f0
7f02 007f 0do
6f68 7473 ...

457f 464c 0102 0001
0003 003e 0001 9000, ,

0d70 0000 000 s+
0040 0000 ... Ji i
S

WebAssembly binary security

Stack-based
buffer overflow

1. Write Primitive

Stack ca
2. Overwrite Data Heap data
s s . Browser:
3. Malicious Action oo

apped pages

Attack primitives and mitigations

21

TTTTTT

other

buf i[Overflow

$sp —
Unmanaged stack

return address

Managed vs.
unmanaged data

| @ localhost:8000/out/main.. x | + x

&€ > C @ localhost:8000/out/main.html Q w 6 :

i \ @ localhost:8000/out/main. x | +

localhost:8000 says
XSS!

€ 2> C @ localhost:8000/out/main.html a % 6

PoCs on three platforms

higher
addresses
Heap
Overflow
Stack I
¥
Static
00—

Linear memory

Questions?

22

mail@dlehmann.eu
michael@binaervarianz.de
johannes.kinder@unibw.de

