Programmable In-Network Security
for Context-aware BYOD Policies

Qiao Kang, Lei Xue*, Adam Morrison, Yuxin Tang, Ang Chen, Xiapu Luo*

&

Rice University “The Hong Kong Polytechnic University

%8
AN

ﬁi

BYOD: Bring Your Own-Bewee Risks

Android Malware *

Found in 144 ‘
GooglePlay Apps |

OpenSSL Heartbleed

VULNERABILITY DETAILS

o:
protected by the vulnerable version

MEMORY DUMP

BYOD devices

Enterprise server

* BYOD devices: Less well managed and easier to be compromised

* Need to access control for BYOD clients

“Context-aware” policies for BYOD

N S——
Policies ?%

S~

\ S
SEESEssaTEEEEs
- —
e 8 D O .
\\
B=

Block if SSL version <= X

Block if recorder is on

BYOD devices Block if GPS location is Enterprise server
outside the company

* Making precise security decisions by dynamically adapting to security contexts

 How to enforce these policies?

State of the art: SDN-based defense

SDN app

Context update FlowID | Ctx | Dec.
I—> SDN controller
10.0.0. 6.1.0 [Drop
1:80:22

—_— s X
e —

New flow Drop or forward

SDN switch Enterprise server

Client modules

* Client modules collect client-side information
* BYOD policies are managed and enforced in an SDN “app”

Limitations of the SDN-based defense

qx

Drop or forward
SDN switch Enterprise server

Client modules

* Low defense agility: Context updates need to traverse the software controller
* Vulnerable to control plane DoS attacks [AvantGuard - CCS’13]

* Root cause: Lower processing speed of the SDN controller software

Research guestion

Can we address the limitations of SDN-based BYOD defense?

Opportunity: Programmable data planes

Control plane r

Programmable I PCle bus I I II Programmable
Deparser

e Switch features:
* Programmable parser: Customized protocols
» Stateful processing
* Arithmetic operations
* General-purpose control plane

* High performance : <1us delay for Tbps traffic
e Can we transform these hardware features to security benefits for BYOD? -

P4: Language for data plane programming

Customized headers Match/action processing Stateful registers
table ipv4_lpm {
key =
headef myTunnel_t F Y {) // count the number of bytes seen since the last probe
bit<l6é> proto_id; hdr.ipv4.dstAddr: lpm; register<bit<32>>(MAX_PORTS) byte cnt_reg;
bit<16> dst_1d; } // remember the time of the last probe
¥ actions = {

register<time_t>(MAX_PORTS) last_time_reg;
ipv4_forward;
struct headers {

drop;
ethernet_t ethernet; NoAction;
| myTunnel_t myTunnel; | }
ipv4_t ipv4; size = 1024;
} default_action = NoAction();
}

* Reconfigures switch pipeline for header manipulation
* Has the potential to enforce BYOD policies at linespeed

 Downside: P4 is low-level, non-trivial to develop and maintain

Poise: Programmable In-network Security

3 B

Device configs

N S——
&
9~=)

BYOD Policy

Compiler p é

P4 programs

* Language: An expressive language for defining BYOD policies
* Compiler: Generates device configurations and switch programs

* P4 data plane design: A dynamic and efficient security primitive

Motivation

Poise Design
* The Poise language
 Compiling Poise policies
* Data plane design

Evaluation

Conclusion

Outline

10

The Poise language

Block access if SSL

Primitive Actions

];:«ixpliéssmndsrop | fwd(port) | flood | log version <= 6.5.2
E = vi]ejt+ex|ei—er|erxex | M

Constant Lists 4 L

L == nil|v,lL

Predicates Predicate
P := match(ejoep) | match(hoe) |

match(h in |) | P&P | (P|P) | IP
Monitors

M = count(P)
Policies
C == A|if Pthen Celse C| (C|C)

A

[

if match (sslver <= 6.5)
then drop

_'_I

Primitive Action

* An expressive language for writing context-aware policies
* Predicates on customized client contexts
» Support pre-defined primitive actions

Policy

11

Compiling Poise policies

if match (sslver <= 6.5) Eable decision_tab
then dr‘op key = {ctx.sslver: exact}
entries = {
header ctx_t { = 6.5.0: dec = DROP
sslver: 16 > 6.5.0: dec = ALLOW
} }
}

e Contexts (sslver) are compiled to customized header fields
 Security actions (if-else) are compiled to match/action table entries

* Advanced features: Policy composition, resource optimizations, etc

Motivation

Poise Design
* The Poise language
* Compiling Poise policies
e Data plane design

Evaluation

Conclusion

Outline

13

An efficient in-network primitive

f—1
&
.)
= G,
S % =

BYOD device P4 switch Enterprise server
Remember the Enforce the latest
decision decision

* Problem: How to spread context information from client to switch?
e Strawman solution: Tag every packet with context -- high overhead!

* Idea: Periodic context packets per flow: Headers + context, no data
* Dynamic: Decisions are based on the latest context
 Efficient: Data packets unmodified (no embedded contexts)
* Adjustable accuracy: Tunable context packet period

14

Key data structure: A per-flow table

Data packet

Data packet

Context packet

Context packet

Control plane)

Key (flow ID) Value (decision)
10.0.0.1:22:6 Allow
10.0.0.3:80:6 Drop
10.0.0.4:22:6 AHew- Drop

> New flow to be inserted

Per-flow table

* A match/action table to maintain the latest per-flow decision

* Technical challenges:

* New flow insertion delay (~¥1ms)
e Controlling the size of the table

* Handling DoS attacks (e.g., many new flows) gae more details in our paper!

15

s

Motivation

Poise Design
* The Poise language
* Compiling Poise policies
e Data plane design

Evaluation

Conclusion

Outline

16

Evaluation setup

* Prototype implementation
* Compiler: Bison + Flex

 Android client module: a kernel module on Linux 3.18.31
 ~6000 LoC

* Evaluation setup
* Tofino Wedge 100BF switch 32 X 100 Gbps = 3.2 Tbps

What we have evaluated

* Correctness: Can Poise enforce BYOD policies correctly?
* Overhead: How much delay or throughput degradation can Poise incur?
* Scalability: How complex/large policies can Poise support?

* Poise vs. SDN: Is Poise resilient to control plane saturation attacks?

 SDN-based solution: PBS — NDSS’16
* Floodlight v1.2 + Open vSwitch v2.9.2

 Methodology:
* DoS attacker: Launch frequent context changes
 Measure how normal user traffic are affected

Poise vs. SDN: First packet delay

OpenFlow SDN s = ' SDN: ~1s

102 | Poise Ihmmmm

)

E

%)

c

(]

5101 n

o

< Poise: 4ms
100

0 1K 10K 100K 1M
Attack strength

* SDN: Takes ~1 second for the first packet to arrive under heavy attacks

* Poise: Remains at a constant level

19

Poise vs. SDN: New flow installation

- Poise: Installs
1%*—.—? = * new flows normally

9 \
((h]
(@)]
o,
S 50|
O
5
SDN ——
Poise —iFx SDN: Cannot
0 ! ! ! install new flows
0 1K 10K 100K 50cK 1M
Attack strength

e SDN: Fails to install new flows under heavy attacks
* Poise: Almost always installs 100% new flows

* Poise is highly resilient to DoS attacks from malicious clients 20

Conclusion

* Motivation
 SDN-based BYOD defense has limitations

* Poise: Programmable In-Network Security
* An expressive policy language
* Compiler for generating P4 programs
* An efficient in-network security primitive

e Poise transforms the hardware features to security benefits

Thank you for listening!

Contact: giaokang@rice.edu — Looking for 2021 summer internship
https://github.com/giaockang92/poise

21

mailto:qiaokang@rice.edu
https://github.com/qiaokang92/poise

