Pancake: Frequency
Smoothing for Encrypted
Data Stores

Paul Grubbs*#, Anurag Khandelwal*', Marie-Sarah Lacharité*?, Lloyd Brown?,
Lucy Li4, Rachit Agrawal®, Thomas Ristenpart?

/A

_o"'CMI'O
d -
& ¥
i ¥
- 5
Z 5
':I' ,.’-# - -
UNIVERSITY OF CALIFORNIA

<) Cornell University:.

*Equal contribution authors

Cloud Data Stores

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

N N (Y)
R S D

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

N (N ())
—) S

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

Trusted

v
N (N ())
—) S

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

Trusted Untrusted

[

]

L

|
L

Cloud Data Stores

Transition to cloud hosted data stores for ease-of-
management, scalability & cost-efficiency Cloud Storage (Key-Value Store,

e.g., ElastiCache, Amazon S3)

Trusted Untrusted

[

(
| L
[

| Key-value pairs encrypted for security

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

[

(
[
[

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

[
(
___ o
__d

Key: Patient Condition
Value: Patient Record

o
o

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

__ o
__ o
___ o
__d

Key: Patient Condition
Value: Patient Record

S9IDUINDAJH SS9IDY

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

S
QR | C_#

A s
l.h . B

S9IDUINDAJH SS9IDY

#Cases

¥ O > —

g £ & ¢

A < & Key: Patient Condition
Prior Knowledge | Value: Patient Record

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

S9IDUINDAJH SS9IDY

#Cases

Asthma
Epilepsy
Cancer

Diabetes

- ' Key: Patient Condition
Prior Knowledge Value: Patient Record

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

S9IDUINDAJH SS9IDY

#Cases

Asthma
Epilepsy
Cancer

Diabetes

t Cancer Patient¢

- ' Key: Patient Condition
Prior Knowledge Value: Patient Record

Access Pattern Attacks

Cloud Storage (Key-Value Store,
e.g., ElastiCache, Amazon S3)

Trusted Untrusted

S9IDUIND3JH SS9V

#Cases

Asthhma
Epilepsy
Cancer

Diabetes

- ' Key: Patient Condition
Prior Knowledge |Value: Patient Record

Many practical attacks: [IKK NDSS'12], [CGPR CCS'15],

[KKNO CCS"16], [GLMP S&P'19], [KPT S&P'19]

Trusted

4

Existing Solutions

Untrusted

o

-

KV1 KVs KV3 KV4

4

Threat model

Approach

Trusted

Existing Solutions

Untrusted

-

>

Active Adversary

A

o

| -

KV KV2 KV3 KV4

ORAM, PIR

Trusted

Existing Solutions

A

Threat model Active Adversary

Approach ORAM, PIR

Security strong

Performance

KV KV2 KV3 KV4

Untrusted A

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Trusted

Existing Solutions

Untrusted

o

-

>

A

Threat model Active Adversary

Approach ORAM, PIR

Security strong

Performance

A

| -

KV KV2 KV3 KV4

O(log n) bandwidth lower bound [BN ITCS'16, LN CRYPTO'19, ...]
8x storage & 1600x bandwidth for real workloads!

Existing Solutions

Trusted i Untrusted a
KV1 KV2 KV3 KV4
Threat model Snapshot Adversary
Approach SSE

Security

Performance

Existing Solutions

Trusted Untrusted A
. Key-Value Store (e.g.,
ElastiCache, Amazon S3)
KV1 KV2 KV3 KV4
Threat model Snapshot Adversary
Approach SSE

Existing Solutions

Untrusted

o

Trusted
Qﬁ

KV KV2 KV3 KV4

Threat model Snapshot Adversary

Approach SSE

Security I Unrealistic threat model [GRS HotOS'17] \ Weak

Performance High

Existing Solutions

Untrusted

o

Trusted
Qt

KV KV KV3 KV4
Threat model Persistent Passive Adversary
Approach
Security

Performance

Existing Solutions

Trusted Untrusted a
KV1 KV2 KV3 KV4
Threat model Persistent Passive Adversary
Approach
, Captures many real-world
Security

cloud deployments

Performance

Existing Solutions

Trusted Untrusted A
“ . Key-Value Store (e.g.,
ElastiCache, Amazon S3)
KV1 KV3 KV3 KVy4
Threat model Persistent Passive Adversary
Approach “ — ?

Captures many real-world
cloud deployments

Security

Can we achieve low
Performance

performance overheads?

Trusted

4

Can we do better?

Untrusted

o

-

KV1 KVs KV3 KV4

Can we do better?

Trusted

Untrusted

4

o

N KVI KV KVaKV,

Can we do better?

Untrusted

o

N KVI KV KVaKV,

Can we do better?

KV store clients already maintain statistics
about access distributions (e.g., for caching)...

Trusted

Untrusted

o

N KVI KV KVaKV,

Can we do better?

Untrusted

-

[

o

KV KV2 KV3 KV4

i | Key Contributions

Can we do better?

Untrusted

o

-

A

| -

KV KV2 KV3 KV4

| Key Contributions

e Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

>

Can we do better?

Untrusted

o

-

A

1 | [TR

KV1 KV KV2 KV3 KV4

| Key Contributions

e Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

>

Can we do better?

Untrusted

o

-

A

>

KV1 KV KV2 KV3 KV4

Emmmm>§ - -
--------------------------- Key Contributions

e Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

* Formal security analysis showing passive persistent security

e Comprehensive evaluation shows throughput > 2 orders of magnitude higher than
state-of-the art (PathORAM)!

Frequency Smoothing

Frequency Smoothing

Frequency Smoothing

_
O
)
&:}
o Q9
=
< &
R

.

KVi KV KV3 KV,

Frequency Smoothing

>

ACCessS
Distribution

KVi KV KV3 KV,

Idea#1: Replication Replicate popular items — uniform distribution across replicas

Frequency Smoothing

HH

ACCess
Distribution

KV KV, KV KV, KV KV, KV> KV, KV, KV> KV3 KV;3 KV3 KV3 KV3 KV4

Idea#1: Replication Replicate popular items — uniform distribution across replicas

Frequency Smoothing

HH

Problem: May need a lot of server-side storage

ACCess
Distribution

KV KV, KV KV, KV KV, KV> KV, KV, KV> KV3 KV;3 KV3 KV3 KV3 KV4

Idea#1: Replication Replicate popular items — uniform distribution across replicas

ACCess
Distribution

KV, KV

Idea#1: Replication

Idea#2: Fake Accesses

HH

KV

Frequency Smoothing

Problem: May need a lot of server-side storage

KV KV4 KV, KV> KV, KV> KV> KV3 KV3 KV3 KV3 KVs3 KV4

Replicate popular items — uniform distribution across replicas

>

ACCess
Distribution

1 1 1 N

KV KV> KV;3 KV4

Fake accesses to unpopular items — uniform distribution across items

Frequency Smoothing

>

Problem: May need a lot of server-side storage

_
e
)
&3
o 9
¢ 5
< &
R

KV KV, KV KV, KV KV, KV> KV, KV, KV> KV3 KV;3 KV3 KV3 KV3 KV4

Idea#1: Replication Replicate popular items — uniform distribution across replicas

>

ACCess
Distribution

KV KV> KV;3 KV4

Idea#2: Fake Accesses Fake accesses to unpopular items — uniform distribution across items

Frequency Smoothing

>

Problem: May need a lot of server-side storage

_
e
)
&3
o 9
¢ 5
< &
R

KV KV, KV KV, KV KV, KV> KV, KV, KV> KV3 KV;3 KV3 KV3 KV3 KV4

Idea#1: Replication Replicate popular items — uniform distribution across replicas

>

Problem: May add a lot of bandwidth overheads

ACCEeSS
Distribution

KV KV KV3 KV4

Idea#2: Fake Accesses Fake accesses to unpopular items — uniform distribution across items

Pancake

Combine replication and fake accesses!

Pancake

Combine replication and fake accesses!

KVi KV, KV3 KV,

KVi KV2 KV3 KV,

Pancake

Combine replication and fake accesses!

A A

KVi KV, KV3 KV, KVi KV7i KV2 KV, KVs KVz KV,

1 | | P

KV:i KV2 KV3 KV, KV:i KVi KV7 KV, KV3 KV,

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution & with bounded storage

Pancake

Combine replication and fake accesses!

A A

KVi KV, KV3 KV, KVi KV7i KV2 KV, KVs KVz KV,

1 | | P

KV:i KV2 KV3 KV, KV:i KVi KV7 KV, KV3 KV,

Step 1: Replication - Create “just enough” replicas to partially smooth out distribution & with bounded storage

Pancake

Combine replication and fake accesses!

A A

|l

KVi KV, KV3 KV,u KV:i KVi KV2 KV, KV3 KV; KV
KV:i KV2 KV3 KV, KV:i KVi KV7 KV, KV3 KV,
Step 1: Replication - Create “just enough” replicas to partially smooth out distribution & with bounded storage

Step 2: Add fake access distribution 7. to smooth out the resulting distribution completely

Pancake

Combine replication and fake accesses!

A

L. EEEEEER

KVi KV, KV3 KV,u KV:i KVi KV2 KV, KV3 KV; KV
KV:i KV2 KV3 KV, KV:i KVi KV7 KV, KV3 KV,
Step 1: Replication - Create “just enough” replicas to partially smooth out distribution & with bounded storage

Step 2: Add fake access distribution 7. to smooth out the resulting distribution completely

Pancake

Combine replication and fake accesses!

Pancake

Combine replication and fake accesses!

Trusted Untrusted

= - Qt

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Key-Value Store (e.g.,
ElastiCache, Amazon S3)

Pancake

Combine replication and fake accesses!

Untrusted

Trusted

'Pancake Logic Qt

Every time a new query arrives, enqueue it

Pancake

Combine replication and fake accesses!

Untrusted

Trusted

'Pancake Logic Qt

Fvery time a new query arrives, enqueue it and flip B coins

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Fvery time a new query arrives, enqueue it and flip B coins

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

Pancake

Combine replication and fake accesses!

Trusted Untrusted

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

-|se, draw a fake access from 7y

Pancake

Combine replication and fake accesses!

Trusted Untrusted

e B=3
d1 d2 ds
H T T

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

-|se, draw a fake access from 7y

Pancake

Combine replication and fake accesses!

Trusted Untrusted
'Pancake Logic Qt
d1 d2 g3

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

-|se, draw a fake access from 7y

Pancake

Combine replication and fake accesses!

Trusted Untrusted
'Pancake Logic Qt
d1 d2 g3

Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from)

-|se, draw a fake access from 7y

| 3 X bandwidth overhead, < 2 X storage overhead

Pancake Security

Assumptions:

Pancake Security

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses
 Pancake has a reasonable estimate of z

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses
 Pancake has a reasonable estimate of z
o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses
 Pancake has a reasonable estimate of z
o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses
 Pancake has a reasonable estimate of z
o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

N Pancake replicated
+ encrypted KV pairs

W
:K\/za

10

Pancake Security

Assumptions:
 Persistent passive adversary: can observe, but not inject or tamper with accesses
 Pancake has a reasonable estimate of z
o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

N Pancake replicated

+ encrypted KV pairs T encrypted Pancake
real + fake KV accesses

_KVi g

KV g +

s a 91192 |f A3 ar
KV a —a A —a—a-—ha

10

Pancake Security

Assumptions:

 Persistent passive adversary: can observe, but not inject or tamper with accesses

e Pancake has a reasonable estimate of =

o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

N Pancake replicated

+ encrypted KV pairs T encrypted Pancake
real + fake KV accesses

_KVi g

:K\/Za _|_ N N\

s a Qi) 92 Gz - || AT
K\/Na —a A —a—a-—ha

Ideal world

N random
bit strings

N YomYere
J

Assumptions:

 Persistent passive adversary: can observe, but not inject or tamper with accesses

Pancake has a reasonable estimate of =

Pancake Security

o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

N Pancake replicated
+ encrypted KV pairs

2

.
s

KV &

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

T encrypted Pancake
real + fake KV accesses

N random
bit strings

53@#$:

OK3x!

N\ O\)

Ideal world

T uniform random accesses

over N random bit strings

Assumptions:

 Persistent passive adversary: can observe, but not inject or tamper with accesses

Pancake has a reasonable estimate of =

Pancake Security

o Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

N Pancake replicated
+ encrypted KV pairs

2

.
s

KV &

Formal guarantee: Real-versus-random indistinguishability
under chosen distribution attack (ROR-CDA)

Real world

T encrypted Pancake
real + fake KV accesses

N random
bit strings

53@#$:

OK3x!

N\ O\)

Ideal world

T uniform random accesses

over N random bit strings

Pancake: Additional Challenges

Pancake: Additional Challenges

Update KV pair with replicas? Buffer updates to KV replicas
" | until next access

11

Pancake: Additional Challenges

Update KV pair with replicas? Buffer updates to KV replicas
| until next access

Adjust fake distribution &

Dynamic access patterns? . :
reassign replicas

11

Pancake: Additional Challenges

Update KV pair with replicas? Buffer updates to KV replicas
| until next access

Adjust fake distribution &
reassign replicas

Dynamic access patterns?

Estimate access distribution, Sliding-window histograms,
detect distribution changes? two-sample KS test

11

Pancake: Additional Challenges

Update KV pair with replicas? Buffer updates to KV replicas
| until next access

Adjust fake distribution &
reassign replicas

Dynamic access patterns?

Estimate access distribution, Sliding-window histograms,
detect distribution changes? two-sample KS test

11

Pancake Performance

12

Pancake Performance

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

12

Pancake Performance

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances
Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

12

Pancake Performance

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances
Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Approach — Insecure Baseline PathORAM Pancake

Server Storage

Proxy Storage

Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)
Takeaways

12

Pancake Performance

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances
Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Approach — Insecure Baseline PathORAM Pancake
Server Storage
Proxy Storage

Latency

Throughput 50,990 Op/s 6,718 Op/s

Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)

Takeaways Throughput 220x higher and latency 12x lower than PathORAM

12

Pancake Performance

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances
Dataset: 106 x 1KB key-value pairs, Workload: YCSB Workload A (50% reads + 50% writes)

Approach — Insecure Baseline PathORAM Pancake
Server Storage
Proxy Storage

Latency

Throughput 50,990 Op/s 6,718 Op/s

Server storage 4x lower than PathORAM, low proxy storage (~1% of server storage)
Throughput 220x higher and latency 12x lower than PathORAM

Takeaways

12

Summary

e Pancake: first system that protects data stores against access pattern attacks
at constant factor server storage & bandwidth overheads

* Formal security analysis showing passive persistent security

e Comprehensive evaluation shows throughput > 2 orders of magnitude
higher than state-of-the art (PathORAM)!

13

Summary

e Pancake: first system that protects data stores against access pattern attacks
at constant factor server storage & bandwidth overheads

 Formal security analysis showing passive persistent security

e Comprehensive evaluation shows throughput > 2 orders of magnitude
higher than state-of-the art (PathORAM)!

= Thank You!

S Questions?

MMM PANCAKES:

13

