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Many practical attacks: [IKK NDSS'12], [CGPR CCS'15],

[KKNO CCS"16], [GLMP S&P'19], [KPT S&P'19]
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O(log n) bandwidth lower bound [BN ITCS'16, LN CRYPTO'19, ...]
8x storage & 1600x bandwidth for real workloads!
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e Pancake: use frequency smoothing over known access distribution to provide security
against access pattern attacks with constant server storage & bandwidth overheads

* Formal security analysis showing passive persistent security

e Comprehensive evaluation shows throughput > 2 orders of magnitude higher than
state-of-the art (PathORAM)!
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Combine replication and fake accesses!
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Fvery time a new query arrives, enqueue it and flip B coins
f heads, dequeue a real query (or draw from )

-|se, draw a fake access from 7y

| 3 X bandwidth overhead, < 2 X storage overhead
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 Formal security analysis showing passive persistent security

e Comprehensive evaluation shows throughput > 2 orders of magnitude
higher than state-of-the art (PathORAM)!

= Thank You!
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