Pancake: Frequency Smoothing for Encrypted Data Stores

*Equal contribution authors

Paul Grubbs^{*,2}, Anurag Khandelwal^{*,1}, Marie-Sarah Lacharité^{*,2}, Lloyd Brown⁴, Lucy Li², Rachit Agrawal³, Thomas Ristenpart²

Cornell University.

Transition to cloud hosted data stores for **ease-of**management, scalability & cost-efficiency

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Transition to cloud hosted data stores for **ease-ofmanagement**, **scalability** & **cost-efficiency**

management, scalability & cost-efficiency

management, scalability & cost-efficiency

Transition to cloud hosted data stores for **ease-ofmanagement**, **scalability** & **cost-efficiency**

Transition to cloud hosted data stores for **ease-of**management, scalability & cost-efficiency

Key-value pairs encrypted for security

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Untrusted

Key: Patient Condition Value: Patient Record

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

Many practical attacks: [IKK NDSS'12], [CGPR CCS'15], [KKNO CCS'16], [GLMP S&P'19], [KPT S&P'19]

Cloud Storage (Key-Value Store, e.g., ElastiCache, Amazon S3)

O(log n) bandwidth lower bound [BN ITCS'16, LN CRYPTO'19, ...] 8x storage & 1600x bandwidth for real workloads!

Snapshot Adversary

SSE

Snapshot Adversary

SSE

Weak

Snapshot Adversary

SSE

Unrealistic threat model [GRS HotOS'17]

Weak

Persistent Passive Adversary

Persistent Passive Adversary

Snapshot Adversary

Captures many real-world cloud deployments

KV store clients already maintain statistics about access distributions (e.g., for caching)...

Can we do better?

• Pancake: use frequency smoothing over known access distribution to provide security against access pattern attacks with constant server storage & bandwidth overheads

• Pancake: use frequency smoothing over known access distribution to provide security against access pattern attacks with constant server storage & bandwidth overheads

- **Formal security analysis** showing passive persistent security
- Comprehensive evaluation shows throughput > 2 orders of magnitude higher than state-of-the art (PathORAM)!

• Pancake: use frequency smoothing over known access distribution to provide security against access pattern attacks with constant server storage & bandwidth overheads

Frequency Smoothing

Model: Queries drawn from distribution π over keys, known to both system & adversary

Frequency Smoothing

Model: Queries drawn from distribution π over keys, known to both system & adversary

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Frequency Smoothing

Model: Queries drawn from distribution π over keys, known to both system & adversary

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Distribution Access

Replicate popular items \rightarrow uniform distribution across replicas

Idea#1: Replication

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Model: Queries drawn from distribution π over keys, known to both system & adversary

Problem: May need a lot of server-side storage

										•
2	KV ₂	KV ₂	KV ₂	KV ₃	KV ₄					
pular items \rightarrow uniform distribution across replicas										

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Model: Queries drawn from distribution π over keys, known to both system & adversary

Problem: May need a lot of server-side storage

2	KV ₂	KV ₂	KV ₂	KV ₃	KV ₄				
pular items \rightarrow uniform distribution across replicas									

Fake accesses to unpopular items \rightarrow uniform distribution across items

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Model: Queries drawn from distribution π over keys, known to both system & adversary

Approach: Transform π to a "smooth" distribution over (potentially larger set of) encrypted items

Idea#2: Fake Accesses

Fake accesses to unpopular items \rightarrow uniform distribution across items

Model: Queries drawn from distribution π over keys, known to both system & adversary

Problem: May need a lot of server-side storage

2	KV ₂	KV ₂	KV ₂	KV ₃	KV ₄					
Ο	$pular items \rightarrow uniform distribution across replicas$									

Problem: May add a lot of bandwidth overheads

Pancake

Pancake

Pancake

Pancake

Model: Queries drawn from distribution π over keys, known to both system & adversary

At most 2x total KV pairs

Step 2: Add fake access distribution π_f to smooth out the resulting distribution completely

Pancake

Model: Queries drawn from distribution π over keys, known to both system & adversary

At most 2x total KV pairs

At most 2x total KV pairs

Step 2: Add fake access distribution π_f to smooth out the resulting distribution completely

At most one fake access (from π_f) per real access (from π)

Pancake

Pancake

Combine replication and fake accesses!

Challenge: How to issue fake+real accesses without revealing which is which?

Approach: Send fixed-size batches of real+fake accesses per query

Pancake

Challenge: How to issue fake+real accesses without revealing which is which?

Every time a new query arrives, enqueue it

Pancake

Every time a new query arrives, enqueue it and flip B coins

Every time a new query arrives, enqueue it and flip B coins

Every time a new query arrives, enqueue it and flip B coins If heads, dequeue a real query (or draw from π)

Every time a new query arrives, enqueue it and flip B coins If heads, dequeue a real query (or draw from π)

Every time a new query arrives, enqueue it and flip B coins If heads, dequeue a real query (or draw from π) Else, draw a fake access from π_f

Every time a new query arrives, enqueue it and flip B coins If heads, dequeue a real query (or draw from π) Else, draw a fake access from π_f

Else, draw a fake access from π_f

Pancake

Every time a new query arrives, enqueue it and flip B coins If heads, dequeue a real query (or draw from π)

Else, draw a fake access from π_f

Pancake

- Every time a new query arrives, enqueue it and flip B coins
 - If heads, dequeue a real query (or draw from π)

$3 \times$ bandwidth overhead, $\leq 2 \times$ storage overhead

Assumptions:

Assumptions:

• Persistent passive adversary: can observe, but not inject or tamper with accesses

Assumptions:

- Pancake has a reasonable estimate of π

• **Persistent passive adversary:** can observe, but not inject or tamper with accesses

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability under chosen distribution attack (ROR-CDA)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability under chosen distribution attack (ROR-CDA)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability under chosen distribution attack (ROR-CDA)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability under chosen distribution attack (ROR-CDA)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π
- Fake & real accesses cannot be distinguished by server (e.g., using timing analysis)

Formal guarantee: Real-versus-random indistinguishability under chosen distribution attack (ROR-CDA)

Assumptions:

- **Persistent passive adversary:** can observe, but not inject or tamper with accesses Pancake has a reasonable estimate of π

Update KV pair with replicas?

Buffer updates to KV replicas until next access

Update KV pair with replicas?

Dynamic access patterns?

Buffer updates to KV replicas until next access

Adjust fake distribution & reassign replicas

Update KV pair with replicas?

Dynamic access patterns?

Estimate access distribution, detect distribution changes?

Buffer updates to KV replicas until next access

Adjust fake distribution & reassign replicas

Sliding-window histograms, two-sample KS test

Update KV pair with replicas?

Dynamic access patterns?

Estimate access distribution, detect distribution changes?

Buffer updates to KV replicas until next access

Adjust fake distribution & reassign replicas

Sliding-window histograms, two-sample KS test

Details in the paper!

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, Client/Proxy: Amazon EC2 r4.8xlarge instances

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, **Client/Proxy:** Amazon EC2 r4.8xlarge instances **Dataset:** 10⁶ x 1KB key-value pairs, **Workload:** YCSB Workload A (50% reads + 50% writes)

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, **Client/Proxy:** Amazon EC2 r4.8xlarge instances **Dataset:** 10⁶ x 1KB key-value pairs, **Workload:** YCSB Workload A (50% reads + 50% writes)

Approach \rightarrow	Insecure Baseline	PathORAM	Pancake
Server Storage	1 GB	8 GB	2 GB
Proxy Storage	0 GB	8 MB	24 MB

Server storage **4x lower** than PathORAM, low proxy storage (~1% of server storage)

Takeaways

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, **Client/Proxy:** Amazon EC2 r4.8xlarge instances **Dataset:** 10⁶ x 1KB key-value pairs, **Workload:** YCSB Workload A (50% reads + 50% writes)

Approach \rightarrow	Insecure Baseline	PathORAM	Pancake
Server Storage	1 GB	8 GB	2 GB
Proxy Storage	0 GB	8 MB	24 MB
Latency	1.15 ms	31.32 ms	2.61 ms
Throughput	50,990 Op/s	32 Op/s	6,718 Op/s

Takeaways

Server storage **4x lower** than PathORAM, low proxy storage (~1% of server storage) Throughput **220x higher** and latency **12x lower** than PathORAM

Cloud Storage: Redis on t3.2xlarge Amazon EC2 instances, **Client/Proxy:** Amazon EC2 r4.8xlarge instances **Dataset:** 10⁶ x 1KB key-value pairs, **Workload:** YCSB Workload A (50% reads + 50% writes)

Approach \rightarrow	Insecure Baseline	PathORAM	Pancake
Server Storage	1 GB	8 GB	2 GB
Proxy Storage	0 GB	8 MB	24 MB
Latency	1.15 ms	31.32 ms	2.61 ms
Throughput	50,990 Op/s	32 Op/s	6,718 Op/s

Takeaways

Server storage **4x lower** than PathORAM, low proxy storage (~1% of server storage) Throughput **220x higher** and latency **12x lower** than PathORAM

Many more results in the paper!

- at constant factor server storage & bandwidth overheads
- Formal security analysis showing passive persistent security
- higher than state-of-the art (PathORAM)!

Summary

• **Pancake:** first system that protects data stores against access pattern attacks

Comprehensive evaluation shows throughput > 2 orders of magnitude

- **Pancake:** first system that protects data stores against access pattern attacks at constant factor server storage & bandwidth overheads
- Formal security analysis showing passive persistent security
- Comprehensive evaluation shows throughput > 2 orders of magnitude higher than state-of-the art (PathORAM)!

Summary

Thank You! Questions?

