
Temporal System Call Specialization
for Attack Surface Reduction

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, Michalis Polychronakis

{sghavamnia, tpalit, shmishra, mikepo}@cs.stonybrook.edu

Software Debloating and Specialization

• Applications typically include code they don’t use and have access
to features they don’t need
• Some modules/plugins are not needed by a given configuration

• Some library functions are not imported at all

• Some system calls are never used

2Temporal System Call Specialization for Attack Surface Reduction

main

prctl

execve

prctl

execve

open open

strcpy

SyscallLib. Func.App. Func.

fork fork

#include <stdlib.h>
#include <fcntl.h>

int main(int argc, char** argv){
char dest[1024];
if (argc == 2){

strcpy(dest, argv[1]);
int fd = open(dest,O_CREAT);

}
return 0;

}

Software Debloating and Specialization

• This “code bloat” has security implications

• Unneeded code: more ROP gadgets for writing code reuse exploits

• Unused (dangerous) system calls: exploit code can still invoke them to
perform harmful operations (e.g., execve())

• Unused system calls: entry points for exploiting kernel vulnerabilities
that can lead to privilege escalation

3Temporal System Call Specialization for Attack Surface Reduction

• Our focus: reduce the attack surface by disabling system calls

• Break exploit payloads (shellcode, ROP)

• Neutralize kernel vulnerabilities associated with certain system calls

Existing Work: Library Debloating

• Applications typically use only a fraction of library functions

• Library debloating: remove non-imported functions from memory
[Mulliner and Neugschwandtner ’15] [Quach et al. ’18] [Agadakos et al. ’19] [Porter et al. ’20]

• Generate the call graph of imported shared libraries

• Identify library function dependencies

• Caveat: the entire lifetime of the program is considered
• If a function/system call is used even only once, it cannot be disabled

4Temporal System Call Specialization for Attack Surface Reduction

Can we disable more system calls by differentiating
between a process’ different phases of execution?

Motivation

• Server applications typically perform initialization operations at
the beginning of their execution
• Read configuration files

• Fork worker processes

• Execute other programs

• Create files and set their permissions

• Afterwards, they enter their main serving phase
• Handle client requests

• Establish connections
…

5Temporal System Call Specialization for Attack Surface Reduction

Example: Apache Web Server

6Temporal System Call Specialization for Attack Surface Reduction

main

sock_bind

p_listn

child_main read

bind

writev

execve

malloc

bind

listen execve

writev

mmap

read

SyscallLib. Func.App. Func.

fork

pre_config

mk_child

proc_fork
apr_palloc

file_writev

sock_recv

prctl prctl

mkdir mknod

brctl brctl

setns setns

fcntl fcntl

bind mmapreadmknod brctlfcntl listen execve writevforkprctl setns

Initialization Serving

Required System Calls

Temporal System Call Specialization

• Disable additional system calls that are needed only during the
initialization phase, after entering the serving phase

• Examples
• Apache Httpd and Nginx invoke execve only during initialization

• Lighttpd, Bind, and Redis invoke chmod only during initialization

7Temporal System Call Specialization for Attack Surface Reduction

• Disables 51% more security-critical system calls, breaking 218 more
shellcodes and ROP payloads

• Mitigates 13 more Linux kernel CVEs

Outline

• Introduction

• Generating the call graph
• Pruning based on argument types

• Pruning based on taken addresses

• Identifying the required system calls for each phase

• Enforcing system call filters after the initialization phase

• Experimental evaluation

• Conclusion

8Temporal System Call Specialization for Attack Surface Reduction

System Overview

9Temporal System Call Specialization for Attack Surface Reduction

LLVM
IR

Programmer-provided
Function List

SVF Andersen’s
Analysis

Type-based
Pruning

Address-taken
Based Pruning

Seccomp Filter
Generation

filter(SYS_execve)
filter(SYS_setuid)
filter(SYS_setsid)
filter(SYS_bind)
filter(SYS_listen)

Imprecise Call Graph Precise Call GraphCall Graph with Type-based Pruning

Call Graph Generation

• A complete and sound call graph is required to identify
unnecessary system calls
• The use of function pointers necessitates points-to analysis

• While sound, points-to analysis comes with severe over-approximation

• Over-approximation prevents the precise differentiation of the
system call requirements between the two phases
• No security benefit if both initialization and serving phases use the same

set of system calls

• Goal: improve precision without losing soundness

10Temporal System Call Specialization for Attack Surface Reduction

Pruning based on Argument Types

• Match arguments passed to callsite with function argument types

• Consider only struct types (no primitives, no void*)

• Consider only non-variadic functions

11Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

event_run (apr_pool * p, apr_pool * pl, serv_rec * s)

Target Functions

Pruning based on Argument Types

• Match arguments passed to callsite with function argument types

• Consider only struct types (no primitives, no void*)

• Consider only non-variadic functions

12Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

event_run (apr_pool * p, apr_pool * pl, serv_rec * s)

Target Functions

Pruning based on Argument Types

• Match arguments passed to callsite with function argument types

• Consider only struct types (no primitives, no void*)

• Consider only non-variadic functions

13Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

event_run (apr_pool * p, apr_pool * pl, serv_rec * s)

Target Functions

Pruning based on Argument Types

• Match arguments passed to callsite with function argument types

• Consider only struct types (no primitives, no void*)

• Consider only non-variadic functions

14Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

event_run (apr_pool * p, apr_pool * pl, serv_rec * s)

Target Functions

Pruning based on Argument Types

• Match arguments passed to callsite with function argument types

• Consider only struct types (no primitives, no void*)

• Consider only non-variadic functions

15Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

event_run (apr_pool * p, apr_pool * pl, serv_rec * s)

Target Functions

Pruning based on Taken Addresses

• Identify where a function address is being taken (global and local)

• Check if those locations (local) are accessible from main()

• Prune edges to functions that are:
• Not accessed directly and

• The location where the address is being taken is not accessible

• Example: address of piped_log_mnt is only taken in start_module
• start_module is not accessible from main

16Temporal System Call Specialization for Attack Surface Reduction

(*gic)(int r, void *d, apr_wait_t s)

Callsite

piped_log_mnt (int p, void *m, apr_wait_t a)

Target Functions

Outline

• Introduction

• Generating the call graph
• Pruning based on argument types

• Pruning based on taken addresses

• Identifying the required system calls for each phase

• Enforcing system call filters after the initialization phase

• Experimental evaluation

• Conclusion

17Temporal System Call Specialization for Attack Surface Reduction

System Call Mapping

• Glibc call graph generation
• Map all exported functions to

the system calls they use

• Generate call graph for all
libraries
• Leaves are either system calls or

• Functions from other libraries

• Combine all call graphs to
create a complete graph

18Temporal System Call Specialization for Attack Surface Reduction

main

sock_bind

p_listn

bind

execve

bind

listen

execve

fork

pre_config

proc_fork

listen

sslcrt

Apache

Glibc

Openssl

sslbrk

fork

sslocrt

write

write
brk

brk

SyscallLib. Func.App. Func.

System Call Mapping

19Temporal System Call Specialization for Attack Surface Reduction

main

sock_bind

p_listn

bind

execve

bind

listen

execve

fork

pre_config

proc_fork

listen

sslcrt

Apache

Glibc

Openssl

sslbrk

fork

sslocrt

write

write
brk

brk

SyscallLib. Func.App. Func.

• Glibc call graph generation
• Map all exported functions to

the system calls they use

• Generate call graph for all
libraries
• Leaves are either system calls or

• Functions from other libraries

• Combine all call graphs to
create a complete graph

Outline

• Introduction

• Generating the call graph
• Pruning based on argument types

• Pruning based on taken addresses

• Identifying the required system calls for each phase

• Enforcing system call filters after the initialization phase

• Experimental evaluation

• Conclusion

20Temporal System Call Specialization for Attack Surface Reduction

System Call Filtering Enforcement

• Seccomp BPF
• Standard Linux kernel facility for system call filtering

• Filters installed by invoking the seccomp or prctl system call

• In case of filter conflicts, the least privileged ones are considered

• Install more restrictive filters after entering the serving phase

21Temporal System Call Specialization for Attack Surface Reduction

main

sock_bind

p_listn

child_main read

bind

writev

execve

malloc

bind

listen execve

writev

mmap

read

fork

pre_config

mk_child

proc_fork apr_palloc

file_writev

sock_recv

Initialization Serving

install_filter(SYS_execve);
install_filter(SYS_bind);
install_filter(SYS_listen);
install_filter(SYS_fork);

Outline

• Introduction

• Generating the call graph
• Pruning based on argument types

• Pruning based on taken addresses

• Identifying the required system calls for each phase

• Enforcing system call filters after the initialization phase

• Experimental evaluation

• Conclusion

22Temporal System Call Specialization for Attack Surface Reduction

Lib. vs. Temporal Specialization: Retained System Calls

23Temporal System Call Specialization for Attack Surface Reduction

Application Library Debloating
Temporal Specialization

Initialization Serving

Nginx 104 104 97

Apache Httpd 105 94 79

Lighttpd 95 95 76

Bind 127 99 85

Memcached 99 99 84

Redis 90 90 82

Number of system calls retained (out of 333 available) after applying library
debloating and temporal specialization

Security-critical System Calls Disabled

24Temporal System Call Specialization for Attack Surface Reduction

Syscall
Nginx Apache Httpd Lighttpd Bind Memcached Redis

Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp.

C
m

d
Ex

ec
u

ti
o

n clone ✓ * * * * *

execveat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

execve ✓ ✓ ❖ ✓ ✓ ✓ ✓ ❖

fork ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ptrace ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pe
rm

is
si

o
n

s

chmod ✓ ✓ ✓ ✓ ✓ ✓ ✓

mprotect

setgid ✓ ✓ ✓ ✓ ✓ ✓

setreuid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

setuid ✓ ✓ ✓ ✓ ✓ ✓

✓: Syscall is removed : Syscall is not removed
❖: Can be removed by applying configuration-driven specialization *: Can be removed by applying API specialization

Broken Shellcodes and ROP Payloads

• Collected 567 shellcodes and 17 ROP payloads

• Increased set of shellcodes to 1,726 by generating shellcode
variations based on equivalent system calls
• Example: accept and accept4 are equivalent

25Temporal System Call Specialization for Attack Surface Reduction

Payload Category Count Library Debloating Temporal Specialization

Shellcode 1726 1103 (63%) 1321 (76%)

ROP Payloads 17 9 (52%) 11.6 (68%)

Average number (%) of payloads broken by library and temporal specialization across applications

Neutralized Linux Kernel CVEs

26Temporal System Call Specialization for Attack Surface Reduction

CVE System Call(s) Description Library Temporal

CVE-2018-18281 execve(at), remap Allows user to gain access to a physical page after it has been released 0 4

CVE-2016-3672 execve(at) Allows user to bypass ASLR by disabling stack consumption resource limits 2 4

CVE-2015-3339 execve(at) Race condition allows privilege escalation by executing program 2 4

CVE-2015-1593 execve(at) Bug in stack randomization allows attackers to bypass ASLR by predicting top of stack 2 4

CVE-2014-9585 execve(at) ASLR protection can be bypassed du to bug in choosing memory locations 2 4

CVE-2013-0914 execve(at) Allows local user to bypass ASLR by executing a crafted application 2 4

CVE-2012-4530 execve(at) Sensitive information from the kernel can be leaked via a crafted application 2 4

CVE-2012-3375 epoll_ctl Denial of service can be caused due to improper checks in epoll operations 0 1

CVE-2011-1082 epoll_(ctl, pwait, wait) Local user can cause denial of service due to improper checks in epoll data structures 0 1

CVE-2010-4346 execve(at) Allows attacker to conduct NULL pointer dereference attack via a crafted application 2 4

CVE-2010-4243 uselib, execve(at) Denial of service can be caused via a crafted exec system call 2 4

CVE-2010-3858 execve(at) Denial of service can be caused due to bug in restricting stack memory consumption 2 4

CVE-2008-3527 execve(at) Allows a local user to escalate privileges or cause DoS due to improper boundary checks 2 4

Kernel CVEs mitigated by filtering unneeded system calls

Conclusion

• Temporal specialization removes security-critical system calls by
differentiating between the execution phases of a process
• Proposed two novel call graph pruning techniques

• Filters 51% more security-critical system calls than previous library
debloating techniques

• Mitigates 13 more Linux kernel CVEs compared to previous library
debloating techniques

Temporal System Call Specialization for Attack Surface Reduction
Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, Michalis Polychronakis
{sghavamnia, tpalit, shmishra, mikepo}@cs.stonybrook.edu

Source code: https://github.com/shamedgh/temporal-specialization

https://github.com/shamedgh/temporal-specialization

