Chaperone: Real-time Locking and Loss Prevention for Smartphones

Jiayi Chen, University of Waterloo

Urs Hengartner, University of Waterloo Hassan Khan, University of Guelph Mohammad Mannan, Concordia University

USENIX Security '20

DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

ryptography, Security, and Privacy

August 9, 2018 Around 23,000 devices go missing every month, finds Kaspersky Lab

The holiday season is upon us, and that means that millions of people are getting ready for a trip abroad.

The holiday season is upon us, and that means that millions of people are getting ready for a trip abroad. And while they are on holiday, many will be taking the opportunity to capture precious memories of their time away. In fact, according to Kaspersky Lab's consumer research, one-in-five (18%) say photos and videos of their travel are the most important forms of data on their devices, with this type of data trumping all others. However, in additional research by the company, 28% said that if they lost their devices, or had them stolen, they would never be able to replace those precious holiday photos.

Smartphone Loss

×Find my device

- Can be easily bypassed
- Post-loss solution

Smartphone Loss

×Find my device

- Can be easily bypassed
- Post-loss solution

×Bluetooth/Camera-based loss prevention

Require additional hardware

Need a standalone loss prevention solution

Active Acoustic Sensing

- Distance estimation based on reflected signals
- iLock [CCS'16]: a distance-based solution to auto-lock a smartphone
 - Tested in lab and library

Active Acoustic Sensing

- Distance estimation based on reflected signals
- iLock [CCS'16]: a distance-based solution to auto-lock a smartphone
 - Tested in lab and library
- Environmental factors

Chaperone

- Real-time smartphone loss prevention solution
 - Detect owner's departure from phone using active acoustic sensing

A standalone solution that handles complicated environmental factors 1,345 experiments over different conditions and real-world scenarios User study (n=17) for perceptional feedback and alert test

Threat Model

- Nearby opportunistic attackers
 - Target unattended phones*
 - Pick up a phone shortly after owner's absence
- Assumptions
 - Microphone/speaker not fully covered
 - Owner initially close to phone

*Pickpocketing and snatching are not considered.

Challenges

- High-frequency noise
- Nearby people
- Layout & obstacles

Challenges

- High-frequency noise
- Nearby people
- Layout & obstacles

Challenges

- High-frequency noise
- Nearby people
- Layout & obstacles

Design of Chaperone

Design of Chaperone

Design of Chaperone

User Tracking Module

• Preprocessing

User Tracking Module

• Extract owner's motion state

Decision Making Module

Address limited detection range caused by layout and obstacles

Evaluation

Lab experiments

- Controlled experiments
- Phone orientation angles
- Departing speeds
- Nearby stranger

Real-world experiments

- Eight experimenters at eight real-world scenarios
- 366 departure events and
 391 everyday activities
- Simulate smartphone loss with different settings

Interference factors

- Close object
- Concurrent sensing

Lab experiments

- Combination of departing speeds and phone orientation angles
 - Departing speeds: slow, normal, fast
 - Phone orientations: 0 (vertical), 45°, 90° (horizontal)
 - 15 times for each combination (135 departure events)
 - Only 2 false negatives for (fast, 90°)

Real-world Experiments

- Eight locations
 - Library, office, restaurant, coffee shop, lounge, bus stop, in-vehicle and academic venue
- Use lab experiment data for classifier training
- Overall precision: 93%, recall 96%
- In 95% of successful cases, Chaperone can detect a potential device loss within 500ms

Example: Bus Stop

- A small glass-enclosed waiting area and an open-air bench
- Noise from passing vehicles
- Several people waiting or passing by
- 92% precision with no false negatives

User Study

- Semi-structured interview with demo session
 - 17 participants
 - Restaurant scenario
 - A demo of Chaperone with real-time trace display
- Learn about
 - Smartphone loss experience
 - Perception of Chaperone
 - Effectiveness of ringtone alerts

User Study Results

Perception of Chaperone

• **13/17** participants are satisfied with overall effectiveness of Chaperone

• Effectiveness of ringtone alert

- Simulate a smartphone loss without knowing the ringtone
- 16/17 Participants noticed the ringtone
- Participants expect different alert methods for different scenarios

Conclusion

Summary

- Proposed a standalone real-time smartphone loss prevention solution
- Conducted extensive experiments to evaluate the detection performance
- Conducted a user study to obtain perceptional results and study alert methods

• Future work

- Systematic study on specific environmental factors
- Long-term user study
- Adaptive alert schemes
- Source code & dataset: <u>https://github.com/cryspuwaterloo/chaperone</u>
- Email: jiayi.chen@uwaterloo.ca
- Thank you!

