Exploring Connections between Model Extraction and Active Learning

Varun Chandrasekaran

Joint work with Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, Songbai Yan

Machine Learning as a Service (MLaaS)

Advantages

1.Elastic Scalability

2. Availability

3.Offered by most Cloud Providers

4. Model is monetizable

Model Extraction

Proposed by Tramèr et al. [2016, USENIX Security]

Objective 1: Learn an *approximation* of the model **Objective 2:** Use as *few* queries as possible

A Simple Example: Halfspace Extraction

Simple Strategy: Binary Search

Assumptions Made In Tramèr's World

Label & auxiliary Information

Oblivious to attacks

Uniquely identifiable subcomponents

Welcome To The Real World

All assumptions described earlier do not hold

Active Learning

Lower query complexity than passive learning

Bounds are known for certain hypothesis classes

Connection to Active Learning

How to Generate Queries?

Strategy 1: Sampling from a pool of data

Strategy 2: Access to a similar dataset

Strategy 3: Data augmentation (using adversarial examples)

Strategy 4: Uniform data generation

Strategy 5: Query synthesis

Model Extraction = Query Synthesis Active Learning

Main Results

- Halfspace extraction (linear models)
 - Spectral algorithm [Alabdulmohsin et al., 2015]
- Halfspace extraction (linear models)
 - Presence of noisy labels
 - Version Space Learning [Chen et al., 2018]
- Kernel SVM (non-linear models) extraction
 - Active Selection [Bordes et al., 2005]
 - More query efficient than Tramèr et al.

Refer paper for more details

No Free Lunch

- Model extraction is inevitable
 - Data independent randomization fails
 - Data dependent randomization fails using *passive learning* approaches

Decision Tree Extraction Kushilevitz & Mansour [1993] • Boolean trees				 In the absence of identifiers for tree nodes In the absence of operation on "incomplete inputs" 		
• <u>I</u> mpo •	Slow rtance <u>W</u> eighted <u>A</u> Uniformly generate	,	Dog Larger query complexity, but NO auxiliary information			
	Dataset	Oracle Accuracy	Path Finding (Tramèr 2016) #Queries	IWAL Accuracy	IWAL (Us) #Queries	
	Adult	81.2%	18323	80.2%	244188	
	Steak	52.1%	5205	73.1%	1334	
	Iris	86.8%	246	89.4%	361	
	GSSHappiness	79%	18907	79.3%	254892	

<u>Summary</u>

- Draw connections between Active Learning and Model Extraction
 - Attacks with known asymptotic bounds
 - Robust to noise

• Provide attacks under more realistic assumptions

• No Free Lunch *i.e.*, Model Extraction is inevitable

Open Questions

QSAL for DNNs

Determining model type

 \sim

Transferability

chandrasekaran@cs.wisc.edu