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Machine Learning as a Service (MLaaS)
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Model Extraction

Proposed by Trameér et al. [2016, USENIX Security]

Objective 1: Learn an approximation of the model
Objective 2: Use as few queries as possible

Goals
1. White-box evasion attacks
@ 2. Undermine pay-per-query regime
3. Launch model inversion [Fredrikson et al.]
or membership inference [Shokri et al.]
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A Simple Example: Halfspace Extraction

Simple Strategy: Binary Search

f(x) = -1 if w(x) = <w,x> < -1
+1 else



Assumptions Made In Tramer's World
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Label & auxiliary Information Oblivious to attacks Uniquely identifiable
subcomponents




Welcome To The Real World

All assumptions described earlier do not hold
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Active Learning

Lower query complexity than passive learning

Bounds are known for certain hypothesis classes




Connection to Active Learning

Model Extraction = Active Learning
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How to Generate Queries?

Strategy 1: Sampling from a pool of data

Strategy 2: Access to a similar dataset

Strategy 3: Data augmentation (using adversarial examples)
Strategy 4: Uniform data generation

Strategy 5: Query synthesis

Model Extraction = Query Synthesis Active Learning




Main Results

e Halfspace extraction (linear models)

o  Spectral algorithm [Alabdulmohsin et al., 2015]
e Halfspace extraction (linear models)

o Presence of noisy labels

o Version Space Learning [Chen et al., 2018]
e Kernel SVM (non-linear models) extraction

o Active Selection [Bordes et al., 2005]

o More query efficient than Tramer et al.

Refer paper for more details
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No Free Lunch

e Model extraction is inevitable
o Data independent randomization fails
o Data dependent randomization fails using passive learning
approaches
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Decision Tree Extraction

Kushilevitz & Mansour [1993]
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Importance Weighted Active Learning [Beygelzimer et al., 20
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Oracle Path Finding
(Tramér 2016)
Accuracy #Queries
81.2% 18323
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Summary

e Draw connections between Active Learning and Model Extraction
o Attacks with known asymptotic bounds
o Robust to noise

e Provide attacks under more realistic assumptions

e No Free Lunch i.e., Model Extraction is inevitable
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Open Questions
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QSAL for DNNs Determining Transferability
model type
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