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Abstract
Android introduced runtime permissions in order to provide
users with more contextual information to make informed
decisions as well as with finer granularity when dealing with
permissions. In this work, we identified that the correct op-
eration of the runtime permission model relies on certain
implicit assumptions which can conveniently be broken by
adversaries to illegitimately obtain permissions from the back-
ground while impersonating foreground apps. We call this
detrimental scenario false transparency attacks. These attacks
constitute a serious security threat to the Android platform as
they invalidate the security guarantees of 1) runtime permis-
sions by enabling background apps to spoof the context and
identity of foreground apps when requesting permissions and
of 2) Android permissions altogether by allowing adversaries
to exploit users’ trust in other apps to obtain permissions.

We demonstrated via a user study we conducted on Ama-
zon Mechanical Turk that mobile users’ comprehension of
runtime permissions renders them susceptible to this attack
vector. We carefully designed our attacks to launch strategi-
cally in order to appear persuasive and verified the validity
of our design strategies through our user study. To demon-
strate the feasibility of our attacks, we conducted an in-lab
user study in a realistic setting and showed that none of the
subjects noticed our attacks. Finally, we discuss why the ex-
isting defenses against mobile phishing fail in the context of
false transparency attacks. In particular, we disclose the secu-
rity vulnerabilities we identified in a key security mechanism
added in Android 10. We then propose a list of countermea-
sures to be implemented on the Android platform and on app
stores to practically tackle false transparency attacks.

1 Introduction

Be transparent. When you make a permissions
request, be clear about what you’re accessing, and
why, so users can make informed decisions. – App
permissions best practices by Google [1]

Android’s permission system enables access control on sen-
sitive user data and platform resources based on user consent.
In an effort to foster meaningful consent, Android 6 intro-
duced runtime permissions to help users understand why a
permission is needed by an app by asking for it in a relevant
use context. In particular, the runtime permission model war-
rants certain security guarantees to achieve this goal. First,
it provides a contextual guarantee to ensure that users will
always be given the necessary contextual information to make
informed decisions, by enforcing apps to be in the foreground
when requesting permissions. Second, it provides an identity
guarantee to ensure that users are well-aware of the identity
of the app owning the current context during a permission re-
quest, by clearly displaying the name of the requesting app in
permission dialogs. In line with its ultimate goal of providing
context, the model also relies on the cooperation of app de-
velopers to be transparent regarding their need of permissions
during permission requests.

In this work, we have identified that the security guaran-
tees of runtime permissions are broken due to some implicit
assumptions made by the platform designers. To this end, we
show how our findings can be used by adversaries to stealthily
obtain runtime permissions. First, Android assumes that an
app in the foreground will always present a meaningful and
legitimate context. However, we show that background apps
can surreptitiously move to the foreground to request permis-
sions without being noticed by users by utilizing Android
APIs and invisible graphical displays. Second, we observed
that the naming scheme utilized in the permission dialogs
assumes that the app name will uniquely identify a single app
installed on the user device for its secure operation; however,
the Android ecosystem does not readily enforce any rules on
these names. As a consequence, apps can spoof the names
of other apps or use irrelevant names that have the poten-
tial to mislead users regarding the true source of the request.
The combination of these findings indicate the possibility of
phishing-based privilege escalation on runtime permissions;
a background app (adversary) can now request and obtain
permissions while leading the user to believe the request
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was triggered by the foreground app (victim), an insidious
phishing scenario which we call false transparency attacks
on runtime permissions.

In false transparency attacks, a permission request from an
app is not transparent in the sense of the quote above. Instead,
its context is literally transparent as a graphical display to en-
sure that the user only sees the victim app at the time of the re-
quest. In addition, its origin is intentionally set to mislead the
user into thinking the request was triggered by the foreground
app. Hence, the adversary can take advantage of both the con-
text and the identity of a victim app for its own requests to
more conveniently obtain permissions. To illustrate, suppose
Vibr is an attack app that launches a false transparency attack
from the background while the widely-used communication
app Viber is in the foreground. If, for example, Vibr requests
permission to access the user’s contacts, then an unwary user
may grant this if they think the request comes from Viber,
as users would generally feel comfortable granting contacts
permission to a popular communication app that needs it for
its utility [2]. In particular, we argue that these attacks con-
stitute a notable security hazard for the Android platform for
two reasons. First, they allow background apps to stealthily
obtain permissions while providing a spoofed context and
identity, which clearly defeats the purpose of using runtime
permissions to provide meaningful contextual information to
users. Second, they create an opportunity for malicious apps
to exploit the user’s trust in another, possibly high-profile
app to obtain permissions that they would normally not be
able to acquire, breaking the security guarantees of Android
permissions altogether.

False transparency attacks serve as a platform for adver-
saries to obtain any set of dangerous permissions by exploit-
ing user’s trust in other apps. In order to profitably mislead
users to grant permissions, the permission dialogs triggered
by adversaries should appear plausible, justifying the need for
a permission, as users have a strong tendency towards deny-
ing requests that seem irrelevant to the app’s use [2, 3]. We
first show via a user study we conduct on Amazon Mechani-
cal Turk that users indeed demonstrate susceptibility to false
transparency attacks due to a lack of complete understanding
of the runtime permission model (e.g., security guarantees of
runtime permissions). We then propose various key schemes
to launch our attacks strategically and implement them after
verifying with our user study that they would indeed lead to
more stealthy and effective attacks. Furthermore, we conduct
an in-lab user study in a realistic setting to verify the feasibil-
ity of our attacks and show that none of the subjects noticed
they had been attacked.

Additionally, we study the existing defense mechanisms
against mobile phishing and discuss why they fall short in
the context of false transparency attacks. A noteworthy one
among these defenses is the strategy recently introduced by
Google in Android 10. We have found that this security mech-
anism suffers from serious security vulnerabilities and de-

sign issues, which rendered our attacks still effective on this
Android version and onward. Finally, we propose a list of
countermeasures that can be practically implemented on the
Android platform and on app stores such as Google Play to
defend against false transparency attacks.

Our contributions can be summarized as follows:
• We uncovered design shortcomings in Android’s runtime

permissions which inadvertently lead to a violation of the
essential security guarantees of this permission model.

• By utilizing these shortcomings, we built false trans-
parency attacks, which enable adversaries to illegiti-
mately obtain permissions using a victim app’s context
and identity.

• We conducted a user study to understand if users’ com-
prehension of runtime permissions created susceptibility
to this attack vector as well as to verify the validity of
our design strategies for stealthy attacks.

• We conducted a user study to demonstrate the feasibility
of our attacks in a realistic setting.

• We discovered serious issues in the new security mecha-
nism that addresses phishing in Android 10 and later and
showed the feasibility of our attacks on these versions.

• We proposed practical countermeasures that can effec-
tively tackle false transparency attacks.

2 Background

2.1 Android Permissions
Previously, permissions were permanently granted to apps at
installation time on Android. With the introduction of Android
6.0 (API level 23), Android switched to runtime permissions
where permissions for high-risk resources (e.g., camera, con-
tacts etc.) are requested dynamically and could be revoked
by the user at any time. This was done in an effort to provide
users more context while making decisions [4]. In this permis-
sion model, users are presented with a permission dialog on
or before the first use of a sensitive resource that is protected
with a dangerous permission and are given the ability to allow
or deny a permission request. Furthermore, users can adjust
app permissions at any time through the system settings.

The PackageManager class can be queried to ob-
tain permission information of apps. In particular, the
getInstalledPackages() API can be used with the
PackageManager.GET_PERMISSIONS flag to obtain the per-
missions requested by apps as stated in their manifests and
the current states of these permissions (i.e., granted or not).

2.2 App Components and Task Organization
Apps can contain four main components on Android: ac-
tivities, services, broadcast receivers, and content providers.
An Activity presents the user with a single-purpose user
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interface. A Fragment is an activity subcomponent that is
utilized to represent certain behavior or a portion of UI. A
Service performs long-running tasks in the background. A
BroadcastReceiver enables receiving messages from other
apps or the system. Finally, a ContentProvider provides
apps with a relational database interface to enable storing
and sharing data. Android provides the Intent messaging
scheme as a part of its Binder IPC mechanism to enable com-
munication between these components.

On Android, a task is a collection of activities that collab-
oratively perform a specific job. Android arranges activities
forming a task into a stack, in the reverse order of their initia-
tion. Pressing the back button removes the top activity from
the stack and brings forth the activity underneath to the fore-
ground. In addition, recently-accessed tasks can be obtained
via clicking the recents button to view a system-level UI called
the recents screen. Normally, the system handles the addition
and removal of activities and tasks to/from the recents screen;
however, this behavior can be overridden. For instance, tasks
can be excluded by setting android:excludeFromRecents
or by calling the finishAndRemoveTask() API in the activ-
ity creating the task.

3 Runtime Permissions in the Wild

Our attacks constitute a notable threat to the security of run-
time permissions. Here, we study the adoption of runtime
permissions to demonstrate the extent of our attacks. First, we
investigate the adoption of Android versions that support run-
time permissions (Android 6-11). As reported by Google, the
cumulative adoption of these Android versions is 74.8% [5].
This means that the majority of users are using Android de-
vices that support runtime permissions and are vulnerable to
our attacks by default. Next, we investigate the prevalence of
apps that adopted runtime permissions. For this purpose, we
collected the 80 top free apps of each app category on Google
Play (with some failures) and obtained a final dataset with
2483 apps. We collected this dataset in December 2018, when
runtime permissions had already been released for a few years.
Table 1 summarizes our results. 83% of the apps in our dataset
have a target API level 23 or more, indicating they utilize run-
time permissions. Out of these apps, 85% of them (71% of
all apps) request at least one permission of protection level
dangerous. This shows that runtime permissions are highly
adopted by app developers and users are already accustomed
to dealing with runtime permissions as the majority of the
apps request permissions at runtime.

4 Attacking Runtime Permissions

Android’s runtime permission model provides essential se-
curity guarantees in order to reliably and securely deliver
contextual information. In this section, we will discuss these

Table 1: Adoption of permission models and use of dangerous
permissions by apps (# of apps (% of apps)).

Requesting dangerous
permissions?

Using Runtime
permissions

Using
Install-time
permissions

Yes 1755 (71%) 357 (14%)
No 309 (13%) 62 (2%)

Total 2064 (83%) 419 (17%)

guarantees and explain how they can be broken to launch
phishing-based privilege escalation attacks that we call false
transparency attacks on runtime permissions. We will then
discuss the internals of our attacks in detail.

Threat model. We assume an adversary that can build An-
droid apps and distribute them on app markets, such as Google
Play (GP) store; however, the adversary is not necessarily a
reputable developer on GP. They provide an app with some
simple and seemingly useful functionality (e.g., QR code scan-
ner etc.) to lure the users into installing the app. Their goal
is to obtain a desired set of dangerous permissions, which is
relatively difficult to achieve for non-reputable app developers
and is especially harder if their app does not have a convincing
reason to why it requires a specific permission [2].

4.1 (Breaking) the Security Guarantees of
Runtime Permissions

Runtime permissions strive to provide contextual information
to users to help them make conscious decisions while granting
or denying permissions. In order to reliably and securely
deliver this contextual information, Android warrants some
security guarantees: 1) users will always be provided with the
necessary contextual information, 2) users will be informed
about the identity of the app owning the current context at
the time of a permission request. Here, we discuss how these
guarantees rely on the validity of certain implicit assumptions
and present ways to invalidate them, undermining the security
of runtime permissions.

Contextual guarantee. This security guarantee states that
users should always be provided with context during requests.
Android attempts to achieve this by allowing apps to request
permissions only from the foreground. The runtime permis-
sion model aims to provide users with increased situational
context to help them with their permission decisions. Cur-
rently, Android provides contextual information to dynamic
permission requests in the form of graphical user interfaces.
That is, when the user is presented with a permission dialog,
they have the knowledge of what was on the screen and what
they were doing prior to the request to help them understand
how this permission might be used by the app. In order to
ensure users are always provided with contextual information
at the time of permission requests, Android allows permis-
sions to be requested only from the context of UI-based app
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components such as activities and fragments and the request-
ing component has to be in the foreground at the time of the
request. The assumption here is that since apps are allowed to
request permissions only from the foreground, users will al-
ways be provided with a meaningful context. In our work, we
show that this assumption is conceptually broken as we can
utilize the existing features offered to developers by the An-
droid platform to enable background apps to stealthily request
permissions from illegitimate contexts. To elaborate, Android
provides mechanisms that give apps the ability to move within
the activity stack. In addition, activities can be made transpar-
ent, simply by setting a translucent theme. By combining both
of these mechanisms, a transparent background app can be
surreptitiously brought to the foreground for a limited amount
of time, only to immediately request a permission. Once the
request is completed by the user, the app can be moved to
the back of the task stack again. This way, a background app
gains the ability to request permissions without providing any
real context as the user is presented only with the context of
the legitimate foreground app due to the transparency of the
background app that is overlaid on top. It is important to note
that permission requests freeze the UI thread of the requesting
app so nothing will happen if the user clicks on the screen to
interact with the app itself on Android ≤10. This way, users
will not have the opportunity to detect the mismatch between
the supposed and actual foreground app by simply trying to
interact with the app. On Android 11, the permission dialog
disappears if the user clicks somewhere else than the dialog
itself. In this case, the adversarial app can simply move to the
background following the user click.

Bianchi et al. discusses some of the ways they discovered
how a background app can be moved to the foreground [6].
Here, we discuss some of these techniques that were previ-
ously discussed as well as some other ways we discovered
that could achieve the same goal.

• startActivity API. Android provides the startActivity
API to start new activities, as the name suggests. According
to Bianchi et al., using this API to start an activity from a ser-
vice, a broadcast receiver or a content provider will place the
activity at the top of the stack if NEW_TASK flag is set. How-
ever, we found that simply calling startActivity without
setting this flag in these components works similarly in recent
Android versions. In addition, they found that starting an activ-
ity from another activity while setting the singleInstance
flag also places the new activity on top of the stack. We found
that setting this flag is not necessary to achieve this anymore,
even simply starting an activity from a background activity
seems to bring the app to the foreground.

• moveTaskTo APIs. moveTaskToFront() API can be used
to bring an app to the foreground. This API requires the
REORDER_TASKS permission, which is of normal protection
level and is automatically granted at installation time. In addi-
tion, moveTaskToBack() API can be used to bring apps to the

back of the task stack. In this case, we observed that the app
continues to run in the background as Activity.onStop()
is not called unless the activity actually finishes its job.

• requestPermission API. According to Android’s official
developer guides, requestPermission(String[], int)
API can only be called from components with user inter-
face such as activities and fragments. This is in line with
the main goal of runtime permissions, to provide users a
sense of situational context before they make decisions re-
garding permissions. A similar version of this API with dif-
ferent parameters is also implemented in the Android sup-
port APIs to provide forward-compatibility to legacy apps.
This version, requestPermission(Activity, String[],
int), takes an extra activity parameter and requests the per-
mission from the context of this activity. This support API
makes it possible to request permissions from non-UI compo-
nents, such as services and broadcast receivers. In addition,
if this API is called from a non-UI component or from an
activity running in the background, the app will be automati-
cally brought to the foreground for the request on Android ≤
9. On Android 10 and 11, this API does not bring background
activities to the foreground.

Identity guarantee. According to this security guarantee,
users should be made aware of the identity of a requesting
app. Android attempts to achieve this by displaying the app’s
name in the permission dialog. Android allows apps to be
started automatically via the intent mechanism for IPC with-
out requiring user’s approval or intervention. This can create
an issue for permission requests since the user might not be
able to tell the identity of an automatically-launched app if
it were to immediately request a permission, as they have
not personally started or been interacting with this app. In
order to overcome this issue, Android displays the name of
the requesting app in permission dialogs in order to help users
quickly identify the app owning the current context.

Even though this mechanism initially seems like an effec-
tive solution to the app identification problem for runtime
permissions, it is insufficient since app names are in fact not
guaranteed by the Android ecosystem to uniquely identify
apps on user devices. Each Android app listed on the Google
Play (GP) store has a Google Play listing name that is dis-
played to the user while browsing this store, as well as an
internal app name that is defined in the resource files of the
app’s apk and displayed when the user is interacting with
the app on their device, including in the permission dialogs.
Google Play does enforce certain restrictions on GP listing
names. For example, it produces warnings to developers when
their GP listing name is too similar to that of another app and
does not allow the developers to publish their apps in this
case, in an attempt to prevent typo-squatting and spoofing that
can be used in phishing attacks. However, the same kind of
scrutiny does not seem to be shown when it comes to internal
app names as the Android ecosystem does not enforce any
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rules on these names. Our observation is that 1) the internal
name of an app can be vastly different than the app’s GP list-
ing name and 2) multiple apps can share the same app name,
even when installed on the same device. For example, we
have successfully published an app on Google Play, where the
internal name of our app was “this app” even though the GP
listing name was completely different, a case we will make
use of in our attacks as we will explain in more detail in the
rest of this section. We were also able to spoof the name of
a popular app (i.e., Viber) and successfully release our app
with this app name on GP. In short, the Android ecosystem
does not perform any verification on the app names shown in
runtime permission dialogs to ensure their validity.

4.2 False Transparency Attacks

By combining the ability of apps to move within the task
stack in disguise and Android’s lack of app name verification,
we built the false transparency attacks, where a transparent
background app temporarily moves to the foreground while
impersonating another, possibly more trustworthy app that
was already in use by the user (i.e., in the foreground) and
requests a permission it sees fit. After the user either responds
to the permission request, the attack app immediately moves
to the background again to evade detection so that the user
can continue interacting with the legitimate foreground app
without noticing they have been attacked. We verified that this
is a general class of attacks that affects all Android versions
that support runtime permissions (Android 6-11).

A demonstration of our attack including the state of the
task stack before and during the attack can be observed in
action in Figure 1. Figure 1a displays the task stack imme-
diately before the attack takes place. As can be seen, Viber,
a popular communication app with millions of downloads,
is on the top of the task stack (shown in the bottom) and at
the back of the task stack there is another app also called
Viber, representing the attack app running in the background
targeting Viber for permissions. Here, it is worth noting that
we are showing the real content of the task stack for demon-
stration purposes and the attack app can in fact be easily
hidden from the task stack in order to evade detection by the
user, by utilizing the finishAndRemoveTask() API or the
android:excludeFromRecents tag in the Android manifest
file as discussed in Section 2.2.

At the time of the attack, the user will experience a user
interface (UI) that is similar to the one in Figure 1b. Here, the
app prompting the user for a permission appears to be Viber,
as both the UI displayed underneath the permission dialog
and the app name in the dialog indicate the app to be Viber.
However, the request is, as a matter of fact, triggered from
the transparent attack app that surreptitiously made its way
to the foreground and covered Viber. This can be observed
by displaying the state of the task stack at the time of the
attack, as shown in Figure 1d. As can be seen, the forged

Viber app that belongs to the attacker is in fact at the forefront
of the task stack (seen at the bottom) and the real Viber app
is immediately behind it at the time of the attack, creating
a confusion about the origin of the permission request for
users due to the identicalness of the shown user interface to
that of Viber. Additionally, the attacker was able to spoof
the internal app name of Viber in the permission dialog to
further mislead the user into thinking the permission request
indeed originated from Viber, as shown in Figure 1b. All in
all, the contextual cues given to the user in this attack scenario
(i.e., UI and app name) appear to be indistinguishable from a
benign scenario where Viber is the legitimate app requesting
a permission, from the perspective of device users.

We envision false transparency attacks to be useful for
adversaries in two main scenarios. First, when users do not
consider an app to be very trustworthy, they are much less
likely to grant a permission, as shown by previous work [2].
Hence, an adversary without much reputation can utilize false
transparency attacks to pose as a trusted app to obtain a per-
mission. Second, in some cases, it might be nearly impossible
for the adversary to provide a reasonable explanation to the
user why their app might need a certain permission. For ex-
ample, a malicious QR code app might also have the goal
of getting user’s contact list. The app can directly ask for
the dangerous permission, but this may make the user suspi-
cious: the user may deny the permission request or possibly
even uninstall the app. In this case, false transparency attacks
would give the adversary the opportunity to pose as a trusted
app that is known to require this permission for its utility (e.g.,
Viber requiring contacts) without arousing suspicion.

Plausible and realistic attacks. We intend for our attacks
to serve as a platform for adversaries to conveniently obtain
any set of dangerous permissions by exploiting users’ trust in
other apps without arousing suspicion. With each request, the
adversary is essentially exposing themselves to the user and
is risking the possibility of alerting the user to be suspicious
and take action accordingly (e.g., scan their apps to uninstall
questionable ones). Therefore, it would be in the adversary’s
best interest to request permissions sparingly, only when the
user is less likely to be alarmed due to the permission request.
In order to achieve this, we utilize several strategies as we
will now explain. We verify the validity of these strategies
with a user study which we will present in detail in Section 6.

First, users are accustomed to being asked for permissions
by an app running in the foreground under the runtime per-
mission model. We show with our user study that users are
indeed not very receptive of requests coming from no apparent
foreground app. Hence, we do not request permissions when
there is no app in the foreground. For this purpose, we utilize
the getRunningTasks() API, which previously provided the
identity (i.e., package name) of the app in the foreground, but
was deprecated in Android 5 due to privacy reasons. However,
we discovered that this API still provides limited amount
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(a) Pre-attack task stack (b) Single-target attack (c) Multi-target attack (d) Task stack during the attack

Figure 1: Background app requesting a permission pretending to be the foreground app (Viber).

of information that can be utilized to detect the existence
of a foreground app. More specifically, on Android 5-8 this
API outputs com.google.android.apps.nexuslauncher
if there is no app in the foreground, indicating the nexus
launcher. Otherwise, it outputs the package name of the app
calling the API (whether this app is in the foreground or not),
indicating the existence of a running foreground app. Starting
from Android 9, this API reports the most recent one between
the nexus launcher and the caller app’s own package name,
again without revealing other foreground apps to the caller. In
order to reliably use this information to detect the existence of
an app in the foreground on Android 9 and later, the adversary
first needs to briefly come to the foreground using one of the
techniques described in Section 4.1 while using a transparent
UI to evade detection then run getRunningTasks() after
going back to the background. This ensures that adversary’s
app is always more recent than the nexus launcher when there
is an app in the foreground.

Second, previous work has shown that when users make
decisions to grant or deny permissions, they consider the rel-
evance of a requested permission to the functionality of the
app. If they think the app should not require a certain per-
mission for its operation or it should still work without that
permission, they generally choose to not grant the permis-
sion [2,3]. Taking this observation into account, in our attacks
we avoid requesting permissions that are certainly irrelevant to
the functionality of the foreground app because such requests
will likely result in the user denying the permission. Here, we
consider a permission to be relevant to the functionality of an
app only if the app declares this permission in its manifest file
and intends to use it. In order to identify these relevant permis-
sions, we first need a mechanism to detect the identity of the
victim app in the foreground (i.e., its package name) so that

we can determine its declared permissions. For this purpose,
we utilize ProcHarvester [7], which uses machine learning
techniques to identify the public parts of Android’s proc file
system (procfs) that can be used to infer the foreground app
on Android, even when access to procfs is mostly restricted by
Google due to privacy reasons. We modify ProcHarvester to
fit realistic attack scenarios and implement real-time inference
of time series on top of ProcHarvester to detect the identity of
the foreground app in real time. After obtaining the package
name of the foreground app, we can use this information to
query PackageManager to obtain the permissions required
by this app and request only those permissions in our attacks.
Section 2 explains how this information can be obtained. The
details of our foreground app inference implementation will
be described in Section 5.

Third, users’ previous decisions in the context of permis-
sions affect how the victim app behaves in terms of future per-
mission requests. Hence, we argue that these decisions should
also be taken into account by the attacker to avoid alarming
the users. In particular, we argue that an attacker blindly re-
questing one of the permissions declared in a victim app’s
manifest file can still arouse suspicion due to the possibility
of the victim itself also requesting this permission during the
same launch/session. More specifically, this can happen if
an attacker requests a permission that was not granted to the
victim (i.e., never requested or denied previously) and the vic-
tim also requests this permission during the same launch for
its current utility, causing back-to-back permission requests.
Please note that the same thing is not possible for when attack-
ers request granted permissions because victim apps will not
be able to re-request permissions that were granted to them
due to the restrictions on the Android platform (i.e., Permis-
sion dialogs for granted permissions will not be shown.). We
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show with our user study that multiple requests in a single
launch within a short time period indeed raise suspicion in
users, who then consider investigating the underlying reason
and taking action. For example, users might get suspicious of
the requesting app and remove it, which causes the attacker
to lose a victim app. They can also get suspicious of other
apps on their devices and consequently discover and uninstall
the attacker, or they can mistakenly put the blame on another
victim app and remove it instead. They can also become sus-
picious of the operating system itself and attempt to reformat
their device, by which the attacker faces the possibility of
being swiped off the device along with its victims. Since the
attacker has no control of when the victim can request permis-
sions, it is safer for them to target granted permissions which
they know cannot be requested during the same session to
minimize the risks. Additionally, we show with our user study
that the likeliness of a user granting a previously-granted per-
mission is statistically similar to that of granting a permission
for the first time; hence, the adversary is not compromising
effectiveness with this choice. We implement this strategy in
our attacks and only request permissions granted to victims.

Previous work has also shown the reputation of an app de-
veloper to be another major decision factor for users to grant
permissions, consistently for all permissions [2]. For this rea-
son, we recommend that the attacker utilizes victim apps that
are highly-popular and have gained users’ trust in order for
the attacks to be successful. It is worth noting that we have
also devised a way for adversaries to expand their attacks to
multiple victim apps simultaneously by utilizing the lack of
app name verification against Google Play (GP) listing names.
Such a multi-target attack scheme can be desirable over a
single-target scheme when the attacker needs multiple permis-
sions that can only be provided by a combination of victim
apps, in line with our idea of our attacks providing an attack
platform for adversaries to obtain any of their desired per-
missions. In addition, this scheme gives the adversary more
chances to deploy their attacks, as there are now multiple
apps that can be targeted. To elaborate, the attacker chooses a
name that can logically represent any foreground app when
displayed in a permissions dialog, mischievously taking ad-
vantage of the plain English interpretation of the question
displayed in the permission dialog. More specifically, the ad-
versary selects this app as their attack app’s internal name
and the question in the permission dialog will now read as
“Allow this app to access your contacts?”, as shown in Fig-
ure 1c. Clearly, this question’s plain English meaning does
not distinguish between apps and is capable of referring to
any app that is currently in the foreground for a given permis-
sion request. We have verified that such an app is accepted to
GP and can be installed on a user device without any issue.
We have also verified with our user study that the majority
of users (199 out of 200) do not seem to notice anything un-
usual with this particular app name, which we believe is an
indication that users are generally not aware of the identity

guarantee provided by app names in permission dialogs.
In addition, it is worth mentioning that our attack benefits

from certain UI tricks for its successful execution. First, we ob-
served that after a user makes their permission decision, since
the adversary is using an invisible activity, the top notification
bar of the Android system also appears as a part of the transi-
tion effect, creating a suspicious look. In order to ensure the vi-
sual effect is subtle enough to not be noticed, we first temporar-
ily hide the top bar at the time of the permission request using
the Window.setFlags() API with the FLAG_FULLSCREEN
flag. After the user is done with their decision, the top bar is
automatically re-enabled by the system. Second, users can
view running apps via the recents screen, which is an avenue
of detection or at the very least for getting killed for the at-
tacker. To avoid this, the attack app can hide itself from this
screen by setting the android:excludeFromRecents flag
of its activities in its manifest.

Attack steps. As we have explained the overall idea of our
attacks and our methodologies, we will now give a step by
step guide to launching false transparency attacks.

1) Lurk in the background. The attack app creates a service to
continuously run in the background and periodically collects
information about the running apps to determine when to
attack. Prior to Android 8, running background services could
be achieved by using Service or IntentService classes.
However, Android 8 brings restrictions to background execu-
tion of apps in order to preserve device resources to improve
user experience. Background services are now killed a few
minutes after the app moves to the background; hence, the
use of JobScheduler is more appropriate for our attacks [8]
as JobSchedulers can indefinitely run in the background to pe-
riodically execute jobs. Additionally, the adversary will also
avoid situations that might arouse suspicion in the user. In
particular, the app will not use its spoofed name in its launcher
name shown in the app menu and instead set it according to
the declared legitimate use of the app listed in the respective
app store, in order to prevent a possible detection by the user.

2) Choose your victim carefully. The attack app runs our
ProcHarvester-based implementation to detect victims in the
foreground. This entails continuously monitoring the proc
filesystem and running our real-time foreground app inference
algorithm, which we will describe in more detail in Section 5.

3) Choose your permission carefully. Once we obtain the
foreground app, we will query the PackageManager to ob-
tain the requested permissions of this app and prompt the
user for a permission that was granted to the victim but not to
the attacker. If there are multiple such permissions, we will
randomly pick one to request. Please note that more intricate
selection algorithms can be used to more properly pick the
permission to be requested. For example, previous work has
shown that microphone permission is the most denied per-
mission and hence can be considered the most valuable from
the perspective of our attack [2]. In this case, the attacker
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might want to prioritize the microphone permission if the
foreground app can make a very good case of needing the mi-
crophone (e.g., music app or communication app). However,
we do not perform this kind of advanced permission selection
as our main purpose is to demonstrate our attacks realistically
without overly complicating our implementation.

4) Cloak and dagger. Once the attacker determines that a
certain permission should be requested from the victim in
the foreground, they will start an invisible activity from the
background service via the startActivity() API. This ac-
tivity will then be automatically moved to the foreground as
we have previously explained in Section 4.1. Then, the at-
tacker requests the chosen permission from the context of this
invisible activity using the requestPermissions() API.

5) Leave no trace behind. Once the user completes the per-
mission request, the attacker will call the moveTaskToBack()
API in order to move to the back of the activity stack to evade
detection and continue running silently. This way, the victim
app will be restored back to the foreground and the user can
continue interacting with the victim.

5 Foreground App Inference

As we have described in Section 4, the adversarial app running
in the background will continuously monitor the foreground
to detect known victim apps to target with false transparency
attacks. Here, we will explain the previous efforts for fore-
ground app inference, why they fail to work in realistic scenar-
ios, and our approach for effectively inferring the foreground
app in real time.

Past efforts for foreground app inference. Previously, An-
droid offered convenient APIs, such as getRunningTasks(),
that could be used to infer the identity of the foreground tasks;
however, these APIs have been deprecated in Android 5 in
an effort to maintain the privacy of the running apps and pre-
vent phishing attacks on the platform. This has consequently
led to a search to identify other avenues that can accomplish
the same task. Having inherited many features and security
mechanisms from Linux, Android, too, has a proc filesystem
(procfs) that provides information about the running processes
and general system statistics in an hierarchical structure that
resides in memory. Security researchers have discovered that
Android’s proc filesystem provides numerous opportunities
for attackers to infer the foreground app [9, 10]. In response,
Android has been gradually closing access to all the sensitive
parts of the procfs pointed out by researchers in order to pre-
vent phishing attacks. In the most recent Android versions,
all of per-process information on the proc filesystem has been
made private (i.e., accessible only by the process itself) and
only some of the global system information have been left to
be still publicly available due to utility reasons, rendering the
efforts to identify the foreground app virtually impossible.

More recently, though, Spreitzer et al. discovered that de-
spite all the strict restrictions on the procfs, there are still
public parts of this filesystem that initially seem innocuous
but in fact can be utilized to effectively identify the foreground
app by employing a relatively more complex analysis in com-
parison to the previous efforts. To this end, they introduced
a tool named ProcHarvester that uses machine learning tech-
niques to automatically identify the procfs information leaks
(i.e., foreground app, keyboard gestures, visited websites) on
potentially all Android versions, including the newer versions
with limited procfs availability, by performing a time series
analysis based on dynamic time warping (DTW) [7]. Then,
they showed that these identified parts can be utilized for fore-
ground app inference via a similar technique, yielding a high
accuracy. In particular, ProcHarvester comprises of two main
components: 1) a monitoring app that logs the public parts
of procfs on the user device and 2) a server as an analysis
unit (connected by wire to the phone) that collects this infor-
mation from the monitoring app to first build profiles of app
starts for the apps in their dataset and then perform DTW to
identify information leaks. ProcHarvester currently works as
an offline tool in a highly-controlled environment and is not
capable of inferring the foreground app in real time, which is
an absolute necessity for our attack scenario.

Real-time foreground app inference under realistic sce-
narios. In our work, we build on ProcHarvester for infer-
ring the foreground app in our attacks. More specifically, we
modified ProcHarvester to adapt to realistic scenarios and
implemented real-time inference of time series to identify the
foreground app. Here, we utilize 20 high-profile apps to serve
as the victim apps that the adversary will primarily target for
permissions. In addition, we have 380 apps that we will not
utilize as victims but use in our experiments to show we can
distinguish between victim and non-victim apps at runtime.
We chose our victim apps to be from the same dataset as in the
original ProcHarvestor work in [7] while we utilized the top
apps from each category on Google Play as our non-victim
apps. Coverage of permission groups utilized by the apps
in our dataset can be observed in Table 2. We deployed our
implementation and performed our experiments on a Google
Pixel device that runs Android 7.0.

We first ran the original ProcHarvester implementation
to create profiles of only the procfs resources that yielded
high accuracy for app inference [7], for each victim app in
our dataset. Additionally, in original ProcHarvester system,
the analysis unit (server) is directly connected to the user
device by wire and is collecting data from the device through
this connection. However, in our case, adversaries cannot
assume a wired connection to a user device as this does not
constitute a realistic attack scenario. Hence, we modified the
monitoring app to send continuous data to a remote server,
which is running our foreground app inference algorithm in
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Table 2: Permission distribution for the apps in our dataset.

Permission Group # of victim
# of

non-victim
CALENDAR 1 28
CALL_LOG 0 7
CAMERA 7 207
CONTACTS 14 170
LOCATION 12 228
MICROPHONE 6 95
PHONE 20 376
SENSORS 0 2
SMS 2 9
STORAGE 20 315

real time. This is a plausible assumption as adversaries can
easily obtain the install-time INTERNET permission, which is
of normal protection level, to communicate over the Internet.

Most importantly, we implemented a real-time dynamic
time warping (DTW) algorithm to detect the foreground app.
Currently, ProcHarvester can only be used as an offline infer-
ence tool, as it works based on the assumption that app launch
times will be known to the tool in advance and the tool can
run its DTW-based analysis starting from those launch times.
However, this assumption is unrealistic in real-life scenarios
as an attacker cannot assume to have a priori knowledge re-
garding app launch times since an app launch is either at the
user’s discretion or is initiated by the system or other apps
via IPC. In our work, we devise a technique to identify an
interval of possible values for the app start time and run DTW
starting from all possible values in this interval, rather than
using a single starting point as in the original ProcHarvester,
to obtain the foreground app in real time.

First, in order to obtain the starting time of an app
launch, we utilize the getRunningTasks() API to moni-
tor foreground changes. Even though this method was pre-
viously deprecated as a countermeasure for phishing, we
observed that it still provides limited information regard-
ing the foreground of the device. For example, on An-
droid 5-8, whenever there is an app in the foreground, the
getRunningTasks() API outputs the package name of
the caller app (regardless of it being in the foreground or
not), and if there is no app in the foreground, it outputs
com.google.android.apps.nexuslauncher, which corre-
sponds to the Android launcher menu. By continuously moni-
toring such foreground changes, we can know if an app launch
has been completed if the foreground state changed from “no
app” to “some app”, providing us the approximate end time
(α) for the launch operation. The same information can be
obtained on Android 9 with a similar technique as explained
in Section 4.2. Now, if we know the duration of an app launch
event, we can subtract this from the end time to find the ap-
proximate start time of the app launch event. To identify this
duration, we run an experiment on our victim dataset and
show that app launch takes around 379ms on average with a

standard deviation of 32.99ms, which gives us the final range
of [α−379−32.99,α−379+32.99]ms for all possible app
start times. For each app in our dataset, we then calculate the
DTW-based distance using each of the possible values in this
interval as the starting point of the analysis and take their
average to obtain the final distance. Lowest of these distances
corresponds to the foreground app.

Please note that the original ProcHarvester also makes a
closed-world assumption: it assumes the app in the foreground
that is to be identified is always a known, profiled app. This
means that the distance reported by ProcHarvester for an
unprofiled app by itself does not provide much value in terms
of correctly inferring the foreground app since this app’s
profile is unknown by ProcHarvester. It is imperative for our
attacks to be launched only when one of our victim apps is in
the foreground. In addition, it is simply impractical to profile
all existing Android apps. Hence, we need a mechanism to
extend ProcHarvester to distinguish between victim (profiled)
and non-victim (unprofiled) apps at any given time. For this
purpose, we fingerprint each of our victim apps (app i) by
recording the mean (µi) and the standard deviation (di) for 10
runs where the algorithm correctly identifies app i to be in
the foreground. Then, if the lowest calculated distance for a
given foreground app is less than or equal to µi +di ms to its
closest match, we consider this app to be one of our victims.

In order to evaluate our foreground app inference imple-
mentation, we conducted experiments where we launched
each of the 400 apps in our dataset 10 times and reported the
overall accuracy and performance. Our experiments indicate
that our algorithm correctly infers the foreground app (i.e.,
output its identity if it is a victim app or report if it is a non-
victim app) 90% of the time. Furthermore, we find the total
time to infer the identity of an app in the foreground (after
its launch) to be 7.44s on average with a standard deviation
of 1.62s. We consider this to be a reasonable delay for our
attacks as we expect users to stay engaged with one app be-
fore they switch to another for much longer than this duration
(18.9s or more on average) [11]. Since the foreground app
will presumably not change during the analysis, the adversary
should not have a problem targeting the identified app in their
attack after this introduced delay. In addition, please note that
the original ProcHarvester itself needs around five seconds of
procfs data to correctly compute the foreground app.

It is worth mentioning that ProcHarvester is inherently
device-dependent since an app can have distinct profiles for
a given procfs resource on different mobile devices, which
would affect the performance of foreground app inference.
Hence, in order to launch a “full-blown attack” that can work
on multiple mobile devices, adversaries would have to obtain
the procfs profiles of their victim apps on all those devices.
Here, adversaries could conveniently adopt a strategy to col-
lect the profiles for only the most commonly-used Android
devices in order to quickly cover a satisfactory user base. Note
that this extra profile data should not greatly affect the per-
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formance or accuracy of the foreground app inference, as an
attacker can first identify the type of the device in real time via
utilizing existing tools [12] and only use the respective pro-
files in their analysis, avoiding DTW-based comparisons with
profiles belonging to other devices. In our work, we utilize
the profiles from only one Android device (Google Pixel) as
we primarily intend our attacks to serve as a proof of concept.

6 User Studies: Analyze, Design, Evaluate

Since our attack is a phishing attack at its core, it is important
that it is persuasive to users. We speculate that users’ compre-
hension of runtime permissions and their expectations from
apps in this context will play a significant role in how users
perceive our attack and impact its success. To this end, we
performed a survey-based user study to quantify user behavior
and used this quantification in order to guide the design of
the attack and estimate its chances of success. Our findings
suggest that Android users generally have a good understand-
ing of the basics of the runtime permission model but appear
confused about its intricate details. In particular, users demon-
strate significant lack of appreciation of the critical security
guarantees provided by runtime permissions. This leaves a
sufficient gap in user understanding to enable an effective
attack. In addition to the survey study, we conducted an in-
lab user study, which involved fewer users than the survey
but provided a more realistic setting based on real devices
and common daily tasks performed with popular apps. We
provided each participant with an Android device on which
we launched our attacks and found that none of the partici-
pants detected our attack. We obtained IRB approval from our
institution prior to the commencement of our user studies.

6.1 Susceptibility and Design

Our survey has two goals. First, we would like to estimate the
susceptibility of users to false transparency attacks. Second,
we would like to verify the validity of our conjectures on what
makes users suspicious so the design of the phishing attack
can reflect the best options for deception. Previous work has
shown that permission requests not deploying our attack are
likely to be denied by users if the app is not highly-reputable
or does not provide any utility that requires the requested
permission [2]. We treat this as a baseline control compared
to our technique. We refer our readers to Appendix A for a
more detailed discussion on this.

Recruitment and incentives. We recruited 200 participants
from Amazon Mechanical Turk (mTurk) to complete our
online survey. Our inclusion criteria are 1) using Android
as a primary device, 2) having at least 100 approved Human
Intelligence Tasks (HIT), and 3) having a HIT approval rate
of at least 70%. We paid each participant $0.5 for their effort.
The median time to complete our survey was 7.08 minutes.

Table 3: Participant demographics

Gender Participants Age Participants

Male 125 18 - 23 11
Female 75 24 - 30 61

31 - 40 67
41 - 50 30
51 or over 31

Education Participants

Up to high school 19
Some college (1-4 years, no degree) 40
Associate’s degree 18
Professional school degree 1
Bachelor’s degree 96
Graduate Degree 26

Employment Participants

Arts & Entertainment 11
Business & Finance 23
Education 9
Engineering 18
Health Care 11
Human Resources 4
Information Technology 37
Management 12
Miscellaneous 17
Religion 1
Retail & Sales 17
Retired 4
Self-Employed 24
Student 2
Unemployed 10

Participant demographics can be observed in Table 3.

Methodology. At the beginning of this survey, we informed
our participants that they will be asked questions about their
experience with Android permissions; however, to avoid un-
necessarily priming them, we do not reveal that we are testing
the feasibility of our attacks. We ask questions to assess their
knowledge of runtime permissions to understand if there is
any underlying vulnerability due to lack of domain knowledge.
In addition, we ask questions to verify the design decisions
we discussed in Section 4.

Results. We now present our findings from this survey. The
percentages we quote below have a ±7% margin of error for
a 95% confidence. We will specify the questions we obtained
these results from to help our readers easily follow our results.
Appendix B presents our survey questions in quiz format.

• Understanding of the runtime permission model. We first
ask users to self-report their level of familiarity with Android
permissions. 8% of the users identify themselves as expert,
41% as knowledgeable, 37% as average, 13% as somewhat
familiar, and 1% as not familiar (Q1). 71% of the users are
aware that Android used to have an install-time permission
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model (Q2). The vast majority of users (91%) have used the
new runtime permissions (Q4) while almost all of the users
(98%) are aware that runtime permission model allows them
to review and update their previous permission-related deci-
sions through the Settings app (Q21). These results indicate
that our participants are generally familiar with the basics of
runtime permissions.

In contrast, we observe that users’ answers are often wrong
when we ask more intricate questions about the inner work-
ings of runtime permissions. An app needs to be in the fore-
ground during a permission request, but less than half (47%)
of the users agreed with this, while 25% disagreed and 28%
said they did not know (Q24). This is worrisome because
this fact is central to the contextual security guarantee of the
runtime permission model as we explained in Section 4.1.
Indeed, as we will show, only one of the users who agreed
was able to use their understanding in practice to avoid our
attack.

When participants were asked whether they thought an
app could prompt the user again for a permission that was
previously granted to it, 41% agreed, 36% disagreed, and
23% said they did not know (Q10). This statement is false.
Android does not allow apps to re-prompt users for granted
permissions: permission dialogs are never shown again to the
users in this case. This misunderstanding can be exploited, as
shown with our attacks in Section 4.

We ask further questions to assess users’ awareness of the
identity security guarantee provided by app names in permis-
sion dialogs. First of all, we present them with a storyboard of
our attacks where we describe an actual scenario concerning
a popular app requesting permissions for its use. We ask them
to role-play based on screenshots of the permission requests.
For this purpose, we utilized Viber, a popular messaging app
with millions of downloads. In particular, we presented our
participants with a scenario where they use Viber to text their
friends and the app requires contacts permission for providing
this utility. Then, they switch to another app briefly and switch
back to Viber again where they continue texting. Afterwards,
we ask them to grant or deny each permission request. The
first time they use Viber, the permission dialog displayed to
them is benign and we use the name “Viber” (Q5). However,
the second time we instead display “this app” as the app name
in the permission dialog representing our multi-target attack
scenario (Q13, Q14). We observed that 77% of the partici-
pants granted the permission for the benign request (Q6) and
74% of them subsequently decided to allow the second (ma-
licious) permission request (Q15). Note that this difference
falls within our 7% margin of error. For participants who
denied the second request, we inquired if they declined due
to having noticed our attack. For this purpose, we provide
them a text field under the “other” category to write their
comments. We had only one user who noticed the odd app
name and declined the permission because it looked “fishy”.

In another role playing example, we presented an actual

scenario where they used Google Maps for navigation and
the app prompts for the location permission (Q17). We again
use “this app” for the attack app’s name and ask users to
grant or deny the permission (Q18). In this case, 89% of the
users decided to give the app the permission. We then asked
them which app they have given or denied the permission
to (Q19, Q20). 168 (84%) of our participants reported that
they granted or denied it to Google Maps, while the rest of
them had varying answers: 4 said Google, 4 mentioned a map
program, 2 could not remember the app name, 6 mentioned
another app (i.e., Viber (5), Yelp (1)), 1 said “this app”, 3
said “the app” or “the app I use”, 8 said they granted the
location permission. The rest (4) wrote somewhat irrelevant
text, not showing much understanding of what the question is
asking. Note that the participant who said “this app” denied
the permission request in this case, but they granted the re-
quested permission to Viber for the malicious request. To sum
up, we believe the results from both our Google Maps and
Viber examples demonstrate that users are generally unaware
of the identity guarantee provided in permission dialogs, as
the majority fails to recognize anything suspicious. To our
attack’s advantage, they seem to be mostly interested in the
context they are presented with at the time of the request (i.e.,
what they are seeing); they either do not pay attention to app
names in the requests or simply consider the plain English
interpretation of the statement shown in the dialogs.

In conclusion, although users demonstrate familiarity with
runtime permissions, we observe that they struggle with the
more intricate details of this permission model. They espe-
cially show lack of understanding of the security guarantees
of runtime permissions, thus leaving avenues for a false trans-
parency attack.

• Verifying the design decisions for the attacks. In this part
of the study, we verify the validity of our design decisions
made in Section 4 regarding the best conditions for the at-
tacks. First, we show that it is indeed suboptimal to request a
permission when there is no app in the foreground. Second,
we show that requesting a permission multiple times within
the same session would indeed alarm the users and lead them
to consider taking an action. Hence, we should only request
granted permissions. Third, success rate of a secondary mali-
cious request is as likely as a primary benign request. We do
not study how the relevance of a permission to an app’s utility
affects users’ decisions, as this relationship was previously
demonstrated to be correlated with higher grant rates [2].

First of all, we would like to verify it is indeed not ideal for
an attacker to request a permission when there is no app in
the foreground. For this purpose, we show a sample screen-
shot of a popular communication app requesting the contacts
permission when there is no visible app in the foreground
and ask them if they would grant or deny this request (Q7,
Q8). In this case, 53% of the users select deny, 27% select
allow, and 20% express that their decisions would depend on
additional factors. For when a similar popular communication
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app requests the contacts permission while in the foreground
(i.e., our aforementioned Viber case), we observe the deny
rate to be 23%. We perform Chi-squared test on the deny rate
with Yates correction and get the p-value of 1.22×10−9. At
the confidence level of 0.05, this indicates that the deny rate
without a visible app in the foreground is significantly higher
than that when a similar popular communication app is in the
foreground.

Next, we would like to verify that users would be alarmed
and prone to take an action if an app requested the same per-
mission multiple times within the same launch/session (Q22).
As we had explained, this case happens only if the attacker
requests a permission that was not previously granted. In this
case, only 17% of the participants said they would ignore and
proceed normally, 43% said they would be suspicious of the
requesting app, 23% said they would be suspicious of the other
apps installed on their device, 15% said they would be suspi-
cious of the operating system itself, and 2% mentioned they
would have other ideas. Participants were able to select multi-
ple options for this question, except for the first option which
could be answered only exclusively. We additionally ask the
participants who did not say they would ignore the multiple
requests what actions they would consider taking (Q23). 43%
said uninstalling the app that requested the permission, 41%
said investigating other apps that request this permission via
the Settings app, 11% said reformatting the operating system
to go back to factory settings, and 5% mentioned taking other
actions. Again for this question, participants were allowed to
select multiple options simultaneously.

Additionally, we show that the grant rate for a secondary
permission request by an attacker is as successful as a first
time request for the same permission by a victim, indicating
that the attacker is not compromising the success of their
attacks by requesting granted permissions. Looking at the
aforementioned Viber case, we observed the grant rate for
a primary benign request to be 77% (Q6) and 74% for a
secondary malicious request (Q15). Given our 7% margin of
error, we observe no statistical difference between these grant
rates. This shows that the request of a previously-granted
permission can be as effective as a first time request initiated
by the victim, while avoiding unnecessarily alarming users.

6.2 Feasibility of the Attacks
In this part of our user study, we launch our attacks in a realis-
tic setting to evaluate the feasibility of our attacks. More
specifically, we are interested in whether the participants
would at least suspect they are under attack while performing
tasks they might come across in their every day life.

Recruitment. In order to evaluate the feasibility of our at-
tacks, we recruited 20 subjects to participate in our in-lab
study on a voluntary basis. We advertised our study via word-
of-mouth at the research institution where the study was con-

ducted. Our participant pool consists of undergraduate and
graduate students who major in computer science or other en-
gineering fields. Some of our participants even have graduate
course level background on security and privacy. Hence, we
expect this group to be relatively security-conscious, creating
notable difficulty for attackers to successfully execute their
attacks. We only recruited participants that have used Android.
To avoid priming our participants, we advertised our study’s
purpose to be a measurement of user expectations in terms
of performance for popular Android apps and debriefed them
after the completion of our study to disclose our real intent.

Methodology. In our experiments, we utilize three popular
Android apps as victims: 1) Google Maps, a navigation app
developed by Google, 2) Shazam, an app for song identifica-
tion developed by Apple, and 3) Messenger, a communication
app developed by Facebook. For each app, we assign our
participants a simple yet realistic task to complete and ask a
question about the task upon completion. First, we ask our
participant to launch Google Maps to find the walking route
between two predetermined points and tell us the duration of
this trip. Then, we ask our participants to launch Shazam to
identify the song we are playing during the experiment and
tell us the name of the song. Finally, we ask our participants
to launch Messenger to send a message to one of our test
accounts from the test account set up on the provided phone
and tell us what response they got in return.

We have three separate attack apps installed on the device,
each targeting only one of the victim apps. The attack apps
that target Google Maps and Shazam utilize the same app
name as their victims (i.e., Maps and Shazam respectively).
The attack app that targets Messenger uses “this app” as its
app name in order for us to also test for the feasibility of
our multi-targeted attack case. At the end of our experiments,
we have an exit survey where we ask the participants about
their overall experience with the tasks, i.e., whether they have
experienced any slowdown and if they have noticed anything
strange or unusual during any of the tasks. We also give them
the opportunity to provide us feedback at the end of the survey.

We launch our attacks after the user launches a victim app
to complete the given task. In order to correctly infer the iden-
tity of the foreground app with certainty, we modified the op-
erating system to change the behavior of getRunningTasks
API–which was modified by Google in Android 5.0 to not
provide this information anymore for privacy reasons as de-
scribed in Section 4.2–to reflect its old behavior. Please note
that such a change is not feasible for an attacker in our threat
model and is done solely for the purpose of simplifying our
experiments to remove the noise that might be introduced
due the use of ProcHarvester. With this approach, we can
now focus on assessing how realistic our attacks seem to the
users and their potential to be effective to be without having
to worry about having correctly inferred the foreground app
with ProcHarvester when we launched our attack.
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Overall awareness. None of our participants were able to
notice our attacks, despite the natural tendency for tech-
savviness and security-consciousness among them. It appears
that they were mostly preoccupied with completing the tasks
and only provided feedback regarding the mundane details
of the tasks (e.g., Shazam not identifying the song the first
time, late receipt of responses via Messenger etc.). A majority
of them (18 out of 20) granted all the permissions when pre-
sented with the malicious permission dialogs. One of these
participants complained about having to deal with too many
permission requests but granted all permissions regardless.
From the two participants that did not grant all permissions,
one granted the microphone permission to Shazam but de-
nied the location and contacts permissions to Google Maps
and Messenger, respectively because they thought neither
app needed the requested permissions to perform their tasks
(which is indeed true). The other one denied the contacts per-
mission to Messenger because the app did not need it for this
task but said they granted the location permission to Google
Maps because the app requires it for its main utility so they
thought it would still be useful to grant. Even these two par-
ticularly security-conscious participants did not seem to catch
our attacks. In conclusion, we found all of our participants
to be vulnerable to our attacks. We believe these findings
indicate that false transparency attacks are indeed practical.

7 Defenses and Countermeasures

Phishing attacks have been long dreaded on the Android plat-
form as they are hard to detect and protect against [6, 13]. In
a classic phishing attack on mobile platforms, the adversary
utilizes existing APIs or side channels to identify the victim
in the foreground and immediately launches their own attack
app which realistically spoofs victim’s components (e.g., UI,
name etc.). Hence, they mislead the user to believe they are
actually interacting with the victim. Here, we discuss some of
the existing defense mechanisms against mobile phishing and
why they fall short in the context of false transparency attacks.
In addition, we present a serious security vulnerability we
discovered in a key security mechanism added in Android
10 with the potential to counteract phishing attacks. We then
demonstrate the viability of false transparency attacks on this
Android version and onward. Finally, we propose counter-
measures that can be implemented on the Android platform
and on app stores such as Google Play to practically tackle
false transparency attacks.

Provenance-based techniques. As a defense mechanism
against UI deception, both [14] and [6] advocated for help-
ing users identify the origin of a UI shown on the screen
with a security indicator added to the system bar. Unfortu-
nately, these approaches require invasive modifications to the
Android framework, which proved their adoption unpractical.

Blocking side-channels. Android’s response to phishing at-

tacks has long revolved around blocking access to certain
APIs and public resources that provide a medium to obtain
the necessary information (i.e., identity of the foreground
app) to successfully carry out such attacks. For example, as
we have previously explained, the getRunningTask() API
and similar APIs that provide information regarding the run-
ning apps and services on the device have been deprecated in
Android 5. In addition, access to the proc filesystem, which
provides a side channel to infer the state of the apps running
on the device, has been gradually closed down. However, as
we have proven with our attacks, these security measures still
fall short and only serve as a band-aid to a deeper problem.
We argue that it is infeasible to continue putting effort into
identifying and closing down all side channels that provide
information about the foreground as some of these channels
cannot be made private or deprecated due to utility reasons.
For instance, monitoring apps depend on procfs to report app
statistics. Hence, a different approach might be necessary to
address phishing on Android without compromising utility.

Removing key enablers. Our observation is that the main
enabler of phishing on Android is the ability of apps to start
activities in the background to replace foreground apps. If we
can stop background apps from surreptitiously replacing fore-
ground apps, phishing attacks can be conveniently addressed
on Android. In fact, we observed that Google implemented
a security mechanism that adopts this approach in Android
10. Activity starts from background apps will now be blocked
on Android unless the app can justify this action, such as by
having a service that is bound by the system or by another vis-
ible app [15], or by having recently started an activity (within
around 10s). Even though this approach might first appear
as an effective countermeasure for phishing, we identified
ways to evade it and still start activities in the background
without satisfying any of the required conditions checked by
the system to allow such an operation. Hence, we were able
to verify that our attacks still work on Android 10 and later.

In particular, we discovered that there are two main ways
that we can start activities in the background without get-
ting blocked by the system. First, background apps are now
subject to time restrictions in terms of how long they can
stay in the background while still being able to successfully
start activities (i.e., 10s grace period). However, one can pe-
riodically start an invisible activity around every 10s and
immediately move to the back of the task stack again via the
moveTaskToBack API to retain the ability to start activities in
the background at any point. Second, we have discovered that
the moveTaskToForeground API is not being held subject to
the same restrictions by the Android platform; regardless of
how long an app has been in the background, it can always
call this API to conveniently move to the foreground. These
are both serious design issues that hinder the effectiveness of
this security mechanism against phishing attacks.

Upon our correspondence with Google, we have learned
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that the specific attack with moveTaskToForeground has
been addressed in a more recent revision of Android 10. How-
ever, the periodic restart issue created by the 10s grace period
seems inherently harder to address and is likely to stay as it
might require redesign of the implemented security mecha-
nism. In fact, we verified that the 10s grace period still exists
in Android 11, which is available in beta version at the time
of writing. In order to at least minimize the practicality of
this specific attack vector, Google has attempted at a counter-
measure by implementing a mechanism to cancel the grace
period on certain user interaction (i.e., pressing the home but-
ton). However, we observed that this implementation was also
problematic and unfortunately not effective on Android 10.
What we have shown here is that addressing the problem is
not trivial and guaranteeing correctness may require many
versions, redesigns, and steps of testing. In the end, these
vulnerabilities have the potential to make our attack more
likely to succeed because users will not be expecting activ-
ity starts or permission requests from background apps at all
on Android 10. Google has acknowledged our findings as a
serious security vulnerability that required swift remediation.
In addition, this vulnerability was featured in the upcoming
Android Security bulletin due to its significance.

Our suggestions. We propose multiple strategies that can be
implemented simultaneously or as stand-alone techniques to
address false transparency attacks in a practical manner.

• New app store policies. False transparency attacks can be ad-
dressed at the app store level with the addition of new policies
into these stores. For example, Google Play (GP) can imple-
ment name checks to ensure the uniqueness of app names
across all the apps served on GP. In addition, GP can perform
additional checks to catch confusing app names like “this
app”. Such checks would have to be implemented on all exist-
ing app stores to provide uniform security across app markets.
However, one can argue that implementing the checks on GP
can be sufficient as the majority of trustworthy apps that can
be utilized as victims in our attacks are only served on GP.
Nevertheless, side-loaded apps will not be subject to these
checks performed on app stores.

• Enforcing app name integrity in the Android framework.
Perhaps a more effective and efficient way of addressing our
attacks can be achieved by enforcing the uniqueness of an
app name on the Android platform itself. This enforcement
can be performed during installation to filter out apps with
suspicious app names on a first-come-first-serve basis.

• Additional app identifiers in the permission dialog. Cur-
rently the permission dialog on Android only contains the
name of the app in the dialog to help users identify the app.
Additional identifiers, such as an app logo, can be added to the
system dialog to remove any confusion regarding the origin
of an app. Google Play readily implements mechanisms to
prevent logo-based phishing to ensure logos of different apps
will not be dangerously similar. Hence, this can indeed be a

viable approach in addressing false transparency attacks.
• Mandatory app transition effects. In false transparency at-
tacks, one of the problems is that the context change between
apps is not visible to the user. In order to make the con-
text change more visible, mandatory transition effects can
be added between foreground app switches. This way, when
the attacker launches their attack, the user might be able to
catch that the request is not coming from the victim app as
they have just observed the foreground change. It is worth
mentioning that Android 10 attempts to solve this problem
by introducing a security mechanism that prohibits apps from
starting activities from the background; however, there seems
to be design issues with this mechanism as we have explained.
• Prohibition of transparent activities. Android platform can
ban the use of transparent activities altogether to eliminate
phishing attacks that make use of such UI components. Al-
though transparent activities might have some legitimate use
cases, we expect these to be limited.

8 Related Work

Mobile UI spoofing attacks. In mobile UI spoofing attacks,
users are tricked into misidentifying apps. As a result they
inadvertently either provide sensitive information or perform
critical operations that will be beneficial to adversaries [6].
These attacks can be classified into two categories. In phishing
attacks, the adversary surreptitiously replaces or mimics the
UI of the victim to lead the user into falsely believing that
they are interacting with the victim [13, 16, 17]. Phishing
attacks rely on existing APIs or side-channels to identify the
foreground app [7, 9, 10, 18]. In clickjacking, also known as
the UI redress attacks, the adversary places opaque and click-
through overlays covering either parts or the entirety of the
victim. While the user assumes they are interacting with the
UI provided by the overlays, their clicks in fact reach the
victim where they induce a state change [19–22].

Android permissions. Android’s permission model has been
subject to much criticism due to a range of issues including its
coarse granularity [23], side-channels to permission-protected
resources [24–27], and design issues with custom permissions
[28,29]. Previous work has also investigated the effectiveness
of install-time permissions and concluded that users would
benefit from having the ability to revoke permissions [3].
Micinski et al. conducted a user study on Android runtime
permissions and concluded that authorization might not be
required for permissions tied to user interactions as users
are generally aware that such interactions will result in the
utilization of certain permissions [30]. In addition, Alepis et
al. discovered transformation attacks on runtime permissions
[31], which are similar to our attacks in essence but lack the
important execution details (e.g., the design strategies and
their implementation, design of multi-targeted attack scenario
that expands the attack surface, user studies to support stealthy
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attacks etc.) that are crucial for the success of the attacks.
Finally, [32] presents a preliminary version of our work.

9 Limitations and Future Work

We verified that the vulnerability we describe in this paper
(i.e., permission requests with confusing app names from
transparent background apps) exists on all Android versions
that support runtime permissions (Android 6-11). However,
we demonstrated the effectiveness of our foreground app in-
ference technique only on one such Android version (i.e.,
Android 7) to show the viability of our attacks. The reason
is that we expect to obtain similar accuracy results since we
found the same procfs resources that we utilized in our anal-
ysis to be available and given the significant structural sim-
ilarities across all these Android versions. In fact, based on
the ProcHarvester measurements [7], we estimated that there
would be no more than about 5-10% variation in accuracy
between the versions. However, we acknowledge that there is
still value in performing further experiments on other versions
for a more complete analysis and leave this for future work.

Our foreground app inference implementation might have
impact on the device’s battery life as it currently runs in the
background to periodically check for changes in the fore-
ground. However, an adversary can poll for these changes
less often by sacrificing some of the attack opportunities. In
addition, it seems possible to optimize the periodicity for
polling based on how often users change between apps (18.9s
or more on average) [11]. We leave the utilization of such
techniques for future work. It is also worth mentioning that
the methods we use in this work are meant to be modular. If a
better approach to foreground inference is developed in the
future, an attacker can use that instead.

Finally, our in-lab user study demonstrates the feasibility of
our attacks for an ideal condition where the attacker is always
able to correctly infer the foreground app due to our use
of the modified Android version, as explained in Section 6.
However, future work is needed to show the feasibility of
the attacks under a more realistic scenario where there may
be some errors in the foreground inferences made by our
ProcHarvester-based technique.

10 Conclusion

In this work, we presented false tranparency attacks, a class
of phishing-based privilege escalation attacks on Android run-
time permissions. We conducted a user study to understand if
users’ understanding of runtime permissions would innately
create susceptibility to these attacks. We designed these at-
tacks to launch strategically in order to minimize the possi-
bility of alerting the user while retaining effectiveness and
verified the validity of our design decisions through our user
study. In addition, we conducted a lab study to demonstrate

the feasibility of our attacks in a realistic setting and showed
that none of the participants were able to notice our attacks.
We discussed why existing defenses fall short in the context
of false transparency attacks. In particular, we disclosed the
vulnerabilities in a key security mechanism implemented in
Android 10, which consequently allowed us to still launch our
attacks on this recent Android version. Finally, we proposed
a list of countermeasures to practically defend against false
transparency attacks.
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Appendices

A Frequently Asked Questions

Here we discuss some of the concerns that we thought might
be raised by the reader, in a Q&A format.
• Why doesn’t the attacker just launch a normal phishing
attack? Google Play (GP) already has some security mech-
anisms in place to detect phishing attacks. For example, GP
does not allow apps to be published with icons that are similar
to those of other apps. In addition, GP can also identify if
the title of an app is dangerously similar to that of another
app. If an app has some suspicious behavior as in these cases,
it will be suspended by GP indefinitely. With our attack, the
adversary does not have the risk of detection by GP.

In addition, users are generally familiar with the concept
of classic phishing attacks, where the attacker impersonates
another app by mimicking its UI. Hence, it is more likely,

compared to our attacks, that they will be on the lookout for
such attacks. Our attacks do not require mimicking another
app’s UI and are previously unknown to the users (as well as
to the research and developer communities). Therefore, users
will be vulnerable and will get caught off-guard as they are
not expecting such attacks in the first place. We have proven
the validity of this statement with our user study.

• Couldn’t the app just pretend to do something useful with the
permission to convince the users to grant it? While it is true
that the most important reason for users to grant permissions
is the permission’s relevance to utility, it is not the sole factor
that plays a role in these decisions. Previous work has shown
that users consider the relevance of the permission to the
app’s utility and the reputation of the app developer as a factor
influencing them to grant permissions, 68% and 32% of the
time, respectively while the average denial rate is reported to
be 14% [2]. This means that for an attacker who cannot really
make a convincing argument for needing a permission (e.g.,
QR app needing contact list), they will not be able to obtain
the permission 68% of the time with a direct attack. Similarly,
for an attacker whose app has not earned much reputation,
they will get their permission requests denied 32% of the time.
We perform two Chi-squared tests with Yates correction to
compare these two denial rates to the average denial rate. The
p-values for both tests are much less than 1×10−5, which are
much smaller than the confidence level of 0.05. This indicates
that a permission’s relevance to utility and the requesting
app’s reputation are both factors that significantly contributes
to users’ grant decisions.

In general, both our user study and previous studies show
that users do try to make conscious decisions when it comes
to permissions. They feel more comfortable granting permis-
sions to some apps while they do not feel so for others based
on several factors. Our goal is to enable adversaries to take
advantage of the user’s trust in another app, without having
to gain that trust on their own.

• What is the attacker going to do with the permissions?
Our attacks serve as a platform for different adversaries to
obtain the permissions they need to realize their goals. Each
adversary can come up with a different attack strategy that
requires them to obtain a specific set of permissions, which
they could achieve using our attack scheme.

• Why does Android allow invisible activities? Android, being
the liberal operating system it is, aims to provide app develop-
ers the UI design freedom they need to achieve their purposes.
Transparent UI features often improve user experience. On
the other hand, restrictions to transparency are hard to imple-
ment. Android provides a range of transparency options, and
it is unclear which ones can be utilized for attack scenarios
similar to those we have illustrated in this paper. Indeed, a
modification to restrict transparency could complicate the
code in a way that introduces new types of vulnerabilities.
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B Survey Questions

Here, we present the questions that we used in our survey,
results of which we elaborated in detail in Section 6. State-
ments regarding the display logic (e.g., skip to question X
etc.) are not displayed to the participants and are included
only to provide our readers an accurate view of our survey.
We shuffle answer options at the time of participation in the
survey. We do not present our attention check and demograph-
ics questions here for brevity. In addition, we removed some
questions that we did not utilize in Section 6 for the sake of
brevity, but the missing questions have the potential to prime
the users to be security conscious, making them more likely
to deny permissions and think of defenses. Curious readers
can find our full set of questions in [33].

Q1: Please choose your level of knowledge of Android per-
missions.

• Expert
• Knowledgeable
• Average
• Some familiarity
• No familiarity

Q2: On older Android versions, permissions required by an
app were displayed at the time of installation and the instal-
lation would not proceed if you did not agree to grant all the
listed permissions to the app.

• True
• False
• I don’t know

Q3: For your information, on more recent versions of Android,
apps can prompt you at runtime with a permission request
(also called permission prompt) to get access to some of the
device resources. Such permissions that are requested when
the app is in the foreground are called runtime permissions.
The following screen is an example of a permissions request.
You can give access to the app for the resource in question by
choosing "Allow". Similarly, you can deny access by choosing
"Deny". Please note that how this prompt screen looks might
slightly vary depending on the device and Android version.

Q4: I remember seeing a similar permission screen while
using my device (It could be for a different app and/or per-
mission).

• Yes
• No
• I am not sure

Q5: Let’s do some role-playing now. Suppose for the sake
of this survey that you have installed Viber, a popular
messaging app with millions of downloads that allows you
to communicate with your friends. Viber requires access to
your contacts to allow you to contact your friends. If you

(a) Q3 screen (b) Q5 screen (c) Q7 screen

Figure 2: Screens for Q3, Q5, and Q7

don’t grant this permission, the functionality likely will not
work. Suppose you have started Viber to message a friend
and Viber prompted you to get permission to access your
contacts for the first time, as shown in the following screen.

Q6: Please decide if you would like to allow Viber to access
your contacts.

• Allow
• Deny

Q7: Continuing with the role-playing... Suppose now that
you received a permission request from an app installed on
your phone while you were not actively using any app. Be-
low screenshot is an example of such a request.
Q8: What would you do about such a permission request?

• Allow
• Deny
• It depends

Q9: An app can request a permission and prompt you again
in the future even if you might have denied this permission
previously.

• True
• False
• I don’t know

Q10: An app can request a permission and prompt you again
in the future even if you might have granted this permission
previously.

• True
• False
• I don’t know

Q11: Suppose you previously denied a permission to an app
you currently have on your device. If you were prompted
again for the same permission by this app in the future, would
you grant it?

• Yes - Skip to
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• No - Skip to Q13
• It depends - Skip to Q12

Q12: Which of the following conditions would influence you
to grant the permission after denying it previously? (Choose
all that apply)

• The requested permission is necessary for the app to
work

• The request is for a permission I do not care about or do
not consider particularly risky

• The requesting app is highly popular (i.e., installed by
millions of users)

• The requesting app is developed by a well-known com-
pany

• Other (Please specify):

Q13: (Display if the first option of Q6 is chosen) Now back
to role-playing again. Suppose you texted a couple of friends
on Viber, then you switched to some other applications or
perhaps stopped using your phone for a while. Eventually,
you switched back to Viber to continue texting your friends
and now you are prompted for the contacts permission as
shown in the following screenshot.
Q14: (Display if the second option of Q6 is chosen) Now
back to role-playing again. After being on your phone for a
while and doing useful things, you switched back to Viber to
text your friends and now you are prompted for the contacts
permission as shown in the following screenshot.

(a) Q13, Q14 screen (b) Q17 screen

Figure 3: Screens for Q13, Q14, and Q17

Q15: What would you do?
• Allow - Skip to Q17
• Deny - Skip to Q16

Q16: What is the reason for denying the permission?
• I already granted this permission to Viber so it should

not ask me again
• I already denied this permission to Viber so it should not

ask me again
• I always decline permissions
• Multiple requests for the same permission made me sus-

picious of Viber

• Other (Please specify):

Q17: Suppose you are traveling the world and you found
yourself wanting to go to the magical ancient Greek city of
Ephesus. You open Google Maps to navigate to these ruins.
You are prompted with a permission dialog as in the following
picture.
Q18: Which option would you select?

• Allow - Skip to Q19
• Deny - Skip to Q20

Q19: Just asking to make sure we are on the
same page... Which app did you just grant
the location permission to? - Skip to Q21

Q20: Just asking to make sure we are on the same page...
Which app did you just deny the location permission to?

Q21: On Android versions that support runtime permissions,
you are allowed to grant or revoke permissions to apps at any
time by modifying permission settings via the Settings app.

• True
• False
• I don’t know

Q22: What would you think if an app has requested a permis-
sion it had previously requested during the same launch (i.e.,
after you started the app it requested the same permission
twice within a small time frame)? Please select all that apply.

• I would not think anything of it and proceed with grant-
ing/denying the permission normally.

• I would be suspicious of the requesting app.
• I would be suspicious of the other apps I have installed

that use this permission.
• I would be suspicious of the Android operating system

itself.
• Other (Please specify):

Q23: (Display if the first option of Q22 is not chosen) What
would you consider doing in this case (i.e., when an app
requests the same permission twice during the same launch)?
Please check all that apply.

• Uninstalling the app that requested the permission
• Investigating other apps that request this permission via

the Settings app
• Reformatting the operating system to go back to factory

settings
• Other (Please specify):

Q24: An app has to be in the foreground (i.e., showing on the
screen) when it prompts you for a permission.

• True
• False
• I don’t know
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