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Abstract
Kernel-mode drivers are challenging to analyze for vulner-
abilities, yet play a critical role in maintaining the security
of OS kernels. Their wide attack surface, exposed via both
the system call interface and the peripheral interface, is often
found to be the most direct attack vector to compromise an OS
kernel. Researchers therefore have proposed many fuzzing
techniques to find vulnerabilities in kernel drivers. However,
the performance of kernel fuzzers is still lacking, for reasons
such as prolonged execution of kernel code, interference be-
tween test inputs, and kernel crashes.

This paper proposes lightweight virtual machine check-
pointing as a new primitive that enables high-throughput
kernel driver fuzzing. Our key insight is that kernel driver
fuzzers frequently execute similar test cases in a row, and that
their performance can be improved by dynamically creating
multiple checkpoints while executing test cases and skipping
parts of test cases using the created checkpoints. We built a
system, dubbed Agamotto, around the virtual machine check-
pointing primitive and evaluated it by fuzzing the peripheral
attack surface of USB and PCI drivers in Linux. The results
are convincing. Agamotto improved the performance of the
state-of-the-art kernel fuzzer, Syzkaller, by 66.6% on aver-
age in fuzzing 8 USB drivers, and an AFL-based PCI fuzzer
by 21.6% in fuzzing 4 PCI drivers, without modifying their
underlying input generation algorithm.

1 Introduction

Device drivers are the leading cause of kernel vulnerabili-
ties [15, 47, 56]. A primary reason is the breadth and variety
of driver implementations, which impedes scalable and co-
herent security analysis. Worse, they expose a richer attack
surface than other kernel subsystems: kernel-mode drivers
expose a peripheral attack surface in addition to the system
call attack surface. Consequently, vulnerabilities in device
drivers have been frequently discovered and exploited by ad-
versaries through both attack surfaces in local and remote
attack scenarios [7, 10, 12, 14, 20, 42].

In practice, fuzzing has proven to be effective at finding vul-
nerabilities in different kernel subsystems, including device
drivers [2,18,24,26,29,46,53,64]. Many techniques have been
proposed to improve kernel fuzzing, e.g., via hand-written
input grammars [24] or various forms of static and dynamic
analysis [2, 18, 26, 29, 46, 53, 64]. For fuzzing device drivers,
Syzkaller represents the state-of-the-art, incorporating many
of the proposed techniques [24]. It recently added support for
fuzzing the peripheral attack surface of USB device drivers
in Linux, which leverages all of its existing smart fuzzing
capabilities such as grammar- and coverage-guidance in input
generation. In its early development stage, Syzkaller already
discovered hundreds of vulnerabilities from a wide range of
device drivers [23], demonstrating its effectiveness.

However, despite these recent developments, high-
throughput kernel driver fuzzing still remains challenging. A
driver’s execution can easily be prolonged during its loading
and initialization, or peripheral input processing in general.
Low-priority, time-consuming tasks in kernel space are
typically processed asynchronously and in a deferred manner,
increasing total input processing time. Also, executing each
test case may change the driver’s internal state, which, in turn,
can negatively influence subsequent test case executions. This
influence can result in the driver locking itself up [18, 55],
or unstable system state in general, when, for example,
a memory corruption bug corrupts a wider system state.
Unloading and reloading the driver after executing each
test case, and rebooting the system after hitting a bug, can
prevent the interference between test case executions, but
doing so incurs a significant reduction in fuzzing throughput.
As an alternative, prior work used a system snapshot created
at system startup to always restore a clean state of the
system for each test case, skipping time-consuming reboots.
However, snapshot techniques at the virtual machine level
without optimizations can be too costly (e.g., QEMU’s VM
snapshot [1]), and user-mode system snapshot techniques
either suffer from similar performance problems [2] or
require extensive driver porting efforts when a user-mode
kernel is used [64].
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This paper proposes a new primitive—dynamic virtual ma-
chine checkpointing—to address the aforementioned chal-
lenges and enable high-throughput, clean-state kernel driver
fuzzing. The core idea is to continuously create checkpoints
during a fuzzing run in order to skip previously observed,
and checkpointed operations that a kernel driver fuzzer per-
forms. We find that test cases generated by fuzzers often have
a substantial amount of similarities between them, leading to
a repeated traversal of identical target driver states. Virtual
machine checkpoints, strategically created by our checkpoint
management policies, can be used to directly restore the vir-
tual machine state established by time-consuming operations
without repeatedly executing them. This primitive reduces the
average test case execution time and, by design, ensures that
no residual states remain after executing a test case; even if
the test case causes a kernel panic, a known virtual machine
state can be quickly restored from an existing checkpoint.

We built a system, called Agamotto1, around this new vir-
tual machine checkpointing primitive, which can transpar-
ently accelerate kernel driver fuzzers regardless of the OS
and the peripheral bus on which a target driver operates. Ag-
amotto abstracts away from the heterogeneity of the device
drivers and OSs, leveraging our virtual machine checkpoint-
ing primitive together with other commodity virtual machine
introspection mechanisms that are readily available for differ-
ent OSs. Agamotto is also fuzzer-agnostic, as it provides an
abstract fuzzer interface that can be implemented to accelerate
any existing kernel driver fuzzers.

Different forms of virtual machine checkpointing mecha-
nisms have been used in many contexts for high availability
(e.g., fault tolerance or live migration) [16, 19], or debugging
and introspection purposes [21, 34]. In these contexts, check-
points are typically created on a single timeline, which to-
gether describe a single execution path that has been realized
in production, debugging, or introspection settings. In con-
trast, checkpoints created during a fuzzing run describe multi-
ple possible execution paths that can be realized in adversarial
settings depending on the input. Under multi-path exploration,
virtual machine checkpoints are frequently created, and used
for virtual machine restoration; therefore, achieving time and
space efficiency of checkpointing and restoration mechanisms
becomes a key challenge. To address this, we heavily opti-
mized both virtual machine checkpointing and restoration
mechanisms, making their run-time and space overheads suit-
able for high-throughput fuzzing.

We thoroughly and conservatively evaluated the run-time
and memory overheads of our proposed checkpointing prim-
itives as well as the effectiveness of our system, Agamotto.
The results show that the checkpointing primitive creates a
new promising dimension in the optimization space of kernel
driver fuzzing. In fuzzing 8 USB and 4 PCI drivers, 35.6% of
test case executions on average skipped one or more opera-

1Available at: https://github.com/securesystemslab/agamotto

tions by directly restoring the virtual machine from a check-
point automatically created and managed by Agamotto. The
creation and management of checkpoints incur a run-time
overhead, but their impact on the fuzzing throughput is sig-
nificantly reduced with our controlled checkpoint creation
and optimized checkpointing primitives. Overall, the utility
of multiple checkpoints created by Agamotto outweighed the
cost; Agamotto improved the throughput of USB and PCI
driver fuzzing, on average, by 66.6% and 21.6%, respectively.
Moreover, as fuzzing went deeper, Agamotto became more
effective—the throughput increased by up to 70.5%—thanks
to the checkpoints created in deeper code paths. This is with-
out making any change to the fuzzing algorithm (i.e., input
generation algorithm) of the fuzzers we used. This means that
our approach leverages an overlooked aspect of the fuzzing al-
gorithm; the fuzzing algorithms employed by state-of-the-art
fuzzers produce many similar test cases during a fuzzing run,
and thus can benefit from checkpoints created while executing
earlier test cases. Further improvement could also be possible
by optimizing Agamotto’s dynamic checkpointing policies
together with the fuzzing algorithm itself.

In summary, we make the following contributions:

• A new primitive in kernel driver fuzzing. We intro-
duce dynamic virtual machine checkpointing to accel-
erate kernel driver fuzzing. This new primitive is OS-,
bus- and driver-agnostic, since it operates at the virtual
machine level„ and it opens a new dimension in the
optimization space of kernel driver fuzzing.

• Checkpoint management policies and optimization
techniques. We present checkpoint management poli-
cies that can increase the utility of checkpoints created
during our dynamic checkpointing process. We also
present virtual machine checkpointing and restoration al-
gorithms optimized for fuzzers’ multi-path exploration.

• Improved kernel driver fuzzing throughput. By ap-
plying the proposed techniques to a state-of-the-art USB
fuzzer, Syzkaller, we improved its throughput by 66.6%
on average, without modifying the underlying fuzzing al-
gorithm. We also built a fuzzer for PCI drivers based on
AFL, and improved its throughput by 21.6% on average.

2 Motivation

2.1 Peripheral Attack Surface
Kernel subsystems are typically exposed to adversaries
through the system call interface. Device drivers expose an
additional attack surface: the peripheral interface. This at-
tack surface is subject to physical attacks such as an “evil
maid attack” [52], remote attacks such as an “airborne at-
tack” [6, 10, 12], or even social engineering attacks [61]. An
attacker having physical access to the victim system, e.g., an
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Table 1: Comparison between kernel fuzzing approaches.

Clean State Compatibility* High Speed

No Snapshot [18, 24, 55] 3 3

User-mode
Snapshot

(LibOS) [64] 3 3

(Emulation) [2] 3 3

VM Snapshot 3 3

VM Snapshot with Agamotto 4 4 4

* Compatible with kernel-mode drivers.

evil maid, can compromise the system by physically connect-
ing malicious peripherals. A remote attacker, who can reach
communication peripherals such as Wi-Fi or Ethernet con-
trollers, can remotely compromise the system by attacking
these controllers as well as their device drivers.

Scope. This paper investigates the USB and PCI peripheral
attack surfaces of kernel-mode drivers. Our choice was mo-
tivated by (i) their accessibility to potential adversaries, as
exemplified by real-world attacks originating in USB or PCI
devices [10, 12, 20, 42], and (ii) their widespread use. We find
that many security-sensitive devices, such as communication
peripherals that have their own external access vector, operate
on USB, PCI, or both. According to a survey on Linux device
drivers [31], more than 70% of drivers target either USB or
PCI devices. Hundreds of bugs already found by Syzkaller’s
USB fuzzer are from a wide range of driver classes [23], which
also reflects the prevalence of USB devices. Although this
paper investigates two peripheral buses, we emphasize that
our approach is not bus-specific. Any fuzzer for a peripheral
attack surface, regardless of its underlying I/O interception
mechanism, can be accelerated with our approach. We provide
more insight on I/O interception in Section 3.6.

2.2 Why Use Snapshots?
Prior work used different snapshot techniques for fuzzing OS
kernel subsystems [2] and user-space programs [63, 65]. The
basic idea is to snapshot the target program before it starts
processing input and run the program from that snapshot for
each test input. This means that every test input executes on
the same, clean state of the target program. No residual state
remains, by construction, after each iteration of the fuzzing
loop. Test inputs do not interfere with each other, increas-
ing the reproducibility of bugs [64]. Even when a test input
corrupts the program state by hitting bugs, a fresh target pro-
gram state can always be restored from an existing snapshot,
which effectively provides crash resilience. Test inputs after a
crash can execute without re-executing time-consuming initial
bootstrap operations (e.g., system reboot in kernel fuzzing).
Fuzzers for user-space programs typically achieve this using
fork(). A new, fresh child process is forked from a single par-
ent process for each test input, the performance of which is

optimized via the copy-on-write mechanism. Several kernel
fuzzers also use different forms of snapshots for a reboot-free
and reproducible fuzzing [2, 64].

2.3 Why Not Use Snapshots?

Although snapshot techniques ensure clean-state fuzzing, the
snapshot operations themselves may pose a non-negligible
overhead. In particular, system-wide snapshot techniques, e.g.,
using an emulated, user-mode virtual machine with a fork-
based snapshot technique [2], or using a hardware-accelerated
virtual machine with a full memory snapshot technique, can
be expensive. Several fuzzing tools do not use snapshot tech-
niques at all [24, 38, 53], due in part to the overhead. For
example, LibFuzzer [38], an in-process user-space fuzzer, and
Syzkaller [24], a state-of-the-art kernel fuzzer, execute each
test case on the same running instance of the program, and
cleaning the program state is left to the user. The user must
write cleanup routines to clean up global states that may per-
sist across fuzzing loop iterations. To reduce the overhead
associated with virtual machine snapshots, a library OS ap-
proach was proposed [64]. This approach, however, lacks
compatibility with kernel-mode drivers; it requires manual
efforts (or a sophisticated tool [13]) to port device drivers into
user-mode ones.

3 Design

This paper proposes dynamic virtual machine checkpointing
as a key primitive to improve the performance of kernel driver
fuzzing. The key idea is to dynamically create checkpoints
during a fuzzing run, and use these checkpoints to skip time-
consuming parts in the execution of test cases. Recurring
sequences of operations that test cases perform need not be
executed many times; instead, the state of a virtual machine
established by such operations, once checkpointed, can be
directly restored from a checkpoint. This idea underpins the
design of our system, Agamotto.

Agamotto addresses the shortcomings of prior work, as
described in Table 1. It uses virtual machine snapshots (or
“checkpoints”) and thus inherits all of its advantages—clean-
state, reboot-free fuzzing. In contrast to prior snapshot-based
approaches, which used a single snapshot created at a fixed
point in time (usually at program startup), however, Agamotto
creates multiple checkpoints automatically at strategic points
during a fuzzing run. These checkpoints allow Agamotto
to skip initial parts of many test cases, improving the over-
all fuzzing performance. In addition, we heavily optimized
individual virtual machine checkpointing primitives for an
efficient multi-path exploration, which limits the performance
impact of the primitives themselves.
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Figure 1: High-level overview of Agamotto.

3.1 System Overview

Figure 1 shows a high-level overview of Agamotto. The ar-
chitecture of Agamotto takes the form of a typical virtual
machine introspection infrastructure. A full operating sys-
tem including the kernel-mode device driver—the fuzzing
target—runs within a guest virtual machine. Unlike prior
work [2], Agamotto does not impose any constraint on the
mode of execution; the guest virtual machine can execute na-
tively, using hardware support (e.g., Intel’s Virtual Machine
Extensions [28]) when available.

The fuzzer, whose primary task is to generate test cases
and process their execution feedback, is placed outside this
virtual machine, running alongside the virtual machine mon-
itor. Some kernel fuzzers such as Syzkaller place the fuzzer
inside the guest virtual machine. This architecture is not suit-
able when using virtual machine checkpointing, because, as
we restore the virtual machine from a checkpoint, the fuzzer’s
internal states about the fuzzing progress would also get re-
stored and thus lost. By placing the fuzzer outside the vir-
tual machine, the fuzzer survives virtual machine restorations.
Moreover, the fuzzer is shielded against guest kernel crashes
and subsequent virtual machine reboots, limiting their impact
on the fuzzing progress.

The fuzzer interface is a fuzzer abstraction layer that hides
details about individual fuzzers from other components. A
new fuzzer can be added by implementing various callbacks
defined in this interface. These callbacks are invoked by the
fuzzing driver, the core component of Agamotto placed in-
side the virtual machine monitor, which (i) drives the fuzzing
loop interacting with both the fuzzer as well as the guest vir-
tual machine, and (ii) creates and manages virtual machine
checkpoints. The guest agent, running inside the guest vir-
tual machine, provides the fuzzing driver with finer-grained
virtual machine introspection capabilities. For example, as
the guest agent starts at boot, it notifies the fuzzing driver of
the boot event, so that it can start the fuzzing loop.
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Figure 2: Fuzzing loop comparison.

3.2 Fuzzing Loop

The fuzzing driver component of Agamotto drives the main
fuzzing loop. In each iteration of the fuzzing loop, a fuzzer
generates a single test case, executes it, and processes the
result of its execution as feedback. In fuzzing event-driven
systems such as OS kernels, each test case generated by the
fuzzer can be defined as the sequence of actions it performs
on the target system. Formally, let S= {S0,S1, ...,SN} be the
set of states of the fuzzing target, and T be a fuzzer-generated
test case, which comprises a sequence of N actions, denoted
by an ordered set {a1,a2, ...,aN}. An execution of T, denoted
by a function exec(T), is a sequential execution of actions in
T on the fuzzing target. Each action ai ∈ T (for i ∈ {1, ...,N})
moves the state of the fuzzing target from Si−1 to Si.2 The
target state observed by the fuzzer (e.g., coverage) is denoted
by R = {R1,R2, ...,RN}, where each element Ri ⊂ Si is the
fuzzer-observed state of the fuzzing target after executing ai.
We use this notation throughout the paper.

Figure 2 depicts Agamotto’s fuzzing loop in comparison
with Syzkaller’s fuzzing loop using the above notation. The
differences are (i) the added flows into checkpoint and restore
and (ii) the removed flows into cleanup and reboot. Virtual
machine restoration is initiated after generating, but before
executing, a given test case. A checkpoint request is issued
and evaluated after each action of a test case. Agamotto skips
both cleanup and reboot, since a consistent virtual machine

2We use a transition-relation style of specifying concurrent, reactive
programs (e.g, an OS kernel) to incorporate non-determinism [37, 50]. In
other words, ai is a relation between Si−1 and Si, not a function.
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state is always restored from a checkpoint without requiring
manual cleanup, even after a crash.

After the guest virtual machine boots, but before it starts
executing any test case ( 1 in Figure 2), the first checkpoint,
which we call the root checkpoint, is created ( 1a ). Then, the
fuzzer generates a test case ( 2 ) and starts executing it ( 3 ).
Based on (i) the test case just generated and (ii) available
checkpoints, the fuzzer decides what checkpoint the test case
can start executing from and restores the virtual machine from
the chosen checkpoint ( 3a ). Initial parts of the test case, the
result of which is already contained in the checkpoint, are
skipped.

During the execution of a test case, secondary checkpoints
are requested and created according to a configurable check-
point policy. After executing each action, the test case exe-
cuting inside the guest virtual machine sends a checkpoint
request to the fuzzer ( 3b ). Then Agamotto’s checkpoint pol-
icy decides whether to checkpoint the virtual machine or not.

Once a test case has been executed, either successfully, with
a failure (e.g., timeout), or with a system failure (e.g., kernel
crash), the execution result (e.g., coverage) is sent to and
subsequently processed by the fuzzer ( 4 ). If a test case did
not execute in full, but only until kth action, ak, due to timeouts
or system failures, the result for only the executed parts of the
test case, {R1,R2, ...,Rk}, will be sent to the fuzzer.

Since restoring the virtual machine entails a full system
cleanup, Agamotto skips an explicit cleanup process, if any
( 5 ). To avoid influence between iterations, existing kernel
driver fuzzers either perform an explicit cleanup [24] or sim-
ply ignore the issue [18, 55]. Agamotto uses virtual machine
restoration, which does not allow any internal system state,
even corrupted or inconsistent ones created by kernel bugs
or panics, to transfer between iterations, without requiring
manually-written cleanup routines.

A bug may occur during the cleanup process that we skip.
However, potential bugs that arise in the cleanup process can
be found by actively fuzzing the cleanup routines. This way,
a cleanup routine can be tested more thoroughly, fully lever-
aging whatever smart fuzzing capabilities that the fuzzer pro-
vides. For example, a fuzzer may generate a corner test case
that calls, the cleanup routine multiple times in between other
actions, which may trigger more interesting and potentially
more dangerous behavior of the driver under test.

3.3 Checkpoint Store and Search
While the fuzzing loop is running, multiple checkpoints get
created, which we store in Agamotto’s checkpoint storage. To
reduce the overhead induced by processing QEMU’s snapshot
format we manually manage the (re)storing of guest and de-
vice memory pages and use memory-backed volatile storage
to capture the remaining virtual machine state.

The volatile state of a virtual machine comprises its CPU
and memory state, and any bookkeeping information about

R

A

CB

…

Node Label

R {}
A {a1, a2}
B {a1, a2, a3, a4}
C {a1, a2, a5, a6, a7}

Figure 3: Checkpoint tree example.

the virtual machine such as device states kept by the virtual
machine monitor. A virtual machine checkpoint must contain
all the volatile information to be able to fully restore the state
of a virtual machine at a later point in time.

The state of a virtual machine upon each checkpoint re-
quest can be attributed to the executed part of the test case.
Therefore, we label each newly created checkpoint as the pre-
fix of a test case that represents only the executed part of a
test case. That is, given a test case, T = {a1,a2, ...,aN}, the
checkpoint created after executing kth action is labeled as
T1..k = {a1,a2, ...,ak}.

Since the root checkpoint is requested when no part of
any test case has executed, it is labeled as an empty test case.
Checkpoints subsequently created are marked as a non-empty
test case. Checkpoints are stored in a prefix tree, which we
call a checkpoint tree. Each node in this tree represents a
checkpoint and is labeled as a prefix of the test case that was
executing when this checkpoint was created. An example
checkpoint tree is depicted in Figure 3.

The checkpoint tree forms an efficient search tree of check-
points. After generating a new test case, Agamotto searches
for a checkpoint from which to restore the virtual machine.
To find the checkpoint that saves the largest amount of time
in executing the test case, Agamotto traverses the checkpoint
tree searching for a node that has a label that matches the
longest prefix of the given test case. In Figure 3, given a test
case, T′ = {a1,a2,a7,a8}, for example, Agamotto finds the
node A , which has the label that matches the longest prefix,
{a1,a2}. Since the checkpoint tree is a prefix tree, this longest
prefix match can be performed efficiently without scanning
all the checkpoints stored in the tree.

The checkpoint tree also constitutes an incremental check-
point dependency graph when checkpoint storage is further
optimized with incremental checkpoints (see Section 3.5.1).

3.4 Checkpoint Management Policies

3.4.1 Checkpoint Creation Policy

Checkpointing is requested after executing each action in a
test case. A checkpoint creation policy decides, upon each
checkpoint request, whether to create a checkpoint or not.
A checkpoint creation policy should create checkpoints fre-
quently enough, to increase the chances of finding a check-
point in restoring the virtual machine later, thus saving time.
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Figure 4: Checkpoint creation policy enforcement example.

Checkpointing should not be too frequent, however, because
(i) the checkpointing operation itself adds a run-time overhead
and (ii) each newly created checkpoint adds memory pressure
to the checkpoint storage. Excessive creation of checkpoints,
whose expected gain is less than its cost, must be avoided. We
present two general checkpoint creation policies, which take
these two requirements into account.

Checkpointing at Increasing Intervals. This policy cre-
ates checkpoints at configurable intervals in the timeline of
the guest virtual machine. Upon each checkpoint request, we
measure the time elapsed since the last checkpoint, and, if
it exceeds the configured interval, a checkpoint is created.
The intervals can be configured to be constant, or dynami-
cally determined. We use an adaptive interval that increases
as the level of the last checkpoint node in the checkpoint tree
increases. In particular, we use an exponentially increasing
interval using two as the base; this means that the policy re-
quires a guest execution time twice as long as the one that was
required for the last checkpoint (see 1 and 2 in Figure 4).
The idea is to reduce the number of checkpoints created later
in time during a test case execution, thus alleviating the over-
head of checkpoint creation.

Disabling Checkpointing at First Mutation. This policy
targets feedback-guided mutational fuzzers, which generate
new test cases by mutating parts of older test cases in the
corpus. It is well-known that the great majority of mutations
do not produce a new feedback signal (e.g., coverage sig-
nal [41]), which means that a new test case is more likely to
be discarded than to be used for further mutation. Therefore,
the expected gain of checkpointing the execution of a test
case after the point of a new mutation is low. To reduce the
overhead of checkpointing, this policy restricts the creation of
checkpoints when executing a mutated test case. Specifically,
checkpointing is disabled starting from the location of the first
mutation in each test case (see 3 in Figure 4). We do allow
checkpointing, however, at any point before the new mutation,
because the initial part of the test case still corresponds to a
prefix of some older test case in the corpus and is likely to
occur again as a base for new mutations.

3.4.2 Checkpoint Eviction Policy

Since the size of the checkpoint storage is limited, we cannot
store as many checkpoints as created by the checkpoint cre-
ation policy. A checkpoint eviction policy evicts an existing
checkpoint to free space for a newly created checkpoint when
the memory limit allocated for checkpoint storage is reached.
Given a configurable checkpoint pool size, checkpoints cre-
ated by the checkpoint creation policy are unconditionally
stored until there is no remaining space. If there is no available
space upon creation of a checkpoint, we consult checkpoint
eviction policies to find a node to evict.

The goal of a checkpoint eviction policy is to keep a high
usage rate of the checkpoints in restoring a virtual machine.
A checkpoint eviction policy needs to predict what check-
points are likely to be used in the near future, to keep those
candidates in the checkpoint tree, and evict others.

We use multiple checkpoint eviction policies, which we
consult sequentially. Each policy takes a set of nodes in the
checkpoint tree as input and produces one or more candidate
nodes as output. If a policy produces more than one candidate
node, we consult the next policy using the output nodes of
the previous policy as its input. We continue consulting each
policy in the pipeline until it finds a single checkpoint node
to evict.

Policy-1: Non-Active. This policy is placed first in the
pipeline, which prevents any active checkpoint nodes from
being evicted. Active checkpoint nodes in the checkpoint tree
include the node that the virtual machine is currently based
on, and, recursively, the parent node of an active node. This
policy selects all but the active nodes in the checkpoint tree
as eviction candidates, preventing any active node from being
evicted. We consider the checkpoints that are currently active
to be spatially close because they were created in executing
a single test case—the unit of fuzzing. This policy promotes
preserving the spatial locality between the active checkpoint
nodes by evicting others.

Policy-2: Last-Level. This policy selects the nodes in the
last level of the checkpoint tree as eviction candidates. As the
depth of the checkpoint tree increases, its nodes are labeled
with longer, more specialized test cases. The intuition behind
selecting last-level nodes as eviction candidates is that the
shorter the test case that a checkpoint node is labeled with,
the more likely the label matches test cases that the fuzzer
would generate in the future. By evicting last-level nodes, this
policy effectively balances the checkpoint tree, letting the tree
grow horizontally, rather than vertically.

Policy-3: Least-Recently-Used. The last policy in the
pipeline is the Least-Recently-Used (LRU) policy, a policy
widely known to be effective at managing different types
of caches such as CPU data and address translation caches.
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We track the time each checkpoint was last used; we say a
checkpoint was used, (i) when it was created, or (ii) when the
virtual machine was restored from it. The policy evicts the
checkpoint used earliest in time. As widely known, an LRU
policy promotes the temporal locality present in the check-
point usage pattern. The more recently a checkpoint was used,
the more likely it will be used again. Unlike previous policies,
this LRU policy always determines one and only one eviction
candidate, because each checkpoint is used at a unique point
in time.

3.5 Lightweight Checkpoint and Restore
3.5.1 Incremental Checkpointing

QEMU’s default virtual machine snapshot mechanism stores
all volatile states of a virtual machine in a snapshot image.
Each snapshot can introduce prohibitive space overhead, how-
ever, the memory size of the virtual machine being the domi-
nating factor. Thus, this full snapshot mechanism is not suit-
able for the fuzzing use case, where a large number of virtual
machines are created, and their snapshots can quickly con-
sume all the available memory. Creating a full snapshot can
also introduce a prohibitively high run-time overhead for a
virtual machine with high memory requirements.

To reduce both space and run-time overheads of checkpoint-
ing, Agamotto performs incremental checkpointing, where
only the modified (or “dirty”) memory pages are stored into
each checkpoint image. The first checkpoint created by Ag-
amotto after the first boot—the root checkpoint—would be
identical to what a full snapshot mechanism would create,
which contains all pages in memory. Whenever Agamotto cre-
ates a new checkpoint based on an existing one, however, only
the memory pages that have been modified with respect to the
base checkpoint are stored into the checkpoint image. This
incremental approach greatly reduces the size of a non-root
checkpoint, as well as the time it takes to create one.

The dependencies between incremental checkpoints are
already expressed in our checkpoint tree data structure; that
is, the virtual machine state of a given node in the checkpoint
tree can be fully restored by following the path from the root
to that node and incrementally applying checkpoints.

3.5.2 Delta Restore

A strawman approach to restoring a virtual machine using
incremental checkpoints is to sequentially apply incremental
checkpoint images starting from the root to the target node
in an incremental checkpoint tree. The number of memory
pages that this strawman approach should restore, however,
is greater than the one that a non-incremental snapshot ap-
proach would restore; the root checkpoint in an incremental
checkpoint tree already contains the full virtual machine state,
and additional restorations of incremental checkpoints will
add further overhead.

Algorithm 1 Delta restore
1: function DELTARESTORE(Src, Dst)
2: . Collect pages that need to be restored
3: L← LOWESTCOMMONANCESTOR(Src,Dst)
4: DirtySrc..L ← DirtySrc
5: Temp← PARENT(Src)
6: while Temp is not L do
7: DirtySrc..L ← DirtySrc..L∨DirtyTemp
8: Temp← PARENT(Temp)
9: end while

10: DirtyDst..L ← DirtyDst
11: Temp← PARENT(Dst)
12: while Temp is not L do
13: DirtyDst..L ← DirtyDst..L∨DirtyTemp
14: Temp← PARENT(Temp)
15: end while
16:
17: . Restore pages starting from the target node
18: DirtyDelta ← DirtySrc..L∨DirtyDst..L
19: Temp← Dst
20: while DirtyDelta is not empty do
21: RESTOREPAGES(DirtyDelta∧DirtyTemp)
22: DirtyDelta ← DirtyDelta∧¬DirtyTemp
23: Temp← PARENT(Temp)
24: end while
25: end function

In the fuzzing context, high-performance restore is a re-
quirement, because the virtual machine is restored at the
beginning of every iteration of the fuzzing loop. However,
since Syzkaller’s default Linux kernel configuration for USB
fuzzing requires at least 512MB of working memory, and
Windows requires a minimum of 4GB, it would take up to
several seconds for the strawman approach to restore the full
virtual machine memory. We, therefore, introduce the delta
restore algorithm, which minimizes the number of memory
pages that are copied during a virtual machine restoration.
The full algorithm is described in Algorithm 1. The key idea
is to restore (i) only the pages that have been modified in
either the current or target virtual machine state after their
execution has diverged, and (ii) each modified page only once
via bottom-up tree traversal. This means that the number
of memory pages that are copied during a virtual machine
restoration is bounded by the number of pages modified within
the current or the target virtual machine state. Observe that, in
the strawman approach, the number of copied memory pages
is greater than or equal to the number of all pages in memory.

Figure 5 contrasts (a) the top-down, strawman approach
with (b) our bottom-up, delta restore approach in restoring
a virtual machine state. In the given checkpoint tree, the
node Dst refers to the checkpoint that the system is being
restored to, and the node Src is a temporary node representing
the current system state from which the restoration starts. The
node B refers to the last checkpoint that the current system
state is based on, and the node R refers to the root checkpoint.
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Our delta restore algorithm first locates the lowest common
ancestor node (node L ) of the node Src and Dst , and computes
a bitmap of modified memory pages (or a dirty bitmap) of
each node with respect to the node L , denoted by DirtySrc..L
and DirtyDst..L, respectively. We take the union of these two
dirty bitmaps, which we call a delta dirty bitmap, denoted
by DirtyDelta. DirtyDelta contains a complete list of memory
pages that need restoring. Then, starting from the node Dst , we
traverse the checkpoint tree backwards to the root node. At
each node during the traversal, we restore only the memory
pages that are in DirtyDelta and clear their corresponding bits
in DirtyDelta to ensure that each dirty page is restored only
once. The traversal stops when DirtyDelta is fully cleared. The
strawman approach, by contrast, restores all pages stored in
incremental checkpoints starting from the node R .

3.6 I/O Interception for Fuzzing
Fuzzing driver code paths that can be reached through a given
peripheral interface requires interception and redirection of
the driver’s I/O requests. We find two common models for
driver I/O interception and redirection:

• User-Space Device Emulation. I/O requests coming
from a kernel driver are redirected to a user-mode pro-
gram through the system call interface. This approach
typically requires kernel source code modifications for
intercepting and redirecting driver I/O requests.

• Device Virtualization. Device virtualization techniques
allow the virtual machine monitor to intercept I/O re-
quests coming from the corresponding kernel driver.

Syzkaller’s USB fuzzing mode takes the user-space device
emulation approach. It adds a kernel module that intercepts
and redirects USB driver I/O requests to a program running
in user space via the system call interface. Since Syzkaller al-
ready contains many smart fuzzing features such as structure-
awareness of USB packets, we modified Syzkaller such that
Agamotto can be applied. Our key modification was moving
Syzkaller’s fuzzer outside of the virtual machine so that the
fuzzer survives virtual machine restorations as well as ker-
nel crashes. We also modified the communication channels
between Syzkaller’s components. The fuzzing algorithm and
other aspects of Syzkaller were left unmodified.

For fuzzing the PCI interface, we developed our own fuzzer,
which uses a device virtualization approach to intercept the
driver’s I/O requests at the virtual machine monitor level. A
key benefit of this approach is that it does not require kernel
modifications; a virtual device can be implemented within
the virtual machine monitor without modifying the guest OS
kernel. We created a “fake” virtual PCI device in QEMU,
and plugged it into QEMU’s virtual PCI bus. Our fake PCI
device attached to the PCI bus gets recognized by the PCI
bus driver as the guest OS kernel boots, and, once the target
PCI driver gets loaded, it intercepts all memory-mapped I/O
(MMIO) requests coming from the target driver. We fuzzed
these MMIO requests by sending fuzzer-generated data to the
driver as a response to each driver I/O request.

4 Implementation

We implemented Agamotto on top of QEMU 4.0.0 running
in an x86 Linux environment [8]. We used the Linux Kernel
Virtual Machine (KVM) for hardware accelerated virtualiza-
tion [43]. We used Syzkaller3 for USB fuzzing [24], and Amer-
ican Fuzzy Lop (AFL) version 2.52b for PCI fuzzing [65].

Dirty Page Logging. We used KVM’s dirty page logging
to identify modified pages, as required for our incremental
checkpointing and delta restoration techniques. KVM’s dirty
page bitmap was looked up upon a checkpoint creation request
and a virtual machine restoration request. We cleared KVM’s
dirty page bitmap after each checkpoint creation and virtual
machine restoration. We note that KVM’s dirty page logging
can transparently be accelerated as hardware support—e.g.,
Page Modification Logging in Intel x86 CPUs—becomes
available. Using this dirty page logging, we implemented our
own optimized versions of virtual machine checkpointing and
restoration mechanisms, since QEMU’s snapshot implemen-
tation was found to be slower than we expected.

Inter-Component Communication. We used a variety of
commodity virtual machine introspection (VMI) mechanisms

3Specifically, the commit number: ddc3e85997efdad885e208db6a98bca86e5dd52f
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Figure 6: Overheads of incremental checkpointing.

to implement inter-component communication channels. Con-
trol channels were implemented via hypercalls and VIRTIO
pipes established between QEMU and the guest virtual ma-
chine [44]. Data channels for bulk data transfer were imple-
mented via direct reads and writes to the guest memory or by
using a separate shared memory device.

Syzkaller and AFL Support. Agamotto was designed
to support multiple fuzzers, and the current prototype sup-
ports two different fuzzers. When running Agamotto with
Syzkaller for fuzzing the USB interface, we used Syzkaller’s
fuzzer (syz-fuzzer) as Agamotto’s fuzzer component and
Syzkaller’s executor (syz-executor) as Agamotto’s guest
agent. They were both modified such that they use our VMI-
based communication channels. When running Agamotto
with AFL for fuzzing the PCI interface, we ran an AFL fuzzer
thread as Agamotto’s fuzzer component and used a shell script
as the guest agent, which simply loads the target PCI driver.

5 Evaluation

We conducted all of our experiments on a machine equipped
with AMD EPYC 7601 CPU and 500GB of memory. We
targeted device drivers in Linux v5.5-rc3 in our fuzzing exper-
iments. We enabled Kernel AddressSanitizer to expose more
bugs [35]. We first evaluate Agamotto’s individual primitives,
and then the performance of kernel driver fuzzers augmented
with Agamotto in both USB and PCI fuzzing scenarios.

5.1 Incremental Checkpointing

We compare the run-time and memory overheads of our in-
cremental checkpointing implementation with the overheads
of QEMU’s non-incremental snapshot approach [1]. To mea-
sure the overheads conservatively, we disabled QEMU’s zero
page optimization, a checkpoint size reduction technique that
handles a page filled with zeros by storing a fixed-size entry
in the checkpoint image, instead of storing 4KiB of zeros.
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Figure 7: Run-time overhead of delta restore.

Run-Time Overhead. The run-time overhead of check-
pointing primarily depends on the number of pages copied
into the checkpoint image. Figure 6a shows the overhead of
our incremental checkpointing mechanism, and that of the
baseline, when checkpointing a 512MiB memory guest virtual
machine. As the number of dirty pages increases, the run-time
overhead of incremental checkpointing increases linearly. In
contrast, the overhead of the baseline, a non-incremental ap-
proach, remains constant regardless of the number of dirty
pages. In addition, QEMU’s non-incremental checkpoint ap-
proach adds an additional overhead due to its implementation
and the full inclusion of the device memory, of which only a
few pages are dirtied during fuzzing. A full restore can, there-
fore, take more than 200ms per checkpoint for copying all
131,072 pages, whereas our incremental checkpointing, for a
typical range of the number of dirty pages (see Section 5.3),
takes less than 20ms on average as it only copies the dirty
pages.

Memory Overhead. Figure 6b shows how the size of each
checkpoint correlates to the number of dirty pages when
checkpointing a 512MiB memory virtual machine. As ex-
pected, the size of an incremental checkpoint increases in
proportion to the number of pages that have been modified
since the last checkpoint. Given the distribution of the number
of modified pages, which typically ranges from 0 to 8,000
(see Section 5.3), each checkpoint should take no more than
64MiB. With the zero page optimization enabled, the size of
each checkpoint observed in actual fuzzing runs, on average,
is less than 32MiB. This is a reduction of 90% or more in size
from the baseline.

5.2 Delta Restore
Run-Time Overhead. Figure 7 shows the run-time over-
head of our implementation of the delta restore algorithm de-
pending on the number of pages that are restored when restor-
ing a 512MiB memory virtual machine. We used QEMU’s
default restoration mechanism as the baseline, which restores
a virtual machine state from a non-incremental, full snapshot
image. The smaller the number of restored pages as computed
by our delta restore algorithm, the less time it takes to restore
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Table 2: USB and PCI fuzzing targets.

Target USB
(§5.3)

PCI
(§5.4) Path (/drivers/...)

RSI 3 net/wireless/rsi
MWIFIEX 3 net/wireless/marvell/mwifiex
AR5523 3 net/wireless/ath/ar5523
BTUSB 3 bluetooth/btusb.c
PN533 3 nfc/pn533
GO7007 3 media/usb/go7007
SI470X 3 media/radio/si470x
USX2Y 3 sound/usb/usx2y
ATLANTIC 3 net/ethernet/aquantia
RTL8139 3 net/ethernet/realtek
STMMAC 3 net/ethernet/stmicro
SNIC 3 scsi/snic

a virtual machine state. The number of restored pages, as
observed in actual fuzzing runs, is significantly lower than
the total number of pages in memory (see Section 5.3). With
an average number of under 8,000 restored guest and device
memory pages, our delta restore implementation can restore
the virtual machine in 12.5ms on average, 8.9 times faster than
the baseline, QEMU’s implementation of the full snapshot
restore approach, which takes 112ms on average.

5.3 Syzkaller-USB Fuzzing

Experimental Setup. We fuzzed USB drivers individually,
one in each experiment. We chose 8 USB drivers, as shown
in Table 2, which include drivers (i) of 5 different classes, (ii)
of different numbers of source lines of code, and (iii) from
different vendors. We ran 32 fuzzing instances for three hours
in fuzzing each driver. Each instance fuzzed the driver running
in a 512MiB memory virtual machine.

We enabled all USB related functions and constrained the
parameters of syz_usb_connect—i.e., device and interface
descriptors—to fuzz the drivers individually in each exper-
iment. To minimize the effects of non-determinism in our
experiment, we limited coverage instrumentation to the driver
code as well as generic kernel code that drivers call into.4

The fuzzing algorithm of Syzkaller was not modified. We
only increased Syzkaller’s default five-second timeout to ten
seconds to encourage deeper exploration.5 We started fuzzing
without any seed input to eliminate its impact on the results.
To minimize the randomness inherent in fuzzing algorithms,
we used different but fixed sets of PRNG seed values for
different instances, using the equation, {idinst +#crashesinst ∗
128} where inst = {0,1, ...,31}. This equation ensures that
seed values (i) are always unique across instances, and (ii)

4We instrumented the source code under the following directories: drivers,
sound/{usb, core}, and net/{bluetooth, nfc, wireless}.

5We followed Syzkaller’s default timeout model, where each test case can
execute for at most three seconds, but, as long as the last action has returned
within last one second, it can execute up to ten seconds.
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Figure 8: Distribution of the execution time per test case in
Syzkaller-USB fuzzing.

change after each kernel crash. With these adjustments, the
randomness of Syzkaller’s fuzzing algorithm was controlled;
note, however, that the randomness originating in the target
system, e.g., coverage signal, was not controlled. To account
for this randomness, we ran each experiment three times.

We ran two different versions of Agamotto—(i) a full-
fledged Agamotto and (ii) Agamotto with only the root check-
point enabled (Agamotto-R)—to quantify the effectiveness
of checkpoints dynamically created by Agamotto. We used
Syzkaller as a baseline, only with the aforementioned changes
for controlling timeout and randomness. We configured Ag-
amotto with the following additional parameters: The check-
point pool size was configured to be 12GiB per instance, and
we used 500ms as the initial checkpoint creation interval.

Execution Time of Individual Test Cases. Figure 8 shows
how much time Agamotto skips in executing each test case.
By using fine-grained checkpoints created by Agamotto, the
initial parts of many test cases were skipped. We measured
each test case’s execution time in all experiments (Figure 8a)
and computed each test case’s normal execution time, the
time each test case execution could have taken if fine-grained
checkpoints were not used (Figure 8b). Agamotto successfully
reduced the execution time of many test cases—a large portion
of test cases took less than a second with Agamotto, as shown
in Figure 8a.

Overall Fuzzing Throughput. Figure 9 illustrates how
much Agamotto improves Syzkaller’s USB fuzzing through-
put. This overall fuzzing throughput includes the overhead of
Agamotto itself. One common trend observed in all experi-
ments is that Agamotto’s fuzzing throughput peaks in the first
10 minutes. This is because, as fuzzing instances are started,
lots of test cases producing new coverage were discovered
and minimized. Each minimized test case was then mutated
100 times and executed in a row. During this period of time in
which new inputs were frequently discovered, a large number
of similar test cases were executed in a row, the throughput
of which was greatly improved by Agamotto. As the fuzzing
continued, coverage-increasing test cases were seldom discov-
ered, stabilizing the throughput. Still, Agamotto’s throughput
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Figure 9: Syzkaller-USB fuzzing throughput (execs/second) measured every 10 minutes for 3 hours.

Table 3: Checkpoint hit and guest execution time statistics.*

# Checkpoints # Executions Guest Exec. Time

Created Evicted Total Hit
(Rate) Total

Skipped
(Rate**)

RSI 87k 63k 201k 120k (59%) 90.3h 42.1h (31%)
MWIFIEX 19k 9.8k 236k 60k (25%) 28.0h 18.3h (39%)
AR5523 91k 71k 201k 116k (57%) 95.0h 38.6h (28%)
BTUSB 74k 59k 254k 145k (57%) 94.7h 47.1h (33%)
PN533 89k 65k 199k 116k (58%) 95.2h 39.7h (29%)
GO7007 105k 83k 201k 126k (62%) 95.1h 44.5h (31%)
SI470X 88k 67k 223k 130k (58%) 94.9h 43.6h (31%)
USX2Y 92k 76k 195k 90k (46%) 95.0h 29.4h (23%)

Geo. Mean 51.5% 30.9%

ATLANTIC 8.4k 0.6k 191k 43k (22%) 95.2h 18.5h (22%)
RTL8139 17.9k 6.5k 272k 128k (47%) 91.5h 78.9h (46%)
STMMAC 4.8k 0.3k 160k 23k (14%) 95.2h 15.9h (14%)
SNIC 4.0k 0.2k 153k 8.3k (5.4%) 95.3h 5.35h (5.3%)

Geo. Mean 17.0% 16.7%
* Median values from 3 independent runs.
** Skipped/(Skipped+Total)

was consistently higher than the baseline. Of the eight ana-
lyzed drivers only two experienced kernel crashes (MWIFIEX
and RSI). The performance improvement of the remaining tar-
gets is therefore solely due to the reduced average execution
time by using the checkpoints created by Agamotto.

Checkpoint Utilization and Effectiveness. We identify a
checkpoint hit as selecting a non-root checkpoint in executing
a test case, and a checkpoint miss as selecting the root check-
point. The hit rate refers to the portion of executions that had
a checkpoint hit among all executions. At each checkpoint
hit, a different amount of time is skipped depending on the

checkpoint used. Table 3 summarizes the hit rates, as well
as the amounts of the guest execution time skipped in each
fuzzing experiment. The hit rates and time skip rates vary
depending on the driver targeted in each experiment; on av-
erage, we achieved 51.5% of hit rate, saving 30.9% in guest
execution time.

To quantify the effectiveness of multiple checkpoints cre-
ated by Agamotto, we compare the throughput of Agamotto
and Agamotto-R; the throughput was improved by 38% on
average. The shape of the checkpoint tree used to achieve this
improvement is characterized in Figure 10. The depths of the
checkpoint nodes—i.e., the number of edges from the root
node—created and evicted by Agamotto ranged from 1 to
3, and the resulting checkpoint trees had an average branch-
ing factor of 175. This large branching factor reflects (i) how
Syzkaller explores the input space, and (ii) that our checkpoint
management policies favor checkpoint nodes of lower depths
in the checkpoint tree. In these checkpoint trees, the length of
the restoration path—i.e., the path from the node representing
the dirty system state after each test case execution to the node
being restored—ranged from 1 to 6, as shown in Figure 11.
The widely ranging lengths of the restoration paths mean that
different checkpoints created at various depths were actively
used for virtual machine restoration, which also supports the
utility of multiple checkpoints created by Agamotto.

Resilience to Kernel Panics. Agamotto found several
known bugs in RSI and MWIFIEX that were already found
and reported in earlier kernel versions by Syzbot [62], but left
unfixed. Agamotto found one unknown bug in MWIFIEX.
This bug was not found in the baseline (nor Syzbot), as it
was obscured by a known, shallow bug in MWIFIEX, which
repeatedly caused immediate kernel panics in the baseline. In
contrast, since Agamotto puts the fuzzer outside the virtual
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Figure 10: Distribution of the depths of all the (a) created
and (b) evicted checkpoints in the checkpoint trees, as well
as (c) the resulting branching factors of the trees, measured
in Syzkaller-USB fuzzing.

machine, Agamotto continuously generated and ran test cases
despite kernel panics, eventually getting past the known bug
to discover this unknown bug. Moreover, Agamotto maintains
the fuzzing throughput, even when it frequently hits these
bugs. In fuzzing MWIFIEX as well as RSI, where Agamotto
encountered bugs more than 6,000 and 200 times in every
10 minutes, their baseline throughput is significantly lower
than the ones observed in fuzzing other drivers. Agamotto, in
contrast, maintained a similar level of throughput across all
experiments.

Dirty Page Statistics. To show that our incremental check-
pointing and delta restore techniques are effective in practice,
we measured the number of pages that are restored and dirtied
in each iteration of the fuzzing loop. The results are shown
in Figure 12a and 12b. In our experiments, the number of
pages dirtied after executing a test case has an upperbound
near 8,000 pages. The number of restored pages is similarly
bounded, but often exceeds this limit when the modified pages
of the checkpoint being restored do not completely overlap
with the current set of dirty pages. This means that, as dis-
cussed in Section 5.1 and 5.2, the run-time overhead of virtual
machine checkpointing and restoration was greatly reduced.
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Figure 11: Distribution of the length of the restoration path in
Syzkaller-USB fuzzing.
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Figure 12: Distribution of the number of pages (a) restored
and (b) dirtied per iteration, and (c) the size of checkpoints in
Syzkaller-USB fuzzing.

Also, with the zero page optimization enabled, most of the
checkpoints were found to be smaller than 32MiB, as depicted
in Figure 12c.

5.4 AFL-PCI Fuzzing
Experimental Setup. To evaluate our device-virtualization-
based PCI fuzzer augmented with Agamotto, we fuzzed four
PCI drivers. We used AFL as the fuzzer this time, with its
fuzzing algorithm unmodified again; we note that AFL imple-
ments a different input generation and scheduling algorithm
than Syzkaller. With our own PCI fuzzer, we used a conserva-
tive baseline, where Agamotto was applied, but the creation of
non-root checkpoints was disabled. In effect, our PCI experi-
ments measured the effectiveness of fine-grained checkpoints
created by Agamotto in improving the performance of kernel
driver fuzzing.

To avoid introducing randomness through the seed input,
we started fuzzing with a single input as the seed, which con-
tains an eight-byte string—“Agamotto” in the ASCII format—
and without any dictionary entries. Randomness in the fuzzing
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Figure 13: AFL-PCI fuzzing throughput (execs/second) mea-
sured every 10 minutes for 3 hours.

algorithm was also controlled the same way as in the USB ex-
periments. We fuzzed each driver using 32 instances for three
hours. Since the driver’s interactions with a PCI device were
faster than what we observed in USB fuzzing, we reduced
the starting checkpoint interval to 50ms. We used 100ms as a
timeout value; we terminated each iteration 100ms after the
driver’s last access to the I/O mappings.

Fuzzing Throughput. Although AFL uses a fuzzing algo-
rithm different from Syzkaller’s, Agamotto again improved
the throughput by 21.6% on average, as shown in Figure 13.
We emphasize that neither AFL’s nor Syzkaller’s fuzzing al-
gorithm produces a sequence of test cases that are optimal
for Agamotto to accelerate. In particular, AFL’s fuzzing al-
gorithm is not tailored to fuzzing of event-driven systems
(e.g., it always mutates each test case in the corpus from the
first byte). Still, Agamotto consistently improved the fuzzing
throughput in all experiments, and has potential to improve
it further when the checkpoint management policies are opti-
mized together with other aspects of the fuzzing algorithm.

Path Coverage. Table 4 shows, in fuzzing each driver, the
maximum number of code paths discovered among all fuzzing
instances. Agamotto’s effectiveness is far more pronounced
when the underlying fuzzer keeps discovering new, deeper
code paths; the more checkpoints created by Agamotto in
deep code paths, the more time it saves. In fuzzing AT-
LANTIC, RTL8139, and STMMAC, Agamotto covered sub-
stantially more paths than the baseline did in the same amount
of time; by executing 32.8% more test cases on average, Ag-
amotto covered 47.8% more paths. In fuzzing SNIC, however,
AFL only discovered only a limited number of paths. Still,
Agamotto did execute 6.2% more test cases than the baseline.

Table 4: Number of executions and discovered paths in AFL-
PCI fuzzing.*

# Executions # Paths Discovered

Agamotto-R Agamotto
(Increase) Agamotto-R Agamotto

(Increase)

ATLANTIC 147k 191k (30.1%) 112 142 (18.7%)
RTL8139 152k 259k (70.5%) 71 153 (115.4%)
STMMAC 137k 160k (16.6%) 87 121 (50.5%)
SNIC 144k 153k (6.2%) 8 8 (0%)

* Median values from 3 independent runs.

6 Discussion

Checkpoint-Aware Fuzzing Algorithm. Our checkpoint-
ing primitive introduces a new dimension in the optimization
space of fuzzing kernel drivers or other event-driven, reactive
systems in general. We conservatively evaluated Agamotto
without modifying the underlying fuzzing algorithm; that
is, we only leveraged spatial and temporal localities that are
already present in the fuzzing algorithm of state-of-the-art
fuzzers. Thus, various aspects of the fuzzing algorithm such
as input selection and mutation strategies can be revisited.
We intend to explore checkpoint-aware or -oblivious fuzzing
algorithms as future work.

Supporting Other OSs. Agamotto itself does not require
any modification to the OS. Agamotto interacts with the
virtual machine using standard virtual machine introspec-
tion mechanisms—hypercalls, VIRTIO, and shared mem-
ory devices—which are also readily available in closed-
source, proprietary operating systems such as Windows [45].
Syzkaller’s USB fuzzing component requires kernel modifi-
cations, in order to redirect a USB driver’s I/O requests to
user space via the system call interface. Our modifications to
Syzkaller only pertain to its user-space components. Due to
its OS-independence Agamotto can be used in conjunction
with general kernel fuzzing approaches [53, 54].

Fuzzing the System Call Interface. OS kernels have an
event-driven system that processes incoming inputs from
peripherals and user-space programs. Agamotto can make
fuzzing the system call attack surface more efficient. The de-
gree to which system call fuzzing can benefit from Agamotto,
however, can vary depending on the kernel subsystem being
targeted. Kernel subsystems that pose similar challenges to
those that Agamotto addresses may benefit more than others.
Device drivers themselves can also be tested more thoroughly
by simultaneously fuzzing both their system call (e.g., ioctl)
and peripheral attack surface. A local attacker having access
to both of these attack surfaces can compromise the OS kernel
by exploiting vulnerabilities found by such two-dimensional
fuzzing. Prior work showed that two-dimensional fuzzing is
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effective at finding bugs in file systems [64]. The same idea
can be applied to device drivers, and Agamotto can facilitate
an in-depth exploration of their two-dimensional input space.

Fuzzing Other Event-Driven Systems. Virtualization
techniques have also been used for running and fuzzing IoT
firmware [17, 22, 25, 66]. Although this paper focuses on
fuzzing kernel-mode device drivers running in a full-fledged
OS kernel, Agamotto’s core techniques can be applied to
fuzzing IoT firmware running in a virtual machine. Event-
driven systems running in user mode can also benefit from
Agamotto. For example, when fuzzing a multi-process sys-
tem where processes interact with each other, Agamotto, as it
transparently captures the states of all running processes at
the virtual machine level, can facilitate a deep exploration of
the state space of such systems as a whole.

Further Optimizations. In a multi-instance fuzzing setup,
one can deduplicate checkpoints across fuzzing instances via
shared memory. Deduplication allows Agamotto to store more
checkpoints in memory, which in turn may prevent thrash-
ing and result in a higher hit rate of checkpoints. One can
also explore different checkpointing and eviction policies that
are either generic (e.g., the ones we presented), or tailored to
certain classes of fuzzing algorithms. Virtual machine intro-
spection primitives can also be further optimized via software
and hardware techniques [4].

Limitations. Syzkaller supports a multi-proc mode, which
runs multiple instances of a fuzzer within a single guest OS,
increasing the fuzzing throughput. Agamotto does not support
this mode currently, but we believe that this mode can be
supported with a finer-grained checkpointing mechanism, e.g.,
via finer-grained virtual machine introspection or in-kernel
checkpoints with kernel modifications [30]. We intend to
explore this direction as future work. We emphasize, however,
that other aspects of Agamotto, e.g., checkpoint management
and optimization techniques, would still apply even with such
finer-grained checkpointing mechanism. We also emphasize
that our choice of checkpointing at the virtual machine level
allows Agamotto to support other VM-based kernel driver
fuzzers as we demonstrated with PCI-AFL experiments.

7 Related Work

Peripheral Attacks and Defenses. Malicious peripherals
have long been a threat to OS kernel security. A well-known
example are malicious USB devices, which often appear as
benign USB flash drives [42]. Peripherals other than USB
devices, even non-pluggable ones hardwired in an SoC, can
also potentially turn malicious via peripheral attacks [9, 11].
Many defenses against malicious peripherals have been pro-
posed [5, 13, 58–60], though securing the peripheral attack

surface is still an ongoing effort [39]. With the performance
improvements that Agamotto provides, the exploration of the
peripheral attack surface via fuzzing can be made more effi-
cient, reducing the time for discovering new vulnerabilities.

Kernel Fuzzing. Many fuzzers exist that find vulnerabili-
ties in kernel subsystems [2, 3, 18, 24, 26, 27, 29, 32, 40, 46,
48, 53–55, 57, 64]. A line of work used various snapshot tech-
niques [2, 64], which we already discussed in detail in Sec-
tion 2. Other lines of work generally focused on the fuzzing
algorithm, e.g., generating coverage-increasing test cases; Ag-
amotto complements these efforts, as it transparently creates
and uses checkpoints to save time in executing the gener-
ated test cases. Hybrid fuzzing, a combination of symbolic
execution and fuzzing, has also been used to find bugs in
OS kernels [33, 36, 49, 51]. Since both Agamotto and sym-
bolic execution systems maintain different forms of snapshots,
by devising switching mechanisms between the two forms
of snapshots, Agamotto could also augment hybrid kernel
fuzzing.

8 Conclusion

We presented Agamotto, a system which transparently im-
proves the performance of kernel driver fuzzers using a highly-
optimized dynamic virtual machine checkpointing primitive.
During a fuzzing run, Agamotto automatically checkpoints
the virtual machine at fine-grained intervals and restores the
virtual machine from these checkpoints allowing it to skip re-
boots on kernel panics and to “fast forward” through the time-
consuming parts of test cases that are repeatedly executed.
We evaluated Agamotto in various USB and PCI fuzzing
scenarios with two different fuzzers, and demonstrated the
performance benefit that Agamotto can provide, as well as its
adaptability.
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