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Abstract

Today’s proliferation of powerful facial recognition sys-
tems poses a real threat to personal privacy. As Clearview.ai

demonstrated, anyone can canvas the Internet for data and
train highly accurate facial recognition models of individu-
als without their knowledge. We need tools to protect our-
selves from potential misuses of unauthorized facial recog-
nition systems. Unfortunately, no practical or effective solu-
tions exist.

In this paper, we propose Fawkes, a system that helps
individuals inoculate their images against unauthorized fa-
cial recognition models. Fawkes achieves this by helping
users add imperceptible pixel-level changes (we call them
“cloaks”) to their own photos before releasing them. When
used to train facial recognition models, these “cloaked” im-
ages produce functional models that consistently cause nor-
mal images of the user to be misidentified. We experimen-
tally demonstrate that Fawkes provides 95+% protection
against user recognition regardless of how trackers train their
models. Even when clean, uncloaked images are “leaked” to
the tracker and used for training, Fawkes can still maintain
an 80+% protection success rate. We achieve 100% success
in experiments against today’s state-of-the-art facial recogni-
tion services. Finally, we show that Fawkes is robust against
a variety of countermeasures that try to detect or disrupt im-
age cloaks.

1 Introduction

Today’s proliferation of powerful facial recognition models
poses a real threat to personal privacy. Facial recognition sys-
tems are scanning millions of citizens in both the UK and
China without explicit consent [33, 41]. By next year, 100%
of international travelers will be required to submit to fa-
cial recognition systems in top-20 US airports [38]. Perhaps
more importantly, anyone with moderate resources can now
canvas the Internet and build highly accurate facial recogni-
tion models of us without our knowledge or awareness, e.g.

MegaFace [21]. Kashmir Hill from the New York Times re-
cently reported on Clearview.ai, a private company that col-
lected more than 3 billion online photos and trained a mas-
sive model capable of recognizing millions of citizens, all
without knowledge or consent [20].

Opportunities for misuse of this technology are numerous
and potentially disastrous. Anywhere we go, we can be iden-
tified at any time through street cameras, video doorbells, se-
curity cameras, and personal cellphones. Stalkers can find
out our identity and social media profiles with a single snap-
shot [47]. Stores can associate our precise in-store shopping
behavior with online ads and browsing profiles [31]. Identity
thieves can easily identify (and perhaps gain access to) our
personal accounts [13].

We believe that private citizens need tools to protect them-
selves from being identified by unauthorized facial recogni-
tion models. Unfortunately, previous work in this space is
sparse and limited in both practicality and efficacy. Some
have proposed distorting images to make them unrecogniz-
able and thus avoiding facial recognition [27, 52, 64]. Oth-
ers produce adversarial patches in the form of bright patterns
printed on sweatshirts or signs, which prevent facial recogni-
tion algorithms from even registering their wearer as a per-
son [55, 65]. Finally, given access to an image classification
model, “clean-label poison attacks” can cause the model to
misidentify a single, preselected image [42, 71].

Instead, we propose Fawkes, a system that helps individ-
uals to inoculate their images against unauthorized facial
recognition models at any time without significantly dis-
torting their own photos, or wearing conspicuous patches.
Fawkes achieves this by helping users adding imperceptible
pixel-level changes (“cloaks”) to their own photos. For ex-
ample, a user who wants to share content (e.g. photos) on
social media or the public web can add small, imperceptible
alterations to their photos before uploading them. If collected
by a third-party “tracker” and used to train a facial recog-
nition model to recognize the user, these “cloaked” images
would produce functional models that consistently misiden-
tify them.

Our distortion or “cloaking” algorithm takes the user’s
photos and computes minimal perturbations that shift them
significantly in the feature space of a facial recognition
model (using real or synthetic images of a third party as a
landmark). Any facial recognition model trained using these
images of the user learns an altered set of “features” of what
makes them look like them. When presented with a clean, un-
cloaked image of the user, e.g. photos from a camera phone
or streetlight camera, the model finds no labels associated
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with the user in the feature space near the image, and classi-
fies the photo to another label (identity) nearby in the feature
space.

Our exploration of Fawkes produces several key findings:

• We can produce significant alterations to images’ feature
space representations using perturbations imperceptible to
the naked eye (DSSIM ≤ 0.007).

• Regardless of how the tracker trains its model (via transfer
learning or from scratch), image cloaking provides 95+%
protection against user recognition (adversarial training
techniques help ensure cloaks transfer to tracker models).

• Experiments show 100% success against state-of-the-art
facial recognition services from Microsoft (Azure Face
API), Amazon (Rekognition), and Face++. We first “share”
our own (cloaked) photos as training data to each service,
then apply the resulting models to uncloaked test images
of the same person.

• In challenging scenarios where clean, uncloaked images
are “leaked” to the tracker and used for training, we show
how a single Sybil identity can boost privacy protection.
This results in 80+% success in avoiding identification
even when half of the training images are uncloaked.

• Finally, we consider a tracker who is aware of our image
cloaking techniques and evaluate the efficacy of potential
countermeasures. We show that image cloaks are robust
(maintain high protection rates against) to a variety of
mechanisms for both cloak disruption and cloak detection.

2 Background and Related Work

To protect user privacy, our image cloaking techniques lever-
age and extend work broadly defined as poisoning attacks
in machine learning. Here, we set the context by discussing
prior efforts to help users evade facial recognition models.
We then discuss relevant data poisoning attacks, followed
by related work on privacy-preserving machine learning and
techniques to train facial recognition models.

Note that to protect user privacy from unauthorized deep
learning models, we employ attacks against ML models. In
this scenario, users are the “attackers,” and third-party track-

ers running unauthorized tracking are the “targets.”

2.1 Protecting Privacy via Evasion Attacks

Privacy advocates have considered the problem of protect-
ing individuals from facial recognition systems, generally
by making images difficult for a facial recognition model to
recognize. Some rely on creating adversarial examples, in-
puts to the model designed to cause misclassification [54].
These attacks have since been proven possible “in the wild,”
Sharif et al. [44] create specially printed glasses that cause
the wearer to be misidentified. Komkov and Petiushko [24]

showed that carefully computed adversarial stickers on a hat
can reduce its wearer’s likelihood of being recognized. Oth-
ers propose “adversarial patches” that target “person identi-
fication” models, making it difficult for models to recognize
the wearer as a person in an image [55, 65].

All of these approaches share two limitations. First, they
require the user to wear fairly obvious and conspicuous ac-
cessories (hats, glasses, sweaters) that are impractical for nor-
mal use. Second, in order to evade tracking, they require full

and unrestricted access (white box access) to the precise
model tracking them. Thus they are easily broken (and user
privacy compromised) by any tracker that updates its model.

Another line of work seeks to edit facial images so that
human-like characteristics are preserved but facial recogni-
tion model accuracy is significantly reduced. Methods used
include k-means facial averaging [35], facial inpainting [51],
and GAN-based face editing [27,52,64]. Since these dramat-
ically alter the user’s face in her photos, we consider them
impractical for protecting shared content.

2.2 Protecting Privacy via Poisoning Attacks

An alternative to evading models is to disrupt their training.
This approach leverages “data poisoning attacks” against
deep learning models. These attacks affect deep learning
models by modifying the initial data used to train them, usu-
ally by adding a set of samples S and associated labels LS.
Previous work has used data poisoning to induce unexpected
behaviors in trained DNNs [66]. In this section, we discuss
two data poisoning attacks related to our work, and identify
their key limitations when used to protect user privacy.
Clean Label Attacks. A clean-label poisoning attack in-
jects “correctly” labeled poison images into training data,
causing a model trained on this data to misclassify a specific
image of interest [42, 71]. What distinguishes clean-label at-
tacks from normal poisoning attacks is that all image labels
remain unchanged during the poisoning process – only the
content of the poisoned images changes.

Our work (Fawkes) works with similar constraints. Our ac-
tion to affect or disrupt a model is limited to altering a group
of images with a correct label, i.e. a user can alter her images
but cannot claim these are images of someone else.

Current clean label attacks cannot address the privacy
problem because of three factors. First, they only cause mis-
classification on a single, preselected image, whereas user
privacy protection requires the misclassification of any cur-
rent or future image of the protected user (i.e. an entire model
class). Second, clean label attacks do not transfer well to dif-
ferent models, especially models trained from scratch. Even
between models trained on the same data, the attack only
transfers with 30% success rate [71]. Third, clean label at-
tacks are easily detectable through anomaly detection in the
feature space [19].
Model Corruption Attacks. Other recent work proposes
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Figure 1: Our proposed Fawkes system that protects user privacy by cloaking their online photos. (Left) A user U applies
cloaking algorithm (given a feature extractor Φ and images from some target T ) to generate cloaked versions of U’s photos,
each with a small perturbation unnoticeable to the human eye. (Right) A tracker crawls the cloaked images from online sources,
and uses them to train an (unauthorized) model to recognize and track U . When it comes to classifying new (uncloaked) images
of U , the tracker’s model misclassifies them to someone not U . Note that T does not have to exist in the tracker’s model.

techniques to modify images such that they degrade the ac-
curacy of a model trained on them [45]. The goal is to spread
these poisoned images in order to discourage unauthorized
data collection and model training. We note that Fawkes’
goals are to mislead rather than frustrate. Simply corrupting
data of a user’s class may inadvertently inform the tracker of
the user’s evasion attempts and lead to more advanced coun-
termeasures by the tracker. Finally, [45] only has a 50% suc-
cess rate in protecting a user from being recognized.

2.3 Other Related Work

Privacy-Preserving Machine Learning. Recent work has
shown that ML models can memorize (and subsequently
leak) parts of their training data [48]. This can be exploited
to expose private details about members of the training
dataset [17]. These attacks have spurred a push towards dif-

ferentially private model training [6], which uses techniques
from the field of differential privacy [15] to protect sensi-
tive characteristics of training data. We note these techniques
imply a trusted model trainer and are ineffective against an
unauthorized model trainer.

Feature Extractors & Transfer Learning. Transfer learn-
ing uses existing pretrained models as a basis for quickly
training models for customized classification tasks, using
less training data. Today, it is commonly used to deploy com-
plex ML models (e.g. facial recognition or image segmenta-
tion [70]) at reasonable training costs.

In transfer learning, the knowledge of a pre-trained fea-
ture extractor Φ is passed on to a new model Fθ. Typically,
a model Fθ can be created by appending a few additional
layers to Φ and only training those new layers. The origi-
nal layers that composed Φ will remain unmodified. As such,
pre-existing knowledge “learned” by Φ is passed on to the
model Fθ and directly influences its classification outcomes.
Finally, transfer learning is most effective when the feature
extractor and model are trained on similar datasets. For ex-

ample, a facial recognition model trained on faces extracted
from YouTube videos might serve well as a feature extractor
for a model designed to recognize celebrities in magazines.

Finally, the concept of protecting individual privacy
against invasive technologies extends beyond the image do-
main. Recent work [12] proposes wearable devices that re-
store personal agency using digital jammers to prevent audio
eavesdropping by ubiquitous digital home assistants.

3 Protecting Privacy via Cloaking

We propose Fawkes, a system designed to help protect the pri-
vacy of a user against unauthorized facial recognition models
trained by a third-party tracker on the user’s images. Fawkes
achieves this by adding subtle perturbations (“cloaks”) to the
user’s images before sharing them. Facial recognition mod-
els trained on cloaked images will have a distorted view of
the user in the “feature space,” i.e. the model’s internal un-
derstanding of what makes the user unique. Thus the models
cannot recognize real (uncloaked) images of the user, and in-
stead, misclassify them as someone else.

In this section, we first describe the threat model and as-
sumptions for both users and trackers. We then present the
intuition behind cloaking and our methodology to generate
cloaks. Finally, we discuss why cloaking by individuals is
effective against unauthorized facial recognition models.

3.1 Assumptions and Threat Model

User. The user’s goal is to share their photos online without
unknowingly helping third party trackers build facial recog-
nition models that can recognize them. Users protect them-
selves by adding imperceptible perturbations (“cloaks”) to
their photos before sharing them. This is illustrated in the
left part of Figure 1, where a cloak is added to this user’s
photos before they are uploaded.

The design goals for these cloaks are:
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• cloaks should be imperceptible and not impact normal
use of the image;

• when classifying normal, uncloaked images, models
trained on cloaked images should recognize the underly-
ing person with low accuracy.

We assume the user has access to moderate computing re-
sources (e.g., a personal laptop) and applies cloaking to their
own images locally. We also assume the user has access
to some feature extractor, e.g. a generic facial recognition
model, represented as Φ in Figure 1. Cloaking is simplified
if the user has the same Φ as the tracker. We begin with this
common assumption (also used by prior work [42, 59, 71]),
since only a few large-scale face recognition models are
available in the wild. Later in §3.4, we relax this assumption
and show how our design maintains the above properties.

We initially consider the case where the user has the abil-
ity to apply cloaking to all their photos to be shared, thus the
tracker can only collect cloaked photos of the user. Later in
§7, we explore a scenario where a stronger tracker has ob-
tained access to some number of their uncloaked images.
Tracker/Model Trainer. We assume that the tracker (the
entity training unauthorized models) is a third party without
direct access to user’s personal photos (i.e. not Facebook or
Flickr). The tracker could be a company like Clearview.ai, a
government entity, or even an individual. The tracker has sig-
nificant computational resources. They can either use trans-
fer learning to simplify their model training process (lever-
aging existing feature extractors), or train their model com-
pletely from scratch.

We also assume the tracker’s primary goal is to build a
powerful model to track many users rather than targeting a
single specific person1. The tracker’s primary data source is
a collection of public images of users obtained via web scrap-
ing. We also consider scenarios where they are able to obtain
some number of uncloaked images from other sources (§7).
Real World Limitations. Privacy benefits of Fawkes rely
on users applying our cloaking technique to the majority of
images of their likeness before posting online. In practice,
however, users are unlikely to control all images of them-
selves, such as photos shared online by friends and family,
media, employer or government websites. While it is unclear
how easy or challenging it will be for trackers to associate
these images with the identity of the user, a tracker who ob-
tains a large number of uncloaked images of the user can
compromise the effectiveness of Fawkes.

Therefore, Fawkes is most effective when used in conjunc-
tion with other privacy-enhancing steps that minimize the on-
line availability of a user’s uncloaked images. For example,
users can curate their social media presence and remove tags
of their names applied to group photos on Facebook or Insta-
gram. Users can also leverage privacy laws such as “Right

1Tracking a specific person can be easily accomplished through easier,
offline methods, e.g. a private investigator who follows the target user, and
is beyond the scope of our work.

to be Forgotten” to remove and untag online content related
to themselves. The online curation of personal images is a
challenging problem, and we leave the study of minimizing
online image footprints to future work.

3.2 Overview and Intuition

DNN models are trained to identify and extract (often hid-
den) features in input data and use them to perform classifi-
cation. Yet their ability to identify features is easily disrupted
by data poisoning attacks during model training, where small
perturbations on training data with a particular label (l) can
shift the model’s view of what features uniquely identify
l [42,71]. Our work leverages this property to cause misclas-
sification of any existing or future image of a single class,
providing one solution to the challenging problem of protect-
ing personal privacy against the unchecked spread of facial
recognition models.

Intuitively, our goal is to protect a user’s privacy by mod-
ifying their photos in small and imperceptible ways before
posting them online, such that a facial recognition model
trained on them learns the wrong features about what makes
the user look like the user. The model thinks it is successful,
because it correctly recognizes its sample of (modified) im-
ages of the user. However, when unaltered images of the user,
e.g. from a surveillance video, are fed into the model, the
model does not detect the features it associates with the user.
Instead, it identifies someone else as the person in the video.
By simply modifying their online photos, the user success-
fully prevents unauthorized trackers and their DNN models
from recognizing their true face.

3.3 Computing Cloak Perturbations

But how do we determine what perturbations (we call them
“cloaks”) to apply to Alice’s photos? An effective cloak
would teach a face recognition model to associate Alice with
erroneous features that are quite different from real features
defining Alice. Intuitively, the more dissimilar or distinct
these erroneous features are from the real Alice, the less
likely the model will be able to recognize the real Alice.

In the following, we describe our methodology for com-
puting cloaks for each specific user, with the goal of making
the features learned from cloaked photos highly dissimilar
from those learned from original (uncloaked) photos.
Notation. Our discussion will use the following notations.

• x: Alice’s image (uncloaked)

• xT : target image (image from another class/user T ) used
to generate cloak for Alice

• δ(x,xT ): cloak computed for Alice’s image x based on an
image xT from label T

• x⊕ δ(x,xT ): cloaked version of Alice’s image x

• Φ: Feature extractor used by facial recognition model
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• Φ(x): Feature vector (or feature representation) extracted
from an input x

Cloaking to Maximize Feature Deviation. Given each
photo (x) of Alice to be shared online, our ideal cloaking de-
sign modifies x by adding a cloak perturbation δ(x,xT ) to x

that maximize changes in x’s feature representation:

maxδ Dist (Φ(x),Φ(x⊕ δ(x,xT ))) , (1)

subject to |δ(x,xT )|< ρ,

where Dist(.) computes the distance of two feature vectors,
|δ| measures the perceptual perturbation caused by cloaking,
and ρ is the perceptual perturbation budget.

To guide the search for the cloak perturbation in eq (1), we
use another image xT from a different user class (T ). Since
the feature space Φ is highly complex, xT serves as a land-
mark, enabling fast and efficient search for the input pertur-
bation that leads to large changes in feature representation.
Ideally, T should be very dissimilar from Alice in the feature
space. We illustrate this in Figure 1, where we use Patrick
Dempsey (a male actress) as a dissimilar target T for the orig-
inal user (female actor Gwyneth Paltrow).

We note that our design does not assume that the cloak tar-
get (T ) and the associated xT are used by any tracker’s face
recognition model. In fact, any user whose feature representa-
tion is sufficiently different from Alice’s would suffice (see
§3.4). Alice can easily check for such dissimilarity by run-
ning the feature extractor Φ on other users’ online photos.
Later in §4 we will present the detailed algorithm for choos-
ing the target user T from public datasets of facial images.
Image-specific Cloaking. When creating cloaks for her
photos, Alice will produce image-specific cloaks, i.e. δ(x,xT )
is image dependent. Specifically, Alice will pair each original
image x with a target image xT of class T . In our current im-
plementation, the search for δ(x,xT ) replaces the ideal opti-
mization defined by eq. (1) with the following optimization:

minδ Dist (Φ(xT ),Φ(x⊕ δ(x,xT ))) , (2)

subject to |δ(x,xT )|< ρ.

Here we search for the cloak for x that shifts its feature
representation closely towards xT . This new form of opti-
mization also prevents the system from generating extreme
Φ(x⊕δ(x,xT )) values that can be easily detected by trackers
using anomaly detection.

Finally, our image-specific cloak optimization will create
different cloak patterns among Alice’s images. This “diver-
sity” makes it hard for trackers to detect and remove cloaks.

3.4 Cloaking Effectiveness & Transferability

Now a user (Alice) can produce cloaked images whose fea-
ture representation is dissimilar from her own but similar to
that of a target user T . But does this translate into the desired

x1

x2 T
A

U

Without Cloak With Cloak

Decision Boundary

(a) (b)

B

x1

x2
A

B

T O

Figure 2: The intuition for why a tracker’s model trained on
U’s cloaked photos will misclassify U’s original photos, visu-
alized on a simplified 2D feature space with four user classes
A, B, U (aka Alice), T . (a) decision boundaries of the model
trained on U’s uncloaked photos. (b) decision boundaries
when trained on U’s cloaked photos (with target T ).

misclassification behavior in the tracker model? Clearly, if T

is a class in the tracker model, Alice’s original (uncloaked)
images will not be classified as Alice. But under the more
likely scenario where T is not in the tracker model, does
cloaking still lead to misclassification?

We believe the answer is yes. Our hypothesis is that as
long as the feature representations of Alice’s cloaked and un-
cloaked images are sufficiently different, the tracker’s model
will not classify them as the same class. This is because there
will be another user class (e.g. B) in the tracker model, whose
feature representation is more similar to Φ(x) (true Alice)
than Φ(x⊕δ) (Alice learned by the model). Thus, the model
will classify Alice’s normal images as B.

We illustrate this in Figure 2 using a simplified 2D visual-
ization of the feature space. There are 4 classes (A, B, U aka
Alice, and T ) that a tracker wishes to distinguish. The two fig-
ures show the tracker model’s decision boundary when U’s
training data is uncloaked and cloaked, respectively. In Fig-
ure 2(a), the model will learn U’s true feature representation
as the bottom right corner. In Figure 2(b), U uses T as the
cloak target, and the resulting tracker model will learn U’s
feature representation Φ(x⊕δ) as green triangles near T (top
left corner). This means that the area corresponding to U’s
original feature representation Φ(x) will be classified as B.
More importantly, this (mis)classification will occur whether
or not T is a class in the tracker’s model.

Our above discussion assumes the tracker’s model con-
tains a class whose feature representation is more similar to
the user’s original feature representation than her cloaked fea-
ture representation. This is a reasonable assumption when
the tracker’s model targets many users (e.g. 1,000) rather
than a few users (e.g. 2). Later in §5 we confirm that cloaking
is highly effective against multiple facial recognition models
with anywhere from 65 to 10,575 classes.

Transferability. Our above discussion also assumes that
the user has the same feature extractor Φ as is used to train
the tracker model. Under the more general scenario, the ef-
fectiveness of cloaking against any tracker models relies on
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the transferability effect, the property that models trained
for similar tasks share similar properties and vulnerabilities,
even when they were trained on different architectures and
different training data [14, 39, 50, 70].

This transferability property suggests that cloaking should
still be effective even if the tracker performs transfer learn-
ing using a different feature extractor or trains their model
from scratch. Because the user’s and tracker’s feature extrac-
tors/models are designed for similar tasks (i.e. facial recog-
nition), cloaks should be effective regardless of the tracker’s
training method. Later, we empirically evaluate cloaking suc-
cess rate when trackers use different feature extractors (§5.3)
or train models from scratch (§5.4). In all scenarios, cloaking
is highly effective (> 95% protection rate).

4 The Fawkes Image Cloaking System

We now present the detailed design of Fawkes, a practical
image cloaking system that allows users to evade identifica-
tion by unauthorized facial recognition models. Fawkes uses
three steps to help a user modify and publish her online pho-
tos.

Given a user U , Fawkes takes as input the set of U’s photos
to be shared online XU, the (generic) feature extractor Φ, and
the cloak perturbation budget ρ.
Step 1: Choosing a Target Class T . First, Fawkes ex-
amines a publicly available dataset that contains numerous
groups of images, each identified with a specific class label,
e.g. Bob, Carl, Diana. Fawkes randomly picks K candidate
target classes and their images from this public dataset and
uses the feature extractor Φ to calculate Ck, the centroid of
the feature space for each class k = 1..K. Fawkes picks as the
target class T the class in the K candidate set whose feature
representation centroid is most dissimilar from the feature
representations of all images in XU, i.e.

T = argmax
k=1..K

min
x∈XU

Dist(Φ(x),Ck). (3)

We use L2 as the distance function in feature space, Dist(.).
Step 2: Computing Per-image Cloaks. Let XT represent
the set of target images available to user U . For each image
of user U , x ∈XU, Fawkes randomly picks an image xT ∈ XT,
and computes a cloak δ(x,xT ) for x, following the optimiza-
tion defined by eq. (2), subject to |δ(x,xT )|< ρ.

In our implementation, |δ(x,xT )| is calculated using the
DSSIM (Structural Dis-Similarity Index) [61, 62]. Differ-
ent from the Lp distance used in previous work [9, 25, 43],
DSSIM has gained popularity as a measure of user-perceived
image distortion [23,28,59]. Bounding cloak generation with
this metric ensures that cloaked versions of images are visu-
ally similar to the originals.

We apply the penalty method [37] to reformat and solve
the optimization in eq.(2) as follows:

min
δ

Dist (Φ(xT ),Φ(x⊕ δ(x,xT )))+λ ·max(|δ(x,xT )|−ρ,0)

Here λ controls the impact of the input perturbation caused
by cloaking. When λ→∞, the cloaked image is visually iden-
tical to the original image. Finally, to ensure the input pixel
intensity remains in the correct range ([0,255]), we transform
the intensity values into tanh space as proposed in previous
work [10].
Step 3: Limiting Content. Now the user U has created
the set of cloaked images that she can post and share on-
line. However, the user must be careful to ensure that no
uncloaked images are shared online and associated with her
identity. Any images shared by friends and labeled or tagged
with her name would provide uncloaked training data for a
tracker model. Fortunately, a user can proactively “untag”
herself on most photo sharing sites.

Even so, a third party might be able to restore those la-
bels and re-identify her in those photos using friendlist inter-
section attacks [63]. Thus, in §7, we expand the design of
Fawkes to address trackers who are able to obtain uncloaked
images in addition to cloaked images of the user.

5 System Evaluation

In this section, we evaluate the effectiveness of Fawkes. We
first describe the datasets, models, and experimental config-
urations used in our tests. We then present results for cloak-
ing in three different scenarios: 1) the user produces cloaks
using the same feature extractor as the tracker; 2) the user
and tracker use different feature extractors; and 3) the tracker
trains models from scratch (no feature extractor).

Our key findings are: cloaking is highly effective when
users share a feature extractor with the tracker; efficacy could
drop when feature extractors are different, but can be restored
to near perfection by making the user’s feature extractor ro-
bust (via adversarial training); and, similarly, cloaks gener-
ated on robust feature extractors work well even when track-
ers train models from scratch.

5.1 Experiment Setup

Our experiments require two components. First, we need fea-
ture extractors that form the basis of facial recognition mod-
els for both the user’s cloaking purposes and the tracker’s
model training. Second, we need datasets that emulate a set
of user images scraped by the tracker and enable us to evalu-
ate the impact of cloaking.
Feature Extractors. There are few publically available,
large-scale facial recognition models. Thus we train feature
extractors using two large (≥ 500K images) datasets on dif-
ferent model architectures (details in Table 2).

• VGGFace2 contains 3.14M images of 8,631 subjects down-
loaded from Google Image Search [7].

• WebFace has 500,000 images of faces covering roughly
10,000 subjects collected from the Internet [69].
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Teacher Dataset Model Architecture Abbreviation
Teacher Testing

Accuracy

Student Testing Accuracy

PubFig FaceScrub

WebFace InceptionResNet Web-Incept 74% 96% 92%
WebFace DenseNet Web-Dense 76% 96% 94%
VGGFace2 InceptionResNet VGG2-Incept 81% 95% 90%
VGGFace2 DenseNet VGG2-Dense 82% 96% 92%

Table 1: The four feature extractors used in our evaluation, their classification efficacy and those of their student models.

Dataset # of Labels Input Size # of Training Images

PubFig 65 224× 224× 3 5,850
FaceScrub 344 224× 224× 3 37,905
WebFace 10,575 224× 224× 3 475,137
VGGFace2 8,631 224× 224× 3 3,141,890

Table 2: Datasets emulating user images in experiments.

Using these two datasets, we build four feature extrac-
tors, two from each. We use two different model architec-
tures: a) DenseNet-121 [22], a 121 layer neural network
with 7M parameters, and b) InceptionResNet V2 [53], a
572 layer deep neural network with over 54M parameters.
Our trained models have comparable accuracy with previous
work [7, 34, 59] and perform well in transfer learning sce-
narios. For clarity, we abbreviate feature extractors based on
their dataset/architecture pair. Table 1 lists the classification
accuracy for our feature extractors and student models.
Tracker’s Training Datasets. Under the scenario where
the tracker trains its facial recognition model from scratch
(§5.4), we assume they will use the above two large datasets
(VGGFace2, WebFace). Under the scenario where they apply
transfer learning (§5.2 and §5.3), the tracker uses the follow-
ing two smaller datasets (more details in Table 2).

• PubFig contains 5,850 training images and 650 testing
images of 65 public figures2 [5].

• FaceScrub contains 100,000 images of 530 public figures
on the Internet [36]3.

To perform transfer learning, the tracker adds a softmax layer
at the end of the feature extractor (see §2.3), and fine-tunes
the added layer using the above dataset.
Cloaking Configuration. In our experiments, we ran-
domly choose a user class U in the tracker’s model, e.g. a
random user in PubFig, to be the user seeking protection.
We then apply the target selection algorithm described in
§4 to select a target class T from a small subset of users in
VGGFace2 and WebFace. Here we ensure that T is not a user
class in the tracker’s model.

For each given U and T pair, we pair each image x of U

with an image xT from T , and compute the cloak for x. For
this we run the Adam optimizer for 1000 iterations with a
learning rate of 0.5.

2We exclude 18 celebrities also used in the feature extractor datasets.
3We could only download 60,882 images for 530 people, as some URLs

were removed. Similarly, prior work [68] only retrieved 48,579 images.

As discussed earlier, we evaluate our cloaking under three
scenarios, U and tracker model sharing the same feature
extractor (§5.2), the two using different feature extractors
(§5.3), and the tracker training model from scratch without
using any pre-defined feature extractor (§5.4).
Evaluation Metrics. In each scenario, we evaluate cloak
performance using two metrics: protection success rate,
which is the tracker model’s misclassification rate for clean
(uncloaked) images of U , and normal accuracy, which is
the overall classification accuracy of the tracker’s model on
users beside U . When needed, we indicate the configura-
tion of user/tracker feature extractors using the notation <en-
tity>:<feature extractor>.

5.2 User/Tracker Sharing a Feature Extractor

We start from the simple case where the user uses the same
feature extractor as the tracker to generate cloaks. We ran-
domly select a label from PubFig or FaceScrub to be the
Fawkes user U . We then compute “cloaks” for a subset of
U’s images, using each of the four feature extractors in Ta-
ble 1. On the tracker side, we perform transfer learning on the
same feature extractor (with cloaked images of U) to build a
model that recognizes U . Finally, we evaluate whether the
tracker model can correctly identify other clean images of U

it has not seen before.
Results show that cloaking offers perfect protection, i.e. U

is always misclassified as someone else, for all four feature
extractors and under the perturbation budget ρ = 0.007. To
explore the impact of ρ, Figure 4 plots protection success
rate vs. ρ when the tracker runs on the FaceScrub dataset.
Fawkes achieves 100% protection success rate when ρ >

0.005. Figure 5 shows original and cloaked images, demon-
strating that cloaking does not visually distort the original
image. Even when ρ = 0.007, the perturbation is barely de-
tectable by the naked eye on a full size, color image. For cali-
bration, note that prior work [28] claims much higher DSSIM
values (up to 0.2) are imperceptible to the human eye. Finally,
the average L2 norm of our cloaks is 5.44, which is smaller
than that of perturbations used in prior works [29, 59].
Feature Space Deviation. The goal of a cloak is to change
the image’s feature space representation in the tracker’s
model. To examine the effect of the cloak in the tracker
model, we visualize feature space representations of user im-
ages before and after cloaking, their chosen target images,
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Figure 3: 2-D PCA visualization of VGG2-Dense feature space representations of
user images (sampled from FaceScrub) before/after cloaking. Triangles are user’s
images, red crosses are target images, grey dots are images from another class.
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DSSIM perturbation budget increases.
(User/Tracker: Web-Incept)

and a randomly chosen class from the tracker’s dataset. We
use principal components analysis (PCA, a common dimen-
sionality reduction technique) to reduce the high dimensional
feature space to 2 dimensions. Figure 3 shows the PCA re-
sults for cloaked images from a PubFig class, using cloaks
constructed on the Web-Incept feature extractor. Figure 3(a)
shows the feature space positions of the original and target
images before cloaking, along with a randomly selected class.
Figure 3(b) shows the updated feature space after the original
images have been cloaked. It is clear that feature space repre-
sentations of the cloaked images are well-aligned with those
of the target images, validating our intuition for cloaking (an
abstract view in Figure 2).
Impact of Label Density. As discussed in §3, the number
of labels present in the tracker’s model impacts performance.
When the tracker targets fewer labels, the feature space is
“sparser,” and there is a greater chance the model continues to
associate the original feature space (along with the cloaked
feature space) with the user’s label. We empirically evalu-
ate the impact of fewer labels on cloaking success using the
PubFig and FaceScrub datasets (65 and 530 labels, respec-
tively). We randomly sample N labels (varying N from 2 to
10) to construct a model with fewer labels. Figure 6 shows
that for PubFig, cloaking success rate grows from 68% for
2 labels to > 99% for more than 6 labels, confirming that a
higher label density improves cloaking effectiveness.

5.3 User/Tracker Using Different Feature Ex-

tractors

We now consider the scenario when the user and tracker
use different feature extractors to perform their tasks. While
the model transferability property suggests that there are sig-
nificant similarities in their respective model feature spaces
(since both are trained to recognize faces), their differences
could still reduce the efficacy of cloaking. Cloaks that shift
image features significantly in one feature extractor may pro-
duce a much smaller shift in a different feature extractor.

To illustrate this, we empirically inspect the change in fea-
ture representation between two different feature extractors.

Original Cloaked Original Cloaked Original Cloaked

Figure 5: Pairs of original and cloaked images (ρ = 0.007).

We take the cloaked images (optimized using VGG2-Dense),
original images, and target images from the PubFig dataset
and calculate their feature representations in a different fea-
ture extractor, Web-Incept. The result is visualized using
two dimensional PCA and shown in Figure 7. From the PCA
visualization, the reduction in cloak effectiveness is obvious.
In the tracker’s feature extractor, the cloak “moves” the origi-
nal image features only slightly towards the target image fea-
tures (compared to Figure 3(b)).

Robust Feature Extractors Boost Transferability. To ad-
dress the problem of cloak transferability, we draw on recent
work linking model robustness and transferability. Demontis
et al. [14] argue that an input perturbation’s (in our case,
cloak’s) ability to transfer between models depends on the
“robustness” of the feature extractor used to create it. They
show that more “robust” models are less reactive to small
perturbations on inputs. Furthermore, they claim that pertur-
bations (or, again, cloaks) generated on more robust models
will take on “universal” characteristics that are able to effec-
tively fool other models.

Following this intuition, we propose to improve cloak
transferability by increasing the user feature extractor’s ro-
bustness. This is done by applying adversarial training [18,
30], which trains the model on perturbed data to make it
less sensitive to similar small perturbations on inputs. Specif-
ically, for each feature extractor, we generate adversarial ex-
amples using the PGD attack [25], a widely used method
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User’s Robust

Feature

Extractor

Model Trainer’s Feature Extractor

VGG2-Incept VGG2-Dense Web-Incept Web-Dense

PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub PubFig FaceScrub
VGG2-Incept 100% 100% 100% 100% 95% 100% 100% 100%
VGG2-Dense 100% 100% 100% 100% 100% 100% 100% 100%
Web-Incept 100% 100% 100% 100% 100% 100% 99% 99%
Web-Dense 100% 100% 100% 100% 100% 97% 100% 96%

Table 3: Protection performance of cloaks generated on robust feature extractors.

for adversarial training. Following prior work [30], we run
the PGD4 algorithm for 100 steps using a step size of 0.01.
We train each feature extractor for an additional 10 epochs.
These updated feature extractors are then used to generate
user cloaks on the PubFig and FaceScrub datasets.

Results in Table 3 show that each robust feature extractor
produces cloaks that transfer almost perfectly to the tracker’s
models. Cloaks now have protection success rates > 95%
when the tracker uses a different feature extractor. We visu-
alize their feature representation using PCA in Figure 8 and
see that, indeed, cloaks generated on robust extractors trans-
fer better than cloaks computed on normal ones.

5.4 Tracker Models Trained from Scratch

Finally, we consider the scenario in which a powerful tracker
trains their model from scratch. We select the user U to be
a label inside the WebFace dataset. We generate cloaks on
user images using the robust VGG2-Incept feature extractor
from §5.3. The tracker then uses the WebFace dataset (but
U’s cloaked images) to train their model from scratch. Again
our cloas achieve a success rate of 100%. Other combina-
tions of labels and user-side feature generators all have 100%
protection success.

6 Image Cloaking in the Wild

Our results thus far have focused on limited configurations,
including publicly available datasets and known model ar-
chitectures. Now, we wish to understand the performance of
Fawkes on deployed facial recognition systems in the wild.

We evaluate the real-world effectiveness of image cloak-
ing by applying Fawkes to photos of one of the co-authors.
We then intentionally leak a portion of these cloaked photos
to public cloud-based services that perform facial recogni-
tion, including Microsoft Azure Face [3], Amazon Rekogni-
tion [2], and Face++ [4]. These are the global leaders in facial
recognition and their services are used by businesses, police,
private entities, and governments in the US and Asia.

4We found that robust models trained on CW attack samples [10] pro-
duce similar results

Face

Recognition

API

Protection Success Rate

Without

protection

Protected by

normal cloak

Protected by

robust cloak

Microsoft Azure
Face API

0% 100% 100%

Amazon Rekognition
Face Verification

0% 34% 100%

Face++
Face Search API

0% 0% 100%

Table 4: Cloaking is highly effective against cloud-based face
recognition APIs (Microsoft, Amazon and Face++).

6.1 Experimental Setup

We manually collected 82 high-quality pictures of a co-
author that feature a wide range of lighting conditions, poses,
and facial expressions. We separate the images into two
subsets, one set of 50 images for “training” and one set of
32 images for “testing.” We generate both normal and ro-
bust cloaks for the “training” images using the setup dis-
cussed in Section 5 (using normal and robust versions of the
Web-Incept feature extractor). This allows us to compare
the relative effectiveness of normal and robust user feature
extractors in real life.

For each API service, we experiment with three scenarios:

• Unprotected: We upload original training images, and test
the model’s classification accuracy on testing images.

• Normal Cloak: We upload training images protected by
a nonrobust cloak and then test the model’s classification
accuracy on the testing images.

• Robust Cloak: We upload training images protected by
a robust cloak and test the model’s classification accuracy
on the testing images.

For each scenario, we use the online service APIs to up-
load training images to the API database, and then query the
APIs using the uncloaked testing images. The reported pro-
tection success rate is the proportion of uncloaked test im-
ages that the API fails to correctly identify as our co-author.

6.2 Real World Protection Performance

Microsoft Azure Face API. Microsoft Azure Face API [3]
is part of Microsoft Cognitive Services, and is reportedly
used by many large corporations including Uber and Jet.com.
The API provides face recognition services. A client uploads
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Figure 6: Protection performance im-
proves as the number of labels in
tracker’s model increases. (User/Tracker:
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Web-Incept)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.4 -0.2  0  0.2  0.4  0.6

D
im

e
n
s
io

n
 2

Dimension 1 

Original Images
Other Images

Target Images
Cloaked Images

Figure 8: Cloaks generated on robust
models transfer better between feature
extractors. (User: VGG2-Dense, Tracker:
Web-Incept)

training images of faces, and Microsoft trains a model to rec-
ognize these faces. The API has a “training” endpoint that
must be called before the model will recognize faces, which
leads us to believe that Microsoft uses transfer learning to
train a model on user-submitted images.

Our normal cloaking method is 100% effective against the
Microsoft Azure Face API. Our robust cloaks also provide
100% protection against the Azure Face API. Detailed pro-
tection results are shown in Table 4.

Amazon Rekognition Face Verification. Amazon Rekog-
nition [2] provides facial search services that the client can
use to detect, analyze, and compare faces. The API is used
by various large corporations including the NFL, CBS, and
National Geographic, as well as law enforcement agencies in
Florida and Oregon, and the U.S. Immigration and Customs
Enforcement agency (ICE).

It is important to note that Amazon Rekognition does not
specifically train a neural network to classify queried images.
Instead, it computes an image similarity score between the
queried image and the ground truth images for all labels. If
the similarity score exceeds a threshold for some label, Ama-
zon returns a match. Our cloaking technique is not designed
to fool a tracker who uses similarity matching. However,
we believe our cloaking technique should still be effective
against Amazon Rekognition, since cloaks create a feature
space separation between original and cloaked images that
should result in low similarity scores between them.

Table 4 shows that our normal cloaks only achieve a pro-
tection success rate of 34%. However, our robust cloaks
again achieve a 100% protection success rate.

Face++. Face++ [4] is a well-known face recognition sys-
tem developed in China that claims to be extremely robust
against a variety of attacks (i.e. adversarial masks, makeup,
etc.). Due to its high performance and perceived robust-
ness, Face++ is widely used by financial services providers
and other security-sensitive customers. Notably, Alipay uses
Face++’s services to authenticate users before processing
payments. Lenovo also uses Face++ services to perform face-
based authentication for laptop users.

Our results show that normal cloaking is completely inef-
fective against Face++ (0% protection success rate; see Ta-
ble 4). This indicates that their model is indeed extremely
robust against input perturbations. However, as before, our
robust cloaks achieve a 100% success rate.

Summary. Microsoft Azure Face API, Amazon Rekog-
nition and Face++ represent three of the most popular and
widely deployed facial recognition services today. The suc-
cess of Fawkes cloaking techniques suggests our approach is
realistic and practical against production systems. While we
expect these systems to continue improving, we expect cloak-
ing techniques to similarly evolve over time to keep pace.

7 Trackers with Uncloaked Image Access

Thus far we have assumed that the tracker only has access to
cloaked images of a user, i.e. the user is perfect in applying
her cloaking protection to her image content, and disassociat-
ing her identity from images posted online by friends. In real
life, however, this may be too strong an assumption. Users
make mistakes, and unauthorized labeled images of the user
can be taken and published online by third parties such as
newspapers and websites.

In this section, we consider the possibility of the tracker
obtaining leaked, uncloaked images of a target user, e.g. Al-
ice. We first evaluate the impact of adding these images to
the tracker’s model training data. We then consider possible
mechanisms to mitigate this impact by leveraging the use of
limited sybil identities online.

7.1 Impact of Uncloaked Images

Intuitively, a tracker with access to some labeled, uncloaked
images of a user has a much greater chance of training a
model M that successfully recognizes clean images of that
user. Training a model with both cloaked and uncloaked user
images means the model will observe a much larger spread
of features all designated as the user. Depending on how M

is trained and the presence/density of other labels, it can a)
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classify both regions of features as the user; b) classify both
regions and the region between them as the user; or c) ignore
these feature dimensions and identify the user using some al-
ternative features (e.g. other facial features) that connect both
uncloaked and cloaked versions of the user’s images.

We assume the tracker cannot visually distinguish between
cloaked and uncloaked images and trains their model on both.
We quantify the impact of training with uncloaked images
using a simple test with cloaks generated from §5.2 and a
model trained on both cloaked and uncloaked images. Fig-
ure 10 shows the drop in protection success for FaceScrub
dataset as the ratio of uncloaked images in the training
dataset increases. The protection success rate drops below
39% when more than 15% of the user’s images are un-
cloaked.

Next, we consider proactive mitigation strategies against
leaked images. The most direct solution is to intentionally
release more cloaked images, effectively flooding a potential
tracker’s training set with cloaked images to dominate any
leaked uncloaked images. In addition, we consider the use of
a cooperating secondary identity (more details below). For
simplicity, we assume that: trackers have access to a small

number of a user’s uncloaked images; the user is unaware of
the contents of the uncloaked images obtained by the tracker;
and users know the feature extractor used by the tracker.

7.2 Sybil Accounts

In addition to proactive flooding of cloaked images, we ex-
plore the use of cooperative Sybil accounts to induce model
misclassification. A Sybil account is a separate account con-
trolled by the user that exists in the same Internet commu-
nity (i.e. Facebook, Flickr) as the original account. Sybils
already exist in numerous online communities [67], and are
often used by real users to curate and compartmentalize con-
tent for different audiences [26]. While there are numerous
detection techniques for Sybil detection, individual Sybil ac-
counts are difficult to identify or remove [60].

In our case, we propose that privacy-conscious users cre-
ate a secondary identity, preferably not connected to their
main identity in the metadata or access patterns. Its con-
tent can be extracted from public sources, from a friend,
or even generated artificially via generative adversarial net-
works (GANs) [32]. Fawkes modifies Sybil images (in a man-
ner similar to cloaking) to provide additional protection for
the user’s original images. Since Sybil and user images re-
side in the same communities, we expect trackers will collect
both. While there are powerful re-identification techniques
that could be used to associate the Sybil back to the original
user, we assume they are impractical for the tracker to apply
at scale to its population of tracked users.

Sybil Intuition. To bolster cloaking effectiveness, the
user modifies Sybil images so they occupy the same fea-
ture space as a user’s uncloaked images. These Sybil images

x1

x2

Without Sybil

A

Decision Boundary

S

Leaked image of U

Test image of U

x1

With Sybil

A
Cloaked image of U

Sybil image

(a) (b)

Figure 9: Intuition behind Sybil integration visualized in a
2D feature space. Without Sybils, a tracker’s model will use
leaked training images of U to learn U’s true feature space
(left), leading to the correct classification of images of U .
Sybil images S complicate the model’s decision boundary
and cause misclassification of U’s images, even when leaked
images of U are present (right).

help confuse a model trained on both Sybil images and un-
cloaked/cloaked images of a user, increasing the protection
success rate. Figure 9 shows the high level intuition. Without
Sybil images, models trained on a small portion of uncloaked
(leaked) images would easily associate test images of the user
with the user’s true label (shown on left). Because the leaked
uncloaked images and Sybil images are close by in their fea-
ture space representations, but labeled differently (i.e. “ User
1” and “User 2”), the tracker model must create additional
decision boundaries in the feature space (right figure). These
additional decision boundaries decrease the likelihood of as-
sociating the user with her original feature space.

For simplicity, we explore the base case where the user
is able to obtain one single Sybil identity to perform fea-
ture space obfuscation on her behalf. Our technique becomes
even more effective with multiple Sybils, but provides much
of its benefit with images labeled with a single Sybil identity.

Creating Sybil images. Sybil images are created by
adding a specially designed cloak to a set of candidate im-
ages. Let xC be an image from the set of candidates the user
obtains (i.e. images generated by a GAN) to populate the
Sybil account. To create the final Sybil image, we create a
cloak δ(xC,x) that minimizes the feature space separation be-
tween xC and user’s original image x, for each candidate. The
optimization is equivalent to setting x as the target and opti-
mizing to create xC⊕δ(xC,x) as discussed in §4. After choos-
ing the final xc from all the candidates, a ready-to-upload
Sybil image xS = xC ⊕ δ(xC,x).

7.3 Efficacy of Sybil Images

Sybil accounts can increase a user’s protection success rate
when the tracker controls a small number of a user’s un-
cloaked images. To experimentally validate this claim, we
choose a label from the tracker’s dataset to be the Sybil ac-
count (controlled by the user), and split the user’s images into
two disjoint sets: A contains images that were processed by
Fawkes, and whose cloaked versions have been shared on-
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decreases when the tracker has more
original user images. (User/Tracker:
Web-Incept)
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Figure 12: Sybils jointly optimized on
four feature extractors have reasonably
high protection success for each individ-
ual extractor.

line; and B contains original images leaked to the tracker. For
each synthetic image of the Sybil, we randomly select an un-
cloaked image of the user in set A. We select one Sybil image
per uncloaked image in A. Then, we cloak all the candidate
images using the methodology discussed in §4. The result-
ing Sybil images mimic the feature space representation of
uncloaked user images. From the tracker’s perspective, they
have access to cloaked user images from set A, uncloaked
images from set B, and the Sybil images.

Figure 11 compares the protection success rate with and
without Sybil accounts (with Web-Incept as user’s and
tracker’s feature extractor). The use of a Sybil account signifi-
cantly improves the protection success rate when an attacker
has a small number of original images. The protection suc-
cess rate remains above 87% when the ratio of the original
images owned by the tracker is less than 31%.

As discussed, a user can create as many Sybil images as
they desire. When the user uploads more Sybil images, the
protection success rate increases. Figure 11 shows that when
the user has uploaded 2 Sybil images per uncloaked image,
the protection success rate increases by 5.5%.

Jointly Optimize Multiple Feature Extractors. The user
may not know the tracker’s exact feature extractor. However,
given the small number of face feature extractors available
online, she is likely to know that the tracker would use one of
several candidate feature extractors. Thus, she could jointly
optimize the Sybil cloaks to simultaneously fool all the can-
didate feature extractors.

We test this in a simple experiment by jointly optimizing
Sybil cloaks on the four feature extractors from §5. We eval-
uate the cloak’s performance when the tracker uses one of
the four. Figure 12 shows the Sybil effectiveness averaged
across the 4 feature extractors. The average protection suc-
cess rate remains above 65% when the ratio of the original
images owned by the tracker is less than 31%.

8 Countermeasures

In this section, we explore potential countermeasures a
tracker could employ to reduce the effectiveness of image
cloaking. We consider and (where possible) empirically val-
idate methods to remove cloaks from images, as well as
techniques to detect the presence of cloak perturbations
on images. Our experiments make the strongest possible
assumption about the tracker: that they know the precise
feature extractor a user used to optimize cloaks. We test
our countermeasures on a tracker’s model trained on the
FaceScrub dataset. Cloaks were generated using the same
robust VGG2-Dense feature extractor from §5.3.

Inherent Limits on Cloaking Success. We acknowledge
that cloaking becomes less effective when an individual is
an active target of a tracker. If a tracker strongly desires to
train a model that recognizes a certain individual, they can
take drastic measures that cloaking cannot withstand. For ex-
ample, a tracker could learn their movements or invade their
privacy (i.e. learn where they live) by following them physi-
cally.

8.1 Cloak Disruption

Without knowing which images in the dataset are cloaked,
the tracker may utilize the following techniques to disrupt
Fawkes’ protection performance, 1) transforming images or
2) deploying an extremely robust model. We present and eval-
uate Fawkes’s performance against these two potential coun-
termeasures.

Image Transformation. A simple technique to mitigate
the impact of small image perturbations is to transform im-
ages in the training dataset before using them for model train-
ing [8, 16]. These transformations include image augmenta-
tion, blurring, or adding noise. Additionally, images posted
online are frequently compressed before sharing (i.e. in the
upload process), which could impact cloak efficacy.

However, we find that none of these transformations defeat
our cloaks. The protection success rate remains 100% even
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Figure 13: Normal classification ac-
curacy decreases as input blurring in-
creases but protection success rate re-
mains high.
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Figure 14: Normal classification accu-
racy decreases as Gaussian noise is
added to inputs but protection success
rate remains high.
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Figure 15: Protection success rate and
normal classification accuracy increase
as image quality increases using JPEG
compression.
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Figure 16: When the user’s feature extractor is much less ro-
bust than the tracker’s feature extractor, the user can improve
their protection success rate by increasing their DSSIM bud-
get. (User: VGG2-Dense, Tracker: Web-Incept)

when data augmentation is applied to cloaked images 5. Ap-
plying Gaussian blurring degrades normal accuracy by up to
18% (as kernel size increases) while cloak protection success
rate remains > 98% (see Figure 13). Adding Gaussian noise
to images merely disrupts normal classification accuracy –
the cloak protection success rate remains above 100% as
the standard deviation of the noise distribution increases (see
Figure 14). Even image compression cannot defeat our cloak.
We use progressive JPEG [57], reportedly used by Facebook
and Twitter, to compress the images in our dataset. The im-
age quality, as standard by Independent JPEG Group [1],
ranges from 5 to 95 (lower value = higher compression). As
shown in Figure 15, image compression decreases the pro-
tection success rate, but more significantly degrades normal
classification accuracy.

Robust Model. As shown in §5, cloaks constructed on
robust feature extractors transfer well to trackers’ less robust
feature extractors. Thus, a natural countermeasure a tracker
could employ is training their model to be extremely robust.

Despite the theoretically proven trade-off between normal
accuracy and robustness [56], future work may find a way
to improve model robustness while minimizing the accom-
panying drop in accuracy. Thus, we evaluate cloaking suc-

5Image augmentation parameters: rotation range=20o , horizontal
shift=15%, vertical shift=15%, zoom range=15%

cess when the tracker’s model is much more robust than the
user’s feature extractor. In our simplified test, the user has
a robust VGG2-Dense feature extractor (adversarially trained
for 3 epochs), while the tracker has an extremely robust
Web-Incept feature extractor (adversarially trained for 20
epochs). When the tracker’s model is this robust, the user’s
cloak only achieves a 64% protection success rate.

However, if the user is extremely privacy sensitive, she
could increase the visibility of her cloak perturbation to
achieve a higher protection success rate. Figure 16 high-
lights the trade off between protection success and the input
DSSIM level. The cloak’s protection success rate increases
to 100% once the DSSIM perturbation is > 0.01.

8.2 Cloak Detection

We now propose techniques a tracker could employ to detect
cloaked images in their dataset. We also discuss mitigations
the user could apply to avoid detection.

Existing Poison Attack Detection. Since cloaking is a
form of data poisoning, prior work on detecting poisoning
attacks [11, 19, 40, 46, 49, 58] could be helpful. However, all
prior works assume that poisoning only affects a small per-
centage of training images, making outlier detection useful.
Fawkes poisons an entire model class, rendering outlier de-
tection useless by removing the correct baseline.

Anomaly Detection w/o Original Images. We first con-
sider anomaly detection techniques in the scenario where the
tracker does not have any original user images. If trackers
obtain both target and cloaked user images, they can detect
unusual closeness between cloaked images and target images
in model feature space. Empirically, the L2 feature space dis-
tance between the cloaked class centroid and the target class
centroid is 3 standard deviations smaller than the mean sep-
aration of other classes. Thus, user’s cloaked images can be
detected.

However, a user can trivially overcome this detection by
maintaining separation between cloaked and target images
during cloak optimization. To show this, we use the same ex-
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perimental setup as in §5.2 but terminate the cloak optimiza-
tion once a cloaked image is 20% of the original L2 distance
from the target image. The cloak still achieves a 100% pro-
tection success rate, but the cloak/target separation remains
large enough to evade the previous detection method.
Anomaly Detection w/ Original Images. When the track-
ers have access to original training images (see §7), they
could use clustering to see if there are two distinct feature
clusters associated with the user’s images (i.e. cloaked and
uncloaked). Normal classes should have only one feature
cluster. To do this, the tracker could run a 2-means clustering
on each class’s feature space, flagging classes with two dis-
tinct centroids as potentially cloaked. When we run this ex-
periment, we find that the distance between the two centroids
of a protected user class is 3 standard deviations larger than
the average centroid separation in normal classes. In this way,
the tracker can use original images to detect the presence of
cloaked images.

To reduce the probability of detection by this method, the
user can choose a target class that does not create such a large
feature space separation. We empirically evaluate this mit-
igation strategy using the same experimental configuration
as in §5.2 but choose a target label with average (rather than
maximal) distance from their class. The cloak generated with
this method still achieves a 100% protection success rate, but
L2 distance between the two cluster centroids is within 1 stan-
dard deviation of average.

The user can evade this anomaly detection strategy using
the maximum distance optimization strategy in §4. In prac-
tice, for any tracker model with a moderate number of la-
bels (>30), cloaks generated with average or maximum dif-
ference optimization consistently achieves high cloaking suc-
cess. Our experimental results show these two methods per-
form identically in protection success against both our local
models and the Face++ API.

9 Discussion and Conclusion

In this paper, we present a first proposal to protect individu-
als from recognition by unauthorized and unaccountable fa-
cial recognition systems. Our approach applies small, care-
fully computed perturbations to cloak images, so that they are
shifted substantially in a recognition model’s feature repre-
sentation space, all while avoiding visible changes. Our tech-
niques work under a wide range of assumptions and provide
100% protection against widely used, state-of-the-art models
deployed by Microsoft, Amazon and Face++.

Like most privacy enhancing tools and technologies,
Fawkes can also be used by malicious bad actors. For exam-
ple, criminals could use Fawkes to hide their identity from
agencies that rely on third-party facial recognition systems
like Clearview.ai. We believe Fawkes will have the biggest
impact on those using public images to build unauthorized
facial recognition models and less so on agencies with legal

access to facial images such as federal agencies or law en-
forcement. We leave more detailed exploration of the trade-
off between user privacy and authorized use to future work.

Protecting content using cloaks faces the inherent chal-
lenge of being future-proof, since any technique we use to
cloak images today might be overcome by a workaround in
some future date, which would render previously protected
images vulnerable. While we are under no illusion that this
proposed system is itself future-proof, we believe it is an im-
portant and necessary first step in the development of user-
centric privacy tools to resist unauthorized machine learning
models. We hope that followup work in this space will lead
to long-term protection mechanisms that prevent the mining
of personal content for user tracking and classification.
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