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Abstract grant data access to third-party services'. Realizing such

This paper presents Droplet, a decentralized data access con-
trol service. Droplet enables data owners to securely and
selectively share their encrypted data while guaranteeing data
confidentiality in the presence of unauthorized parties and
compromised data servers. Droplet’s contribution lies in cou-
pling two key ideas: (i) a cryptographically-enforced access
control construction for encrypted data streams which enables
users to define fine-grained stream-specific access policies,
and (ii) a decentralized authorization service that serves user-
defined access policies. In this paper, we present Droplet’s
design, the reference implementation of Droplet, and the ex-
perimental results of three case-study applications deployed
with Droplet: Fitbit activity tracker, Ava health tracker, and
ECOviz smart meter dashboard, demonstrating Droplet’s ap-
plicability for secure sharing of IoT streams.

1 Introduction

The growing adoption of IoT has led to an ever-increasing
number of applications that collect sensitive user data. This
growth has come with mounting concerns over data privacy.
To date, the norm has been that user data is collected and
governed by application providers, e.g., Fitbit/Strava. The
problem with this status quo is that, because data lives in
narrow and disjoint silos, it severely limits a user’s abil-
ity to control access to her data, extract additional value
from it, or move data across applications. This problem
has led many — from both the technical and non-technical
communities — to call for a new user-centric model for
IoT services, in which the storage of user data is decou-
pled from the application logic, and control over access to
this data is in the hands of end-users rather than service
providers [30,70, 106, 109, 110].

However, if we are to realize this paradigm, we need system
designs that tackle data privacy as a first-class citizen, while
ensuring users ability to securely, selectively, and flexibly

flexible yet secure access control is key if we are to extract
insightful value from user data, e.g., drive large-scale analytics
from IoT data.

Such access control must ideally provide the following
properties: (i) strong data confidentiality and integrity, with
cryptographic guarantees, accompanied with efficient crypto-
graphic operations. This is particularly essential in the context
of resource-constrained IoT devices and the high volumes
of data they generate. (ii) fine-grained access control; spec-
ify who can access what temporal segment of a data stream.
(iii) no trusted intermediaries; systems today rely heavily on
trusted intermediaries, e.g., for delegated access, rendering
them trust bottlenecks. In addition to the above, any solu-
tion must satisfy standard access control requirements, e.g.,
support for revocation and auditability.

No existing solution simultaneously provides all of the
above properties. The de-facto standard deployments to-
day [10,33,54,75,98] rely on trusted services (e.g., access
control lists [96], Active Directory [37], OAuth [75]) and
assume that the entity which enforces access control — e.g.,
Fitbit or a storage provider — is within the data owner’s trusted
domain and consequently can see the data in the clear. How-
ever, this approach does not meet our goals of user-centric
control; in fact, as many have argued [32,73,94,101,106,113],
this approach fails to provide even basic data privacy since
the provider sees data in cleartext and consequently can share
or sell data without user consent [40, 104].

The alternative to the above approach is to rely on end-
to-end encryption [47, 86, 88,93,94, 106, 113]; where data
is encrypted at the user device and stored encrypted at the
storage provider; encryption/decryption is only executed at
authorized parties and services, without disclosing any en-
cryption keys to intermediaries. This, however, introduces the
challenge of selective sharing of encrypted data, i.e., support-
ing flexible access control policies. Solutions adopted today
for sharing encrypted data [59, 65, 102] fall short in expres-

Note that users can delegate control to a third-party provider just like
today - this is permissible, just not the de-facto model.
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siveness (i.e., allowing fine-grained access policies), flexibility
(i.e., updates to access permissions), and usability (i.e., key
management and revocation). For instance, a common ap-
proach is encrypting data under each data consumer’s public
key; this approach suffers from hard-coded policies [73,112],
and does not scale for high-volume and high-velocity data
streams. Moreover, in many cases, this solution is not viable,
since data consumers are not necessarily known in advance,
as is the case in the IoT’s publish-subscribe model [62].

The main question and the focus of this paper is: how to
realize a decentralized access control in a user-centric archi-
tecture? A solution to access control has two parts: (i) data
protection (e.g., encrypting data such that a principal can only
access the authorized data segment), and (ii) authorization
(e.g., verifying the identity of a principal and authenticity of
access permissions).

In this paper, we devise a new system architecture and a
crypto-based data access construction to address the above
problems. Droplet builds on three insights. The first is that
access control and authorization need to be co-designed for
end-to-end encrypted systems. The second insight is that time
is the natural dimension of accessing data streams. Hence,
we design our access control with time as a prime access
principle. The third is that there is a need for decentral-
ized authorization services that operate without relying on
trusted intermediaries. This is a difficult requirement, which
we address with replicated state machines. Such append-only
distributed logs as underlying for example the certificate trans-
parency [71] or blockchains, provide guarantees about the ex-
istence and status of a shared state in an environment, where
no single trusted intermediary is in charge and control, pro-
viding a virtual global witness to prevent equivocation [105].

While blockchains provide an alternative trust model, their
use comes with challenges. Currently deployed blockchains
exhibit a high overhead and low bandwidth due to their con-
sensus protocols. While read operations are fast, chain-writes
are inherently slow. Hence, a key challenge is to bypass these
limitations. We design Droplet such that blockchain opera-
tions are not on the critical path of reading and writing data;
we store the absolute minimum control metadata in the block-
chain and outsource data streams and metadata to off-chain
storage, by leveraging indirections. This design minimizes
the bandwidth requirements on the blockchain, and allows for
lightweight clients, which only retrieve block headers and the
accompanied compact Merkle proofs. Droplet’s authorization
service leverages an existing public blockchain to maintain a
replicated access control state machine. This design allows
any node to independently bootstrap the authorization state
in a decentralized manner and check the access permissions
(i.e., ensuring discoverability of access permissions without
any out-of-band communication). Access permissions are
cached at the storage node for their hosted content, allowing
low latency lookups of access permissions.

To realize the crypto-based access control in Droplet; de-

vices encrypt and sign their data locally. Data owners regis-
ter ownership of data streams and define privacy-preserving
access permissions through Droplet’s authorization service.
Only authorized principals are cryptographically capable of
accessing (i.e., decrypting) authorized data segments. We de-
sign a novel key distribution and management construction to
enable efficient key updates (i.e., succinct — key size is inde-
pendent of the granted data access range) and fine-grained yet
scalable sharing of both arbitrary temporal ranges and open-
ended streams. Our design builds on key regression and hash
trees via a layered encryption technique. In summary, Droplet
ensures data owner’s sovereignty and ownership over their
data, such that they maintain the ultimate power to selectively
and flexibly share their data.

With a prototype implementation” of Droplet, we quantify
Droplet’s overhead and compare its performance to the state-
of-the-art systems. When deploying Droplet with Amazon’s
S3 as a storage layer, we experience a slowdown of only 3%
in request throughput compared to the vanilla S3. Moreover,
we show Droplet’s potential as an authorization service for the
serverless paradigm with an AWS Lambda-based prototype.
We show Droplet’s performance is within the range of the
industry-standard protocol for authorization (OAuth2). We
also deploy Droplet with a decentralized storage layer to give
insights about its potential for the emerging decentralized
storage services [65, 102]. With our example apps on top of
Droplet, we show that real-world applications with unaltered
user-experience (i.e., perceived delay) can be developed.

In summary, our contributions are:

e Droplet, a new decentralized authorization service that en-
ables secure sharing of encrypted data and works without
trusted intermediaries.

e a new crypto-enforced access control construction that
provides flexible and fine-grained access control over en-
crypted data streams with succinct key states.

e a design that couples authorization with crypto-enforced
access to mitigate the limitations of current authorization
services (lack of cryptographic guarantees) and end-to-end
encrypted data (static policies).

e an open-source prototype and evaluation of Droplet show-
ing its feasibility, and competitive performance.

2 Droplet’s Overview

Droplet’s main objective is to empower users with full con-
trol (ownership) over their data while ensuring data confi-
dentiality. More concretely, we want to facilitate flexible and
fine-grained secure sharing of encrypted data without ever
exposing the data in the clear to any intermediaries includ-
ing the storage and authorization services. We define data
ownership as having the right and control over data, wherein
the owner can define/restrict access, restrict the scope of data
utility (e.g., sharing aggregated/homomorphically-encrypted

2Droplet is available under https://dropletchain.github.io/
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data), delegate these privileges, or give up ownership entirely
without the need to rely on any trusted entities to facilitate
this. A true realization of this definition requires work on two
fronts: (i) privacy-preserving computation (i.e., differential
privacy and secure computation) and (ii) secure and privacy-
preserving access control of remotely stored data with strong
confidentiality guarantees. In this work, we focus on the latter,
specifically in the context of data streams.

2.1 Droplet in a Nutshell

At a high level, Droplet is a decentralized access control sys-
tem that enables users to securely and selectively share their
data streams with principals. Droplet’s design marries a novel
crypto-enforced access control construction tailored for time-
series data and a decentralized authorization service. Our
crypto-enforced access control construction enables users to
express flexible stream access control policies (§3). The key
idea behind our encryption-based access control is to serialize
time series data into chunks where each chunk corresponds to
a time segment and is encrypted with a unique encryption key.
The challenge here becomes how to efficiently generate and
manage a large number of unique encryption keys and allow
expressing access polices with a minimum shared state that
is then used to derive all decryption keys associated with the
access policy. To address this specific challenge, we introduce
a novel key management construction with a succinct key
state, i.e., the key size does not grow with the temporal range
of shared data (§3). Although crypto-based access control is
powerful, it is not sufficient by itself, as it does not adequately
handle authorization and revocation. To address this issue,
we introduce a decentralized authorization service (§4) that
interplays with our crypto-based access control construction.

Consequently, data owners are not required to exchange
any encryption keys directly with data consumers. Our de-
centralized authorization, in its essence, is similar to OAuth2.
However, we realize the access control state machine on top of
an existing blockchain (§4.2), and eliminate the need for trust
intermediates on which OAuth?2 realizations heavily depend.
The access control state machine assembles the current global
state (i.e., access permissions and data ownership) through
embedded private state transitions.

2.2 Security Model

Threat model. (i) Data storage: we consider an adversary
who is interested in learning about users’ data. Our threat
model covers malicious storage nodes, potential real-world
security vulnerabilities leading to data leakages, and also ex-
ternal adversaries who gain access to data as a result of system
compromise. (ii) Access Permissions State: an adversary may
access and bootstrap the access control state machine, but it
cannot alter or learn sensitive information about the access per-
missions (e.g., sharing relationships or keying material). For
an adversary to alter the access permission states, it needs to
break the security of the underlying blockchain. The standard

|
Data |
Prod.ucer | Access A
(writer) | Control | <> - g
write data stream | Module LETRE
| Data
- data access request
Principal d ‘I 6"2 I .
(reader) grant/deny access | & :
transactions to log | % —
access control updates | <
/—\‘ | b8 Encrypted
OData eoe | e | Bootstrapped i
wner | Access Control
Access Control State Machine : State Machine

(Decentralized Authorization Log) (Authorization Agent

Figure 1: Abstract protocol flow. Data is E2E encrypted with
encryption-based access control. The data owner stores access
permission updates in the decentralized authorization log. The
storage service validates access requests based on the access
permissions from the access control state machine.

blockchain threat model assumes that an adversary cannot
control a large percentage of nodes in the network, for the
blockchain to be considered secure. The actual ratio depends
on the deployed consensus protocol by the underlying block-
chain. For instance, given n blockchain nodes and f adversary
nodes, a ratio of n = 2f + 1 for Nakamoto-style consensus
mechanisms [79] or n = 3 f + 1 for PBFT consensus mecha-
nisms [16] is required for the honest majority.

Guarantees. Droplet embodies a decentralized encryption-
based access control mechanism that enables secure and selec-
tive access to stream data within the above-discussed threat
model. Data is encrypted at the client-side, and keys are at
no time disclosed to intermediaries, i.e., storage and autho-
rization services, guaranteeing data confidentiality, integrity,
and authenticity. Decryption keys are only shared with au-
thorized parties via a blockchain-based indirection, ensuring
asynchronicity, i.e., keys are established without requiring par-
ticipants to be online at the same time. In case decryption keys
are compromised, Droplet guarantees that only the user’s data
stream segment associated with the key is disclosed, and the
compromised keys cannot be used to disclose past or future
data beyond the temporal segment associated with the key.
Data partitions are signed, allowing parties without decryption
keys to verify data authenticity and integrity. Droplet enables
checking the freshness of data, and it provides data immutabil-
ity optionally via an authenticated data structure anchored in
the blockchain, such that even the data owner can no longer
modify past data. Droplet cryptographically prevents evicted
users from accessing future data. Though evicted users may
have already cached past data, they are, however, prevented
from future access. Droplet encodes user-defined access per-
missions in the blockchain, eliminating trusted intermediaries
and assuring collusion-resistance and auditability. Moreover,
we employ privacy-preserving access permissions, prevent-
ing an observer from learning the sharing parties’ identities.
Droplet does not protect against denial-of-service attacks, nor
does it hide access patterns. It could be extended with ORAM
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techniques to hide access patterns [64, 99]. Cryptographic
techniques alone are not sufficient to prevent a malicious stor-
age provider from denial-of-service or deconstruction of data.
Hence, adequate replication strategies on multiple providers
are necessary to ensure the preservation and availability of
data. In §C, we discuss the security guarantees in more detail.

Assumptions. In Droplet, we make the following assump-
tions. We assume the storage nodes to be available. This is a
valid assumption since storage nodes can face financial (and
potentially legal) consequences upon detection of misbehav-
ior. Droplet guarantees data confidentiality even if malicious
storage nodes hand over data illegitimately, as data is end-to-
end encrypted. We assume the adversaries to be subject to the
standard cryptographic hardness and the underlying block-
chain to be secure, i.e., similar to previous work [3,6,19,105],
we assume transactions are append-only, ordered, and im-
mutable after a confirmation period and the blockchain to be
highly available. We assume users store their keys securely
and that key recovery techniques are deployed (we discuss
in §9 potential recovery techniques, such as Shamir’s secret
sharing). We assume data producers to report correct data and
to perform data serialization and encryption correctly. We
assume there is a financial agreement between the storage
provider and data owner to provide persistent storage, which
can also be facilitated through the cryptocurrency feature of
the underlying blockchain.

2.3 Architecture

As illustrated in Figure 1, our design considers four actors and
three system components: data owner is someone who owns
a set of devices (e.g., wearables, appliances, services) which
produce time-series data, i.e., data producers. In an indus-
trial setting, the data owner can be an organization that owns a
swarm of [oT devices. The generated data is stored on storage
services, and data owners can decide to selectively expose
their data to data consumers (i.e., principals) who can pro-
duce an added value from the data (e.g., fuse several streams
for prediction tasks). Data is end-to-end encrypted at the data
producer, and each principal computes the corresponding de-
cryption keys locally based on an encrypted authorization
token (i.e., embodies the access policy state) shared through
Droplet’s decentralized authorization log. Data owner, data
producer, and data consumer run Droplet’s client library,
which covers the tasks of data serialization, enc/decryption,
key management, and setting/viewing access permissions.
Moreover, end-user applications (e.g., Fitbit/Strava) interact
directly with Droplet’s client API to facilitate sharing through
Droplet. The storage node is in charge of storing encrypted
data and providing access to principals as defined by the data
owner. The storage node grants or denies access requests via
Droplet, i.e., in accordance with user-defined access permis-
sions. Access permissions are cryptographically bound to a
specific principal’s identity (public key). The storage node
can take various forms, such as edge, decentralized (e.g., a

node in a p2p storage service [65]), or cloud storage (e.g.,
Amazon’s S3). The storage node runs Droplet’s storage en-
gine and can additionally run Droplet’s authorization agent to
handle access requests locally. Droplet’s authorization agent
bootstraps its state from the decentralized authorization log.
As a matter of fact, anyone can run Droplet’s authorization
agent to either expose it as a service or to monitor the state
of relevant access permissions. Note that Droplet’s decen-
tralized authorization agents are stateless and cache relevant
access permissions for fast lookup, e.g., maintaining access
permissions of resources stored by the storage node.

Droplet is, in essence, a new decentralized access control
system that is materialized by coupling a new encryption-
based access control scheme and a decentralized authorization
service. In the following, we elaborate on our encryption-
based data access construction. As the backbone of our
encryption-based data access, we present the design of an
efficient key-management construction. Afterward, we dis-
cuss Droplet’s decentralized authorization service.

3 Encryption for Access Control

Goals. With our crypto-enforced data access construction, we
pursue a design that fulfills the following goals: (i) Flexible
sharing abstractions: support of the three common types of
sharing modalities desired for time-series data, varying based
on the role and purpose of the data consumer; (a) subscrip-
tion, where the data consumer is granted continuous access to
the data stream as it is generated, either temporarily or until
revoked, (e.g., a visualization app rendering an overview of
the user’s daily activity based on wearable data), (b) sharing
arbitrary intervals of past data (e.g., a practitioner app access-
ing and analyzing user’s health data during past pregnancy),
and (c) a combination of i and ii. (ii) Efficiency: computa-
tionally efficient crypto primitives to adhere to the constraint
resources of IoT devices, (iii) Scalability: to cope with the
velocity and large volume of time-series data.

Gist: A key aspect of our construction is tied to the observa-
tion that time-series data streams are continuous. Hence, we
introduce time-encoded key-streams which map keys to tem-
poral segments of the data stream, such that access to the data
stream can be restricted by only sharing the corresponding
range in the keystream with a principal. Based on the access
policy, the principal gains access to the necessary decryp-
tion keys via an access token. Access tokens are encrypted
with the principal’s public key (hybrid encryption). To en-
able sharing without enumerating all the keys and expressing
stream access policies in a succinct shared state, we design
a key derivation construction that synthesizes the concepts
underlying hash trees and dual-key regression.

3.1 Encryption-based Access Control

Each data chunk of a data stream is encrypted under a random
symmetric key derived from our key derivation construction.
Keys are rotated for each chunk permitting access permissions
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Figure 2: Droplet’s key generation. Data Encryption Keys
(DEKSs) are managed through the hash tree, allowing efficient
sharing of arbitrary intervals. An access policy contains sev-
eral shared nodes as authorization tokens.

at the chunk level. This allows for flexible access policies
for individual data consumers without the need for data re-
encryption or introducing redundant data. The design of our
key derivation construction in its core builds on hash trees [26]
and key regression [50] to enable expressing stream-specific
access policies and efficient management of encryption keys.
Droplet supports computing a large segment of keys from a
single shared state instead of sharing individual keys.

We now give a brief background on hash trees and key re-
gression and their role in our encryption-based access control
construction. We elaborate why these two components alone
fall short in meeting our design requirements and describe
how we leverage them to create our hybrid key management
construction. We formalize the security guarantees of our key
management in A.

Binary Hash Tree (BHT). A BHT [26] is a balanced binary
tree, built top-down from a secret random seed as the root;
using two cryptographic hash functions for the left and right
child nodes, i.e., hash;() and hash,(), respectively. Initially the
hash functions are applied to the root node. This procedure
is applied recursively until the desired depth % in the tree is
reached, as depicted in Figure 2. The leaf nodes represent the
keystream {ko,k1,k2, ..., kn_, }. We select a large & such that
the keystream is virtually infinite.

We encrypt each data chunk of the data stream with a
unique key derived from the BHT. With this construction
users can efficiently share any arbitrary time interval of their
stream; by just sharing the inner nodes in the BHT necessary
to compute the corresponding keys. For instance, in Figure 2,
given the two highlighted inner nodes a data consumer is
granted access to two disjoint intervals 7p_3] and #js_7), and
can compute the corresponding decryption keys. While con-
sistent with our efficiency and low overhead requirements,
this BHT-based construction lacks support for sharing in sub-
scription mode, where data consumers have continuous access
to data streams. Realizing this mode of sharing with BHT re-
quires maintaining and sharing a growing state per individual
data consumer.

Key Regression. Key regression [50] is a hash-chain based
construction that enables sharing a large number of keys by

Binary Hash Tree

shared nodes/tokens
? derived DEK

IRBRERRRRAREEERE

___________________________________ Dual key regression

:
SEK (Subscriber Enc Key)
lllllllll_lllllrll_lI Encyp, (DEK)
t

- — o ———— - T ———— - ——— >
% TG s o tis time

DEK (Data Enc Key)

Figure 3: Droplet’s hybrid key management supports sharing
of arbitrary intervals (hash tree) and subscriptions (dual-key
regression). Given the opening and end tokens (dual-key re-
gression), one computes the interval Data Encryption Keys.

only sharing a single state. Given a single hash token, one
can derive all previous keys by applying the hash function
successively, i.e., given key K; in time ¢ one can compute
all keys until the initial key Ko, i.e., Vic[o.,Ki. However, no
future keys can be computed (forward-secrecy). This is not
always desirable, as key regression enables sharing of all keys
from the beginning until current time (all-or-none principle).

Dual-Key Regression. To overcome the all-or-none limita-
tion of key regression, we design a hash chain construction
that enables sharing with a defined lower time bound, e.g.,
access to data of a particular stream from Nov’I8 till revoked.
To realize this, we extend key regression with an additional
hash chain in the reverse order, to cryptographically enforce
both boundaries of the shared interval (Figure 4). In simple
key regression, hash tokens are consumed in the reverse order
of chain generation as input to a key derivation function to de-
rive the current key. Due to the pre-image resistance property
of hash functions, it is computationally hard to compute future
tokens and hence future keys. However, the reverse can be
computed efficiently. We leverage this property of hash chains
for defining the beginning of an interval through a secondary
hash chain in the reverse order, as depicted in Figure 4. In
the dual-key regression, the Key Derivation Function (KDF)
takes a second token h}: KDF (h;||h}) = K;, with A} from the
secondary hash chain (Figure 4). For instance, to share a data
stream from time #; to ¢;, the user provides the tokens hﬁ and
hj. Since it is infeasible to compute /1, no key posterior to
k; can be computed. Conversely, since it is infeasible to com-
pute 4_,, no key prior to k; can be computed. With access
to the two hash tokens (h;, h}), indicating the beginning and
end of the shared interval, one can compute all the encryption
keys within this interval. We formalize and prove the security
guarantees of dual-key regression in A. 1.

3.2 Droplet’s Key Management

We now discuss how our design compounds dual-key regres-
sion and BHT via a layered encryption technique to enable
stream sharing abstractions. Dual-key regression resembles a
linear chain of keys, where for a given state, i.e., beginning
and end tokens, one can compute all the keys in between.
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Figure 4: The dual-key regression supports time-bounded
sharing via a secondary hash chain. The gray elements depict
the standard key regression mechanism: Given current k., one
can compute all keys up to ky. Our construction allows the
sharing of keys for an interval via a secondary hash chain.

Conceptually, we exploit the hash tree to allow arbitrary shar-
ing of intervals and the dual-key regression to support sharing
in subscription mode.

The layered encryption consists of two steps: (i) the
hash tree delivers time-encoded data encryption keys DEK;,
which we use to encrypt data generated during the time
epoch i. (ii) the dual-key regression also delivers time-
encoded subscriber encryption keys SEK; for the epoch i. We
use SEK; to encapsulate the corresponding data encryption
key: ENCsgk, (DEK;). For fast access, each encrypted data
chunk holds the encapsulated DEK. With this construction,
we can give access to data encryption keys either via the hash
tree (arbitrary intervals) or dual-key regression (subscription),
as depicted in Figure 3. To a subscriber, DEKs appear as
random encryption keys. For principals with access to past
data, DEKs are the leaf nodes of the BHT which they locally
compute based on the shared inner nodes (e.g., root nodes
of the corresponding subtrees). Note that a principal can be
granted access in both modes simultaneously, as shown in
the example of Figure 3. In this example, the data owner has
granted the principal access to the intervals 7y_3] and 7s_7),
which is realized through the hash tree. Also, the principal is
granted a subscription from 71> which is realized over dual-key
regression. We describe next how to handle long key chains
efficiently and in constant space.

Key Distribution. An important aspect to address in crypto-
based access control schemes is how to distribute keys effi-
ciently. In Droplet, this is especially tricky for the subscription
mode, where new data chunks arrive continuously, and each
one is encrypted with a new key. We now describe our key
distribution mechanism and refer to §4 for insights on obtain-
ing the keying material over the decentralized authorization
service. When a new data consumer is added, an authoriza-
tion token encapsulating the defined access policies is issued
which contains either: (i) the state to compute decryption keys
for past data intervals (i.e., inner nodes of the hash tree) or
(ii) in case of sharing in the subscription mode the hash token
for the beginning of the interval /. (i.e., dual-key regression).
For the subscription mode the challenge is to give the active
set of subscribers continuous access to the latest token (i.e., &;

from the main chain), such that they can compute the current
decryption key. If we were to encrypt the current hash token
for each subscriber individually, this would incur communi-
cation/computation overheads in O(s), given s subscribers.

To reduce this overhead, we distribute the latest dual-key
regression token A, within a digitally signed and encrypted
lockbox. Authorized subscribers obtain the long-term distri-
bution key KD to open the lockbox. This approach is more
efficient than resorting to per subscriber encryption. When
sharing access to a data stream, we share the distribution key
encrypted for the new subscriber through the authorization
service (§4). While data encryption keys and hence dual-key
regression tokens are frequently updated at a defined interval,
the distribution key is only updated after an access revocation
event, as detailed next.

A subscriber decrypts the current data encryption key
ENCsgk;,, (DEKj41) given the current token /4,1 and the
opening token A} as:

KDF (h 1+1||h1+1) = SEK; 1, with HU= D (h) = 1 (1)
with H as a hash function. The secondary token is stored
along the long-term per principal key information (§4).

Revocation. To revoke data stream access, the data owner
updates the distribution key (i.e., crypto-based access) and
issues a state update transaction (i.e., authorization) to evict
the revoked service. The transaction includes a new distri-
bution key KD' contained in the encrypted key information
per subscriber. Hereafter, the new data encryption key is only
available to the remaining authorized subscribers, protected
with the new distribution key. The transaction confirmation
time of the underlying blockchain determines the delay until
Droplet’s authorization state machine is updated. The end-to-
end encryption, however, prevents revoked users from access-
ing new data instantly, due to the preceding key rotation.
With the newly issued transaction, the global access permis-
sion state is updated (§4). Droplet cryptographically prevents
any future access to new data by the evicted subscriber. Any
future access requests by the evicted subscriber to old data
are declined during authorization.
Compact Hash Chains. Our key management, specifically
dual-key regression, relies heavily on hash chains. The under-
lying chains can grow quickly due to frequent key updates.
Given the memory-constraints of IoT devices, we revert to a
combination of re-computing on-demand and storing a seg-
ment of the hash chain in memory, to achieve fast and efficient
key rotations. We leverage hierarchical hash chains [61] which
maintain the same security features as traditional hash chains
but reduce the worst-case compute time to O(y/n). In our
evaluation in §8.1, we show how compact chains allow for a
two-orders of magnitude key rotation speed-up.

4 Decentralized Authorization Service

So far, we have covered Droplet’s encryption-based access
control mechanism. Now we describe Droplet’s authoriza-
tion service which handles and manages access permissions.
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At a high level, through Droplet’s API, users can view their
data streams, the associated sharing policies, and storage in-
formation, and can set/edit access permissions accordingly.
Similar to today’s authorization frameworks, e.g., OAuth2,
our authorization service acts on behalf of users, forgoing
direct interaction of individual services with the data owner.
Storage providers query Droplet’s authorization agent directly
to validate access requests. Moreover, principals query the
authorization agent to retrieve authorization tokens. The au-
thorization agent falls under the same trust assumptions as the
storage node, which enforces the authorization verdict. This
means that the storage node can act maliciously, i.e., bypass
the agent’s authorization verdict, and hand out data to unau-
thorized parties. Similarly, an authorization agent can also act
maliciously. However, due to Droplet’s end-to-end encryption,
these violations do not compromise data confidentiality (§6).

In our design, we employ a tamper-proof decentralized au-
thorization log to enable anyone to bootstrap and presume
the role of authorization agent and serve access permission
lookups in a decentralized and verifiable manner. We realize
the authorization log using a publicly verifiable blockchain
to maintain an accountable distributed access control system
without a central trusted entity. This allows us to move away
from a single authorization server issuing and verifying ac-
cess tokens, to where any resource owner can issue access
permissions and any node can verify it. We now describe the
owner-device pairing, blockchain-embedded access permis-
sions, and how we protect the privacy of principals.

Owner-Device Pairing. The blockchain ecosystem relies
on public key cryptography for identification and authentica-
tion of the involved principals. The hash digest of the public
key serves as a unique pseudo-identity in the network. We
leverage this feature to allow IoT devices to securely and
autonomously interact with the storage service. This way we
overcome the hurdle of passwords and rely on public-key
crypto for authentication and authorization. During the boot-
strap phase of a new device, it creates a pair of public-private
keys locally, where the private key is stored securely and never
leaves the device. Through an initial two-way multisignature
registration transaction on the blockchain, Droplet allows
the binding of 10T devices (PKgeyice;» SKgevice;) to the owner
(PKowners SKowner)- Henceforth, the owner can set access per-
missions (via the private key SKowner) and the IoT devices are
permitted to store data (via the private key SKgeyice;) securely.
The necessary keying material for encryption (§3) on the data
producer is also exchanged during the initial phase. Note that
the data owner’s private key is powerful in that it sets/updates
access permissions. Droplet assumes a data owner private key
management scheme to be in place (e.g., Human-Memorable
Password-Protected Secret Sharing, backed with hardware
security modules or multiple trusted devices [15, 63]), and
a key recovery mechanism to be employed for handling a
potential key loss (see §9).

In the event of device decommissioning, the new owner

tx,: register device txp:add principal tx.: add/revoke

Entry
op_code, hash op_code, hash owner
I DB private-

/ AC .
—\ o~ —~ / — | Stream ID
—f —f .
— =  —| 4 Access-Policy
DN | s— | R | — —
= | g Encrypted Keys
— [— O state updates

Decentralized Authorization Log (blockchain)

Authorization Agent

Figure 5: Droplet’s authorization agent bootstraps the access
control state machine (consolidated into the AC DB) from the
transitions embedded in the decentralized log and accompa-
nied off-chain access policies (not depicted for simplification).

must issue a new multisignature device-binding transaction,
to gain ownership of future data produced by the same de-
vice. Note that there is no need for the IoT device to interact
with the blockchain directly. The owner creates the raw mul-
tisignature registration transaction and uses an out-of-band
channel (e.g., Bluetooth Low Energy) to get the device’s sig-
nature. After adding her signature, she broadcasts the register
transaction to the network. Note that the channel between
the IoT device and owner must be secure, otherwise we risk
disclosure of the device’s private key. In the absence of an out-
of-band-channel or in the case where the device?s capabilities
are limited, for instance, lack of secure key storage, a secure
proxy can be leveraged to handle proper data serialization
(§5).

Access Permissions. We utilize the blockchain to store ac-
cess permissions in a secure, tamperproof, and time-ordered
manner. Access permissions are granted per data stream. Ini-
tially, the data owner issues a transaction including the stream
ID which creates the initial state. To change this state, e.g.,
grant read access permissions to a principal, the data owner
issues a subsequent transaction which holds, among others,
(i) the stream ID, (ii) the public key of the principal they want
to share their data with, (iii) the temporal scope of access (e.g.,
intervals of past or open-end subscription), and (iv) encrypted
keying material for data decryption (§3). For public key dis-
covery of users, Droplet can leverage decentralized identity
management solutions [38, 66, 84]. These efforts focus on es-
tablishing an open and standards-based decentralized identity
ecosystem, removing any reliance on centralized systems of
identifiers. Such solutions, e.g., Keybase [66], serve as a key
directory that maps a user’s online identities (e.g., Twitter,
Github) to their public key in a publicly verifiable manner.
The higher the dimensions of interlinked identities, the lower
the probability of identity fraud.

Once a request to store or retrieve data is received at a stor-
age node, it queries the Droplet’s authorization agent (§4.2)
for the corresponding access permissions, as illustrated in
Figure 5. To enforce the permissions, the storage node veri-
fies the identity of the requesting user via a signature-based
authentication [31]. Data owners express and dynamically
adjust permissions through Droplet client, which interacts
with Droplet’s authorization log only (i.e., blockchain) and
not with individual services (i.e., asynchronicity). Data access
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Figure 6: Overview of access control transactions, which em-
bed transitions to the global access control state via an indi-
rection (i.e., hash to the off-chain Access Policy).

is enforced cryptographically through end-to-end encryption.
The storage node validates data access requests based on the
embedded access permissions in the authorization log. The
authorization log additionally protects storage nodes’ net-
work resources (i.e., bandwidth/memory) from unauthorized
users. For instance, this mitigates an attack, where malicious
parties flood the network with download/storage requests of
large files. The storage node can terminate malicious ses-
sions (e.g., data scraping and storage spamming attacks) after
checking the access permissions (§4.2). Droplet supports
privacy-preserving access permissions and audits by autho-
rized entities, which we explain in §4.1.

Access Policy Indirections. Blockchain storage is scarce
and expensive, as it is replicated and maintained by the block-
chain network. This entails placing only the minimum neces-
sary logic in the blockchain. To keep the number and more
importantly the size of transactions as low as possible, our
design incorporates off-chain storage of the Access Policy, as
illustrated in Figure 6. Instead of holding the address informa-
tion of all services, the transaction includes an indirection to
the Access Policy via the hash digest of it. This allows manag-
ing access permissions with an unlimited number of services
in a single transaction. Besides, the Access Policy can now
contain advanced access control logic (e.g., XACML [4]),
such as access groups and delegating parties. Any change to
the Access Policy requires a new transaction. The hash digest
serves as a data pointer and, more importantly, protects the
integrity of the Access Policy. The Access Policy is stored
off-chain. The time until an access permission change comes
into effect is tied to the transaction confirmation time of the
underlying blockchain, ranging from few seconds to minutes
depending on the underlying blockchain.

4.1 Privacy-Preserving Sharing

In public blockchains, users are represented through virtual
addresses, providing pseudonymity. However, advanced clus-
tering heuristics can potentially lead to the de-anonymization
of users [5,77]. Access permissions in Droplet should be en-
forceable by storage nodes (i.e., verify authorization) and be
auditable by authorized parties. However, we want to protect
the privacy of sharing relationships from the public. To real-
ize this, we leverage dual-key stealth addresses. With stealth
addresses [36], we protect a principal’s privacy, from any

party who can view the access permissions, with regards to
the resources they are granted access to. Moreover, different
streams shared with the same principal are unlinkable. How-
ever, a data owner may learn whom they are sharing their
data with. Note that if there is no channel between the data
owner and data consumer to indicate requested or granted
access permissions, the consumer needs inevitably to scan the
permissions in Droplet’s access permission state machine to
identify any data that is shared with them.

Conceptually, each principal is represented by two public
keys (main and viewer keys: PK,,, SK,,, PK,, SK,), which
other parties use to generate a new unlinkable address PKj,, .
The viewer private key SK, can be shared with an auditor
to audit the permissions. However, access to both main and
viewer private keys is required for data access, i.e., SK;,, and
SK, are needed to compute SK,,.,,, which only the principal
is capable of (see B for technical details).

4.2 Access Control State Machine

Today, there are two main options developers can take for re-
alizing decentralized applications that employ a blockchain as
a ubiquitous trust network (i.e., a shared ground truth): (i) op-
erating a new blockchain, or (ii) embedding the application
logic into an existing secure blockchain deployment [81, 105].
We opt for the latter where we embed our logic without alter-
nation of the underlying blockchain nor requiring the instanti-
ation of a new blockchain. This allows us to benefit from an
existing blockchain’s security properties without introducing
and running a new blockchain. Note that Droplet’s state ma-
chine can alternatively employ a private authorization log, to
address use-cases with a different trust model or in a closed
ecosystem. We briefly discuss the reasons why we opt for this
choice and detail on how we realize this efficiently.

Integrating a new application logic into a running block-
chain typically results in consensus-breaking changes and
hard forks, i.e., a new blockchain with only a subset of peers
enforcing the new logic. While necessary for specific appli-
cations, this results in parallel blockchains which may not
exhibit strong security properties due to a smaller network
of peers (e.g., Namecoin’s network became decentralized
with one mining group controlling the majority of hashing
power [3]). To benefit from the security properties of a strong
and robust blockchain, new apps can embed their log of state
changes in transactions. This is in turn used to bootstrap the
global state in a secure and decentralized manner. We employ
virtualchains [3,81] to efficiently embed Droplet’s access con-
trol logic in an existing global blockchain. A virtualchain is
a fork*-consistent replicated state machine, allowing differ-
ent applications to run on top of any production blockchain,
without breaking the consensus. Droplet’s authorization agent
scans the underlying blockchain for the corresponding access
permission transactions and maintains the global state in a
database that can be queried for permissions of a given stream
and principal.

2476 29th USENIX Security Symposium

USENIX Association



[Val 1 IVal 2 IVal 3 IVal 4 IVal 5 IVal 6 IVal 7 IVal 8 IVal 9 IVal 10]
Chunk #1 ! Chunk #2

Chunk #0 H

Hash

»

It It time
Figure 7: Data streams chunked at defined temporal intervals,
and cryptographically linked together. For record lookup, the
timestamp is mapped to the chunk identifier.

1
|
H
i
1
1
i
H
i
I,

5 Data Serialization

In Droplet’s data model, a data stream is divided into chunks
of predefined time intervals (Figure 7); chunking and batching
are common techniques for time-series data [49,58,72,111].
Although chunking prevents random access at the record level,
it results in a positive performance gain for data retrieval as
in time-series data most queries require access to temporally
co-located data [58, 111]. E.g., data analytic apps work with
temporal data records (e.g., all records of a day).

Encryption. Each data chunk is initially compressed and
then encrypted at the source with an efficient symmetric ci-
pher’. We rely on AES-GCM, as an authenticated encryption
scheme. Note that NIST bounds the use of AES-GCM to 232
encryptions for a given key/nonce pair. Due to our frequent
key rotations, we stay far below this threshold. The chunks
have a metadata segment containing, among others, the chunk
identifier, the owner’s address, hashes to previous chunks (§5),
and the stream identifier. The data field contains the encrypted
and compressed data records. Services with access to the en-
cryption key can verify the integrity of the chunk and perform
an authenticated decryption. To ensure data ownership, each
chunk is also digitally signed. This allows parties without
access to the encryption key to verify the owner of the data
stream, albeit at a higher computation cost.

Storage Interface. The storage nodes expose a key-value in-
terface, with a common store/get interface with various flavors
of get, such as getAll or getRange. For each incoming request,
the storage node first verifies the identity of the client (i.e.,
authentication) and looks up the corresponding access permis-
sions regarding the client’s identity (i.e., authorization). Each
request is accompanied with a universally unique identifier
(UUID), defined as the hash of the tuple: <owner address,
streamID, counter>, where streamID is a unique identi-
fier of an owner’s data stream. Traditional indexing for data
retrieval cannot be applied here as data chunks are encrypted.
Hence, we need to devise a mechanism to perform temporal
range queries over encrypted data efficiently. To avoid con-
sistency issues of a shared index, we exploit a simple local
lookup mechanism to enable temporal range queries. For a
constant lookup time of a record with timestamp #;, we com-
pute the counter of the chunk holding it based on the known
time interval A of the chunks: |(#; —#9)/A|. For instance, we
can map the lookup of value 7 in Figure 7 to the identifier

3 Note that it is important to apply padding to prevent inference attacks
based on the varying sizes of the chunks.

of chunk #1. The chunk metadata is included in the initial
stream registering transaction, as depicted in Figure 6. Note
that the chunk metadata additionally enables freshness checks
for chunks, since the chunk interval indicates the frequency
and time at which new data chunks are generated.

Strong Data Immutability. While Droplet provides in-
tegrity protection via authenticated encryption and digital
signatures, the data owner can still modify old data. Specific
applications might require a stronger notion of immutability
such that even the data owner can no longer modify the data
(e.g., contractual agreements in logistics). Droplet enables
such a notion of immutability through blockchain’s append-
only property [25]. The application developer can define a
grace period, after which data chunks become immutable.
For sensitive applications, this can be per chunk. Otherwise,
a more extended period can be selected. To accommodate
for the narrow bandwidth of blockchains, we leverage an an-
choring technique, where data immutability transactions are
reduced to the level of the grace period. To realize this, the
first data chunk holds a pointer to the registration transac-
tion, and after the grace period, a transaction with a pointer
to the latest chunk is issued, as depicted in Figure 8. Since
all data chunks are cryptographically linked via hashes, all
data chunks in the grace period become immutable at once,
forming a chain of data chunks. To avoid a linear verification
time, chunks hold hashes to several previous chunks, forming
a geometric series (i.e., logarithmic verification time).

6 Privacy and Security Analysis

Authorization. In conventional authorization frameworks,
i.e., OAuth, any entity in possession of the bearer token can as-
sume the same access permissions granted to the token [100].
In case of token theft, the adversary in possession of the to-
ken can gain unauthorized access to the user’s resources (i.e.,
impersonation attack). Moreover, the compromise of an au-
thorization server enables the issuance of unauthorized access
tokens for all registered resources at the authorization server.
Droplet is not susceptible to these attacks. In Droplet, an au-
thorization claim with the scope of access is logged in the
blockchain in a privacy- preserving manner, such that only
the authorized party in possession of the correct private key
can claim ownership for data access, in a publicly-verifiable
manner. For an adversary to alter access permissions in the
blockchain, it requires forging a digital signature (i.e., break-
ing public key cryptography with a 128-bit security level) or
gaining control over the majority of the computing power in
the blockchain network (i.e., 51% attack [3]). Existing pro-
duction blockchains, e.g., Bitcoin or Ethereum, can be subject
to security attacks, such as routing [7] and selfish mining [46],
which can lead to access permission state update transactions
to be dropped, delayed, or excluded. An active adversary can
employ these attacks to prevent/delay access permission mod-
ifications of victims from taking effect. However, none of
these attacks can lead to unauthorized access permission.
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forming a geometric series, enabling faster integrity checks.

An adversary is not capable of learning sensitive informa-
tion from the public blockchain, since only unlinkable pseudo-
identities and stream identifiers are stored. In profiling attacks,
the adversary creates profiles of all user identifiers and the net-
work of users [77]. An adversary can break the pseudonymity
of specific users. Hence, a large body of research aims at
concealing identity and relationships in public blockchains
while maintaining verifiability [27,57,92]. Droplet employs
dual-key stealth addresses, where the anonymity set is equal
to the set of users using non-spendable stealth addresses.

A malicious storage node (or authorization agent) could
hand out data without permission or data leakage might take
place due to system compromise. However, the impact of this
action is limited since data is end-to-end encrypted. Moreover,
leakage of a data encryption key results only in the disclosure
of the data stream segment associated with it. The compro-
mised key cannot be used to disclose old data nor can it be
used to gain access to future data due to pre-image resistance
property of hash functions. The distribution key (KD) for con-
tinuous stream subscription gives access to the latest token
from the primary chain. The compromise of KD has no im-
pact without access to the aligned token from the secondary
chain (Figure 4) since both tokens are required to compute
data encryption keys. An attacker needs to compromise an
authorized user’s private key to gain access to tokens from
the secondary chain. The blockchain provides auditable infor-
mation about when a stream was shared with whom; a crucial
piece of evidence to prove/disprove access rights violations
should the need arise.

Data Serialization. Data chunks are encrypted, integrity
protected, and authenticated. Any data chunk manipulations
are detectable via the digital signature and authenticated en-
cryption. Note that while a property of AES-GCM can be
exploited to find collisions within ciphertexts that decrypt
to different valid plaintexts [39], the per chunk signature in
Droplet protects us from such an attack. The optional data
immutability is based on the security and immutability of
blockchain. The secure channel (i.e., TLS) for storing and
fetching data prevents replay attacks, in addition to ensuring
an authenticated and confidential channel. An adversary with
access to disclosed encryption keys cannot alter old data, as
it requires access to the signing private key.

AES Encrypt SHA Hash ECDSA Sign
[us] ~ [op/s]  [us] [op/s] [ms] [op/s]

IoTSW 298 34k 297 34k 270 3.7
IoTHW 42 238k 17 588k 174 57
Phone 50 20k 45 222k 44 227
Laptop 54 185k 1.6 623k 13 770
Cloud 26 384k 12 833k 11 909

Table 1: Performance of security operations — 128-bit security.
For 10T devices, we use OpenMote microcontrollers with
software (SW) computations or crypto accelerators (HW). As
a smartphone, we use a Nexus 5. As a laptop, we use Macbook
Pro. For the cloud, we use an Amazon t2.micro instance.

7 Implementation

Our reference implementation of Droplet is composed of
three entities implemented in Python: the client engine, the
storage-node engine, and the authorization agent. The client
engine is implemented in 1700 sloc. We utilize Pythons’s
cryptography library [89] for our crypto functions. For com-
pression, we use Lepton [41] for images and z1ib [34] for
all other value types.

The storage engine can either run on the cloud or nodes of
a p2p storage network. For the cloud, we have integrated a
driver for Amazon’s S3 storage service.

We have as well a realization of Droplet with a serverless
computing platform with ASW Lambda serving as the in-
terface to the storage (i.e., S3). Once Lambda is invoked, it
performs a lookup in the access control state machine to pro-
cess the authorization request. For comparison, we implement
as well an OAuth?2 authorization, based on AWS Cognito [11].
For the distributed storage, we build a DHT-based storage
network. We instantiate a Kademlia library [90] and extend it
with the security features of S/Kademlia [17]. On the p2p stor-
age nodes, we employ LevelDB [74]. Our extensions amount
to 2400 sloc.

The authorization agent is implemented with the virtu-
alchain library [3] to maintain the access control state ma-
chine. The virtualchain scans the blockchain, filters relevant
transactions, validates the encoded operations, and applies the
outcome to the global state. The state is persisted in an SQLite
database. The global state can either be queried through a
REST API or accessed directly through the SQLite database.
Our extensions to the virtualchain amount to 1400 sloc. As
the underlying blockchain, we employ a Bitcoin test-network
with a block generation time of 15 s.

8 Evaluation

Goals. One of our primary goals was to develop Droplet as
a practical system, which translates to ensuring: that Droplet
can (i) be supported by existing resource-constrained IoT
devices, (ii) sustain a high access permission lookup and
verification throughput, and (iii) that the overhead to both

2478 29th USENIX Security Symposium

USENIX Association



250F"
200
150
100
50

Throughput [get/s]

128 7256 512
Number of nodes

1024 Vanilla Secure
Amazon S3

(a) Average throughput for get.

B siore EEN get‘ — routing store; NN ‘routing‘get

16 32 64 128 256 512
Number of nodes

1024 Vanilla Secure
Amazon S3

(b) Latency for single store and get requests.

Figure 9: store/get performance for centralized and decentralized storage layers. The latency for the decentralized storage is
dominated by network routing. For fairness, all settings, including Vanilla S3 (w/o Droplet) operate on compressed data chunks.

data owners and consumers is low, allowing consumers to
process large volumes of data streams. Hence, our evaluation
metrics include the overheads (CPU, memory) that Droplet
imposes on each party, as well as the end-to-end throughput
and latency that apps experience with Droplet. Our evaluation
is conducted in the context of real-world devices, datasets,
and runtime environments.

Devices. We perform our evaluation on the following four de-
vice classes: (i) IoT: OpenMotes equipped with 32-bit ARM
Cortex-M3 SoC at 32 MHz, a public-key crypto accelerator
running up to 250 MHz. Fitbit trackers utilize a similar class
of micro-controllers; (ii) smartphone: LG Nexus5 equipped
with a 2.3 GHz quad-core 64-bit CPU, 2 GiB RAM; (iii) lap-
top: MacBook Pro equipped with 2.2 GHz Intel i7, 8 GiB
RAM,; (iv) Cloud: EC2 t2.micro (1 vCPU, 1 GiB RAM).

Datasets. We validate the applicability of Droplet by de-
ploying three real-world IoT applications atop of Droplet
and quantifying the end-to-end overhead due to our system;
(i) for the Fitbit activity tracker, we use the anonymized fitness
tracker data of the co-authors over one year (16 data types,
130 MB), which we use to synthesize data for an arbitrary
number of users. (ii) for the Ava health tracker [9], we use an
anonymized dataset from Ava [9] (10 s intervals, 13 sensors,
1.3 GB). (iii) for the ECOviz smart meter dashboard, we use
the publicly available anonymized ECO dataset (1.85 GB) for
6 households over 8 months [18].

Storage Infrastructure and Runtime Environment. We
run Droplet on both centralized and decentralized storage
layers. For the former, we use Amazon’s S3 service, and
for the latter, we implement and run several DHT nodes in
real-time on an emulated network (e.g., using netem [82]).
Evaluating Droplet in a decentralized storage setting is a com-
pelling case, as peer-to-peer storage networks could become
a viable solution for the IoT [110]. Additionally, this setup
resembles storage-oriented blockchains (e.g., Storj [103], File-
coin [102]), which still lack adequate mechanisms for secure
data sharing, where Droplet can be helpful. We also evaluate
Droplet’s performance in a serverless setting (Lambda [12])
and compare it to OAuth2 authorization. Emerging server-
less platforms require request-level authorization [1], where
Droplet can serve as an Authorization as a Service.

8.1 Microbenchmark

We instrument the client engine to perform the microbench-
mark in isolation with up to 1000 repetitions.

Cryptographic Operations. Table | summarizes the costs
of the crypto operations involved in Droplet on four differ-
ent platforms. All these operations, namely AES encryption,
SHA hash, and ECDSA signature are performed once per
chunk for store requests. For data retrieval, the client does
not perform a signature verification, since AES-GCM has
built-in authentication. Running the crypto operations only
in software on the IoT devices shows the highest cost, with
3.4k encryptions/hashes per sec and only 3.7 signatures per
sec. With the onboard hardware crypto, the cost of AES and
SHA is improved by one order of magnitude and approaches
that of smartphones. Note that overall signatures are three
orders of magnitude slower than symmetric key operations.

Crypto-based Access. Hash computations are the basis for
dual-key regression. The computation occurs at the initial
setup and each key update if the client chooses to re-compute
keys on-demand rather than store them. Assuming a chain
length of 9000 (hourly key updates for one year), it takes
405 ms to compute the entire chain on smartphones and 2.7 s
on an IoT device without a hardware crypto engine. With
compact hash chains, we reduce this worst-case compute time
to 4.3 and 28.2 ms, respectively. The performance gains be-
come pronounced with smaller epoch intervals. The hash tree
induces O(log n) computations for n keys, which amounts to
48 us (laptop) with 239 keys.

The per chunk overhead consists of key computation (hash
tree and dual-key regression), chunk encryption, key encryp-
tion, and signature, which amounts to 1.5 ms (laptop) without
caching. Compared to ABE (§10), Droplet’s crypto-based
data access is by a factor of 57x faster. E.g., with ABE per
chunk overhead with only two attributes (timestamp for tem-
poral access and data type) amounts to 86 ms (laptop).

Feasibility for IoT. To assess if Droplet is viable for the IoT,
we validate its practicality for low-power devices, concern-
ing their constraint resources (Table 1). Crypto operations
are the most expensive ones on a data producer, and beyond
that, no connectivity to the authorization services is required.
Today, most IoT devices are equipped with crypto accelera-
tors for AES encryption integrated with their radios; however,
accelerators for hash functions and signatures have yet to
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become the norm. Nevertheless, Droplet is feasible on legacy
IoT devices without accelerators despited 1.5x slower signing
operations. In terms of impact on the energy budget, the sig-
nature consumes only 9 to 25mJ. Considering a wearable’s
lithium-polymer battery capacity of 1.2 Wh (4.32 kJ), and a
48h charge cycle, 3 signatures/minute (8.6 with accelerator)
can be computed with 5% of the energy budget.

8.2 System Performance

To model the real-world performance of Droplet, we con-
structed an end-to-end system setup, where we use our three
apps datasets. Note that we do not cache any data to emu-
late worst-case scenarios. The stream chunk size is set to
8 KiB. We evaluate get and store requests to the storage
layer, which include the overhead of Droplet’s access control.

Serverless Computing. In the serverless setting, Lambda
either runs Droplet for the access control or uses the AWS
Cognito service, which runs OAuth2, as the baseline. Lambda
with both Droplet and Cognito exhibits a latency of around
118 ms (0.4% longer with Droplet). Note that with OAuth2,
to reach the same level of access granularity as with Droplet,
separate access tokens are required for each data chunk, which
is impractical. This is why in practice, long-lived and more
broadly-scoped access tokens are granted.

Cloud. We extend AWS S3 storage with Droplet and compare
its performance against vanilla S3. Figure 9(a) shows the
throughput for different request types. We follow Amazon’s
guidelines to maximize throughput: e.g., the chunk names are
inherently well distributed allowing the best performance of
the underlying hash-table lookup. The vanilla S3 throughput
of 211 gets/s is within Amazon’s optimal range (100-300).
With Droplet, we maintain an average rate of 204 get/s (3%
drop). Figure 9(b) shows the latency for individual sfore and
get operations. In Droplet, the latency overhead is 13% for get
and 11% for store (incl. crypto). Part of the overhead is due to
the expensive signature operation. Also, there is an overhead
for a fresh lookup of access permissions at the access control
DB of the virtualchain.

Distributed Storage We measure the performance of get and
store requests on a secure DHT with Droplet, with varying
network sizes, from 16 to 1024 nodes. Figure 9(a) shows the
throughput results. As the number of nodes increases from
16 to 1024, the performance decreases from 142 to 96 get/s.
Figure 9(b) shows the latency results, divided into routing and
retrieval. The total get latency increases from 76 to 140 ms as
the number of nodes grows. This is about 3 times slower than
S3’s centralized storage. However, note that the routing cost
dominates this slowdown. After resolving the address of the
storage node, which holds the data chunk, the secure retrieval
time is similar to that of S3. Also, note that gef requests have
a lower routing overhead than store requests. This is because
for get requests, the routing process is aborted as soon as a
node holding the data chunk is found.
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Figure 10: EccoViz app results. Retrieving records from the
energy data set in the EccoViz dashboard app (p2p storage).

Applications. The three applications we deploy atop Droplet,
vary in terms of type, size, and granularity of collected data.
Fitbit and Ava are both smartphone apps, where users view vi-
sualized summarizes about their collected data and set goals.
We enhance both demo apps, with additional views where
the user can selectively share parts of their data (e.g., heart-
rate/body-temperature/steps) with friends or services over
Droplet. ECOViz dashboard is a web app that visualizes en-
ergy consumption from smart-meters. Users can set access
permissions per data stream, and they can only view streams
to which they have been granted access. The user experi-
ence of sharing via Droplet remains similar to that of existing
sharing methods. Users initially register a data stream either
consisting of a single or multiple data types (e.g., sensitive
data types can be highlighted to prevent accidental sharing).
Afterward, they can add or remove users to/from their data
streams (e.g., the iOS native Health app allows per data stream
sharing decisions for third-party apps, similar to our subscrip-
tion mode).

To measure the overhead induced by Droplet, we quantify
the overhead of store and get data requests for different views
(i.e., each access requires cryptographic operations and access
permission checks). We now discuss the decentralized storage
setting with 1024 nodes. Due to memory constraints, data
synchronization is required at least weekly for Fitbit and daily
for Ava devices. This results in an average store latency of
176 ms and 1.2 s for Fitbit and Ava, respectively. Note that
store operations run in the background. For different views,
the maximum get latency is below 150 ms. Hence, the user
experience remains unaltered.

In contrast to Fitbit and Ava, the smart meter node has direct
Internet connectivity. Instead of synchronizing periodically, it
stores chunks after generation. This takes 176 ms per chunk.
The most comprehensive view in the ECOViz dashboard can
visualize the entire data stream. Figure 10 shows the latency
to fetch chunks dependent on the number of days requested.
Fetching data for 128 days of 6 h chunk size takes about 10 s,
whereas the one-week size takes less than 1 s.

Scalability. Droplet’s scalability can be examined from three
angles; (i) Read throughput of authorization; read operations
are performed in O(1), after the authorization agent bootstraps
the Access Control State Machine DB. Scaling to handle high
read throughputs, is a matter of increasing the number of au-
thorization agents. (ii) Storage of access permissions; Droplet
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anchors indirections in the blockchain (§4), as we store
access policies and metadata off-chain. Hence, to scale with
the growing number of access permissions, the allocated off-
chain storage is dynamically increased. As Droplet scales to
a more significant number of data streams, the access permis-
sion logic consequently grows. The individual authorization
agents are not impacted by this growth, as they only store
the state for the resources they serve. The annual meta-data
storage costs” for a billion user-base with an average of 100
streams and 100 consumers per stream, would amount to less
than $0.001 per user today, which accounts for a fraction of
the actual storage costs of streams. (iii) Write throughput;
represents the scaling bottleneck of Droplet, as access permis-
sion updates are bound to the write throughput of the underly-
ing blockchain. Although we consider several optimizations
(e.g., grouping access updates) to contain this constraint, it
remains a bottleneck. In our current prototype, the transaction
confirmation time is set to 15 s, similar to that of Ethereum.
The slow blockchain writes have a direct impact on the time
until new access permissions take effect, which is signifi-
cantly higher compared to OAuth2 protocol. Read-throughput
is, however, fast and comparable to that of OAuth2. Data
stream registrations and access permission adjustments (e.g.,
grant/revoke access) require transaction writes. To understand
the extent of scaling authorization writes in Droplet with an
example, consider Fitbit with 25 Million active users, which
logged 4.7 million group-join events in 2017 [48], which
would require 0.14 transactions per (tps). However, to scale
Droplet to billions of data streams, a blockchain throughput
of a few thousand tps is necessary (assuming 25% of streams
require an access permission modification per day). While
currently deployed blockchains achieve only a fraction of this
throughput, scaling to higher throughput is an active area of
research, and next-generation blockchains already support
several thousand tps [69](§9).

9 Discussion

We highlight some research questions that remain open.
Beyond IoT. An authorization service with Droplet’s
properties is crucial for systems that advocate for data
sovereignty [44, 104, 110] or handle privacy-sensitive data,
e.g., sharing medical records [13], and humanitarian aid [73].
The storm of recent privacy incidents [20, 35] has prompted
a rethinking of this space. Moreover, decentralized storage
services that run on blockchain (e.g., Filecoin) can integrate
Droplet for data sharing. Services with varying trust assump-
tions can, however, run Droplet’s authorization log instead by
a federated set of servers.

Usability. Droplet is a user-centric system that empowers
data owners with control over their data. While we design
Droplet’s API to abstract away system complexities from
users and mimic current data sharing abstractions, some

483 frequent access tier, over 500 TB/Month, $0.021/GB, May 2020.

usability considerations remain open in this user-centric
paradigm. In this paradigm, users will potentially be con-
fronted with more decisions to make regarding their data.
Hence, it is essential to study and design abstractions and
interfaces that mitigate usability concerns that might arise in
this paradigm. In an end-to-end encryption model, protection
and recovery mechanisms for private master keys should be
addressed with adequate solutions. For instance, Shamir’s se-
cret sharing scheme [95] allows reconstruction of the secret
from a set of recovery keys which are, e.g., distributed among
the data owner’s devices [106] or a group of friends [87]. The
recovery keys collectively reconstruct a master secret key.

Blockchain Scalability. In §8, we discussed scalability as-
pects of Droplet and how the underlying blockchain, which re-
alizes the decentralized authorization log, can impact the write
throughput within Droplet. Next-generation blockchains [28,
45,52,67,69,78] particularly tackle the scalability aspects
and promise higher throughputs and lower latencies, which is
crucial for the adoption of blockchain-based systems in retail
payments and financial sector, and for realizing large-scale
decentralized applications. Recent works [67, 69] introduce a
hybrid consensus by combining the slow PoW to bootstrap the
faster PBFT algorithm, where for each epoch, a random set
of validators is selected. Hence, they bring both worlds’ best:
secure open enrollment and high throughput and low latency.
These scalable blockchain protocols, e.g., OmniLedger [69],
lay the groundwork enabling practical advanced decentralized
services, such as Droplet. Droplet can be deployed on top of
any blockchain that supports the total ordering of transactions,
as elaborated in §4.2.

10 Related Work

We now briefly discuss key relevant works to Droplet.

Crypto-enforced Data Access. End-to-end encryption pro-
vides the strongest level of protection for data stored in the
cloud, as data remains encrypted and only authorized enti-
ties are trusted with decryption keys. However, fine-grained
access and sharing of data is a challenge here. A simple ap-
proach to selective sharing of encrypted data is to encrypt the
target data towards the principal’s public key; although simple
this approach suffers from three drawbacks: (i) hard-coded
access control [73]; at encryption time the access permis-
sion is defined and cannot subsequently be altered or revoked,
(ii) storage overhead; if the same data is shared with multi-
ple principals, the user ends up storing redundant data as she
needs to encrypt the same data under each principal’s public
key, and (iii) scalability and practicality issues particularly
when considering fine-grained access policies. These draw-
backs are pronounced with time series-data, where high vol-
ume of data is continuously produced and a high key-rotation
is necessary to ensure flexible access control.

Various cryptographic schemes [8, 23] have been intro-
duced to overcome some of these challenges, among which
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attribute-based encryption (ABE) [2,55,56,91, 106] offers
high expressiveness. Several ABE-based systems [106, 108]
introduce crypto-based access control. However, ABE suf-
fers from expensive crypto operations and the costs grow
linearly with the number of attributes, limiting the granularity
of access due to computational burdens [2,51]. The overhead
dominates even with a hybrid encryption technique [106, 108],
where data is encrypted with symmetric encryption and only
encryption keys are encrypted with the expensive ABE, e.g.,
only two attributes result in 100 ms for enc/decryption on
desktops and few seconds on IoT devices [107]. FAME [2]
exhibits a constant decryption time (60 ms), however, encryp-
tion time increases linearly with the number of attributes.
The notion of time-encoded keys in our access control is
similar to Time-Specific Encryption (TSE) [29, 85]. TSE as-
signs objects to temporal intervals and for each time instance
a unique key is generated. Our scheme differs from TSE in
that no central trusted time server is required for the genera-
tion and broadcast of epoch keys. In Droplet, each data source
generates the data encryption keys per epoch locally, and key
distribution is handled over Droplet’s decentralized network.

Distributed Authorization. Current distributed authoriza-
tion protocols, such as OAuth2 [75] and Macaroons [21],
suffer from several limitations, as highlighted in §6. Signature-
based schemes (e.g., public-key certificates [22,42]) require
means for distributing public keys for verification. Today,
conventional approaches to attest to public keys are to rely
on internal key servers or at the Internet-scale, hierarchical
network of certificate authorities (CA) issuing X.509 certifi-
cates, which come with their weaknesses [76], (e.g., Syman-
tec’s issuance of unauthorized certificates for Google [97],
lack of support for non-domain identities). Alternative public-
key based approaches, e.g., SPKI/SDSI [42] and follow-up
schemes [43], eliminate the need for complex X.509 public-
key infrastructure and CAs. However, these schemes are ei-
ther based on the idea of local names and suitable for de-
ployments under a single administrative domain (e.g., smart
home) or build upon an organically growing trust model [112]
(e.g., PGP’s web of trust). While the key idea of signature-
based schemes underpins Droplet, our system neither suffers
from certificate-chain discovery nor requires a complex certifi-
cate infrastructure (§4). Droplet’s current prototype supports
pseudonyms and can be extended with a publicly-auditable
directory of keys and identity proofs, such as Keybase, which
maps digital identities (e.g., Twitter) to public keys in a verifi-
able manner [66].

Blockchain-based Systems. Decentralized blockchain-
based applications (i.e., without trusted intermediaries) be-
yond cryptocurrencies have gained more attention in recent
years. Example applications include; medical data access [13],
IoT device commissioning and management [60], financial
auditing [80], name and identity management [3,14], software-
update transparency and verifiability [83] and preventing
unauthorized certificate issuance [76]. Closest to our work

are; Enigma [113, 114] which envisions a decentralized per-
sonal data management and secure multi-party computation
platform for multilateral sharing. They use a single data en-
cryption key among the sharing parties (i.e., no fine-grained
crypto-based access) and require blockchain transactions for
each read/write request (i.e., limited scalability). Calypso [68]
introduces on-chain encrypted secrets, with associated access
policies. A set of trustees collectively enforces the policies via
threshold encryption and distributed key generation, which
ranges for each key access request from 0.2 to 8 s, depend-
ing on the number of trustees. None of the above systems
addresses the challenge of fine-grained access control for en-
crypted time-series data. Moreover, our design mimics the
flow of authorization services in production, so that Droplet
can seamlessly be integrated to support current services, as
we show through deployments of several case-studies (e.g.,
serverless computing, §8.2).

11 Conclusion

This paper introduces Droplet, a decentralized access con-
trol system that enables secure, selective, and flexible access
control that empowers users with full control of their data.
With Droplet we present a design that marries a decentralized
authorization service and a novel encryption-based access
control scheme tailored for time-series data. Our prototype
implementation and experimental results show the feasibility
and applicability of Droplet as a decentralized authorization
service for end-to-end encrypted data streams.
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A Crypto-based Access Control
A.1 Dual-Key Regression

A key regression scheme [50] enables the efficient sharing of
past keys. If an entity is in possession of the key regression
state s;, the entity can derive all keys k; with j <ifori¢
{0,1,...,n}. However, the entity cannot infer any information
about the keys k; with [ > i.

In our constructions, we make use of a Pseudorandom Gen-
erator (PRG) defined as follows.

Pseudorandom Generator (PRG). G: {0,1}" — {0,1}™
is a pseudorandom generator, if m > n and no probabilis-
tic polynomial-time (PTT) distinguisher can distinguish the
output G(x) from a uniform choice r € {0,1}" with non-
negligible probability [53].

Using a pseudorandom generator G : {0, 1}* — {0, 1}/,
a client constructs a key regression scheme as follows. First,
the client generates all the possible states s; 0 < i < n in
reverse order from an initially randomly chosen seed s,,. The
seed s;_ is computed as the first A bits of the output of G(s;).
To derive key k; from the corresponding state s;, the client
computes G(s;) and takes the last [ bits (i.e., applies the key
derivation function). For sharing the keys to the i-th key, the
client shares state s; with the other entity. With state s;, the
entity can compute all pervious states s, with 0 < x < i by
applying the pseudorandom generator function G. Because of
the one-way property of G the client is not able to compute or
infer any information about s;, 1 or any s, with x > j. Since
the entity owns states {so,...,s;}, the entity can derive the
keys {ko, ...,k;} with the key derivation function.

The key regression scheme based on a single series of states
has the drawback that given the current state s; an entity can
compute all the previous states and keys. Hence, a client is
not able to define a lower bound to restrict access on past
keys (e.g., kj, low < j < cur). To address this problem, we
combine two sequences of states to derive the keys, similar
to [26]. We denote the i-th state of the first sequence as sy ;
and the second sequence as s, ; fori € {0,...,n} where n+1
is the length of each sequence.

In the bootstrapping phase, the client generates the states
s1,; as previously from a randomly chosen seed 51, and com-
putes the other states 51,1 = MSB) (G(s1;)) where MSB,),
denotes the mapping to the A least significant bits of the
input. The second sequence is generated from the oppo-
site direction to enable a lower restriction level. The sec-
ond sequence starts with the random seed s o and the corre-
sponding next state is computed as 57 ;1 = MSB) (G(s2,i)).
To derive the key k; where j € {0,...,n}, the states s ;
and s, ; serve as an input to the key derivation function
which is defined as k; = LSB;(G (s jxors> j)) where LSB;
denotes the mapping to the / most significant bits of the in-
put. If an entity is in possession of states s ; and s, ; where

0 < j <i < n, it can compute the states {s10,51,1,...,51,}
and {s2j,82 j+1,...,52,,} With G. Since pairs of states are

required for deriving the keys, the entity can only compute
the keys for which it possesses the corresponding state pairs.
Considering the states computed above, the entity knows the
state pairs {(s1,j,52,;),(81,j+1,52,j+1) .- (51,i,52,;)} and can
compute {kj,k;ji1,...,k;} but no other keys. Therefore, dual
key regression can restrict access based on ranges of keys by
sharing the corresponding state of each state sequence.

A.2 Key Derivation Tree

Droplet’s key-derivation tree is based on the Goldreich-
Goldwasser-Micali (GGM) construction [53]. The GGM con-
struction is a binary tree of height 4 where each node contains
a unique binary label v and an associated key k’. The label
of a node encodes the path from the root to the current node
where the label of the left child is encoded as v||0 and the
right child as v||1. The key of a node is computed based
on the label v =vy,v2,..,v; as Gy, (...(Gy, (G, (k')))) where
G(K') = Go(K')||Gy(K') is a PRG. The GGM tree is a con-
struction that builds a pseudorandom function (PRF) [53].
The PRF T takes as an input a master key k and a leaf label v
and outputs a key T (k,v) = k,. In GGM, k is the key of the
root node, v the label of a leaf node, and the output k, the
key associated with the leaf node with label v. In Droplet, the
keystream for encryption is derived using 7, which leads to
the keystream {7 (k,0), T (k,1),..., T (k,2" —1)}.

To enable access control on the output keys, T offers the
following additional algorithms:

e T.constrain(k,S) takes as an input the master secret of
the root node k and a set of labels of leaf nodes S. The
algorithm outputs a set of constrained keys kg that contains
the keys from the inner-nodes. These inner-node keys are
selected so that they facilitate the computation of the keys
of the nodes with labels in S but no other leaf node keys.

o T.eval(kg,v) takes as an input the set of constrained keys
ks and a label v of a leaf node. The algorithm outputs the
leaf node key k, if v € S else outputs L.

With the two additional algorithms for access control, the
construction is a constrained PRF [24]. For the detailed secu-

rity analysis, we refer to [24].

B Dual-Key Stealth Addresses

To protect the privacy of access permissions, Droplet employs
dual-key stealth addresses [36]. Let us consider the case of
a data owner Alice giving access permission to a subscriber
Bob. Bob has initially constructed and published his dual
public keys (B, V): B=bG and V = vG, with G as the elliptic
curve group generator and the private keys b and v. Alice
constructs a new address P using Bob’s stealth addresses by
using a hashing function H, and generating a random salt r:

P=H(V)G+B (2)
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Alice embeds the tuple (P,R) in the access permissions,
with R = rG (r is protected and not recoverable from R). Only
Bob can claim the address P, as he is the only one capable of
recovering the private key x, such that P = xG, as follows:

x:=H(R)+b 3)

Hence, he can prove (e.g., with a signature) to the storage
node that he is the rightful principal. Note that guessing x,
given G and P, is equivalent to solving the elliptic curve
discrete log problem, which is computationally intractable for
large integers. The correctness of x from Equation 3 can be
shown as:

xG=(HWR)+b)G=H(VR)G+bG = @
H(vrG)G+B=H(rvG)G+B=H(rV)G+B=P

Except Alice and Bob no other party can learn that P is associ-
ated with Bob’s stealth addresses. Moreover, the randomness
r in the address generation ensures the uniqueness and un-
linkability of new addresses. Bob discloses the private viewer
key v to the auditor to enable an authorized auditor to audit
the sharing. The auditor can verify the mapping of the tuple
(P,R) to Bob’s main key address B as:

P—H(WR)G=P—-H(vwG)G= 5)
H(rV)G+B—H(rV)G=B
Note that the auditor is cryptographically prevented from
using v to compute Bob’s private key x.

C Security Guarantees

Droplet consists of the following entities: the data owner, data
producer, data consumer, storage node, authorization agent,
and decentralized authorization log (a public blockchain), as
described in §2. Under the trust assumptions laid out in §2.2,
we now elaborate on the security guarantees of Droplet.

Guarantee 1.1 An Adv is not able to access or manip-
ulate data chunks except by compromising data produc-
ers/consumers. Droplet ensures this by end-to-end encryption.
Each data chunk is encrypted with a fresh key (§A.2) on the
client-side with AES in GCM mode, which is an authenti-
cated block-cipher, providing confidentiality, integrity, and
authenticity guarantees:

AES-GCM.Enc(K;,IV,M;) — C;

6
AES-GCM.Dec(K;,1V,C;) — M; ©)

Given the i —th key, IV, and i —th message, it computes the
i —th ciphertext. Given the i —th key, IV, and i — th ciphertext,
it computes the i — th message or fails with an error.

For proof of ownership, each chunk is digitally signed:

ECDSA KeyGen(curve) — (PKgevice,, SKaevicey)
ECDSA Sign(SKyevice, . Ci) — Sige,  (7)
ECDSA. Verify(PKevice,, , Ci, Sigc;) — (true,false)

id?

After generating the per device private and public ECDSA
key pair , Droplet signs the encrypted message and generates
the signature, which can be verified given the public key and
the ciphertext. As long as the Adv does not compromise the
private key, a polynomial-time Adv cannot forge the signature.

Guarantee 1.2 For streams with strong immutability require-
ments, an Adv is not able to modify the stream without com-
promising the authorization log. The Adv must control a large
threshold of nodes/computing power to compromise the au-
thorization log to change a committed hash link.

Guarantee 2.1. If an Adv compromises data consumers
that had access to intervals of a data stream, the Adv is
not able to access any other data than the data the com-
promised data consumers previously had access. Each data
chunk in a stream is encrypted with a fresh key K;. If an
Adv compromises a data consumer, the Adv gains access to
the subset of the decryption keys which the consumer had
access. Hence, it can only decrypt the data chunks where it
possesses the decryption keys. In Droplet, the keys for en-
cryption are derived with a PRF that is constructed from the
key derivation tree 7' (§A.2). With the master secret k, the i-th
key is derived as T (k,i) — K;. Instead of sharing the keys for
range K;,...,K; individually with a data consumer, Droplet
shares constrained keys T.constrain(k,S := {i,.., j}) — ks
(i.e., inner-nodes of the tree). K;,...,K; can be derived as
T.eval(ks,i),..,T.eval(ks, j) but no other keys. This guaran-
tees that an Adv in possession of kg can derive keys outside
of the interval K;, ..., K; with negligible probability.

Guarantee 2.2. [In addition to Guarantee 2.1, an Adv in
control of a compromised data consumer can access data
that was previously revoked, if the Adv controls the respec-
tive storage node or authorization agent. Beyond end-to-end
encryption, the storage node enforces access based on the au-
thorization log. To retrieve data after revoked access, the Adv
must compromise the storage node or authorization agent.

Guarantee 3.1. An Adv cannot link data permissions of a
data consumer from the publicly accessible authorization log
unless the Adv compromises the audit key of the data owner.
Dual-key stealth addresses hide any linkability between the
consumer identities included in the access permissions (§B).
A data consumer proves legitimate access to the storage node
via a zero-knowledge proof, where the data consumer proves it
controls the private key associated with the public key, whose
hash digest is included in the access permission.

Guarantee 3.2. An Adv compromising the authorization
agent cannot compromise data confidentially nor break the
non-linkability from Guarantee 3.1, but it can prevent data
availability. An Adv can maliciously give access to encrypted
data, which does not impact data confidentiality as data is
end-to-end encrypted. An Adv does not learn anything about
the data consumer from their request to access their data, other
than that they control the private key corresponding to the
public key included in the access permission.
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