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Abstract
The Universal Serial Bus (USB) connects external devices

to a host. This interface exposes the OS kernels and device
drivers to attacks by malicious devices. Unfortunately, kernels
and drivers were developed under a security model that implic-
itly trusts connected devices. Drivers expect faulty hardware
but not malicious attacks. Similarly, security testing drivers is
challenging as input must cross the hardware/software barrier.
Fuzzing, the most widely used bug finding technique, relies
on providing random data to programs. However, fuzzing
device drivers is challenging due to the difficulty in crossing
the hardware/software barrier and providing random device
data to the driver under test.

We present USBFuzz, a portable, flexible, and modular
framework for fuzz testing USB drivers. At its core, USB-
Fuzz uses a software-emulated USB device to provide random
device data to drivers (when they perform IO operations). As
the emulated USB device works at the device level, porting
it to other platforms is straight-forward. Using the USBFuzz
framework, we apply (i) coverage-guided fuzzing to a broad
range of USB drivers in the Linux kernel; (ii) dumb fuzzing
in FreeBSD, MacOS, and Windows through cross-pollination
seeded by the Linux inputs; and (iii) focused fuzzing of a
USB webcam driver. USBFuzz discovered a total of 26 new
bugs, including 16 memory bugs of high security impact in
various Linux subsystems (USB core, USB sound, and net-
work), one bug in FreeBSD, three in MacOS (two resulting in
an unplanned reboot and one freezing the system), and four
in Windows 8 and Windows 10 (resulting in Blue Screens of
Death), and one bug in the Linux USB host controller driver
and another one in a USB camera driver. From the Linux
bugs, we have fixed and upstreamed 11 bugs and received 10
CVEs.

1 Introduction

The Universal Serial Bus (USB) provides an easy-to-use inter-
face to attach external devices to host computers. A broad set

of features such as wide range of bandwidth support, Plug and
Play, or power delivery has contributed to its widespread adop-
tion. USB is ubiquitous; it is supported on commodity PCs,
smart TVs, and mobile phones. Further, software technologies
like USBIP [46] and usbredir [43] allow a USB device on one
machine to be remotely connected to another.

The ubiquity and external accessibility result in a large
attack surface that can be explored along different categories:
(i) exhaustive privileges for USB devices [27, 41] (e.g., the
famous “autorun” attack that allows USB storage devices to
start programs as they are plugged in), (ii) electrical attacks
leveraging physical design flaws [65], and (iii) exploiting
software vulnerabilities in the host OS [29]. Attacks against
exhaustive privileges can be solved by reconfiguring the op-
erating system through customized defenses (e.g., disabling
“autorun”, GoodUSB [58], USBFilter [60], or USBGuard [45])
and hardware attacks can be protected through improved inter-
face design. We focus exclusively on software vulnerabilities
in the host OS as these issues are hard to find and have high
security impact.

Analogous to userspace programs that read inputs from
files, device drivers consume inputs from connected devices.
Failure to handle unexpected input results in memory bugs
like buffer-overflows, use-after-free, or double free errors—
with disastrous consequences. As device drivers run directly
in the kernel or privileged processes, driver bugs are security
critical. Historically, because the hardware was trusted and
considered hard to modify, little attention was paid to this
attack surface. Unaware of the potential attacks, host side
software was implemented with implicit trust in the device.
Due to the difficulty in providing unexpected inputs from the
device side, drivers are also not exhaustively tested. Nowa-
days, using programmable USB devices like FaceDancer [13],
it is trivial to launch an attack exploiting a vulnerability in a
USB device driver.

Unfortunately, existing defense mechanisms to protect vul-
nerable drivers from malicious USB devices are limited.
Packet filtering-based mechanisms (e.g., LBM [59]) can pro-
tect the host system from known attacks, potentially miss-

USENIX Association 29th USENIX Security Symposium    2559



ing unknown ones. Other mitigations such as Cinch [1] are
proposed to protect the host OS from exploits by running
vulnerable device drivers in an isolated environment. These
mitigations are not deployed due to their inherent complexi-
ties and hardware dependencies.

The best alternative to defense mechanisms is to find and
fix the bugs. Fuzzing is an automated software testing tech-
nique that is widely used to find bugs by feeding randomly-
generated inputs to software. Coverage-guided fuzzing, the
state-of-art fuzzing technique, is effective in finding bugs in
userspace programs [33, 73]. In recent years, several kernel
fuzzers (e.g., syzkaller [16], TriforceAFL [19], trinity [22],
DIFUZE [10], kAFL [48], or RAZZER [21]) have been de-
veloped to fuzz system call arguments, and have discovered
many bugs in popular OS kernels [35, 39, 40, 52, 53, 74].

Fuzzing device drivers is challenging due to the difficulty
in providing random input from a device. Dedicated pro-
grammable hardware devices (e.g., FaceDancer [13]) are ex-
pensive and do not scale as one device can only be used to
fuzz one target. More importantly, it is challenging to auto-
mate fuzzing on real hardware due to the required physical
actions (attaching and detaching the device) for each test.
Some solutions adapt the kernel. For example, the kernel
fuzzer syzkaller [16] contains a usb-fuzzer [14] extension
which injects random data to the USB stack via extended
syscalls. PeriScope [50] injects random data at the DMA
and MMIO interfaces. These approaches are not portable,
tightly coupled to a particular OS and kernel version, and
require deep understanding of the hardware specification and
its implementation in the kernel. In addition, as they inject
random data at a certain layer of the IO stack, some code
paths cannot be tested, missing bugs in untested code (shown
in § 6.2). vUSBf [49] mitigates the requirement to under-
stand the hardware specification by repurposing a networked
USB interface [43] to inject random data to drivers. However,
vUSBf is too detached from the kernel and only supports
dumb fuzzing without collecting coverage feedback.

We introduce USBFuzz, a cheap, portable, flexible, and
modular USB fuzzing framework. At its core, USBFuzz uses
an emulated USB device to provide fuzz input to a virtualized
kernel. In each iteration, a fuzzer executes a test using the
emulated USB device virtually attached to the target system,
which forwards the fuzzer generated inputs to the drivers un-
der test when they perform IO operations. An optional helper
device in the virtualized kernel allows the outside fuzzer to
efficiently synchronize coverage maps with the fuzz target.

Due to its modular design and portable device-emulation,
USBFuzz is customizable to fuzz USB drivers in different
environments. We support coverage-guided fuzzing in the
Linux kernel or dumb fuzzing in kernels where coverage
collection is not yet supported. Similarly, we can either fuzz
broadly or focus on a specific driver. Broad fuzzing covers the
full USB subsystem and a wide range of drivers, focusing on
breadth instead of depth. Focused fuzzing targets the specific

functionality of a single specific driver (e.g., a webcam).
Leveraging the USBFuzz framework, we applied coverage-

guided fuzzing, the state-of-art fuzzing technique, on a broad
range of USB drivers in the Linux kernel. In nine recent—
already extensively fuzzed—versions of the Linux kernel, we
found 16 new memory bugs of high security impact and 20
previous bugs in our ground truth study. Reusing the seeds
generated when fuzzing the Linux drivers, we leveraged USB-
Fuzz to fuzz USB drivers on FreeBSD, MacOS, and Windows.
So far, we have found one bug in FreeBSD, three bugs (two
causing an unplanned restart, one freezing the system) in Ma-
cOS and four bugs (resulting in Blue Screens of Death) in
Windows. We applied USBFuzz to a specific USB webcam
driver, and discovered one bug in the Linux host controller
driver. Lastly we found a new bug in a Linux USB camera
driver. In total, we discovered 26 new and 20 existing bugs.
The main contributions of this paper are as follows:

1. Design and implementation of USBFuzz, a portable,
modular and flexible framework to fuzz USB drivers
in OS kernels. USBFuzz is customizable to fuzz USB
drivers in different kernels, applying coverage-guided
fuzzing or dumb fuzzing based on the target OS with
different focus. Our prototype supports Linux, FreeBSD,
MacOS, and Windows.

2. Design and implementation of a driver-focused coverage
collection mechanism for the Linux kernel, allowing the
coverage collection across interrupt contexts.

3. In our evaluation, we found 26 new bugs across Linux,
FreeBSD, MacOS, and Windows. The discovery of bugs
in FreeBSD, Windows, and MacOS highlights the power
of our cross-pollination efforts and demonstrates the
portability of USBFuzz.

2 Background

The USB architecture implements a complex but flexible
communication protocol that has different security risks when
hosts communicate with untrusted devices. Fuzzing is a com-
mon technique to find security vulnerabilities in software, but
existing state-of-the-art fuzzers are not geared towards finding
flaws in drivers of peripheral devices.

2.1 USB Architecture
Universal Serial Bus (USB) was introduced as an industry
standard to connect commodity computing devices and their
peripheral devices. Since its inception, several generations of
the USB standard (1.x, 2.0, 3.x) have been implemented with
increasing bandwidth to accommodate a wider range of appli-
cations. There are over 10,000 different USB devices [54].

USB follows a master-slave architecture, divided into a
single host side and potentially many device sides. The device
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side acts as the slave, and implements its own functionality.
The host side, conversely, acts as the master, and manages
every device connected to it. All data communication must be
initiated by the host, and devices are not permitted to transmit
data unless requested by the host.

The most prominent feature of the USB architecture is that
it allows a single host to manage different types of devices.
The USB standard defines a set of requests that every USB
device must respond to, among which the most important
are the device descriptor (containing the vendor and product
IDs) and the configuration descriptor (containing the device’s
functionality definition and communication requirements), so
that the host-side software can use different drivers to serve
different devices according to these descriptors.

The host side adopts a layered architecture with a hardware-
based host controller (see Figure 1). The host controller pro-
vides physical interfaces (using a root hub component), and
supports multiplexing device access, and the host controller
driver provides a hardware-independent abstraction layer for
accessing the physical interfaces. The USB core layer, built
on top of the host controller driver, is responsible for choos-
ing appropriate drivers for connected devices and provides
core routines to communicate with USB devices. Drivers for
individual USB devices (located on top of the USB core) first
initialize the device based on the provided descriptors, then
interface with other subsystems of the host OS. Userspace
programs use APIs provided by various kernel subsystems to
communicate with the USB devices.

USB drivers consist of two parts: (i) probe routine to ini-
tialize the driver and (ii) function routines to interface with
other subsystems (e.g, sound, network, or storage) and dereg-
ister the driver when the device is unplugged. Existing USB
fuzzers focus exclusively on the probe routines, ignoring other
function routines, because probe functions are invoked auto-
matically when the device is plugged in, while other function
routines are usually driven by userspace programs.

2.2 USB Security Risks
USB exposes kernel access from externally-connected periph-
erals, and therefore poses an attack surface. In the past years,
several USB-based attacks have been devised to compromise
the security of a computer system. We classify the existing
USB-based attacks below.

C1. Attacks on implicit trust. As a hardware interface, both
OSes and the USB standard implicitly assume that the
device is trustworthy. A wide range of USB-based at-
tacks [9, 36, 61] reprogram the device firmware. The
reprogrammed devices look like regular USB thumb
drives, but perform additional tasks like keylogging
(BadUSB [27]) or injecting keystrokes and mouse move-
ments, thus allowing installation of malware, exfiltrat-
ing sensitive information (USB Rubber Ducky [6]), in-
stalling backdoors, or overriding DNS settings (USB-
Driveby [23]).

C2. Electrical attacks. Here, the attacker uses the power
bus in the USB cable to send a high voltage to the host,
causing physical damage to the hardware components
of the host computer. USBKiller [65] is the best known
attack falling into this category.

C3. Attacks on software vulnerabilities. The attacker
leverages a vulnerability in the USB stack or device
drivers. As an example, Listing 1 highlights a Linux
kernel vulnerability reported in CVE-2016-2384 [37]
where a malicious USB-MIDI [2] device with incor-
rect endpoints can trigger a double-free bug (one in line
7, and the other in line 18 when the containing object
(chip->card) is freed).

Memory bugs similar to Listing 1 can be disastrous and
may allow an adversary to gain control of the host sys-
tem, because device drivers run in privileged mode (ei-
ther in the kernel space or as a privileged process). An
exploit for the above vulnerability allows full adversary-
controlled code execution [29]. Since devices connected
to USB may function as any arbitrary device from the
perspective of the host system, the USB interface ex-
poses attacker-controlled input to any service or sub-
system of the kernel that is connected through a USB
driver. Similar exploits target the storage system of Win-
dows [31].

These security risks are rooted in a basic assumption: hard-
ware is difficult to modify and can be trusted. On one hand, as
USB connects hardware devices to computer systems, secu-
rity issues were neither part of the design of the USB standard
nor host side software implementation, making attacks on the
trust model (C1) and electrical attacks (C2) possible. On the
other hand, device driver developers tend to make assump-
tions regarding the data read from the device side, e.g., the
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1 // in snd_usbmidi_create
2 if (quirk && quirk ->type == QUIRK_MIDI_MIDIMAN)
3 err = snd_usbmidi_create_endpoints_midiman(

umidi , &endpoints[0]);
4 else
5 err = snd_usbmidi_create_endpoints(umidi ,

endpoints);
6 if (err < 0) {

7 snd_usbmidi_free(umidi);

8 return err;
9 }

10 // in usb_audio_probe , snd_usb_create_quirk
calls snd_usbmidi_create

11 err = snd_usb_create_quirk(chip , intf , &
usb_audio_driver , quirk);

12 if (err < 0)
13 goto __error;
14 //...
15 __error:
16 if (chip)
17 if (!chip ->num\_interfaces)

18 snd_card_free(chip->card);

Listing 1: CVE-2016-2384 [37] vulnerability

descriptors are always legitimate. This assumption results in
the problem that unexpected data read from the device side
may be improperly handled. Even if the developers try to
handle unexpected values, as recently disclosed bugs demon-
strate [15], code is often not well tested due to the difficulty in
providing exhaustive unexpected data during development.1

In other words, when a device driver is written, the program-
mer can speculate about unexpected inputs, but it is infeasible
to create arbitrary hardware that provides such faulty inputs.
This results in poorly-tested error-handling code paths.

However, recent research has fundamentally changed this
basic assumption. Some USB device firmware is vulnerable,
allowing attackers to control the device and messages sent on
the bus. In addition, with the adoption of recent technologies
such as Wireless USB [70] and USBIP [46], the USB interface
is exposed to networked devices, turning USB-based attacks
into much easier network attacks. Finally, reprogrammable
USB devices (e.g., FaceDancer [13]) allow the implementa-
tion of arbitrary USB devices in software.

2.3 Fuzzing the USB Interface

Given the security risks, there have been several fuzzing tools
targeting the USB interface. This section briefly analyzes
these existing fuzzing tools and serves to motivate our work.

The first generation of USB fuzzers targets the device
level. vUSBf [49] uses a networked USB interface (us-
bredir [43]), and umap2 [18] uses programmable hardware

1Special hardware that provides unexpected data from the USB device
side exists (e.g., Ellisys USB Explorer [12]), however it is either not used
because of its cost, or the drivers are not sufficiently tested.

(FaceDancer [13]) to inject random hardware input into the
host USB stack. Though easily portable to other OSes, they
are dumb fuzzers and cannot leverage coverage information
to guide their input mutation, rendering them inefficient.

The recent usb-fuzzer [14] (an extension of the kernel
fuzzer syzkaller [16]) injects fuzz inputs into the IO stack
of the Linux kernel using a custom software-implemented
host controller combined with a coverage-guided fuzzing tech-
nique. The adoption of coverage-guided fuzzing has led to
the discovery of many bugs in the USB stack of the Linux
kernel [14]. However, usb-fuzzer is tightly coupled with the
Linux kernel, making it hard to port to other OSes.

All existing USB fuzzers focus exclusively on the probe
routines of drivers, not supporting fuzzing of the remaining
function routines. The status-quo of existing USB fuzzers
motivates us to build a flexible and modular USB fuzzing
framework that is portable to different environments and eas-
ily customizable to apply coverage-guided fuzzing or dumb
fuzzing (in kernels where coverage collection is not yet sup-
ported), and allows fuzzing a broad range of probe routines
or focusing on the function routines of a specific driver.

3 Threat Model

Our threat model consists of an adversary that attacks a com-
puter system through the USB interface, leveraging a software
vulnerability in the host software stack to achieve goals such
as privilege escalation, code execution, or denial of service.
Attacks are launched by sending prepared byte sequences
over the USB bus, either attaching a malicious USB device to
a physical USB interface or hijacking a connection to a net-
worked USB interface (e.g., in USBIP [46] or usbredir [43]).

4 USBFuzz Design

Device drivers handle inputs both from the device side and
from the kernel. The kernel is generally trusted but the device
may provide malicious inputs. The goal of USBFuzz is to find
bugs in USB drivers by repeatedly testing them using random
inputs generated by our fuzzer, instead of the input read from
the device side. The key challenge is how to feed the fuzzer
generated inputs to the driver code. Before presenting our
approach, we discuss the existing approaches along with their
respective drawbacks.

Approach I: using dedicated hardware. A straight-
forward solution is to use dedicated hardware which re-
turns customizable data to drivers when requested. For USB
devices, FaceDancer [13] is readily available and used by
umap2 [18]. This approach follows the data paths in real hard-
ware and thus covers the complete code paths and generates
reproducible inputs. However, there are several drawbacks in
such a hardware-based approach. First, dedicated hardware
parts incur hardware costs. While $85 for a single FaceDancer
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is not prohibitively expensive, fuzzing campaigns often run
on 10s to 1000s of cores, resulting in substantial hardware
cost. Similarly, connecting physical devices to fuzzing clus-
ters in a server center results in additional complexity. Second,
hardware-based approaches do not scale as one device can
only fuzz one target at a time. Hardware costs and lack of
scalability together render this approach expensive. Finally,
this approach is hard to automate as hardware operations (e.g.,
attaching and detaching a device to and from a target system)
are required for each test iteration.

Approach II: data injection in IO stack. This approach
modifies the kernel to inject fuzz data to drivers at a certain
layer of the IO stack. For example, usb-fuzzer in syzkaller [16]
injects fuzz data into the USB stack through a software host
controller (dummy hcd), replacing the driver for the hardware
host controller. PeriScope [50] injects fuzzer generated input
to drivers by modifying MMIO and DMA interfaces.

Compared to hardware-based approaches, this approach
is cheap, scalable, and can be automated to accommodate
fuzzing. However, this solution struggles with portability as
its implementation is tightly coupled to a given kernel layer
(and sometimes kernel version). In addition, it requires deep
understanding of the hardware specification and its implemen-
tation in the kernel. As input is injected at a specific layer of
the IO stack, it cannot test code paths end-to-end, and thus
may miss bugs in untested code paths (as we show in § 6.4).

Design Goals. After evaluating the above approaches, we
present the following design goals:

G1. Low Cost: The solution should be cost-effective and
hardware-independent.

G2. Portability: The solution should be portable to test other
OS and platforms, avoiding deep coupling with a specific
kernel version.

G3. Minimal Required Knowledge: The interaction be-
tween the driver, the USB device, and the rest of the
system is complex and may be different from device to
device. The solution should require minimal knowledge
of the USB standard and the device.

USBFuzz’s approach. At a high-level, USBFuzz lever-
ages an emulated USB device to feed random input to device
drivers. The target kernel (hosting the tested device drivers)
runs in a virtual machine (VM) and the emulated USB de-
vice is integrated into the VM. The hypervisor in the VM
transparently sends read/write requests from the drivers of the
guest kernel to the emulated device (and not to real hardware)
without any changes to the USB system in the target kernel.
The emulated USB device, on the other hand, responds to
kernel IO requests using the fuzzer-generated input, instead
of following the specification of a device.

As a software-based solution, an emulated device does not
incur any hardware cost and is highly scalable, as we can

Fuzzer

Kernel Virtual Machine 
(KVM)

Host Kernel

Virtualized 
Hardware

Fuzzing 
Device

Comm.
Device

Target Kernel

(CPU, Memory etc)

User Mode Agent

Guest System

Fuzzer Generated Input
Test Control & Exec 
Feedback

Figure 2: Overview of USBFuzz

easily run multiple instances of a virtual machine to fuzz
multiple instances of a target kernel in parallel, satisfying
G1—low cost. Because our solution implements an emulated
hardware device, it is decoupled from a specific kernel or ver-
sion. One implementation of the emulated device can be used
to provide random input to device drivers running on different
kernels on different platforms, satisfying G2—portability. As
this solution works at the device level, no knowledge of the
software layers in the kernel is required. In addition, based
on mature emulators such as QEMU, a developer only needs
to understand the data communication protocol, satisfying
G3—minimal required knowledge.

Based on these goals, we designed USBFuzz, a modular
framework to fuzz USB device drivers. Figure 2 illustrates the
overall design of USBFuzz. The following list summarizes
high level functionalities of its main components.

Fuzzer: The fuzzer runs as a userspace process on the host
OS. This component performs the following tasks: (i)
mutating the data fed to device drivers in the target ker-
nel; and (ii) monitoring and controlling test execution.

Guest System: The guest system is a virtual machine that
runs a target kernel containing the device drivers to test.
It provides support for executing the guest code, emulat-
ing the fuzzing device as well as the supporting commu-
nication device.

Target Kernel: The target kernel contains the code (impor-
tantly, device drivers) and runs inside the guest system.
The drivers in the kernel are tested when they process
the data read from the emulated fuzzing device.

Fuzzing Device: The fuzzing device is an emulated USB
device in the guest system. It is connected through the
emulated USB interface to the guest system. However,
instead of providing data according to the hardware spec-
ification, it forwards the fuzzer-generated data to the
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host when the target kernel performs IO operations on it
(shown in § 4.1).

Communication Device: The communication device is an
emulated device in the guest system intended to facilitate
communication between the guest system and the fuzzer
component. It shares a memory region and provides
synchronization channels between the fuzzer component
and the guest system. The shared memory region also
shares coverage information in coverage-guided fuzzing
(shown in § 4.2).

User Mode Agent: This userspace program runs as a dae-
mon process in the guest system. It monitors the execu-
tion of tests (shown in § 4.3). Optionally, it can be cus-
tomized to perform additional operations on the fuzzing
device to trigger function routines of drivers during fo-
cused fuzzing (demonstrated in § 6.4).

The modular design of USBFuzz, in combination with
the emulated fuzzing device, allows fuzzing USB device
drivers on different OSes and applying different fuzzing tech-
niques with flexible configuration based on the target system,
e.g., coverage-guided fuzzing to leverage feedback, or dumb
fuzzing without any feedback to explore certain provided
USB traces (dumb fuzzing is useful when coverage infor-
mation is not available). In this work, we applied coverage-
guided fuzzing to the Linux kernel (discussed in § 4.4), and
dumb fuzzing to FreeBSD, MacOS, and Windows using cross-
pollination seeded by inputs generated from fuzzing Linux.

4.1 Providing Fuzzed Hardware Input
Our input generation component extends AFL, one of the
most popular mutational coverage-guided fuzzing engines.
AFL [72] uses a file to communicate the fuzzer generated
input with the target program. The fuzzing device responds to
read requests from device drivers with the contents of the file.

As mentioned in § 2.1, when a USB device is attached
to a computer, the USB driver framework reads the device
descriptors and configuration descriptors and uses the appro-
priate driver to interact with it. However, depending on the
implementation of the USB stack, the device descriptor and
configuration descriptor may be read multiple times (e.g., the
Linux kernel reads the device descriptor both before and after
setting the address of the USB device). To improve fuzzing
efficiency and considering that throughput is relatively low
compared to simple user space fuzzing (see § 6.3), these two
requests are handled separately: they are loaded (either from
a separate file or the fuzzer generated file) once when the
fuzzing device is initialized and our framework responds with
the same descriptors when requested. All other requests are
served with bytes from the current position of the fuzzer gen-
erated file until no data is available, in which case, the device
responds with no data. Note that as we are fuzzing the device

drivers using data read from the device side, write operations
to the device are ignored.

This design allows either broad fuzzing or focused fuzzing.
By allowing the fuzzer to mutate the device and configuration
descriptors (loading them from the fuzzer generated file), we
can fuzz the common USB driver framework and drivers for
a wide range of devices (broad fuzzing); by fixing the device
and configuration descriptor to some specific device or class
of devices (loading them from a separate configuration file),
we can focus on fuzzing of a single driver (focused fuzzing).
This flexibility enables different scenarios, e.g., it allows bug
hunting in the USB driver framework and all deployed USB
device drivers, or it can be used to test the driver of a specific
USB device during the development phase. We demonstrate
focused fuzzing on a USB webcam driver in § 6.4.

4.2 Fuzzer – Guest System Communication
Like all existing fuzzers, the fuzzer component in USBFuzz
needs to communicate with the target code to exert control
over tests, reap coverage information, and so forth. As shown
in Figure 2, the fuzzer component runs outside the guest
system and cannot gain information about the target system
directly. The communication device is intended to facilitate
the communication between the fuzzer and the guest system.

In a coverage-guided fuzzer, coverage information needs
to be passed from the guest system to the fuzzer. To avoid
repeated memory copy operations, we map the bitmap, which
is a memory area in the fuzzer process, to the guest system
using a QEMU communication device. After the guest system
is fully initialized, the bitmap is mapped to the virtual memory
space of the target kernel, to which the instrumented code
in the target kernel can write the coverage information. As
it is also a shared memory area in the fuzzer process, the
coverage information is immediately accessible by the fuzzer
component, avoiding memory copy operations.

In addition, the fuzzer component needs to synchronize
with the user mode agent running in the guest system
(see § 4.3) in each fuzz test iteration. To avoid heavy-weight
IPC operations, a control channel is added to the communica-
tion device to facilitate the synchronization between the user
mode agent and the fuzzer component.

4.3 Test Execution and Monitoring
Existing kernel fuzzers execute tests using the process ab-
straction of the target kernel. They follow an iterative pattern
where, for each test, a process is created, executed, monitored,
and the fuzzer then waits for the termination of the process to
detect the end of the test. In USBFuzz, as tests are performed
using the fuzzing device, in each iteration, a test starts with
virtually attaching the (emulated) fuzzing device to the guest
system. The kernel then receives a request for the new USB
device that is handled by the low-end part of the kernel device
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management which loads the necessary drivers and initializes
the device state. However, without support from the kernel
through, e.g., process abstractions similar to the exit system
call, it is challenging to monitor the execution status (e.g.,
whether a kernel bug is triggered or not) of the kernel during
its interaction with the device.

In USBFuzz, we follow an empirical approach to monitor
the execution of a test by the kernel: by checking the kernel’s
logged messages. For example, when a USB device is attached
to the guest system, if the kernel is able to handle the inputs
from the device, the kernel will log messages containing a set
of keywords indicating the success or failure of the interaction
with the device. Otherwise, if the kernel cannot handle the
inputs from the device, the kernel will freeze or indicate that a
bug was triggered. The USBFuzz user mode agent component
monitors the execution status of a test by scanning kernel
logs from inside the virtualized target system, synchronizing
its status with the fuzzer component so that it records bug
triggering inputs and continues to the next iteration.

To avoid repeatedly booting the guest system for each iter-
ation, USBFuzz provides a persistent fuzzing technique, simi-
lar to other kernel fuzzers (syzkaller [16], TriforceAFL [19],
trinity [22], or kAFL [48]), where a running target kernel is
reused for multiple tests until it freezes, in which case, the
fuzzer automatically restarts the kernel.

4.4 Coverage-Guided Fuzzing on Linux

So far, the USBFuzz framework provides basic support for
fuzzing USB device drivers on different OSes. However, to
enable coverage-guided fuzzing, the system must collect ex-
ecution coverage. A coverage-guided fuzzer keeps track of
code coverage exercised by test inputs and mutates interesting
inputs which trigger new code paths.

Coverage collection is challenging for driver code in ker-
nel space. On one hand, inputs from the device side may
trigger code executions in different contexts, because drivers
may contain code running in interrupts and kernel threads.
On the other hand, due to the kernel performing multitask-
ing, code executed in a single thread may be preempted by
other unrelated code execution triggered by timer interrupts
or task scheduling. To the best of our knowledge, the Linux
kernel only supports coverage collection by means of static
instrumentation through kcov [67]. However, kcov coverage
collection is limited to a single process, ignoring interrupt
contexts and kernel threads. Extending the static instrumenta-
tion of kcov, we devised an AFL-style edge coverage scheme
to collect coverage in USB device drivers of the Linux kernel.
To collect coverage across different contexts, (i) the previous
executed block is saved in the context of each thread of code
execution (interrupts or kernel threads), so that edge transi-
tions are not mangled by preempted flows of code execution;
and (ii) instrumentation is limited to related code: USB core,
host controller drivers, and USB drivers.

5 Implementation Details

The implementation of the USBFuzz framework extends sev-
eral open source components including QEMU [4, 57] (where
we implement the communication device and the emulated
USB device), AFL [72] (which we modify to target USB
devices by collecting coverage information from our virtual-
ized kernel and interacting with our User Mode Agent), and
kcov [67] (which we extend to track edge coverage across the
full USB stack, including interrupt contexts). We implement
the user mode agent from scratch. The workflow of the whole
system, illustrating the interaction among the components, is
presented in Figure 3. The implementation details of individ-
ual components are discussed in the following sections.

When the fuzzer starts, it allocates a memory area for the
bitmap and exports it as a shared memory region, with which
the communication device is initialized as QEMU starts. After
the target kernel is booted, the user mode agent runs and
notifies the fuzzer to start testing.

In each iteration of the fuzzing loop, the fuzzer starts a test
by virtually attaching the fuzzing device to the target system.
With the attachment of the fuzzing device, the kernel starts its
interaction with the device and loads appropriate USB drivers
for it. The loaded USB driver is tested with the fuzz input
as it interacts with the fuzzing device. The user mode agent
monitors execution by scanning the kernel log and notifies
the fuzzer of the result of the test. The fuzzer completes the
test by virtually detaching the fuzzing device from the target
system.

5.1 Communication Device
The communication device in USBFuzz facilitates
lightweight communication between the fuzzer component
and the target system, which includes sharing the bitmap
area and synchronization between the user mode agent
and the fuzzer component. The implementation of the
communication device is built on the IVSHMEM (Inter-VM
shared memory) device [56], which is an emulated PCI
device in QEMU. The shared memory region from the fuzzer
component is exported to the guest system as a memory area
in IVSHMEM device and mapped to the virtual memory

Fuzzer QEMU Target Kernel User Mode Agent

Setup shared 
memory

start boot
execute

system ready

start test
irq

IO 
operationend of test

stop test

Fuzzing 
loop

Figure 3: Workflow of USBFuzz.
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space of the guest system. One register (BAR2, the Base
Address Register for a memory or IO space) is used for the
communication channel between the fuzzer component and
the user mode agent.

5.2 Fuzzer
The fuzzer uses two pipes to communicate with the VM: a
control pipe and a status pipe. The fuzzer starts a test by
sending a message to the VM via the control pipe, and it
receives execution status information from the VM via the
status pipe.

On the VM side, two callbacks are registered for the pur-
pose of interfacing with the fuzzer component. One callback
attaches a new instance of the fuzzing device to the hyper-
visor with the fuzzer-generated input when a new message
is received from the control pipe. When execution status
information is received from the user mode agent via the com-
munication device, the other callback detaches the fuzzing
device from the hypervisor and forwards execution status
information to the fuzzer via the status pipe.

5.3 Fuzzing Device
The fuzzing device is the key component in USBFuzz that
enables fuzzing of the hardware input space of the kernel. It
is implemented as an emulated USB device in the QEMU de-
vice emulation framework and mimics an attacker-controlled
malicious device in real-world scenarios.

Hypervisors intercept all device read/write requests from
the guest kernel. Every read/write operation from the kernel
of the guest OS is dispatched to a registered function in the
emulated device implementation, which performs actions and
returns data to the kernel following the hardware specification.

The fuzzing device is implemented by registering “read”
functions which forward the fuzzer-generated data to the ker-
nel. To be more specific, the bytes read by device drivers
are mapped sequentially to the fuzzer-generated input, except
the device and configuration descriptors, which are handled
separately (as mentioned in § 4.1).

5.4 User Mode Agent
The user mode agent is designed to be run as a daemon process
in the guest OS and is automatically started when the target
OS boots up. It monitors the execution status of tests based
on the kernel log and passes information to the fuzzer via
the communication device. After initialization, it notifies the
fuzzer that the target kernel is ready to be tested.

On Linux and FreeBSD, our user mode agent component
monitors the kernel log file (/dev/kmsg in Linux, /dev/klog
in FreeBSD), and scans it for error messages indicating a ker-
nel bug or end of a test. If either event is detected, it notifies
the fuzzer—using the device file exported to user space by

the communication device driver—to stop the current itera-
tion and proceed to the next one. The set of error messages
is borrowed from the report package [44] of syzkaller. On
Windows and MacOS, due to the lack of a clear signal from
the kernel when devices are attached/detached, our user mode
agent uses a fixed timeout (1 second on MacOS and 5 seconds
on Windows) to let the device properly initialize.

5.5 Adapting Linux kcov
To apply coverage-guided fuzzing on USB drivers for the
Linux kernel, we use static instrumentation to collect coverage
from the target kernel. The implementation is adapted from
kcov [67] which is already supported by the Linux kernel
with the following modifications to accommodate our design.

1 index = (hash(IP) ^ hash(prev_loc))%BITMAP_SIZE;
2 bitmap[index] ++;
3 prev_loc = IP;

Listing 2: Instrumentation used in USBFuzz

USBFuzz implements an AFL-style [72] edge coverage
scheme by extending kcov. Our modification supports multi-
ple paths of execution across multiple threads and interrupt
handlers, untangling non-determinism. We save the previous
block whenever non-determinism happens. For processes, we
save prev_loc (see Listing 2) in the struct task (the data
structure for the process control block in the Linux kernel),
and for interrupt handlers we save prev_loc on the stack.
Whenever non-determinism happens, the current previous lo-
cation is spilled (in the struct task for kernel threads, or
on the stack for interrupt handlers) and set to a well-defined
location in the coverage map, untangling non-determinism
to specific locations. When execution resumes, the spilled
prev_loc is restored. Note that this careful design allows
us to keep track of the execution of interrupts (and nested
interrupts) and separates their coverage without polluting the
coverage map through false updates.

The instrumented code is modified to write the coverage
information to the memory area of the communication device,
instead of the per-process buffer. The Linux build system is
modified to limit the instrumentation to only code of interest.
In our evaluation, we restrict coverage tracking to anything
related to the USB subsystem, including drivers for both host
controllers and devices.

6 Evaluation

We evaluate various aspects of USBFuzz. First, we perform
an extensive evaluation of our coverage-guided fuzzing im-
plementation on the USB framework and its device drivers
(broad fuzzing) in the Linux kernel. § 6.1 presents the dis-
covered bugs, and § 6.3 presents the performance analysis.
Second, we compare USBFuzz to the usb-fuzzer extension
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of syzkaller based on code coverage and bug discovery ca-
pabilities (§ 6.2). In § 6.4, we demonstrate the flexibility of
USBFuzz by fuzzing (i) USB drivers in FreeBSD, MacOS,
and Windows (broad fuzzing); and (ii) a webcam driver (fo-
cused fuzzing). Finally, we showcase one of the discovered
bugs in the USB core framework of the Linux kernel (§ 6.5).

Hardware and Software Environment. We execute our
evaluation on a small cluster in which each of the four nodes
runs Ubuntu 16.04 LTS with a KVM hypervisor. Each node
is equipped with 32 GB of memory and an Intel i7-6700K
processor with Intel VT [20] support.

Guest OS Preparation. To evaluate FreeBSD, Windows,
and MacOS, we use VM images with unmodified kernels and
a user mode agent component running in userspace. When
evaluating Linux, the target kernel is built with the following
customization: (i) we adapt kcov as mentioned in § 5.5; (ii)
we configure all USB drivers as built-in; (iii) we enable kernel
address sanitizer (KASAN) [25, 26] to improve bug detection
capability. At runtime, to detect abnormal behavior triggered
by the tests, we configure the kernel to panic in case of “oops”
or print warnings by customizing kernel parameters [62].

Seed Preparation. To start fuzzing, we create a set of USB
device descriptors as seeds. We leverage the set of expected
identifiers (of devices, vendors, products, and protocols) and
matching rules of supported devices that syzkaller [16] ex-
tracted from the Linux kernel [64]. A script converts the data
into a set of files containing device and configuration descrip-
tors as fuzzing seeds.

6.1 Bug Finding

To show the ability of USBFuzz to find bugs, we ran USBFuzz
on 9 recent versions of the Linux kernel: v4.14.81, v4.15,
v4.16, v4.17, v4.18.19, v4.19, v4.19.1, v4.19.2, and v4.20-rc2
(the latest version at the time of evaluation). Each version was
fuzzed with four instances for roughly four weeks (reaching,
on average, approximately 2.8 million executions) using our
small fuzzing cluster.

Table 1 summarizes all of the bugs USBFuzz found in our
evaluation. In total, 47 unique bugs were found. Of these 47
bugs, 36 are memory bugs detected by KASAN [25], includ-
ing double-free (2), NULL pointer dereference (8), general
protection error (6), out-of-bounds memory access (6), and
use-after-free (14). 16 of these memory bugs are new and have
never been reported. The remaining 20 memory bugs were
reported before, and so we used them as part of our ground
truth testing. Memory bugs detected by KASAN are serious
and may potentially be used to launch attacks. For example,
NULL pointer dereference bugs lead to a crash, resulting in
denial of service. Other types of memory violations such as
use-after-free, out-of-bounds read/write, and double frees can
be used to compromise the system through a code execution
attack or to leak information. We discuss one of our discov-
ered memory bugs and analyze its security impact in detail in

Type Bug Symptom #

Memory Bugs (36)

double-free 2
NULL pointer dereference 8
general protection 6
slab-out-of-bounds access 6
use-after-free access 14

Unexpected state
reached (11)

WARNING 9
BUG 2

Table 1: Bug Classification

our case study in § 6.5.
The remaining 11 bugs (WARNING, BUG) are caused by

execution of (potentially) dangerous statements (e.g., asser-
tion errors) in the kernel, which usually represent unexpected
kernel states, a situation that developers may be aware of but
that is not yet properly handled. The impact of such bugs is
hard to evaluate in general without a case-by-case study. How-
ever, providing a witness of such bugs enables developers to
reproduce these bugs and to assess their impact.

Bug Disclosure. We are working with the Linux and An-
droid security teams on disclosing and fixing all discovered
vulnerabilities, focusing first on the memory bugs. Table 2
shows the 11 new memory bugs that we fixed so far. These
new bugs were dispersed in different USB subsystems (USB
Core, USB Sound, or USB Network) or individual device
drivers. From these 11 new bugs, we have received 10 CVEs.
The remaining bugs fall into two classes: those still under em-
bargo/being disclosed and those that were concurrently found
and reported by other researchers. Note that our approach
of also supplying patches for the discovered bugs reduces
the burden on the kernel developers when fixing the reported
vulnerabilities.

6.2 Comparison with syzkaller

Due to challenges in porting the kernel-internal components
of syzkaller, we had to use a version of the Linux kernel that
is supported by syzkaller. We settled on version v5.5.0 [17],
as it is maintained by the syzkaller developers. In this version,
many of the reported USB vulnerabilities had already been
fixed. Note that USBFuzz does not require any kernel com-
ponents and supports all recent Linux kernels, simplifying
porting and maintenance. In this syzkaller comparison we
evaluate coverage and bug finding effectiveness, running five
3-day campaigns of both USBFuzz and syzkaller.

Bug Finding. In this heavily patched version of the Linux
kernel, USBFuzz found 1 bug in each run within the first day
and syzkaller found 3 different bugs (2 runs found 2, 3 runs
found 3). The bug USBFuzz found is a new bug that triggers
a BUG_ON statement in a USB camera driver [32]. The bugs
found by syzkaller trigger WARNING statements in different
USB drivers.
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Kernel bug summary Kernel Subsystem Confirmed Version Fixed
KASAN: SOOB Read in __usb_get_extra_descriptor USB Core 4.14.81 - 4.20-rc2 3

KASAN: UAF Write in usb_audio_probe USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in build_audio_procunit USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in parse_audio_input_terminal USB Sound 4.14.81 - 4.18 3

KASAN: SOOB Read in parse_audio_mixer_unit USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in create_composite_quirks USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Write in check_input_term USB Sound 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in hso_get_config_data USB Network 4.14.81 - 4.20-rc2 3

KASAN: NULL deref in ath{6kl,10k}_usb_alloc_urb_from_pipe Device Driver 4.14.81 - 4.20-rc2 3

KASAN: SOOB Read in lan78xx_probe Device Driver 4.14.81 - 4.17 3

KASAN: double free in rsi_91x_deinit Device Driver 4.17 - 4.20-rc2 3

Table 2: USBFuzz’s new memory bugs in 9 recent Linux kernels (SOOB: slab-out-of-bounds, UAF: use-after-free) that we fixed.

Line (%) Function (%) Branch (%)
syzkaller 18,039 (4.5) 1,324 (5.6) 7,259 (3.2)
USBFuzz 10,325 (2.5) 813 (3.5) 4,564 (2.0)

Table 3: Comparison of line, function, and branch coverage
in the Linux kernel between syzkaller and USBFuzz. The
results are shown as the average of 5 runs.

Code Coverage. We collected accumulated code coverage
in the USB related code (including the USB core framework,
host controller drivers, gadget subsystem, and other device
drivers) by replaying inputs generated from both fuzzers. The
line, function, and branch coverage of 5 runs are shown in
Table 3. Overall, syzkaller outperforms USBFuzz on maxi-
mizing code coverage. We attribute the better coverage to the
manual analysis of the kernel code and custom tailoring the in-

13000

14000
syzkaller
USBFuzz

Core Host Gadget Device Drivers
0

2000

4000

Figure 4: Comparison of line coverage between syzkaller and
USBFuzz in USB Core, host controller drivers, gadget
subsystem, and other device drivers.

dividual generated USB messages to the different USB drivers
and protocols. The manual effort results in messages adhering
more closely to the standard [55]—at a high engineering cost.

Table 3 shows that both syzkaller and USBFuzz only trig-
gered limited code coverage. There are three reasons: (i) some
drivers are not tested at all; (ii) some code (function routines)
can be triggered only by operations from userspace, and are
thus not covered; (iii) some host controller drivers can only
be covered with a specific emulated host controller.

Figure 4 demonstrates the differences between USBFuzz
and syzkaller. First, syzkaller triggered zero coverage in the
host controller drivers. This is because syzkaller uses a USB
gadget and a software host controller (dummy HCD) while
USBFuzz leverages an emulated USB device to feed fuzzer
generated inputs to drivers. Though syzkaller may find bugs in
the USB gadget subsystem, which is only used in embedded
systems as firmware of USB devices and not deployed on
PCs, it cannot find bugs in host controller drivers. We show a
bug found in XHCI driver in our extended evaluation in § 6.4.

Syzkaller achieves better overall coverage for device drivers
due to the large amount of individual test cases that are fine-
tuned. These syzkaller test cases can be reused for focused,
per device fuzzing in USBFuzz to extend coverage. USBFuzz
achieves better coverage in USB core, which contains com-
mon routines for handling data from the device side. This is
caused by the difference in the input generation engines of
the two fuzzers. As a generational fuzzer, syzkaller’s input
generation engine always generates valid values for some
data fields, thus prohibiting it from finding bugs triggered by
inputs that violate the expected values in these fields. USB-
Fuzz, on the other hand, generates inputs triggering such code
paths. Note that the driver in which USBFuzz found a bug
was previously tested by syzkaller. However, as the inputs it
generated are well-formed, the bug was missed. We show an
example of this in § 6.5.

In summary, syzkaller leverages manual engineering to
improve input generation for specific targets but misses bugs
that are not standard compliant or outside of where the input
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is fed into the system. USBFuzz follows an out-of-the box
approach where data is fed into the unmodified subsystem,
allowing it to trigger broader bugs. These two systems are
therefore complementary and find different types of bugs and
should be used concurrently. As future work, we want to test
the combination of the input generation engines, sharing seeds
between the two.

6.3 Performance Analysis

To assess the performance of USBFuzz we evaluate execution
speed and analyse time spent in different fuzzing phases.

Fuzzing Throughput. Figure 5(a) shows the execution
speed of USBFuzz in a sampled period of 50 hours while run-
ning on Linux 4.16. The figure demonstrates that USBFuzz
achieves a fuzzing throughput ranging from 0.1–2.6 exec/sec,
much lower than that of userspace fuzzers where the same
hardware setup achieves up to thousands of executions per
second. Note the low fuzzing throughput in this scenario is
mostly not caused by USBFuzz, because tests on USB drivers
run much longer than userspace programs. E.g., our experi-
ment with physical USB devices shows that it takes more than
4 seconds to fully recognize a USB flash drive on a physical
machine. A similar throughput (0.1–2.5 exec/sec) is observed
in syzkaller and shown in Figure 5(b).
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(b) A sample of execution speed of syzkaller

Figure 5: Comparison of execution speed between USBFuzz
(0.1–2.6 exec/sec) and syzkaller (0.1- 2.5 exec/sec).
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Figure 6: Cumulative distribution of test run time, collected
by tracing the inputs generated by USBFuzz.

Overhead Breakdown. To quantify the time spent for
each executed test, and to evaluate possible improvements
in fuzzing throughput, we performed an in-depth investiga-
tion on the time spent at each stage of a test. As mentioned
in § 5, a test is divided into 3 stages, (i) virtually attaching
the fuzzing device to the VM; (ii) test execution; and (iii)
detaching the fuzzing device. We measure the time used for
attaching/detaching, and the time used in running a test when
device drivers perform IO operations. The result is shown in
Figure 7. The blue line and red line show the time used in the
attach/detach operations (added together) and the time used
in tests respectively. From Figure 7, the time used in these
attach/detach operations remains stable at about 0.22 second,
while the time used by tests varies from test to test, ranging
from 0.2 to more than 10 seconds.

Manual investigation on the test cases shows that the time
a test takes depends on the quality of input. If the input fails
the first check on the sanity of the device descriptor, it fin-
ishes very quickly. If the emulated device passes initial sanity
checks and is bound to a driver, the execution time of a test
depends on the driver implementation. Typically longer tests
trigger more complex code paths in device drivers. Figure 6
depicts the runtime distribution of tests generated by US-
BFuzz. It shows that about 11% of the generated tests last
longer than 2 seconds.

We also evaluated the overhead caused by the user mode
agent component. We measured the time used to run tests on
a base system with the user mode agent running and that with-
out user mode agent, a comparison shows that the difference
is roughly 0.01 second, which is negligible compared to the
overall test execution time.

Though the overhead of attach/detach operations is neg-
ligible for long tests, it accounts for about 50% of the total
execution time of short tests. As the emulated device is allo-
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Figure 7: Execution Time Breakdown of 100 randomly chosen tests. The axes denote test number and execution time. Blue and
red bars represent time used in attaching/detaching the emulated device to the VM and the time spent in testing respectively.

cated/deallocated before/after the test in each iteration, this
overhead can be reduced by caching the emulated device and
performing only necessary initialization operations. We leave
this optimization as future work.

6.4 USBFuzz Flexibility

To demonstrate the benefit of portability and flexibility of
the USBFuzz framework, we performed two extended eval-
uations: (i) fuzzing FreeBSD, MacOS, and Windows; (ii)
focused fuzzing a USB webcam driver.

Fuzzing FreeBSD, MacOS, and Windows. Leveraging
the portability of a device emulation-based solution to feed
fuzzer-generated inputs to device drivers, we extended our
evaluation to FreeBSD 12 (the latest release), MacOS 10.15
Catalina (the latest release) and Windows (both version 8 and
10, with most recent security updates installed). After porting
the user mode agent and the device driver of the communica-
tion device we apply dumb fuzzing on these OSes.

Fuzzing drivers on these OSes is more challenging than the
Linux kernel due to the lack of support infrastructure. These
OSes support neither KASAN, other sanitizers, nor coverage-
based collection of executions. The lack of a memory-based
sanitizer means our fuzzer only discovers bugs that trigger
exceptions, and misses all bugs that silently corrupt memory.
Because we cannot collect coverage information, our fuzzer
cannot detect seeds that trigger new inputs.

To alleviate the second concern, the lack of coverage-
guided optimization, we experiment with cross-pollination.
To seed our dumb fuzzer, we reuse the inputs generated during
our Linux kernel fuzzing campaign.

USBFuzz found three bugs (two resulting unplanned restart
and one resulting system freeze) on MacOS, and four bugs
on Windows (resulting in a Blue Screen of Death, confirmed
on both Window 8 and Windows 10) during the first day
of evaluation. Additionally, one bug was found in a USB
Bluetooth dongle driver on FreeBSD in two weeks. In this bug,
the driver is trying to add an object to a finalized container.

Focused fuzzing on the LifeCam VX-800 driver. So far,
we let the fuzzer create emulated USB peripherals as part
of the input generation process. Here we want to show the
capability of USBFuzz of fuzzing focusing on a specific de-
vice. We extract the device and configuration descriptor from
a real LifeCam VX-800 [34] webcam (with the lsusb [11]
utility) and let USBFuzz create a fake USB device based on
that information, enabling the Linux kernel to detect and bind
a video driver to it.

We extended the user mode agent to receive a picture
from the webcam with streamer [63]2 using the emulated
device. After fuzzing this targeted device for a few days
with randomly generated inputs, we found another bug in
the XHCI [68] driver of the Linux kernel. The buggy input
triggers an infinite loop in the driver, in which the driver code
keeps allocating memory in each iteration until the system
runs out of memory.

USBFuzz Flexibility. The bugs found in the FreeBSD,
MacOS and Windows, and XHCI driver demonstrate the ad-
vantage of USBFuzz compared to syzkaller’s usb-fuzzer. As
the implementation of usb-fuzzer only depends on the Linux
kernel, it cannot be ported other OSes without a full reimple-
mentation. Moreover, as usb-fuzzer injects fuzzer-generated
inputs via a software host controller (dummy HCD [51]), it is
unable to trigger bugs in drivers of physical host controllers.

6.5 Case Study

In this section, we discuss a new bug USBFuzz discovered in
the USB core framework of the Linux kernel. In the USB
standard, to enable extensions, a device is allowed to de-
fine other customized descriptors in addition to the stan-
dard descriptors. As the length of each descriptor varies, the
USB standard defines the first two bytes of a descriptor to
represent the length and type of a descriptor (as shown by
usb_descriptor_header in Listing 3). All descriptors must
follow the same format. For example, an OTG (USB On-The-

2We execute the streamer -f jpeg -o output.jpeg command.
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Go, a recent extension which allows a USB device to act as a
host [69]) descriptor (shown as usb_otg_desciptor in List-
ing 3 ) has three bytes and thus a correct OTG descriptor must
start with a 0x03 byte.

Descriptors are read from the device, and therefore, can-
not be trusted and must be sanitized. In the Linux kernel,
__usb_get_extra_descriptor is one of the functions used
by the USB core driver to parse the customized descriptors.
Listing 3 shows that the code simply scans the data (buffer
argument) read from the device side. To match descriptors for
a given type (type argument) it returns the first match.

When handling maliciously crafted descriptors, this im-
plementation is vulnerable. By providing a descriptor that
is shorter than its actual length, the attacker can trigger an
out-of-bounds memory access. E.g., a two byte (invalid) OTG
descriptor with the third byte missing will be accepted by
__usb_get_extra_descriptor and treated as valid. If the
missing field is accessed (e.g., the read of bmAttributes at
line 30), an out-of-bounds memory access occurs.

Depending on how the missing fields are accessed, this
vulnerability may be exploited in different ways. For exam-
ple, reading the missing fields may allow information leak-
age. Similarly, writing to the missing fields corrupts memory,
enabling more involved exploits (e.g., denial-of-service or
code execution). Although our fuzzer only triggered an out-
of-bounds read, an out-of-bounds write may also be possible.

6.6 Fuzzing other peripheral interfaces

Peripheral interfaces represent a challenging attack surface.
USBFuzz is extensible to other peripheral interfaces sup-
ported by QEMU. To add support for a new peripheral in-
terface in USBFuzz, an analyst needs to: (i) implement a
fuzzing device for the interface and adapt its reading opera-
tions to forward fuzzer generated data to the driver under test;
(ii) adapt the fuzzer to start/stop a test by attaching/detaching
the new fuzzing device to the VM; and (iii) adapt the user
mode agent component to detect the end of tests based on the
kernel log.

The SD card [3] is an interface that is well supported by
QEMU and exposes a similar security threat as USB. SD cards
are common on many commodity PCs and embedded devices.
We extended USBFuzz to implement SD card driver fuzzing.
The implementation required few code changes: 1,000 LoC
to implement the fuzzing device, 10 LoC to adapt the fuzzer,
and 20 LoC to adapt the user-mode agent.

After adapting, we fuzzed the SD card interface for 72
hours. As the SD protocol is much simpler than USB (with
fixed commands and lengths), and there are only a limited
number of drivers, we did not discover any bugs after running
several fuzzing campaigns on Linux and Windows.

1 struct usb_descriptor_header {
2 __u8 bLength;
3 __u8 bDescriptorType;
4 } __attribute__ ((packed));
5 struct usb_otg_descriptor {
6 __u8 bLength;
7 __u8 bDescriptorType;
8 __u8 bmAttributes;
9 } __attribute__ ((packed));

10 int __usb_get_extra_descriptor(char *buffer ,
unsigned size , char type , void **ptr) {

11 struct usb_descriptor_header *header;
12 while (size >= sizeof(struct

usb_descriptor_header)) {
13 header = (struct usb_descriptor_header *)

buffer;
14 if (header ->bLength < 2) {
15 printk("%s: bogus descriptor ...\n", ...)
16 }
17 if (header ->bDescriptorType == type) {
18 *ptr = header;
19 return 0;
20 }
21 buffer += header ->bLength;
22 size -= header ->bLength;
23 }
24 return -1;
25 }
26 static int usb_enumerate_device_otg(struct

usb_device *udev) {
27 // ......
28 struct usb_otg_descriptor *desc = NULL;
29 err=__usb_get_extra_descriptor(udev ->

rawdescriptors[0], le16_to_cpu(udev ->config
[0].desc.wTotalLength), USB_DT_OTG , (void
**) &desc);

30 if (err||!( desc->bmAttributes & USB_OTG_HNP))
31 return 0;
32 // ......
33 }

Listing 3: Out-of-bounds vulnerability in the Linux USB core
framework. The two byte descriptor (0x02, USB_DT_OTG) is
accepted by __usb_get_extra_descriptor as three byte
usb_otg_descriptor. Triggering an out-of-bounds access
when the missing field bmAttributes is accessed at line 30.

7 Related Work

In this section, we discuss related work that aims at secur-
ing/protecting host OS from malicious devices.

Defense Mechanisms. As an alternative to securing kernel
by finding and fixing bugs, defense mechanisms stop active
exploitation. For example, Cinch [1] protects the kernel by
running the device drivers in an isolated virtualization en-
vironment, sandboxing potentially buggy kernel drivers and
sanitizing the interaction between kernel and driver. SUD [5]
protects the kernel from vulnerable device drivers by isolat-
ing the driver code in userspace processes and confining its
interactions with the device using IOMMU. Rule-based au-
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Tools Cov Data Inj HD Dep Portability
TTWE 7 Device 3 3
vUSBf 7 Device 7 3
umap2 7 Device 3 3
usb-fuzzer 3 API 7 7
USBFuzz 3 Device 7 3

Table 4: A comparison of USBFuzz with related tools. The
“Cov” column shows support for coverage-guided fuzzing.
The “Data Inj” column indicates how data is injected to
drivers: through the device interface (Device) or a modified
API at a certain software layer (API). The “HD Dep” and
“Portability” columns denote hardware dependency and
portability across different platforms.

thorization policies (e.g., USBGuard [45]) or USB Firewalls
(e.g., LBM [59] and USBFILTER [60]) work by blocking
known malicious data packets from the device side.

Cinch [1] and SUD [5] rely heavily on hardware support
(e.g., virtualization and IOMMU modules). Though their ef-
fectiveness has been demonstrated, they are not used due to
their inherent limitations and complexities. Rule-based autho-
rization policies or USB Firewalls may either restrict access
to only known devices, or drop known malicious packets, thus
they can defend against known attacks but potentially miss
unknown attacks. These mitigations protect the target system
against exploitation but do not address the underlying vulner-
abilities. USBFuzz secures the target systems by discovering
vulnerabilities, allowing developers to fix them.

Testing Device Drivers. We categorize existing device
driver fuzzing work along several dimensions: support for
coverage-guided fuzzing, how to inject fuzzed device data
into tested drivers, and hardware dependency and portability
across platforms. Support of coverage-guided fuzzing influ-
ences the effectiveness of bug finding, and the approach to
inject device data into target drivers determines the portability.
Hardware dependency incurs additional hardware costs.

Table 4 summarizes related work. Tools such as TTWE [66]
and umap2 [18] depend on physical devices and do not
support coverage-guided fuzzing. While eliminating hard-
ware dependency through an emulated device interface for
data injection, vUSBf [49] does not support coverage-guided
fuzzing. usb-fuzzer [14] (a syzkaller [16] extension) supports
coverage-guided fuzzing, and passes the fuzzer generated
inputs to device drivers through extended system calls. How-
ever, its implementation depends on modifications to modules
(the gadgetfs [42] and dummy-hcd [51] modules) in the USB
stack of the Linux kernel, and is thus not portable. In contrast,
USBFuzz is portable across different platforms and integrates
coverage feedback (whenever the kernel exports it).

Sylvester Keil et al. proposed a fuzzer for WiFi drivers
based on an emulated device [24]. While they also emulate a
device, their system does not support coverage-guided fuzzing.

They focus on emulating the functions of a single WiFi chip
(the Atheros AR5212 [28]). As the hardware and firmware
are closed source, they reverse engineered the necessary com-
ponents. USBFuzz, in comparison, does not require reverse
engineering of firmware and supports all USB drivers in the
kernel. In concurrent work, PeriScope [50] proposes to ap-
ply coverage-guided fuzzing on WiFi drivers by modifying
DMA and MMIO APIs in the kernel. IoTFuzzer [7] targets
memory vulnerabilities in the firmware of IoT devices. These
tools either have additional dependencies on physical devices,
or cannot leverage coverage feedback to guide their fuzzing.
Additionally, the AVATAR [71] platform enables dynamic
analysis of drivers by orchestrating the execution of an emu-
lator with the real hardware.

Symbolic Execution. The S2E [8] platform adds selective
symbolic execution support to QEMU. Several tools extend
S2E to analyze device drivers by converting the data read from
the device side into symbolic values (e.g, SymDrive [47] and
DDT [30]). Potus [38] similarly uses symbolic execution to
inject faulty data into USB device drivers.

Like our approach, symbolic execution eliminates hardware
dependencies. However, it is limited by high overhead and
scalability due to path explosion and constraint solving cost.
Further, Potus is controlled by operations from userspace,
thus probe routines are out of scope. In contrast, USBFuzz
follows a dynamic approach, avoiding these limitations and
targets both probe routines and function routines.

8 Conclusion

The USB interface represents an attack surface, through which
software vulnerabilities in the host OS can be exploited. Ex-
isting USB fuzzers are inefficient (e.g., dumb fuzzers like
vUSBf), not portable (e.g., syzkaller usb-fuzzer), and only
reach probe functions of drivers. We propose USBFuzz, a
flexible and modular framework to fuzz USB drivers in OS
kernels. USBFuzz is portable to fuzz USB drivers on differ-
ent OSes, leveraging coverage-guided fuzzing on Linux and
dumb fuzzing on other kernels where coverage collection is
not yet supported. USBFuzz enables broad fuzzing (targeting
the full USB subsystem and a wide range of USB drivers) and
focused fuzzing on a specific device’s driver.

Based on the USBFuzz framework, we applied coverage-
guided fuzzing (the state-of-art fuzzing technique) on the
Linux kernel USB stack and drivers. In a preliminary evalu-
ation on nine recent versions of the Linux kernel, we found
16 new memory bugs in kernels which have been extensively
fuzzed. Reusing the generated seeds from the Linux campaign,
we leverage USBFuzz for dumb fuzzing on USB drivers in
the FreeBSD, MacOS and Windows. To date we have found
one bug in FreeBSD, three bugs on MacOS and four bugs
on Windows. Last, focusing on a USB webcam driver, we
performed focused fuzzing and found another bug in the
XHCI driver of the Linux kernel. So far we have fixed 11

2572    29th USENIX Security Symposium USENIX Association



new bugs and received 10 CVEs. USBFuzz is available at
https://github.com/HexHive/USBFuzz.
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