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Abstract
Card-not-present credit card fraud costs businesses billions

of dollars a year. In this paper, we present Boxer, a mobile
SDK and server that enables apps to combat card-not-present
fraud by scanning cards and verifying that they are genuine.
Boxer analyzes the images from these scans, looking for tell-
tale signs of attacks, and introduces a novel abstraction on top
of modern security hardware for complementary protection.

Currently, 323 apps have integrated Boxer, and tens of them
have deployed it to production, including some large, popular,
and international apps, resulting in Boxer scanning over 10
million real cards already. Our evaluation of Boxer from one
of these deployments shows ten cases of real attacks that our
novel hardware-based abstraction detects. Additionally, from
the same deployment, without letting in any fraud, Boxer’s
card scanning recovers 89% of the good users whom the app
would have blocked. In another evaluation of Boxer, we run
our image analysis models against images from real users and
show an accuracy of 96% and 100% on the two models that
we use.

1 Introduction

Credit card card-not-present fraud is on the rise. Card-not-
present fraud happens when fraudsters make purchases online
or via an app with stolen credit card credentials. They enter
the number, CVV, and expiration date into the app to complete
the transaction, without ever needing to use the physical card
itself. Industry estimates put losses from card-not-present
fraud between $6.4B to $8.1B in 2018 [13, 28], more than
twice the losses from 2015.

Two trends have pushed attackers in this direction. First,
Europay, Mastercard, and Visa (EMV) chips have improved
the security of traditional point-of-sale transactions where
the credit card is physically present [51]. Second, financial
technology (fintech) innovations have made it easy for apps
to integrate payments directly, with popular apps, such as
Coinbase, Venmo, Lyft, Uber, Didi, Lime, and booking.com,

including payments as a core part of their user experience,
providing attackers with more options to use stolen credit
card numbers.

App builders are responsible for stopping card-not-present
fraud themselves. When a consumer spots a suspicious charge
on their credit card statement, they can dispute this charge
with their credit card company. The credit card company
will investigate, and if they deem the charge to be fraud-
ulent, will file a chargeback with the app company. The
chargeback forces the company to pay back the money from
the transaction, even if they had delivered the service, and
credit card companies assess apps an additional dispute fee
(e.g., $15 [47]). Thus, credit card companies incentivize app
builders financially to curb this type of fraud in their apps.

One strawman technique that app builders could use to
combat card-not-present fraud is to ask suspicious users to
scan their physical card with the camera on their phone to
prove possession of the payment method. Intuitively, scanning
the card makes sense as attackers typically buy credit card
numbers and not physical cards [12]. Plus, several major apps
for e-commerce, ride sharing, coupons, food delivery, and
payments already use card scanning for a different purpose:
as a user-friendly way to enter credit and debit card details.
Thus, repurposing this basic user-experience and using card
scanning as a security measure, if it can stop attacks, also has
the potential to easily verify legitimate users.

Unfortunately, card scanners designed for adding credit
cards to an account are not designed for security. In our evalu-
ation, we run a myriad of tests against commercially-deployed
card scanners and find that none of them can stop a text ed-
itor with the credit card number written on it scanned off a
computer screen – the least sophisticated attack we evaluate.
In our experience with Boxer in production environments, we
have seen photoshopped cards, cards scanned off of computer
and phone screens, and a credit-card-specific version of cre-
dential stuffing where attackers entered hundreds of credit
card numbers on the same device to detect which ones were
valid. Card scanners designed for adding credit cards to an
account are woefully ill equipped to deal with any of these
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Figure 1: This figure shows how a food delivery app can use Boxer to verify a credit card for a suspicious transaction. In this
example, the food delivery app (1) detects a suspicious transaction. Rather than blocking it, (2) they forward the user to Boxer’s
card scanner. Boxer’s card scanner scans the user’s card, performs OCR, analyzes video frames to detect telltale signs of attacks,
and collects signals from the device before (3) sending this data to Boxer’s server. Boxer’s server then decides if the card is
genuine, and if it is (4) instructs the app to allow the transaction to proceed.

types of attacks.
In this paper, we present Boxer, a new system for deterring

card-not-present fraud. The first part of Boxer is a card scanner
that we designed from the ground up for security. The wide
deployment of card scanning suggests that it already provides
a good user experience, thus our focus is on the techniques
to verify that a card scanned by a user is in fact a genuine
physical credit card. To the best of our knowledge, we are the
first to show how to verify cards from a scan.

The second part of Boxer is a secure counter that is based on
security hardware found on modern smartphones. Our secure
counter is a novel abstraction where Boxer tracks events, like
cards added, on a per-device basis. These events help app
builders detect attacks and track devices that attackers have
used previously. However, as a first-class design consideration
our secure counters maintain end-user privacy.

These defensive techniques work in concert, where we de-
sign them specifically to complement each other and to fight
against card-not-present fraud. Our contribution, in addition
to each individual defensive technique, lies in their composi-
tion to fight against a wide range of stolen card attacks as a
practical defensive system.

Our work has already started to have an impact in practice
with major apps for e-commerce, bike rentals, airlines, deliver-
ies, and payments integrating Boxer into their apps. Our basic
card scanner has already scanned more than 10 million
cards in production systems running within large inter-
national apps. In addition, our secure counting abstraction

and advanced card scanner are running in several large apps
and successfully detecting fraud.

2 Motivating example

This section walks through an autobiographical motivating
example of card-not-present fraud and how Boxer can help
defend against it.

Mallory is a fraudster. She buys stolen credit card numbers
from other attackers, which they send to her in a text file
[8, 12, 21, 46]. At first, she uses these stolen card numbers to
buy food from a food delivery app, called Foodie, for herself
and her friends. Then, she sees an opportunity to go into
business monetizing her stolen credit card numbers.

To monetize stolen credit cards, Mallory acts as an agent
service selling food delivery at a heavy discount. In this
scheme she collects money from the person who wants food
and “pays” Foodie using stolen credit cards, leaving Foodie
stuck with the bill [11]. Given the profits from this attack,
Mallory recruits a team to help and as they scale their en-
terprise, Foodie is now losing nearly 5% of their revenue to
card-not-present credit card fraud.

Foodie first becomes aware of their fraud problem when
Visa reaches out to Foodie due to their chargeback ratio going
above 1%. At a chargeback ratio above 1%, Foodie is at risk
of having Visa remove them from the payment network [52],
effectively killing Foodie’s growing business.
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Foodie acts by hiring a data scientist, Ari, to help detect
fraud. Ari crafts some business rules [49] to identify the
most egregious transactions, and then trains a machine learn-
ing model to generalize to other transactions [45]. As Ari’s
model hits production, fraud plummets and order is restored
at Foodie.

However, this calm is short lived as Ari only measures his
model’s impact on chargebacks and not on the users that his
model flags incorrectly [10]. It is not until Ari’s model dis-
ables one of Foodie’s investors that Foodie starts to look at
the impact of incorrect model decisions. Upon further investi-
gation, they realize that they are losing more money due to
lost business from blocking legitimate transactions that Ari’s
model flags than they would have lost from chargebacks.

To help with their false positive problem, Foodie hires Brie,
who had been working on stopping fake accounts at a large
social network. Brie knows that by providing users with a way
to verify themselves automatically she can recover almost all
the false positives while still preventing most of the fraud [32].
Brie uses the Boxer “scan your card” challenge that asks
suspicious users to scan their credit card on their phone to
proceed (Figure 1). She knows that most legitimate users have
their card in their wallet, whereas attackers like Mallory just
have a text file with card numbers, making it easy for good
users to pass but hard for attackers. After Brie launched this
challenge, Foodie recovers over 80% of their false positives,
while keeping general fraud rates low.

Although “scan your card” deters many attackers, Mal-
lory evolves her attacks to evade or deceive this challenge.
However, Boxer’s holistic approach comprising of advanced
scanning and secure counting limits these attacks, making
it difficult for Mallory to commit fraud, while continuing to
be easy for good users. We defer the discussion of possible
attacks and Boxer’s countermeasures against them to the re-
mainder of the paper.

3 Threat model, assumptions, and goal

In our threat model, the attacker commits credit card fraud
using stolen credit card information, such as the card number
(PAN), cardholder’s name, expiration date, billing address
etc. Although the card information available to the attacker
is complete and accurate, the attacker does not have access
to the physical card itself. The attacker’s goal is to authorize
transactions with the stolen information.

We consider attacks that vary across a broad range of attack
sophistication where the key differences lie in the technical
sophistication, physical, and monetary resources available, as
well as knowledge of the banking system. We consider attack-
ers who are technologically savvy (e.g., can train and deploy
novel machine learning algorithms) and who know how credit
and debit cards work to be sophisticated attackers. They can
carry out large scale automatic attacks. Other attackers use
humans and real devices to carry out credit card fraud, relying

on human scale to attempt fraudulent transactions one at a
time, who we consider to be unsophisticated attackers.

Our goal is to stop attacks from both sophisticated as well as
unsophisticated attackers. However, our goal is not to stop all
fraudulent transactions, but rather to make stolen credit card
attacks economically infeasible across this broad spectrum of
attacker sophistication.

4 Boxer design principles and overview

This section discusses the design principles that underlay our
design and gives a brief overview of our technology.

Our first general defensive philosophy is to compose com-
plementary defenses. Financial fraud is diverse, ranging from
groups of humans carrying out attacks manually using real
iPhones to full-blown automation, bots, and machine learning.
Rather than try to devise a single defense to stop them all, we
compose several complementary pieces to make an overall
defensive system. We strive to have one component cover the
weaknesses or blind spots of another.

Our second general defensive philosophy is to strive to
never block good users. While the constraints imposed by
Boxer inconveniences fraudulent users, we design them such
that they do not hamper the experience of good users.

4.1 Boxer design principles
In this section we describe our general design for scanning
credit cards to verify that they are genuine. Although our
focus is on scanning credit cards, we expect these general
principles to apply to similar problems, such as scanning IDs,
selfie checks, or verifying utility bills. Our design has five
general principles that guide our implementation.

Principle 1: Scan the card to extract relevant details
and check them against what the app has on record. In
Boxer, we scan the credit card number using optical character
recognition (OCR, Section 6.1) and check that against the
card number that the app has on record for that user.

Principle 2: Inspect the card image for telltale signs of
tampering. Boxer uses a visual consistency check of the card
image against the card’s Bank Identification Number (BIN),
which is the first six digits of the card number and identifies
the issuing bank of the card (e.g., Chase) (Section 6.2). For
example, if a scanned card has a BIN from Chase but the
model does not detect the Chase logo, then the scan is likely
to be an attack.

Principle 3: Detect cards rendered on false media. Al-
though modern machine learning and computer vision algo-
rithms empower attackers to tamper images that are difficult
to detect, the attacker still needs to render these altered images
to scan them. Boxer detects the presence of a screen when
it scans a card (Section 6.3). By detecting a screen, we can
prevent one simple avenue for producing and scanning fake
card images.
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Defense Man. Text Photoshop Phys.
OCR
BIN consistency
Screen detection
Secure counting

Figure 2: Comparing defensive techniques. In this table, we
compare OCR, BIN consistency checks, screen detection, and
secure counting and how they prevent attacks. The attacks
are attackers entering card details manually (Man.), a text-
based card image (Text), a photoshopped image scanned off
a computer (Photoshop), and a physical card printed to look
like a real card (Phys.). The full circle shows complete
detection, the half circle shows detection but may let some
fraud through, and the empty circle shows attacker evasion.

Principle 4: Associate attacker activities with items
that are expensive. In Boxer, we track activities and incre-
ment a secure counter when they occur on the same device
(Section 7). This counting mechanism is important because it
cuts to the core of a broad range of attack behavior: attackers
will use a small set of real phones over and over to carry out
attacks. By providing apps with the ability to count key events,
like adding a credit card to an account, on a per device basis it
allows them to limit the damage done by large scale attacks.

Principle 5: Respect end-user privacy. In Boxer, we put a
premium on end-user privacy by only using device identifiers
that users can reset (Section 7) and by running our machine
learning models on the client (Section 8).

4.2 Overview
Together, the card scanning system and secure counting ab-
straction make up Boxer, where both mechanisms comple-
ment each other to prevent damage from card-not-present
fraud (Figure 2). The image analysis techniques behind card
scanning (OCR, BIN consistency, and screen detection) de-
tect common ways that attackers could create fake cards with
stolen card numbers. The advantage of these techniques is
that when they work, they stop the attack completely. The
disadvantage is that attackers who create sophisticated fake
cards (e.g., physically prints cards) can evade them. On the
other hand, the secure counting abstraction can effectively
deter even technologically sophisticated attackers. However,
it will let through a limited number of fraudulent transactions.
Thus, we use both card scanning and secure counting together
to help make up for the shortcomings of the other.

5 Image analysis motivation

The purpose of Boxer’s image analysis pipeline is to verify
whether a scanned image provided by a user came from a real,

physical card. This verification helps distinguish between
legitimate and fraudulent users. A legitimate user can produce
a real image by scanning their real card while an attacker,
possessing only stolen credit card information, would have to
doctor one. A doctored image leads to possible avenues for
inconsistencies, and Boxer’s image analysis pipeline tries to
spot these inconsistencies.

Although there has been work on synthetic image genera-
tion [31, 38, 48], to the best of our knowledge, the problem
of creating fake credit and debit cards has not been studied.
To answer if creating realistic fake card images is possible
and whether existing methods can detect them, we design
and implement Fugazi, a new, automatic system for creating
realistic fake card images.

The inability of current state-of-the-art image tampering
detection techniques to detect Fugazi influences the eventual
design of our image analysis pipeline.

5.1 Fugazi

From a high level, Fugazi creates fake credit card images
by injecting a different credit card number in an existing
credit card image, automatically. Being able to create fake
credit cards at scale, helps us devise and evaluate image-based
defenses to understand their abilities and limitations.

Overall, we have three goals with Fugazi. First, we want to
create a dataset under a controlled setting where we can filter
out specific artifacts from the camera and other telltale signs
of automation that the models might learn as a shortcut for
learning the overall task. Second, we want to push the bound-
aries of creating fake images in the above controlled setting
with the goal to create imperceptible fakes for humans and
machines alike. Third, we want our methods to scale, since
the existing image manipulation datasets [35, 53] contain
only hundreds of images not enough to train deeper models.

Figure 3 shows Fugazi’s overall four step process for cre-
ating fake card images. (1) Fugazi starts with a picture of
a real card then (2) using hole filling and cloning computer
vision algorithms removes the digits from the card, leaving
only the background texture. Next (3) Fugazi uses a modified
generative adversarial network (GAN) system pix2pix [27]
to inject the digits from the new credit card number, while
still respecting the lighting conditions, font wear, shape, and
shading from the original card (Figure 4). Finally (4) Fugazi
uses Poisson blending and Lanczos resampling to minimize
artifacts that indicate digital tampering.

This version of Fugazi represents our fourth iteration on
its design where our informal goal was to keep working on it
until the authors of this paper could not distinguish between
fake and real cards. Our first iteration used traditional com-
puter vision algorithms and there were always clear artifacts.
Our second iteration used image-to-image translation deep
learning systems to generate the entire card, and this approach
worked well for simple textures but always produced clear
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(1) A picture of a real card (2) Remove original digits (3) Inject digits using GAN (4) Blend and resize

Figure 3: Fugazi’s basic process for creating fake card images. The process uses four steps and combines traditional image
manipulation techniques with deep learning.

Figure 4: Fugazi digit generation process. In the above exam-
ple we want to inject digit 9 in place of digit 4 in the original
card. We find the digit 4 in the sample font. We then train the
model to reproduce the original digit from the sample font
digit. Afterwards, we use the trained model to create the tex-
tured version of digit 9 from the corresponding font digit. The
model reproduces lighting, shade, pose close to the original
digit.

visual artifacts for more complicated textures. Our third iter-
ation also used image-to-image translation, but only for the
region of the card that contained the number. At first this
technique produced great looking numbers but had a clear
bounding box around the number. To remove the bounding
box, we used yet another image-to-image translation step
specifically to smooth out the bounding box. This third itera-
tion was the first to produce card images that we were unable
to distinguish between fake and real, but it was too complex
and took too long to create new fakes, which motivated our
ultimate use of traditional vision algorithms combined with
small and well defined image-to-image translation tasks.

Figure 5 shows two examples of fake cards generated by
Fugazi and Figure 16 in the Appendix shows more examples.

Figure 5: Examples of credit card images generated by Fugazi

Figure 6: Fake sample and corresponding consistency map
generated by the self-consistency based deep learning model
[22]. Since the image is fake, and the map is uniform, we can
see that Fugazi is able to overcome the proposed model.

5.2 Is machine learning sufficient to detect
tampered images?

While machine learning can detect images containing clear
signs of forgery, researchers acknowledge that image tamper-
ing detection in general is more nuanced and requires learn-
ing richer features [56]. To answer the question of whether
or not machine learning is sufficient to detect tampered im-
ages, in this section we evaluate fakes generated by Fugazi,
which we consider as a proxy for high quality fakes, against
general image tampering detection models that achieve state-
of-the-art performance on benchmark image manipulation
datasets [22], [56]. We describe more experiments attempting
to detect Fugazi in Appendix B.

5.2.1 Evaluating Fugazi with state-of-the-art methods

We employed some of the existing state-of-the-art deep learn-
ing and traditional image forensics algorithms to detect Fugazi
generated samples.
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Figure 7: Tampering regions determined by the Faster R-
CNN based model [56] on a real image (left), and Fugazi
fake (right). Not only does the model fail to detect the tam-
pered regions in the Fugazi fake, it also mistakenly detects
untampered regions on both images.

We first tested the model proposed on self-consistency for
detecting fake images [22]. This model produces a consis-
tency map that indicates regions within the card that attackers
have tampered. Figure 6 shows the result of running Fugazi’s
fakes through this model. As shown in the Figure, the model
produces a uniform consistency map, indicating that it be-
lieves that Fugazi’s fake sample is real.

We also evaluated Fugazi against a modified Faster R-CNN
model [40] proposed in recent work by Zhou, et al. [56]. Fig-
ure 7 shows the tampered regions detected by this model on a
real image and a Fugazi image of the same texture. This figure
shows that the model detects similar regions in both the fake
and real cards, suggesting that the technique is ineffective at
detecting Fugazi fakes.

Additionally, we tested traditional computer vision tech-
niques, an in-house binary classifier, and an autoencoder-
based anomaly detector. These techniques were also unable
to detect Fugazi fakes reliably. We describe the techniques
and results in Appendix B.1 and Appendix B.2.

5.2.2 Further difficulties with practical deployments

All the fake image detection techniques we test try to detect
tampered digital images, but in a practical deployment the user
would scan the image using a phone camera. This resampling
of the image runs through camera sensors and the full image
processing pipeline. This layer of indirection between the
tampered image and the detection algorithm has the potential
to make direct detection even more difficult. So even if a user
has a fake card image with possible imperfections, this layer
of indirection has the potential of masking them.

5.3 Where do we go from here?
We have shown that pure machine learning based image anal-
ysis to detect fake cards is difficult. However, attackers are
not trying to misclassify images, they are trying to commit
credit card fraud. We augment machine learning with rule-
based assertions to enforce checks on what passes as a valid
scan. More concretely, Boxer’s image analysis pipeline uses
machine learning to extract high-level features from images

and enforces rules on them based on our knowledge of the
design of credit cards (Section 6.2). Since we design the
rules to validate scans based on the design of actual credit
cards, the approach serves as a form of image tampering de-
tection. The scans blocked are those that do not conform to
valid credit card designs, indicating the presence of image
tampering. While this approach does not catch the most so-
phisticated fakes, when it works it stops attacks before they
cause any damage. For more advanced attackers we focus on
other aspects of the overall attack.

Our secure counting abstraction (Section 7) minimizes
fraud from more sophisticated attacks by limiting the number
of cards a user can add to a single device. This hardware-based
limiting is key for technologically sophisticated attackers be-
cause to make money they need to use many stolen cards, so
tying cards to relatively expensive hardware will make their
attacks more expensive at scale and provide a signal that our
detection system can use to identify bad actors. Our screen de-
tection model (Section 6.3) detects card images that attackers
scan off screens, a common technique employed by attackers
who use real phones and the real app to carry out fraud.

6 Image analysis

This section describes Boxer’s image analysis pipeline, which
consists of three stages: OCR, BIN consistency and expecta-
tion check, and screen detection. Each stage collects different
signals from the image and relays them to Boxer’s server.
Boxer’s server enforces rules on these signals as well as those
obtained from Boxer’s secure counting abstraction (Section
7) to determine the validity of a transaction. The stages in
the image analysis pipeline along with the secure counting
together realize Boxer’s general principles that we outline in
Section 4.1. Section 8 discusses our implementation.

6.1 Optical character recognition

OCR is how we extract a card number out of a video stream
when a user scans their card. In Boxer, OCR serves as the
baseline of our defense where we use this scanned card num-
ber to match against the card number that the app has on
record. Although, unsophisticated fake cards can bypass OCR
by itself (Section 9.7), it will deter some attackers and acts as
a first line of defense, feeding the card’s BIN into our more
advanced image analysis stages.

Perhaps ironically, we use Fugazi fakes (Section 5.1) to
train Boxer’s OCR system. Our design of Fugazi makes gen-
erating synthetic labelled data for training trivial.

We cast OCR as a special case of object detection, where
we train a smaller more constrained version of a traditional
object detector tailored specifically for credit and debit cards.
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Figure 8: Output of the object detector of the BIN consistency
and expectation check. The model correctly identifies, issuing
bank, the card network (Visa), card type, chip, name, and card
number. These extracted features are correlated with our data
of the card BIN to identify any inconsistencies.

6.2 BIN consistency and expectation check
Our BIN consistency and expectation check uses the BIN
and the visual design elements of the card to check if they
match. The BIN is the first six digits of the card number and
identifies the issuing bank (e.g., Capital One). Our goal is
to train a model that we can use to verify that a card “looks”
like a card from that BIN and issuing bank. A card that does
not have its BIN consistent with the visual design elements
does not exist in the real world, and hence, is a telltale sign of
image tampering.

Our first iteration of BIN consistency was a BIN/Texture
check where the model identifies issuing banks from the card
image texture. The key insight being that since a BIN uniquely
identifies a bank, for a given BIN, there can only exist a
limited number of textures.

However, from a practical perspective, it is difficult to
source enough data to get realistic coverage of global credit
and debit cards. First, card designs change constantly, mean-
ing that we would need to get new samples often. Given our
principle of respecting end-user privacy and the sensitivity
of this data, collecting card samples from users would not
work. Second, the BIN database that we use contains 348,925
unique BINs worldwide [2], which from a practical perspec-
tive would make sourcing enough data from each BIN to train
a model difficult.

To be able to model all possible card images given a BIN,
we cast BIN consistency check as an object detection problem
where the model identifies different objects and their corre-
sponding locations on a card image. Objects such as the logo
of the issuing bank, the payment network (Visa, Mastercard,
etc.), type of card (debit or credit), are finite and persistent re-
gardless of the background texture used to print the card. This
ensures we can uniquely identify a BIN from a combination
of these objects independent of the background texture.

Our current BIN consistency check consists of a client-side
object detector that detects objects on a card image (like the
issuing bank, network, type of card) and a server side rule-
aggregator that correlates the information from the features
extracted by the object detector with our knowledge of card

Figure 9: Moiré patterns observed on capturing a laptop
screen on a mobile phone. These patterns are an inherent
aliasing effect that arise from differences in spatial frequency
of the laptop screen and the mobile camera.

BINs to identify fraud. Figure 8 shows the output of Boxer’s
client-side object detector on a regular card image. As this fig-
ure shows, the object detector successfully detects the issuing
bank, card type, payment network, name, and other features
of the payment card. The Boxer SDK sends the name of each
extracted feature, coordinates with respect to the card, the
confidence of each detection, and the card BIN to Boxer’s
server. Note: We do not send any part of the input image to
Boxer’s server.

Boxer’s server-side rule-aggregator has built up an exten-
sive BIN identification database and correlates the card BIN
information from this database with the extracted features
to identify fraud. As a simple example, if the OCR system
detects the BIN of a Chase Visa debit card but the BIN consis-
tency check detects a Bank of America logo or a Mastercard
logo, Boxer flags the scan as inconsistent. Additionally, if
Boxer does not detect a subset of the expected number of
objects from a card scan, Boxer flags the scan as inconsistent.

By focusing our analysis on higher level and common fea-
tures, we can train an effective object detection model using
less data. Also, we can use our server to collect BIN and
object data mappings to serve as the ground truth for the map-
ping between a BIN and the objects and locations that they
tend to have.

6.3 Screen detection
Boxer includes a screen detection module to detect cards
scanned from computer, phone, or tablet screens. With this
check, an attacker would have to physically print credit card
information before scanning, which increases both, the time
taken and the cost required to commit fraud, particularly when
done at a large scale. The general principle is to detect any
false medium rendering an image, but we focus on screens
since we have observed attackers attempt to do so in the wild
(Section 9.4).

We observe that there are telltale signs of images scanned
off screens and seek to use them. These signs include screen
edges or reflections, that attackers can carefully avoid, and
more intrinsic signs such as Moiré patterns [39] which are
much harder to avoid.

Moiré patterns, as shown in Figure 9, are an aliasing effect
arising from an overlay of two different patterns on top of
each other, resulting in new patterns. In the context of screens,
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the patterns come from differences in spatial frequency of the
screen containing the image, and that of the camera used to
capture the image [37].

We detect these signs by training a binary image classifier.

7 Secure counting abstraction

Boxer enables app builders to count events that it associates
with hardware devices. This section describes our design
of the secure counting abstraction by motivating why app
builders would want to count and some of the limitations of
current approaches, in addition to describing the basics of
how counting works.

We recognize that we are using Apple’s hardware mecha-
nism in a way that they did not design for, but we find that it is
close to what we would want. The Appendix discusses our ex-
perience deploying the counting abstraction, limitations, and
suggestions for how Apple and Google could better support
our counting abstraction.

7.1 Why counting?

Before we describe how we count, we explain why one would
want to count events. One key observation about modern
attackers is that they tend to use real hardware devices to
carry out their attacks. Hardware-based mechanisms from
Apple [24] and Google [25] provide app builders with solid
mechanisms for ensuring that a request comes from a legiti-
mate iOS or Android device. Some attackers even carry out
this hardware-based technique at scale [34] due to these limi-
tations on their attacks.

Given that app builders can push attackers into using le-
gitimate hardware devices, attackers try to repeat the same
attacks using the same physical and relatively expensive hard-
ware. App builders, knowing this, will try to count events
associated with a device that indicate the existence of an at-
tack. For example, credit card fraudsters will add many cards
to accounts using the same device and will login to several
accounts using the same device. If app builders can count
these events on a per-device basis, they can detect the attacks,
as we show in Section 9.3.

Unfortunately, app builders have a difficult tradeoff that
they need to make to be able to detect these events. They can
either use privacy-friendly device IDs, which attackers can
reset by uninstalling the app or performing a factory reset
of the device. Or app builders can use persistent device IDs,
which violate the privacy of their end users and Apple’s App
Store policy prohibits [15, 26]. Existing industry solutions
to counting that we have first-hand experience with suffer
from these problems. Our secure counter is novel because
it respects end-user privacy while still empowering apps to
maintain counts even across resets.

0 2 3 5 6 8 9 11

0 3 4 7 8 11 12 15

Cards added

Successful logins

0 21 3
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Strata: 1
Count: 4

Strata: 2
Count: 11

Figure 10: Counts and their associated strata. This figure
shows counts for cards added and successful logins and their
corresponding strata.
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Figure 11: The architecture for the secure counting abstrac-
tion. This figure shows how Boxer updates counts after an
app adds a card. The app calls into the Boxer SDK, which
calls the Boxer server, where Boxer maintains a database of
counts. The Boxer server manages the DeviceCheck bits by
accessing Apple’s servers on behalf of the app.

7.2 Secure counting basics

At the heart of our secure counting abstraction is Apple’s
DeviceCheck abstraction [24]. DeviceCheck uses hardware-
backed tokens stored on a device, which our server uses to
query two bits per device from Apple’s servers. DeviceCheck
is supported on all devices running iOS 11.0 and above, which
accounts for 98.3% of all iOS devices. However, two bits
are not enough for app builders who want to count directly
arbitrary events.

Instead of using DeviceCheck’s two bits to encode values
directly, we use them to define a range of possible counts. Fig-
ure 10 shows a device where we are tracking cards added and
successful logins. For this app, the app builder expects a maxi-
mum of 11 cards added and 15 successful logins, which Boxer
divides into four sections, or strata. We divide the counts by
four so that we can represent each of the four strata using
Apple’s two hardware bits. In our example, this device has a
count of four cards added and eleven successful logins, which
map to strata one and two respectively.

The software counts and hardware strata complement each
other where we use software counts in the common case
where the user maintains the same vendorId (Apple’s privacy-
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login: 1 (strata 0)
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DeviceCheck: 0
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cards: 3 (strata 1)

soft. strata: 1

DeviceCheck: 1

vendorId: 19122

login: 0 (strata 0)

cards: 0 (strata 0)

soft. strata: -

DeviceCheck: 1

vendorId: 19122

login: 7 (strata 1)

cards: 5 (strata 1)

soft. strata: 1

DeviceCheck: 1

Increment 
cards

Reset 
vendorId

Repair 
DeviceCheck 

soft. strata 
mismatch

Figure 12: Example of Boxer’s secure counting system. In this figure, we show the counting system in four different states with
three transitions between them. In this example, Boxer is counting cards added and logins, and tracking these on a per vendorId
basis.

friendly deviceId abstraction [5]), but hardware strata to re-
cover lost count values when we see a device reset. For at-
tackers that reset their device, our counting abstraction pro-
vides monotonically increasing count values, but for legit-
imate users who reset their device, by dividing the counts
up into four strata we limit the amount that our counts will
increase on a device reset to avoid falsely flagging good users.

Figure 11 shows our overall architecture for how app
builders use the secure counting abstraction and how Boxer
keeps track of counts. From a high level, the app invokes an
increment function in our SDK to increment the count for
cards added, successful logins, or any events they want to
track. The app includes an anonymous, but consistent, userId
along with the request. Our SDK then retrieves a fresh De-
viceCheck token from the device and the vendorId and passes
these along with the userId to the Boxer server. The Boxer
server maintains a device database indexed via the vendorId
to keep track of counts and userIds for this device. The Boxer
server also accesses Apple’s servers, on behalf of the app,
to query and set DeviceCheck bits. Apps need to register a
DeviceCheck private key with Boxer to enable us to access
Apple’s servers on their behalf. Subsequently, the app can
query counts from Boxer’s server.

7.3 Counting and inconsistencies

Figure 12 shows an example of how the counting system
state advances as three different events occur while counting
cards added and logins. The system starts with two cards
added and one login counts. We define the strata for each
of these counts by dividing the maximum expected number
of events by four, and each range represents a stratum. If
the system increments the cards added count, it causes the
count to cross a stratum as it moves the count from two to
three, putting that count into stratum 1. The system defines
the overall software stratum for a device as the maximum
of all counter strata, so Boxer advances the software stratum
to 1 and the DeviceCheck stratum to 1 as well to match the
software stratum. At this point, the cards added, and login
counts are in different stratum, which is acceptable as long

the app continues to use the same vendorId.
If the user resets their vendorId, then subsequent requests

will appear to come from a new device with all counts set to
0 and the software stratum set to an initial state (“-” in the
figure). However, the DeviceCheck stratum is 1, causing an
inconsistency. As a result of this inconsistency, Boxer sets
all counts to the maximum value for their strata, which in
this case is five for the cards added count and seven for the
login count when they are in stratum 1. By setting the counts
to the maximum value within their strata as defined by the
DeviceCheck stratum, we guarantee that all counts are equal
to or greater than what they were before the inconsistency,
thus maintaining monotonically increasing counts even after
a vendorId reset.

Our rules for counting are:

• The strata for a count = floor(count * 4 / max_count).

• The software strata = max(strata for all counts).

• If DeviceCheck strata > software strata, set all counts
to the maximum count according to the DeviceCheck
strata.

• If DeviceCheck strata < software strata, set the De-
viceCheck strata = software strata.

Our system also handles counts where the maximum count
is less than four and we handle the case where the attacker
moves vendorIds between attacker-controlled devices, but we
omit the details from this paper.

Initialization edge case We handle the case where a user
resets their device before advancing strata with the help of
an uninitialized state. For a fresh device, both hardware and
software strata are set to this state before the app is used for
the first time, after which both advance to stratum 0. For a
user who resets their device at this point, the software state
goes back to being uninitialized, while the hardware state is
still in stratum 0. When we see such a configuration, we push
the user to the maximum count of stratum 0 in software to
match the hardware stratum. When the user adds their next
card, both hardware and software strata will go to stratum 1,
thereby ensuring monotonically increasing counts.
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8 Implementation

This section discusses our overall implementation of Boxer.
We discuss our overall implementation and our ML based
image analysis pipeline.

In general, our system includes libraries that run on An-
droid and iOS that app builders can put into their apps. For
Android we use the standard jCenter repository to deploy our
library, and for iOS we use the ubiquitous Cocoapods for dis-
tribution. The net result is that app builders can install these
libraries using standard tools that they are almost certainly
already using with only a single line configuration change.

Our system also includes a server portion that consumes
the output of our client-side libraries to make the ultimate
decision about whether a scan is genuine. The server portion
runs as a Google App Engine app and uses Google’s Cloud
Datastore as the underlying database.

Our goal for our machine learning pipeline is to simultane-
ously pull the card number off the card to match what’s on
record, look at the visual elements of a card to verify that the
card design matches what we expect for card from that BIN,
and detect any cards scanned off computer screens. In our cur-
rent implementation, we use four different machine learning
models to glean this information from a video stream: two
models for OCR, one for object detection and BIN matching,
and one for image classification to detect screens.

We run models client-side because it provides stronger
privacy by virtue of not sending images of cards to our server.
Also, running models client-side puts the models close to the
video stream, allowing Boxer to process more frames and
with lower latency than if we sent images to a server.

9 Evaluation

This section seeks to answer six primary questions about
Boxer and its impact in combating card-not-present fraud.

• Does Boxer recover false positives in a real deployment?

• Can Boxer’s secure counting catch real attacks?

• How does screen detection fare against real attackers?

• How viable is the BIN consistency and expectation
check?

• What types of attacks are currently being employed by
fraudsters, and how does Boxer stop them?

• Do existing card scanners detect fake cards?

Several international apps have already deployed Boxer,
leading to over 10 million cards scanned already. We evaluate
Boxer on its performance against real attacks against these
deployments (Sections 9.2, 9.3, 9.4, 9.6) and follow up with
a more rigorous and controlled in-house evaluation against
anticipated attacks (Sections 9.4, 9.5).

9.1 Handling production data
We use real data from production systems to train our defen-
sive models and we report results based on real people using
the apps that use our system. As such, for any data we use
we employ access control, store it in an encrypted loopback
device, and only use end-to-end encrypted file systems when
we do open the encrypted loopback device.

9.2 Does Boxer recover false positives in a real
deployment?

To evaluate Boxer’s ability to recover false positives, we re-
port on results from an app that shipped our SDK. In this
deployment the app allowed users flagged by their fraud sys-
tems to verify their cards using Boxer instead of blocking
them, which is what they did before using Boxer.

From January 22nd, 2020 to February 5th, 2020 we sample
45 users whom the app’s systems flagged as fraudulent. Of
these 45 users, 35 left without scanning. Of the ten users who
did scan, eight scanned their cards successfully and passed
Boxer’s security checks, while the other two failed. Of these
two users, one exceeded the cards added count from Boxer’s
secure counting system and the other failed the screen detec-
tion check.

All eight users who completed their transactions do not
have chargebacks on their accounts as of February 12th, indi-
cating that these were good users who would have otherwise
been blocked (i.e., false positives).

Based on a manual analysis of the users in this dataset, the
app confirmed that all 35 users who left without scanning were
indeed fraudsters, as was the user caught by our secure counter.
However, the user caught by screen detection appeared to be a
good user. Although Boxer was unable to verify this user, they
were in the same state that they would have been in without
Boxer: their transaction was blocked.

Accordingly, the total number of good users in this dataset
is 9, of which Boxer successfully recovers 8. Thus in this
evaluation, Boxer recovers 89% of false positives without
incurring any additional fraud.

9.3 Can Boxer’s secure counting catch real at-
tacks?

To evaluate secure counting, we report on data from an app
that shipped our SDK in their production system. They ran
the system for two weeks in November 2019 in production
but did not use the results actively to stop attacks, but rather
passively recorded information. The company does have other
rules that they use to block transactions, so although our count
is passive, they do actively block transactions from suspicious
users. Having a passive count is advantageous because we
can inspect the data more deeply before attackers attempt to
evade Boxer.
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In their setup they count cards that users add to an account
for each device and set the maximum count to six per month.
We also record all the unique userIds that we see for a device
but record that in a database and do not use secure counting
to track that yet. We took a random sample of ten users who
hit this maximum count and report the results.

The first question we wanted to answer was whether attack-
ers reset their device. We track device resets by observing
an inconsistency between the software count and hardware
stratum and record a timestamp for when the reset happens.
In our sample, 7/10 attackers did reset their device, presum-
ably as a countermeasure to the other security rules that the
company used. For these reset devices, the company would
have been unable to count any per-device events, including
cards added, without using Boxer. Boxer was able to recover
the cards added count after resets and maintain monotonically
increasing counts.

The second question we wanted to answer was whether
counting cards added to a device would be useful for stopping
fraud. To answer this question, we pulled the userIds from our
database for all users who added a card to one of the devices
that hit the six-card limit and inspected all their transactions
manually.

Fraudsters used all ten devices for attacks that the company
would like to prevent, and the attacks fell into three categories.
First, 4/10 devices took part in traditional stolen card fraud
where the users of that device added cards from a broad range
of zip codes (e.g., across multiple states), indicating that the
cards were coming from a list of stolen credentials. Second,
3/10 devices took part in a credit-card specific version of
credential stuffing, where they added 12, 42, and 100 unique
cards to a device, presumably to check if the card data they
had was valid. Interestingly, the devices that they used to
check cards did not have any transactions on them. Third,
3/10 devices took part in a scheme where they abuse the
pre-authorization system.

For the ten devices that we inspected manually, we had no
false positives – fraudsters used all the devices we inspected
for attacks. The attacks fell into three different categories, but
they were all attacks.

Although we do not know the recall of the Boxer card added
count, which would be a measure of how much of the total
fraud problem does this signal catch, we can confirm that the
7/10 devices used for stolen card fraud and failed transaction
fraud had charges on them that the company’s other systems
had missed. As such, the company plans to start using the
Boxer card added count in production to block suspicious
transactions.

Finally, of the ten devices that we inspected, one device
had three unique users, and another had six unique users all
who added cards on the same device, suggesting that tracking
unique logins per device could be another useful signal.

Accuracy Precision Recall
96.25% 98.25% 94.25%

Figure 13: Screen detection results on a dataset of 800 images
having an even split of samples containing and not containing
screens.

9.4 Can screen detection catch real attackers
scanning card images from screens?

From a production dataset, we randomly select 63 images
where attackers scanned cards rendered on screens as our
validation set. Boxer’s screen detection model caught all 63
attacks. All these images, however, clearly showed the edge
of the screen that the attacker was using to display the card.

Since a careful attacker can avoid screen edges while scan-
ning, we perform a more extensive internal evaluation. We
manually collected 400 images of different credit cards cap-
tured across multiple screens. These 400 samples had credit
cards displayed on multiple screens, and we captured them us-
ing multiple devices, showing the screen edge in some cases,
and not showing in others. We combined this with 400 images
clearly not having screens obtained from the same mobile pay-
ment app to build a test set of 800 images for evaluation. Of
these 800 images, the screen detection model was able to
correctly label 770 images, giving an accuracy of 96.25%.
Screen detection incorrectly labeled only 7 out of 400 images
that did not contain screens thereby resulting in a precision
of 98.25% and missed 23 out of 400 images that contained
screens resulting in a recall of 94.24%. Figure 13 summarizes
these results.

In Boxer, we run the screen detector on three frames for
each scan, so we have multiple opportunities to detect a screen
and some flexibility in balancing false positives and false
negatives.

9.5 How viable is the BIN consistency and ex-
pectation check?

We design the BIN consistency check to catch attackers who
create card images that look like cards, perhaps using a stock
card image, but do not match what we expect for a card from
that BIN. Since we have not seen this style of attack in the
wild, we consider this defense to be a proactive defense that
anticipates future attacks. Thus, for evaluation, we test on
valid cards to check for false positives and see if it can detect
a purposely crafted BIN inconsistent Fugazi fake.

We use a validation dataset containing 2000 legitimate
production credit card images. On evaluation, the BIN check
had a false positive rate of 0 on this dataset, showing that it
will not affect the experience of good users.

We created a BIN inconsistent fake card using Fugazi. This
card has the BIN of a GreenDot card, but we render it in the
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Figure 14: A BIN inconsistent fake card image caught by our
BIN consistency and expectation check. The card shown in
the image starts with a 4 and should thus have the Visa logo.
The BIN (first 6 digits) of the card is also not from Chase, and
thus, a Chase logo should not be present. Our check detects
both inconsistencies, showing that it would flag such a card
as fake.

form of a Chase card. While existing apps were unable to
detect this fake card (Section 9.7), the BIN check correctly
classifies this as a BIN inconsistent image by detecting the
presence of a Chase logo as shown in Figure 14.

9.6 What types of attacks are currently be-
ing employed by fraudsters, and how does
Boxer stop them?

We report the types of attacks from a random sample of attacks
observed in the wild. These attacks include:

• 23% of users who did not produce a picture of a card in
their scan.

• 74% of users whose scanned cards did not match the
card that the app had on record for these users.

• 3% of users who scanned card images rendered on mo-
bile and computer screens.

• One user with a clearly photoshopped card.

In this dataset, the overwhelming majority of attacks were
from users who scanned something other then a card and
users who scanned a card that mismatched what the app had
on record for the user. Our OCR stops the users who were
unable to produce a card image and those who produced
card images that did not match the card number on record.
A few users scanned cards rendered on mobile devices or
monitors, which our screen detector detects. We did find a
single example of a user using a photoshopped card. While
Boxer was unable to detect this card, we observe that it had
an incorrect font and we expect future systems to detect this
style of attack.

Additionally, we describe the attacks stopped by our secure
counter in Section 9.3

Original card Fake cards

Figure 15: Samples for our case study. This figure shows the
original card and four different fake versions of the real card.
The fake cards include a Google doc with the number in the
middle scanned off a computer screen, a Fugazi fake where
the BIN mismatches and scanned off a phone, the real card
scanned off a phone, and a Fugazi fake that we printed out
using a high quality printer and plastic. We add these fake
cards successfully to all the apps that we tested using their
card scanner.

9.7 Do existing card scanners detect fake
cards?

Many apps include card scanning as a better user experience
for adding cards when compared to entering the card details
manually into an app. However, this extra data from the scan
also presents an opportunity to detect signs of attacks. To test
if existing apps use this data, we generate several fake cards
and add them to a ride sharing app, a food deliver app, an e-
commerce app, and a security SDK using their card scanning
features. We discuss the ethical considerations of these attacks
in Section 9.7.1.

Figure 15 shows both the real card and the fake cards that
we use for this experiment. Our original card is a GreenDot
card, and the fakes include a Google Doc with the card details
typed on it, a Fugazi fake with a Chase card containing the
GreenDot number on a phone screen, the original GreenDot
card on a phone screen, and a physical card printed on plastic
of the Chase card. We printed the physical card at a local print
shop, and it cost $35 per card.

We added the fake cards to all the apps successfully, sug-
gesting that these apps are not looking at the card for signs
of tampering. Fraud systems are complicated, and we add
cards to existing accounts for the ride-sharing app and the
e-commerce app. Thus, it is possible that even if they had
detected signs of abuse, they may have let it pass due to the
good standing of the accounts that add the cards.

However, with the food delivery app we created a new
account and the cards we added were fake, a classic pattern
for financial fraud. After adding the card, we also made a
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purchase, showing that this card bypassed all fraud checks.
The security SDK that we evaluated is an anti-fraud library as
opposed to an app itself, but they claim to provide confidence
that the user possesses the physical card, which is false in our
experiment.

9.7.1 Ethical considerations

In our experiments, we add fake cards to accounts on real
apps. In one experiment, we made a purchase using the fake
card. However, the credit card number that we used in this
experiment was one from a pre-paid debit card that we had
purchased. Thus, we paid the merchant for the food that we
received. Also, we consulted with our lawyers and they con-
firmed that what we did was legal, and we believe that it is
ethical.

10 Related work

Payment cards are vulnerable to skimming attacks where data
is stolen and sold online [1]. Researchers did a study of card
skimmer technology and used it to develop a card skimmer de-
tector [43]. This technology exploits the physical constraints
required for a card skimmer to work properly. Scaife et al. [41]
surveyed various gas pump point-of-sale skimmer detection
techniques like Bluetooth based skimmer detection mobile
apps. The authors reverse engineer all the available apps to
determine the common skimmer detection characteristics. In
another work, Nishant et al. [9] evaluate the effectiveness of
using Bluetooth scans to detect card skimmers.

Researchers have also bolstered the security of gift cards, an
increasingly popular payment method considerably different
in design from both credit and debit cards [42].

Stapleton and Poore explain in detail the standards main-
tained by the Payment Card Industry (PCI) Security Stan-
dards Council (SSC) to protect credit card holder data [44].
Researchers have shown how BIN can be used in conjunction
with the IP address for a BIN/IP check [3] to identify fraud.
The device location is correlated with the country of issuance
of the bank to identify fraud.

Data mining has been used to propose solutions to card
not present fraud. Akhilomen used features like geolocation
of the transaction, email address or phone number used in
the transaction, good purchased, shipping address to train a
neural network based fraud detection anomaly system [6].
More recently, Zanin proposed a combination of data mining
and parenclitic network analysis to ascertain the validity of
credit card transactions [55].

The area of digital image forensics looks at the broad area
of detecting fake images. Farid outlines this area in a survey
of the topic [16]. Techniques, such as cloning [19] and JPEG
quantization [17], use the fact that the underlying statistics of
any digitally forged altercation would not match that of a real
image, although they look indistinguishable to a human being.

Such techniques have also been incorporated into the deep
learning era, to train a model to learn the distribution of either
real images, and identify fakes through anomaly detection
techniques [54], or learn distributions of real and fake images,
and accordingly classify an image at test time.

Detecting screens has also been explored previously. Patel
et al. seek to use Moiré patterns to detect replay attacks aim-
ing to evade facial recognition systems [37]. More recently,
Gracia and Queiroz also use Moiré pattern analysis to detect
replay attacks [20].

Multi-factor authentication focuses on how to use addi-
tional mechanisms to prove the identity of the individual
interacting with an app. Recently researchers have proposed
novel factors to empower people to authenticate explicitly
via voice recognition [7, 50]. Researchers have also proposed
a number of systems to enable login systems to verify addi-
tional factors implicitly [29, 30, 33]. Finally, researchers have
shown how to be smart about when to even ask for additional
factors via statistical methods [18].

11 Conclusion

Many apps use scanning to make it easy for users to add
payment cards to their apps. Although the current generation
of scanners are good at performing OCR, they are not ready
to stop attacks.

This paper introduced Boxer, a new system for enabling
apps to scan payment cards and determine if they are genuine.
Boxer combines three image analysis techniques with a novel
secure counting abstraction on top of modern security hard-
ware to provide a holistic solution to card-not-present attacks
performed at scale.

Boxer is already beginning to have an impact, with our SDK
actively taking production traffic from large and international
apps. To date, we have already scanned over 10 million cards,
detected real attacks, and shown how our design keeps an eye
towards the future by anticipating future attacks and building
defenses for them.

Acknowledgments

We would like to thank Pete Chen, David Wagner, Nolen
Scaife, Hao Chen, Joy Geng, and Jason Lowe-Power for pro-
viding feedback on drafts of our paper. We would also like
to thank our shepherd, Patrick Traynor, and the anonymous
reviewers who provided valuable feedback on this work. This
research was funded in part by a grant from Bouncer Tech-
nologies and NSF grant IIS-1748387.

USENIX Association 29th USENIX Security Symposium    1583



Appendix

A Improving hardware for rate limiting

Based on our experience using Boxer’s counting abstraction in
a production environment, we describe some of the pragmatic
and important lessons learned from our experiences and we
suggest modest modifications to the hardware available on
iOS and Android devices to better support device-based rate
limiting in general and our counting abstraction in particular.

A.1 Impact on legitimate users
Section 7.3 describes how Boxer maintains monotonically
increasing counts even as attackers reset their vendorId or
move a valid vendorId from one device to another. This sec-
tion focuses on our legitimate users and how our abstractions
strive to handle less common, but still possible, cases well.
In particular, the two cases we discuss are (1) users buying
a used device and (2) users uninstalling and reinstalling the
app.

When a user buys a used device, they inherit the De-
viceCheck stratum from the previous owner as DeviceCheck
stratum are bound to devices. In the most extreme case, at-
tackers who sell devices with DeviceCheck stratum set to 3
would result in counts already being set to their maximum
value. To mitigate this potential risk, we set our reset period
(when we reset counts back to zero) to one month, the shortest
time period available when using DeviceCheck. DeviceCheck
provides timestamps on a month-level of granularity, so each
time the timestamp in DeviceCheck mismatches the current
month, Boxer resets all counts.

When a user uninstalls and reinstalls the app, or otherwise
resets their vendorId, Boxer increases their counts due to
software and DeviceCheck strata inconsistencies. However,
they will increase their strata only if they increment a count.
For example, if a user is at stratum 1 and they uninstall and
reinstall the app but never add a card, then their stratum will
remain at 1. App uninstall and reinstall cycles will reduce
the number of counts available to users, but by dividing our
counts into strata we still leave some room for counting.

A.2 Limitations
Based on our experience of running Boxer in a production
environment, we discovered two main limitations of our ap-
proach.

First, whenever Boxer needs to set counts due to software
and DeviceCheck strata inconsistencies, counts from one
event may be set even if the user hasn’t performed the action
associated with the event. Second, we found the DeviceCheck
API to be difficult to work with because we need to maintain
consistent state across our own counting data and Apple’s De-
viceCheck state. This classic distributed systems problem is

especially difficult for Boxer because we use a read-modify-
write pattern to update DeviceCheck bits and we must be
able to withstand an attacker who sends a massive number of
requests for the same device in parallel, but Apple provides
no mechanisms for us to do this consistently. Appendix A.3
discusses how we handle this limitation.

A.3 DeviceCheck for distributed systems
The fundamental problem with DeviceCheck, from a dis-
tributed systems perspective, is that app builders need to keep
their software strata and Apple’s DeviceCheck state consis-
tent. Apple exposes a simple get / set interface, which we
assume is atomic and sequentially consistent, but because
there are only two bits and no fine-grained timestamps there
isn’t much we can build on top of it.

In Boxer we serialize all read-modify-write updates to Ap-
ple’s servers while still allowing read-only requests to access
the bits concurrently. To serialize, we use a distributed lock-
ing scheme built on top of Google’s Cloud Datastore using
transactions and a simple lock model. Even with this syn-
chronization scheme and blunt serialization policy, Boxer can
handle millions of active devices per month. See Appendix
A.5 for more details.

One option for dealing with race conditions is to ignore
them since these are used for rate limiting. Allowing 14 failed
login attempts instead of 12 is still effective rate limiting.

Based on our experience, we’d like to see a simple exten-
sion to the DeviceCheck API to facilitate efficient race-free
counting. We propose a short-lived (e.g., 60 seconds) deviceId
in addition to the two bits that DeviceCheck gives us that we
can use within our own synchronization scheme. Short-lived
deviceIds should be simple for Apple to implement on top of
any reasonable storage system and has a minimal impact on
end-user privacy as legitimate users will always have the same
vendorId for concurrent requests on the same device. Only
attackers will have different vendorIds for concurrent requests
from the same device. By exposing a time-based deviceId,
app builders can synchronize access to the DeviceCheck bits
for each device, enabling Boxer to handle any practical scale.

A.4 Applying stratified counting to Android
Like Apple, Google also has mechanisms in their Android
systems that have the potential to serve as the backbone for
Boxer’s rate limiting abstraction.

In particular, Android’s Key Attestation system [25] pro-
vides a hardware-backed uniqueId that cycles every 30 days.
Boxer could use this uniqueId directly in place of Apple’s
vendorId, which would enable Boxer to count events without
needing to synchronize with external servers, like we do when
we use DeviceCheck.

However, one limitation of Google’s design, from Boxer’s
perspective, is that end users are unable to reset their uniqueId
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before that 30-day period expires. And, this limitation is fun-
damental as the ability to reset the uniqueId is akin to resetting
the hardware.

A second limitation of Google’s design is that they hard-
code the 30-day cycle parameter, making it impossible for app
builders to extend their rate limit period. In contrast, Apple’s
DeviceCheck design provides a timestamp and leaves it up
to the app builder as to when they want to cycle their state,
providing more flexibility for app builders to customize their
use.

Currently, Google restricts the use of the uniqueId only to
system level processes, but as an alternative to DeviceCheck
the uniqueId provides some compelling improvements in
terms of counting system implementation simplicity.

A.5 Is serializing access to Apple’s De-
viceCheck servers practical?

To make sure that Boxer’s software strata and DeviceCheck
state remain consistent, we serialize all read-modify-write
updates to DeviceCheck state. To measure the impact of this
policy, we measure the latency of read-modify-write updates
and the latency of our distributed locks, all of which run in our
Goolge App Engine server system. We measured ten updates
and report the average across all ten trials.

The total time for handling locking and read-modify-write
updates to Apple’s DeviceCheck is 916ms. At this latency,
Boxer can handle 2.8M updates every 30 days, and assum-
ing an average of 1.5 updates per device per month means
that Boxer can handle 1.9M active devices per month. Of
the 916ms, 297ms are from our distributed locking scheme,
leaving the remaining 619ms for DeviceCheck API calls. In-
stead of using distributed locks, we could have routed all
read-modify-write updates to the same server and used local
locks for synchronization, effectively eliminating the 297ms
spent on distributed locks. In this case, Boxer can handle
4.2M updates spread across 2.8M active devices over a 30
day period.

These results show that even for a naive implementation
and blunt serialization policy, Boxer can handle millions of
active devices per month.

B More experiments with Fugazi

To understand if there are any fundamental differences be-
tween real samples and those created by Fugazi, instead of
creating a Fugazi fake with a new card number, we create a
Fugazi version of an original card image (i.e., a fake where the
injected digits are the same as that of the original). We then
compute the pixel-wise difference image between them. We
ensure that the Fugazi fake has the same texture as the original
and we align them perfectly. This alignment guarantees that
only Fugazi introduces differences between the two. Figure

18 shows the difference image and we make the following ob-
servations. First, most parts of the Fugazi generated image are
identical to the original, indicating a potential difficulty for
machine learning models attempting to detect discriminating
features. Second, the difference image, however, highlights
exactly those places where Fugazi had to do the most work
(Sec 5.1), showing imperfections in Fugazi fakes.

Owing to the observed differences between real cards and
their corresponding Fugazi fake versions, we attempted a
number of defenses to reliably detect Fugazi.

B.1 Evaluating Fugazi with traditional image
forensics techniques

The non-deep learning forensics techniques we attempted, to
detect Fugazi rely on differences in the frequency of noise
present in natural and tampered images [4], CFA artifacts that
are generated by a demosaicing algorithm run on modern
digital cameras to reconstruct color images, and thus, not be
present in generated images [36] and possible discontinuities
in JPEG compression artifacts arising in digitally generated
images [23]. However, as Figure 17 shows, none of these
techniques detect any discernible differences between real
and Fugazi generated samples.

B.2 Internal evaluation of Fugazi with image
classification and anomaly detection

We first trained and evaluated a binary classifier to distin-
guish between real cards and Fugazi fakes. While the trained
classifier generalized to detect other fakes that a particuar ver-
sion of Fugazi generated, it was consistently fooled by those
generated by a slightly altered implementation of Fugazi.

Although a binary classifier might work as a signature de-
tection technique where it can identify a specific version of
Fugazi, it is unable to detect general fake cards. This limita-
tion is significant in our setting, where fraudsters refine their
techniques to adapt with growing defenses.

Next, we cast Fugazi card detection as an anomaly detec-
tion problem. We modeled an autoencoder as a deviation-
based anomaly detector [14] which we trained to reconstruct
only real samples. Our hypothesis was that training only on
real samples leads to sub-optimal reconstruction of fakes.
Once quantified, we use the reconstruction error to distin-
guish between real and fake images, since fakes would have a
higher reconstruction error.

With our observation that there are imperfections in Fugazi
fake cards, the autoencoder based anomaly detection can po-
tentially catch them without being influenced by a particular
type of fake. This observation stems from the fact that we
only train our autoencoder on real data.

However, when we experimented with several different
Fugazi fakes, the reconstruction loss values across training
epochs was spread out, with the loss value being higher for
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Figure 16: Fake credit cards that we generated using Fugazi.

Figure 17: Outputs generated on running noise analysis [4],
CFA detection [36] and JPEG inconsistency detection [23],
respectively on real and fake images. The top row shows the
results on fake images, and the bottom row for real images.
The images on the left show no difference in the frequency of
noise between real and fake images. The images in the middle
show no specific regions that do not contain CFA artifacts
(regions shown in blue), and the images on the right show
JPEG compressions localizing to the same untampered region
(regions shown in yellow) in real and fake images.

real cards in some cases, and higher for fakes in others. This
data suggests that autoencoder was unable to detect fake cards.
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