N\
usenix \
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

SEAL: Attack Mitigation for Encrypted Databases
via Adjustable Leakage

loannis Demertzis, University of Maryland; Dimitrios Papadopoulos,
Hong Kong University of Science and Technology; Charalampos Papamanthou,
University of Maryland; Saurabh Shintre, NortonLifeLock Research Group

https://www.usenix.org/conference/usenixsecurity20/presentation/demertzis

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

+

SEAL: Attack Mitigation for Encrypted Databases via Adjustable Leakage

loannis Demertzis*

University of Maryland Hong Kong University
of Science & Technology
Abstract

Building expressive encrypted databases that can scale to
large volumes of data while enjoying formal security guar-
antees has been one of the holy grails of security and cryp-
tography research. Searchable Encryption (SE) is considered
to be an attractive implementation choice for this goal: It
naturally supports basic database queries such as point, join,
group-by and range, and is very practical at the expense of
well-defined leakage such as search and access pattern. Never-
theless, recent attacks have exploited these leakages to recover
the plaintext database or the posed queries, casting doubt to
the usefulness of SE in encrypted systems. Defenses against
such leakage-abuse attacks typically require the use of Obliv-
ious RAM or worst-case padding—such countermeasures
are however quite impractical. In order to efficiently defend
against leakage-abuse attacks on SE-based systems, we pro-
pose SEAL, a family of new SE schemes with adjustable
leakage. In SEAL, the amount of privacy loss is expressed
in leaked bits of search or access pattern and can be defined
at setup. As our experiments show, when protecting only a
few bits of leakage (e.g., three to four bits of access pattern),
enough for existing and even new more aggressive attacks
to fail, SEAL query execution time is within the realm of
practical for real-world applications (a little over one order
of magnitude slowdown compared to traditional SE-based en-
crypted databases). Thus, SEAL could comprise a promising
approach to build efficient and robust encrypted databases.

1 Introduction

Encrypted databases enable a data owner to outsource a
database to a server in a private manner, so that the server
can still answer database queries on the underlying en-
crypted data. Initially implemented with weak primitives like
order-preserving (OPE) and deterministic (DET) encryption

*Work partially done as a research intern at Symantec Research Labs
(now NortonLifeL.ock Research Group) and HKUST.

Dimitrios Papadopoulos

Saurabh Shintre
NortonLifeLock
Research Group

Charalampos Papamanthou
University of Maryland

(e.g., [5,6,43, 48])], encrypted databases have now moved
to more “secure"” implementations through other primitives
like searchable or structured encryption (SE) [12], offering
support for a plethora of queries such as point queries [17,18],
range queries [15, 16,20], and SQL queries [30] (e.g., join
and group-by queries).

SE-based encrypted databases are quite practical at the
expense of well-defined leakage. This leakage information
includes the search pattern (whether a query g has been made
in the past or not) and the access pattern that consists of the
volume pattern (number of database tuples contained in the
query result) and the overlapping pattern (which database
tuples, if any, in the result for query g appeared in the result
of a previous query).

Leakage-abuse attacks. Unfortunately the aforementioned
leakages exposed by SE can be quite harmful, enabling the
recovery of the encrypted database or/and the posed queries.
In particular, the works of Islam et al. [28] and Cash et
al. [11] were the first to exploit access pattern leakage and
prior knowledge about the dataset to recover the queried key-
words. Zhang et al. [51] propose file injection attacks for
encrypted email applications to improve the recovery rate
of queried keywords. Blackstone et al. [7] revisit various
assumptions of existing leakage-abuse attacks. For private
range search, effective access pattern and volumetric attacks
through which the attacker learns the plaintext order and value
of encrypted records, without any prior knowledge, have been
proposed [13,24,25,27,32,34-36,39]. This growing body
of leakage-abuse attacks has already alerted the community
about using SE for implementing encrypted databases [1].

Current defenses. To provably defend against leakage-abuse
attacks on SE-based systems one has to (i) use expensive cryp-
tographic tools to eliminate the search/overlapping patterns,
i.e., Oblivious RAM (ORAM) [46] (introducing a polyloga-
rithmic search overhead) and (ii) perform worst-case padding

'Note that such implementations have been shown to be susceptible
to inference attacks [41] since they leak statistical and order information
allowing an attacker to decrypt the actual encrypted records.

USENIX Association

29th USENIX Security Symposium 2433

(resulting in worst-case linear search time [29] or quadratic in-
dex size) for eliminating the volume pattern. Both approaches
above incur large overheads leading to quite impractical pro-
tocols. We present other, more practical, but less effective
defenses in our prior work section.

Our contributions. In light of the above, we ask in this paper
whether practical SE primitives can still somehow be used to
implement secure encrypted databases. Towards this goal, we
propose SEAL”, a family of new SE schemes with adjustable
leakage which allow the client to define a trade-off between
efficiency and leaked information. We show that hiding only
a few bits of the search/overlapping/volume pattern signifi-
cantly reduces the success of existing as well new, even more
aggressive, leakage-abuse attacks. At the same time SEAL’s
practical performance is close to traditional SE. In particular
our contributions are as follows:

1. To better motivate SEAL, we first present new attacks
on existing SE-based encrypted databases. In particular,
we show that the same inference attacks on DET sys-
tems [41] can be used by a persistent adversary to recover
the database values in SE-based systems, such as those
implementing point queries (e.g., [15,17]), and group-by
and join queries (e.g., [30]). The high-level reason is
that after the adversary observes a certain number of SE
queries in these constructions, tuples with the same val-
ues are revealed and therefore frequency information is
readily available to the adversary. Even for more robust
SE-based range query schemes [15,20], we present new
attacks that can work under certain assumptions about
the dataset (see Section 3).

2. We present SEAL(a,x), a family of SE schemes with
adjustable leakage. SEAL is based on two other “ad-
justable" primitives, an adjustable ORAM, parameter-
ized by a value o and an adjustable padding algorithm,
parameterized by a value x. The adjustable ORAM, ADJ-
ORAM-0, hides only o bits of the access pattern by par-
titioning the accessed N-sized array into N /2% regions
of 2% size each and by applying an individual standard
ORAM per region. The adjustable padding algorithm,
ADJ-PADDING-x, reduces the volume pattern leakage
by padding every list to the the closest power of x, lead-
ing to a dataset with at most log, N distinct sizes. Clearly,
larger values for o and x yield slower but more secure
SEAL (see Section 4).

3. We use SEAL to build encrypted databases with ad-
justable leakage. We first present three new construc-
tion POINT-ADJ-SE-(a,x) (for point queries), JOIN-
ADIJ-SE-(a,x) (for join queries) and RANGE-AD]J-
SE-(o,x) (for range queries) that use SEAL(c,x) as
black box, instead of plain SE. Finally, we present a more

2SEAL stands for Searchable Encryption with Adjustable Leakage.

efficient adjustable construction for ranges, RANGE-
SRC-SE, that reduces access pattern leakage and vol-
ume pattern leakage implicitly by modifying an existing
constructions [15] and not by using our (more expensive)
SEAL(a,x). (see Sections 4.4 and 4.5).

4. We evaluate the robustness of our SEAL-based en-
crypted databases for various values o and x against
particularly powerful adversaries that observe the leaked
search/overlapping and volume patterns and have plain-
text access to the entire input dataset. Such strong threat
model offers additional credibility to our proposed mit-
igation techniques. We consider two new attacks. The
first is a query recovery attack that aims at decrypting the
encrypted queries posed by the client. The second is a
database recovery attack that aims at mapping plaintext
values (for the queried attribute) to the tuples of the en-
crypted database. Note that since SEAL hides some bits
of access pattern via ADJ-ORAM, database recovery
can be quite challenging (see Section 5).

5. We observe that for all above attacks we can find certain
values for o and x that reduce the attacker’s success rate
significantly while maintaining good performance. For
instance we show that if we use SEAL to hide three bits
of access pattern while at the same time pad the keyword
lists to powers of 4 (thus hiding a few bits of volume
pattern as well), we can defend against our powerful
attackers only at the expense of an acceptable slowdown
from plain SE—around 32 x.°

Prior work. Wagh et al. [49] introduces an ORAM with a
tunable trade-off between the search/storage efficiency and
security. This trade-off is controlled by an (g, §)-differential
privacy modification of PathORAM [46]. Their construction
could potentially be used as a drop-in replacement in our
proposed encrypted database algorithms (instead of our ad-
justable ORAM). It would be interesting to explore how dif-
ferent choices of € and § affect the performance of existing
leakage-abuse attacks—we leave this as future work.

The works of Cash et al. [11], and Bost and Fouque [9]
propose padding techniques for keyword search that can hide
a portion of the volume pattern. Unlike our proposed padding
in Section 4.2, their padding depends on the distribution of
the input dataset, which results in leakage even prior to query
execution. Similar padding approaches have been also pro-
posed in other areas, e.g., [37] proposes padding approaches
for preventing snapshot attacks on deterministically encrypted
data and [38] proposes padding for traffic analysis attacks.
Bost and Fouque [9] also propose new security definitions
for SE aiming at capturing existing leakage abuse attacks.

3In Section 5, we report for certain parameters of o and x the performance
of SEAL compared with the most secure solution (sequential scan) and the
one that leaks access and search patterns (SE scheme). We highlight that
both sequential scan and SE are not competitors of SEAL since they provide
different security, but we used those two schemes only as reference points.

2434 29th USENIX Security Symposium

USENIX Association

These theoretical definitions could potentially provide some
intuition on how we can modify existing schemes in order to
make them robust against such attacks.

Recently, Kamara et al. [31] showed how to suppress the
search pattern leakage without using ORAM. However sup-
pressing only the search pattern leakage is not enough for
mitigating leakage-abuse attacks. Kamara and Moataz [29]
showed theoretically how to perform worst-case padding with-
out requiring quadratic index size, while sometimes assuming
certain properties for the input dataset, such as a Zipf distri-
bution or highly-concentrated multimaps.

2 Premiliminaries

We now provide some notation, definitions and back-
ground that we use throughout the paper. We write our <
Alg(in) to indicate the output of an algorithm Alg and
(clientoys,serveryy) <> Prot(client;,, server;,) to indicate the
execution of a protocol Prot between a client and a server.

Negligible function. A function v: N — R is negligible in A,
denoted by negl (1), if for every positive polynomial p(-) and
all sufficiently large A, v(A) < 1/p(A).

Oblivious RAM (ORAM). Oblivious RAM (ORAM), intro-
duced in [22], is a compiler that encodes the memory such
that accesses on the compiled memory do not reveal access
patterns on the original memory. An ORAM scheme consists
of two algorithms/protocols ORAM = (ORAMINITIALIZE,
ORAMACCESS), where ORAMINITIALIZE initializes the
memory, and ORAMACCESS performs the oblivious accesses.
We provide the formal definition in Section 4.3.

Oblivious dictionary (ODICT). An oblivious dictionary is
an oblivious data structure that can support oblivious queries
from an arbitrary domain. ODICT offers the following proto-
cols (see [50] for a detailed description):

e (T,G) < ODICTSETUP(1*,N): Given a security param-
eter A, and an upper bound N on the number of elements,
it creates an oblivious data structure 7. The client sends
T to the server and maintains locally the state G.

e ((value,0'),T") <> ODICTSEARCH((key,0),T):
Given the search key key and o, returns the correspond-
ing value value, the updated 7/ and ¢'.

e (0/,T') <> ODICTINSERT((key,value,o),T): Given a
key-value pair key, value and ©, it inserts this entry in
the dictionary. It returns the updated 7/ and ¢'.

Searchable encryption (SE). Let D be a collection of docu-
ments. Each document D € D is assigned a unique document
identifier and contains a set of keywords from a dictionary
A. Let D(w) denote the identifiers of documents containing
keyword w. SE schemes build an encrypted index I on the
document identifiers which can be queried using keyword

“tokens". Note that we do not store encrypted documents in
the index, just their identifiers. Encrypted documents can be
retrieved in an extra round. We denote with N the data col-
lection size, i.e., N = Y,ca | D(w)|. An SE protocol involves
two parties, a client and a server and consists of the following
algorithms/protocols [12]:

e (stc,I) «+ SETUP(1*,D): is a probabilistic algorithm
performed by the client prior to sending any data to the
server. It receives the security parameter as input and
the data collection D, and outputs an encrypted index 1
which is sent to the server. st is sent to the client and it
contains the secret key k.

o ((X,stc),I) +» SEARCH((stc,w), I): is a protocol exe-
cuted between the client and the server. The client inserts
the secret state st~ and a keyword w, while the server in-
serts an encrypted index 1. At the end of the protocol the
client learns X, the set of all document identifiers D(w)
corresponding to keyword w and the updated secret state
st¢, while the server’s output is the updated index I.

The security of the above SE scheme is captured by the fol-
lowing definition, using the standard SE’s real/ideal security
game [12] (see Figure 1).

Definition 1 Suppose (KEYGEN, SETUP, SEARCH) is a SE
scheme based on the above definition, let A € N be the
security parameter and consider experiments Real(\) and
Ideal;, , (M) presented in Figure I, where Ly and L, are
leakage functions. SE is (L1, Ly)-secure if for all polynomial-
size adversaries A there exist polynomial-time simulators
SIMSETUP and SIMSEARCH, such that for all polynomial-
time algorithms DIST:

|Pr[DIST(v,st4) = 1: (v,st7) < Real(\)]—
Pr[DIST(v,stq) = 1: (v,stq) < Ideal., r,(A)]| < negl(\)

where probabilities are taken over the coins of KeyGen and
Setup algorithms.

The above definition captures strong adversarial capabili-
ties, i.e., even adaptive adversaries that can select their new
queries based on previous ones cannot learn anything more
than the specified leakage functions £, £, [12]. Next, we
discuss these leakage functions in more detail.

Leakage functions. Leakage £, is associated with informa-
tion that is leaked from the index alone (before any queries
have been executed) and typically contains the size of the data
collection N. Leakage £, represents the information leaked
during a query. It typically consists of the search pattern that
indicates whether the client searches for a particular w, and the
access pattern that contains the document identifiers matching
the queried keyword w, namely £,(D,w) = (id(w), D(w)).
In the above, id : A — {0,1}* is a mapping of keywords
to A-bit numbers. We refer to id(w) as the alias of w. In

USENIX Association

29th USENIX Security Symposium 2435

Real(})
1. (D,stq) + A(1Y)
2: (ste, Ip) +Setup(1*, D)
3: for1 <i<gdo
4 (wi,stg) < A(stg, li-1,My,...,M;—1)*
5 ()G,Sl‘c, Il) <—>Search(stc,wi, I,;1)
6 LetM=M;.. My, I=1Ty...1, X =X... X,
7: return v = (I,M, X), st4

IdealLSETUPvLQUERY (}‘)
(D, stq) « A(1%)

1

2: (sts, Iy) «SimSetup(LseTup (D))
3: for1 <i<gdo
4
5

(W,'7Sl/q) <—ﬂ(st/q,]i_17M17...,Mi_1)*
(X, sts, I;) <> SimSearch(sts,
Lquery (D, wi), Ii—1)
6: LetM=M.. My, I=1...[;and X = Xp... X,
7: return v = (I,M, X), st4

* Let M, be the messages from client to server in the Search/SimSearch protocols.

Figure 1: SE/OSE real-ideal security experiments.

practice, this will be a random allocation of keywords to
aliases that is used to capture the search pattern leakage. That
is, while id(w) does not directly reveal w, when querying for
the same keyword repeatedly the server observes the same
id(w). Recall that D(w) contains the document identifiers*
matching the queried keyword w and this captures the access
pattern leakage. More specifically, the access pattern consists
of (i) the size of the result which we call volume pattern,
and (ii) the document overlaps between previously queried
keywords, which we call overlapping pattern.

For certain database query types, such as point queries, £,
leakage contains only the search and volume pattern leakage.
The reason is that there is a structural difference between
the keyword search problem and database point queries. In
keyword search, one document identifier can be included in
multiple keywords, while in database search one tuple-id or
an encrypted tuple can have exactly one searchable value
per attribute. For example, a patient cannot have more than
one date of birth. Using this observation, we can store in the
encrypted index directly the encrypted tuples instead of the
tuple-ids without increasing asymptotically the storage.

SE through ORAM. One way to reduce the SE query leak-
age would be to replace all the memory accesses performed
with oblivious memory accesses using an ORAM as a black
box. In that case, the only leaked information during queries
is the result size.

Attacks on deterministically-encrypted systems. [41] pro-

4We assume that the order of the documents does not reveal any significant
information. This can be achieved by assigning a random A-bit number to
each document.

posed the frequency analysis and £p-optimization attacks that
apply to databases encrypted with the use of deterministic
schemes such as CryptDB [43].

The frequency analysis attack is the most basic and well-
known inference attack in the area of cryptography. We define
Ci and My to be the ciphertext and message spaces, respec-
tively of the deterministic encryption scheme. Given a de-
terministically encrypted column ¢ over C; and an auxiliary
dataset z over My, the attack works by assigning the i-th most
frequent element of ¢ to the i-th most frequent element of z.

The {p-optimization attack is a family of attacks against de-
terministic encryption. The main goal is to find an assignment
from ciphertexts to plaintexts that minimizes a given cost
function, e.g., the ¢, distance between the histograms of the
dataset. This attack minimizes the total mismatch identified
in frequencies across all plaintext and ciphertext pairs.

3 Encrypted Databases from Searchable En-
cryption & Attacks

In this section we first show how SE can be used to support
various queries on encrypted databases, such as point/group-
by/join/range queries and then show various attacks (some
existing and some new) on these constructions. Our findings
systematically re-establish that using SE to implement en-
crypted databases [15,20,30] is particularly risky when the
adversary is persistent and also has access to prior information
about the underlying encrypted database (e.g., distribution of
first names/gender). For snapshot adversaries that have no
prior information about the encrypted database, there could
be value in SE-based systems, however these are assumptions
that are unlikely to hold in the real world [26,41].

3.1 SE-based Point Queries

The most basic database query is the point query for a value v.
A point query retrieves all the tuples from table ‘7" that contain
value v in attribute x, i.e.,

SELECT * FROM 7 WHERE 7 .x = v;

We can use an SE scheme to implement private point queries
(e.g., see Demertzis et al. [15], and Kamara and Moataz [30])
by viewing attribute values as keywords, and database tuples
as document identifiers. In this case an SE-based point query
will return the encrypted tuples that match this value. We call
this scheme POINT-SE. Note that POINT-SE can also be
used to implement group-by queries (e.g., see Kamara and
Moataz [30]), where a client can compute the group-by query
through point queries for all distinct values of attribute x.

Attacks on POINT-SE. When using POINT-SE, the at-
tacker can identify which encrypted tuples have the same
value v, after he observes the execution of a query. Finally,
after he observes the execution of all queries, the attacker
can group the encrypted database tuples by value, and can

2436 29th USENIX Security Symposium

USENIX Association

therefore compute the size of each group. By running a fre-
quency analysis attack or an £,-optimization attack (described
in Section 2), it is easy to map plaintext values to encrypted
tuples. Note that the above attack requires the attacker to see
all queries. However, in the case of group-by queries, the very
nature of the query reveals all possible point queries, resulting
in total leakage exposure with just a single query.

To conclude, observing all possible results from point
queries (either one by one or via a group-by query) turns an
SE-implemented database into a deterministically-encrypted
database, making it vulnerable to simple attacks.

3.2 SE-based Join Queries

A fundamental query type for relational databases is the join
query. A simple join of two tables 7 and ®_on attribute x
returns all pairs of tuples from 7" and & that agree on x, i.e.,

SELECT * FROM 7, R WHERE 7 .x = R_.x;

A simple approach that allows us to support private
join queries using SE is the following: We encrypt T
with a semantically-secure encryption scheme and X with
POINT-SE for private point queries on attribute x. Then we
stream all the tuples of 7 to the client. Then the client de-
crypts each tuple t in 7 and queries the SE index for &
(on attribute x) to retrieve the matching tuples of & . Clearly
this approach has high bandwidth since it requires streaming
a large number of tuples to the client. We call this scheme
JOIN-SE. To address the above bandwidth issue, Kamara
and Moataz [30] propose a construction that, in the case
of two tables 7 and X, precomputes the answers to join
queries on each possible attribute x. Then they store with
SE a mapping from “keyword" x to the precomputed answer
(i.e., pairs of pointers to tuples from 7" and R _that have the
same value on attribute x). This approach requires both signif-
icant amount of storage and setup time. We call this scheme
JOIN-SE-PRECOMPUTE.

Attacks on JOIN-SE, JOIN-SE-PRECOMPUTE. It is
easy to see that JOIN-SE and JOIN-SE-PRECOMPUTE
leak the encrypted join graph. That is, for each encrypted
tuple t of T, the respective encrypted tuples t’ of R that have
the same value on x with t are leaked (if such tuples exist).
We propose a simple attack that recovers the values of the
encrypted tuples: Assuming we have access to (part of) the
plaintext dataset, we can compute the plaintext join graph by
connecting with an edge tuples from 7 and tuples from &_that
have the same plaintext value on attribute x. If all tuples in ‘T
and R_have at least one incident edge the attacker can perform
the frequency analysis attack on both 7" and X and recover
the plaintext values for the encrypted values of attribute x.
In this case JOIN-SE and JOIN-SE-PRECOMPUTE pro-
vide exactly the same security properties for joins as more
efficient encrypted systems based on deterministic encryp-
tion (e.g., CryptDB [43]). Otherwise the attack can be per-

formed only on the leaked frequencies and JOIN-SE and
JOIN-SE-PRECOMPUTE have potentially less leakage
than systems based on deterministic encryption.

3.3 SE-based Range Queries

In the case of range queries, we want to retrieve all tuples
from table 7 that contain value v € [/, u] in attribute x, i.e.,

SELECT * FROM 7 WHERE 7 .x > [and T.x < u;

One way to support private range queries is to treat each
numeric value of attribute x as a keyword and use SE. Then,
private range queries can be supported by transforming the
range [/, u] to series of private point queries, i.e., searching for
the individual values /,/ +1,...,u — 1,u. We call this scheme
RANGE-SE. Many attacks that exploit the overlapping and
volume patterns exist against RANGE-SE—see [13,25,32,
35,36,39]. In general, these attacks first compute an ordering
of the encrypted tuples and then retrieve the actual values
after observing a certain number of queries.

To address this leakage, Faber et al. [20] and Demertzis et
al. [15, 16] have proposed new private range constructions
that use SE and are response-hiding, in that they do not leak
overlaps between different range queries. Their main idea,
called LOGARITHMIC-SRC in [15], builds a binary-tree
data structure with some extra “internal” nodes (see Fig-
ure 2) on top of the database. Each leaf corresponds to a
value k € {0,1,...,M — 1} (where M is the size of the do-
main of attribute x) and stores all tuples that have value k at
attribute x (i.e., a leaf can store more than one tuples). Data
stored in a leaf is also copied to its parents. To answer a range
search query, we select the root of the smallest subtree fully
covering the query. The above data structure defines a natural
key-value relationship, where each tree node is a key with the
value being its respective database tuples. This allows us to
query the data structure privately using SE.

LOGARITHMIC-SRC yields up to O(N) false positives
where N is the size of the database table. For example, if the
range [3,5] is being queried in Figure 2 and there is a single
tuple in the range but the rest of the dataset has value 2, node
N, 5 will be returned and therefore the response will be the
entire dataset. LOGARITHMIC-SRC-1, proposed for this
problem [15], maintains two LOGARITHMIC-SRC-type
binary trees, one on the domain {0,...,M — 1} that stores
constant-size metadata in the leaves (let us call this tree 77)
and one on the domain {0,...,N — 1} that stores the actual
database tuples in the leaves (one per leaf) sorted by the search
attribute (let us call this tree 73). In particular, for every value
of the domain i € {0,...,M — 1}, T; stores the subrange of
{0,...,N — 1} that corresponds to database tuples with value
i in T5. Therefore, a range query [a, b] is transformed into two
queries: One range query [a,] in T} that returns information
that allows one to reconstruct the range [d',b] of 75 that
contains the desired tuples, and finally one range query [d’, ']

USENIX Association

29th USENIX Security Symposium 2437

Figure 2: LOGARITHMIC-SRC [15, 16] consists of a full
binary tree over the domain with an extra internal node be-
tween every two cousins. Red values denote the number of
tuples each node contains (used for the proposed attack).

in 75 that returns those tuples. This approach brings down the
worst-case query cost from O(N) to O(R+r), where R is the
size of the queried range (and is due to querying 77) and r is
the size of the result (and is due to querying 73).

Do existing attacks apply? It seems that existing (volu-
metric) attacks on RANGE-SE [13, 24, 25,27, 32, 34-36,
39] do not apply to the above, response-hiding, schemes.
However we must note that LOGARITHMIC-SRC and
LOGARITHMIC-SRC-I leak the volume pattern of a re-
stricted set of queries and may be vulnerable to new volumet-
ric attacks. In particular, the very recent and concurrent work
of Gui et al. [27] proposed new volumetric attacks that can
handle cases of missing/spurious queries, and cases that re-
turn noisy results. These attacks for missing and noisy queries
could potentially be used against LOGARITHMIC-SRC by
setting a small window size and treating all volumes from
large windows as noise. However, it is not clear how this
noise would affect the attack output since the missing queries
are not chosen at random as is assumed in [27]. Below, we
describe our new attacks tailored to LOGARITHMIC-SRC
that could be extended also for LOGARITHMIC-SRC-1.

New attacks on LOGARITHMIC-SRC. The main idea
is that if the attacker observes the volumes of all queries, then
she could potentially reconstruct the tree and map encrypted
database tuples to plaintext values. For simplicity, let us focus
on a LOGARITHMIC-SRC tree with Dom = {0,1,2,3}
(and therefore 8 nodes, including the one “extra" internal
node—see Figure 2). Assume the adversary observes the
following sizes of results (he actually sees the respective
encrypted tuples as well): 20, 1, 26, 18, 8, 5, 7 and 13. His
goal is to map these sizes (and the respective encrypted tuples)
to the nodes Ny, N1, Na, N3, Nyi1, Ni2, N3 and Nys of the tree.
The tuples that map to leaf i will therefore have value i!

To do the mapping the adversary exploits the fact that the
size of a parent is equal to the sum of the sizes of its children
and therefore sets up 4 linear equations with 8 unknowns |No|,
|N1|, |N2|, |N3|, |N01|, |N12|, ‘N23‘ and |N03|. Of course these
equations have an infinite number of solutions but the one
we are interested in is a permutation of the observed sizes

20, 1, 26, 18, 8, 5, 7 and 13. In our example, due the fact that
all pairwise sums are different, there is a unique assignment
(up to a mirror arrangement), in particular the assignment
|No| = 1, |N1| =7, |[N2| = 13, |N3| = 5, |[No1| = 8, N1 = 20,
N>3 = 18 and Nyz = 26. We note here that the described at-
tack would not work in the case where pairwise-sums are not
unique (e.g., when all leaves have size 1) but other informa-
tion could be potentially used in that case. To conclude, this
simple attack shows that concealing the overlapping pattern
(as LOGARITHMIC-SRC is doing) is not enough for fully
defending against range attacks.

Generalization of attack to LOGARITHMIC-SRC-i.
Recall that in LOGARITHMIC-SRC-I we maintain two
LOGARITHMIC-SRC-type trees: one for the metadata (77)
and one for the actual data (73). Every leaf in T} has size at
most one since a specific domain value may not be present at
all in the database. Thus the above attack that exploits distinct
sizes of leaves might not work very well.

However there are still ways to launch an attack. Com-
ing back to Figure 2, consider the tree 77 on the domain
{0,1,2,3}, with the difference that all leaf nodes have size
either zero or one. Suppose after all queries have been issued
on 77 the adversary observes only three nodes of size one (and
all other nodes have size zero). Looking into this informa-
tion carefully, one can tell that these nodes have to be either
No, N()’l and N0’3 or N3, N2)3 and N073 which implies that all
database tuples have the same value and this value is either
0 or 3. Note that at that point, it will be easy to recover the
topology of 7, since for each range query one node of 77 and
one for 7, will be accessed together.

The above attacks are not analyzed in full detail since we
want to use them mainly as a way to manifest the weaknesses
of the Logarithmic-SRC and Logarithmic-SRC-i schemes
[15]. We also use them as a motivation to introduce our new
RANGE-SRC-SE-(a,x) scheme (see Section 4.5). Explor-
ing these attacks against Logarithmic-SRC and Logarithmic-
SRC-i in more detail is left as future work.

4 SEAL: Adjustable Searchable Encryption
& Derived Constructions

Most of the attacks on SE-based encrypted databases that
were presented in section 3 exploit the leakage of SE such as
the search, overlapping and volume pattern. In this section we
propose SEAL, a family of new SE schemes with adjustable
leakage with the hope that these can be used to implement
more secure (yet efficient) encrypted databases that withstand
leakage-abuse attacks. Our main building blocks are an ad-
justable ORAM, an ORAM that allows one to define the bits
of leakage of the index being accessed in a tunable manner,
as well a an adjustable padding algorithm that adds noise to
the actual size of the list being accessed.

2438 29th USENIX Security Symposium

USENIX Association

bit + RealAPV-ORAM-c()).
. Mo+ Adv(1%).
(60,EMg) > ADJ-ORAMINITIALIZE((1*, Mg, ar), L).
: fork=1togdo > q: polynomial #queries
ix Adv(l", EMg,mi,mj,... ,mkfl).
((vi,,0%k), EMy) <+ ADJ-ORAMACCESS((op,
ik, Vi, Ok—1), EMi_1).

6: return bit < Adv(1X,EMo,mi,ms,...,my).

. ADJ-ORAM-0l (% \.
bit Ideaqu?[éx (}\,)

SN

1: Mg « Adv(1%).
2: (sts,EMg) + ADJ-SIMORAMINITIALIZE(1*, L*).
3: fork=1toqgdo
4 i < Adv(1* EMo,my,my,... mg_1).
5 (sts,EMy) <> ADJ-SIMORAMACCESS(

sts, EMg—1, L3 (ik)).-
6: return bit < Adv(l",EMO,ml,mg,...,mq).

Figure 3: ADJ-ORAM-« real-ideal security experiments.
With mqg,m1,. .., we denote the messages exchanged at Line
5 of both experiments.

4.1 Adjustable Oblivious RAM

An adjustable ORAM (ADJ-ORAM-) is parameterized by a
parameter o that defines the number of leaked bits of the ac-
cessed memory location (o0 = O for a traditional ORAM). We
define the ADJ-ORAMINITIALIZE and ADJ-ORAMACCESS
protocols of our ADJ-ORAM-a scheme:

e (6,EM) < ADJ-ORAMINITIALIZE((1*,M, 1), L),
takes as input a security parameter A, a memory array
M of n values (without loss of generality lets assume
n is a power of 2) (1,vy),...,(n,v,), a parameter
o € {0,1,...,logn} and outputs secret state ¢ (for
client), and encrypted memory EM (for server).

e ((v;,0),EM) <> ADJ-ORAMACCESS((op,i,v;,0,0),EM)
is a protocol between the client and the server, where
the client’s input is the type of operation op (read/write),
an index i and the value v;—for op = read client sets
v; = L. Server’s input is the encrypted memory EM.
Client’s output consists of the updated secret state ¢ and
the value v; assigned to the i-th value of M if op = read
(for op = write the returned value is). Server’s
output is the updated encrypted memory EM.

Next, we define the security of ADJ-ORAM-a in the real/ideal
game of Figure 3 parametrized by leakage functions L, L.

Definition 2 ADJ-ORAM-q, is (LY, LY)-secure
if for any PPT adversary Adv, there ex-
ists a PPT simulator containing algorithms

(6,EM) <> ADJ-ORAMINITIALIZE((1*, M, 1), 1)
: Let M be in the form (1,v;),...,(n,v,) and u = 2%
. Sample a secret key k < {0,1}* .
. Let 1 be a PRP: {0, 1} x {0, 1}1°227 — {0, 1}log2,
: Create Sy, ...,S, empty arrays of size ﬁ
cfori=1,...,ndo
Let ¢ be the integer representation of the o most
significant bits of m[i] and ¢ be the integer repre-
sentation of the remaining bits of [d].
Ser1[0+1] = v
8 fori=1,...,udo
9: (6i,EM;) <> ORAMINITIALIZE((1%,S;), L).
10: Let EM to be EMj,...,EM, and G to (Gy,...,0,).
11: return (G, EM).
((vi,0),EM) <> ADJ-ORAMACCESS((op,i,v;,0,0),EM)

1: Parse 6 as (01,...,6,) and EM as (EMy,...,EM,)
where u = 2%,

2: Let ¢ be the integer representation of the ot most
significant bits of m;[i] and ¢ be the integer repre-
sentation of the remaining bits of [i].

33 0={(+Tlanddp=0¢+1.

4: ((vi,00),EMy) +> ORAMACCESS((op, 9,v;,0¢),

EM,).

A L S S S

~

s: return (v;,6,EM).

Figure 4: ADJ-ORAM-«. using any ORAM as a black box.

(ADJ-SIMORAMINITIALIZE,ADJ-SIMORAMACCESS):

| Pr[Real"PT-ORAM-0 () — 1] —Pr[Ideal??JL:zg)RAM’“(%) =1]|
is at most neg(\), where the above experiments are defined in
Figure 3 and where the randomness is taken over the random
bits used by the algorithms of the ADJ-ORAM-o. scheme, the
algorithms of the simulator and Adv.

The leakages L{, L] are defined in a manner similar to
those of SE, i.e., LI*(M) = (n,a) and L3'(i) = id*(i), where
id®(i) returns the o. most significant bits of a random log n-bit
alias assigned to tuple (i,v;). Intuitively, if two queries for
index i are made on an ADJ-ORAM-q., the adversary should
only figure out that the o0 most significant bits of the queried
index are the same—but nothing else.

Construction of ADJ-ORAM-o. The main idea behind
our approach is that the memory array will not be stored
in one ORAM, but it will be partitioned into multiple dis-
joint subsets, each of which will then be stored in a sep-
arate smaller ORAM. We use as a black box any secure
ORAM= (ORAMINITIALIZE, ORAMACCESS) to store each
subset. Our construction works by building 2% different
ORAMs ORAMyj,...,ORAM;a, each of which will store a
part of M of size n/2%.

USENIX Association

29th USENIX Security Symposium 2439

One possible way to partition M into these ORAMs would
be to deterministically assign (i,v;) based on their location
in M, i.e., the first 2% entries will be stored in ORAM;,, the
next 2% entries will be stored in ORAM, and so on. However,
this might reveal sensitive information for certain application
settings, e.g., if the server knows that M stores v; in a sorted
manner, then accessing ORAM; reveals that one of the small-
est values in M was accessed. Hence, before performing the
partitioning, we randomly permute M using a PRP P over
[1,n] (implemented with a small-domain PRP [23, 40, 45]),
for which the key k is chosen and stored by the client. Let
T, be the corresponding mapping after £ has been chosen.
Then, the partitioning of M is performed using the integer
representation of the o most significant bits of the permuted
index and the remaining bits of 7 (i) correspond to the index
7 (i) of tuple (i,v;) inside the small ORAM. Our construction
is given in Figure 4.

Theorem 1 Assuming (ORAMINITIALIZE, ORAMACCESS)
is a secure ORAM and 7 is a secure PRP, then ADJ-ORAM-
o, presented above is (L, LY)-secure, according to Def. 2.

The ORAM scheme used is secure and therefore we use its
algorithms SIMORAMINITIALIZE and SIMORAMACCESS.
In particular, the ADJ-SIMORAMINITIALIZE takes
as an input L{ = (n,a) and the security parameter
A, and it creates EM;,...EM, and o©y,...,0, using
SIMORAMINITIALIZE(IX,/%) for u = 5z. The ADIJ-
SIMORAMACCESS takes as an input id*(i), from L,
leakage, which determines in which encrypted memory EM;
must be accessed, and performs a random access using
SIMORAMACCESS(0;, EM;). Then, the simulator properly
updates EM; and o;.L]

Performance and leakage of ADJ-ORAM-o. The higher
the value of a is, the more efficient ADJ-ORAM is (ORAM
is applied on a smaller parts of the array) and the larger the
leakage becomes (more accesses will be made on the same
small parts of the array). Concretely, if we assume that the
ORAM used as a building block has T'(n) access overhead
(e.g., T(n) = O(logn) for the most efficient ORAM [42]),
then ADJ-ORAM-« has an improved T (rn/2%) overhead. In
Section 4.3 we discuss how ADJ-ORAM-a can be instan-
tiated using [46] and oblivious data structures [50] and we
provide a more concrete performance analysis.

4.2 Adjustable Padding

In this section we propose adjustable padding, another prim-
itive that will help us build more secure SE schemes. Re-
call that existing SE schemes leak the query result size, i.e.,
|D(w)|. In particular, in a dataset with size N a keyword list
can have N different sizes. One way to eliminate this leakage
is by padding all the keyword lists D(w) to the same size N

D < ADJ-Padding(x, D)

. N=|D|.

: for each keyword w in D do

Find the smallest i: x'~! < |D(w)| < x'.

Pad D(w) with x’ — |D(w)| dummy values.

: Pad D with dummy records so that the total size is
x-N.

6: return the padded dataset.

T

Figure 5: ADJ-Padding-x leading to log, N different sizes.

(worst-case padding). However, this would introduce a pro-
hibitive storage/search overhead. To avoid this overhead, one
could pad to the closest power of two, forcing the adversary
to observe at most log N 4 1 sizes—leaking loglog N + 1 bits,
at most doubling the search and storage overhead.

Our proposal is a generalization of the above idea. Our
padding can be parameterized by a value x that defines the
number of different sizes (which are exactly [log, N+ 1) that
the adversary can observe. Our padding algorithm works as
follows (see Figure 5). Given a keyword list D(w) of size, we
find the integer i such that x~! < |D(w)| < x. Then we pad
the list D(w) with x' — |D(w)| dummy entries. Note that this
padding strategy can increase the space and search overhead
by a factor of x and yields leakage of loglog, N + 1 bits!
In other words the larger x is, the less efficient the scheme
becomes and the less leakage the adversary observes. We note
here that for simulation purposes, after all lists are padded,
our algorithm pads the dataset to a total of x- N entries so that
to avoid leaking any information about the dataset.

We note here that padding techniques have been used be-
fore for concealing the size of the accessed result (e.g., see
Cash et al. [11] and Bost and Fouque [9], as well as Lacharite
et al. [37] and Liberatore et al. [38]). However, these ap-
proaches depend on the distribution of the input dataset, which
leads to more leakage, even prior to query execution. Instead
our padding algorithm is distribution-agnostic and can thus
be simulated only by knowing the size of the dataset N and
the padding parameter x.

43 SEAL

We now present SEAL(a, x), our adjustable SE construction
that uses ADJ-ORAM-0, ADJ-PADDING-x and an oblivi-
ous dictionary ODICT described in Section 2 as a black boxes.
We recall that parameter o is defined in the range [0,logN]
and that for o = 0 all the search/overlapping pattern bits are
protected, and for o = log N all bits are leaked. Also for larger
x values, less volume pattern bits are leaked—e.g., for value
x = N no volume pattern bits are leaked.

Construction of SEAL(a,x). SEAL(a,x) is defined simi-
larly with SE (see Section 2) and has algorithms/protocols
Setup and Search. Our construction is described in Figure 6.

2440 29th USENIX Security Symposium

USENIX Association

(stc,I) « SETUP(1*, D)

2: D + ADJ-PADDING(x, D).

in M.
(T, Godict) ODICTSETUP(1*,N).
for all w € W do

Let cnt,, = | D(w)].

(Goram, EM) <~ ADJ-ORAMINITIALIZE(1* M, at).
st¢ = (Goram, Oodict) and I = (EM,T),

0: return (st¢, I).

((X,stc), I) <> SEARCH((st¢,w), I)

R A

—_

1

2

3: Parse value as (iy||cnty).
4: fori=i,,...,i,+cnt, do
5
6
7

X+ X U
. return (X, stc, I).

1: Let D be the input dataset and let W be the set of keywords in D.

3: Let M be an array of N entries storing (w, id) pairs of D in lexicographic order and i,, be the index of w’s first occurrence

(Godict, T') <> ODICTINSERT((w, iy ||cnity, Oodict), T)-

: Parse I as (EM, T) and s, as (Godict> Ooram) and let X be empty.
. ((value,Oodict), T) > ODICTSEARCH((W, Godict), T).

((vi,Ooram), EM) <> ADJ-ORAMACCESS((read, i, L, Goram,), EM).

> Parameter x is public.

> Parameter o is public.

> Parameter o is public.

Figure 6: Our SEAL(0,x) scheme using ADJ-ORAM-a, ADJ-PADDING-x, and an oblivious dictionary as black boxes.

SEAL’s setup takes as input dataset D. Parameters o and
x are considered public and we do not provide them as in-
put explicitly. First, it uses ADJ-PADDING(x, D) in order to
transform 9D to a new dataset with at most log, N + 1 distinct
results sizes (see Line 2 of setup). Then, it sorts all the (w, id)
pairs in lexicographical order (see Line 3 of setup) and places
them sequentially in a memory array M which is then given
as input to the ADJ-ORAMINITIALIZE algorithm (see Line 8
of setup). The sorting guarantees that all (w, id) for the same
keyword w will be placed in consecutive memory locations.
All entries for w can then be retrieved if one knows the index
of the first appearance of w and the size of the padded list
|D(w)|. For every keyword w, this information is stored in an
oblivious dictionary T (see Line 7 of setup).

SEAL’s search takes as input the queried keyword w,
client’s secret state sf¢c and the encrypted index I, which
contains the small oblivious memories EMy,... as well as
the oblivious dictionary T. For a given queried keyword w,
the client first performs an access to the oblivious dictionary
to retrieve the index of the first appearance of w in M and
the padded result size (cnt,,) (see Lines 2-3 of search). Then,
it performs cnt,, accesses in the ADJ-ORAM-al in order to
retrieve the result X (see Lines 4-7 of search). Note that, due
to padding, X may contain “dummy” records which will be
filtered out by the client afterwards.

Leakage definition for SEAL (o, x). SEAL(0,x) is secure
according to the standard SE/OSE definition described in
Section 2 with the following leakage functions

LI (D) = (N,a,x) and Ly (D, w) = Dy(w),

where D, (w) contains the o most significant bits of the aliases
of the document identifiers in the padded list D(w) as out-
put by algorithm ADJ-PADDING(x, D). For the rest of the
paper we simply denote these leakages as £ and £,.

Theorem 2 Assuming that ODICT is a secure oblivious data
structure according to [50] (Def. 1) and ADJ-ORAM- is se-
cure according to Def. 2, then SEAL(o\, x) is (L1, Lp)-secure
according to Def. 1.

ADJ-ORAM-a is secure—our proof uses simula-
tor algorithms ADJ-SIMORAMINITIALIZE and ADJ-
SIMORAMACCESS. The security parameter A is given.
The SimSetup takes as an input £; = (N, a,x). SimSetup
initializes (T, Gogic) +— ODICTSETUP(1*,N) and it inserts N
random entries of the form (w, i,,||cnt,,) in the oblivious dic-
tionary T using ODICTINSERT. Then, it computes N’ = x- N.
Finally, it uses ADJ-SIMORAMINITIALIZE(1*,N', c)
to create the encrypted memory EM and state Goram-
The SimSearch algorithm takes as an input £, and per-
forms one random access in the oblivious dictionary
T using ODICTSEARCH, and calls |D}(w)| times the
ADJ-SIMORAMACCESS with input the o-bit identifiers
in Di(w) (Dy(w) has the required leakage for ADJ-
SIMORAMACCESS). Then, the simulator updates EM, T and
the states Gogict, and Goram. [

Asymptotic performance. Let (T'(n),C(n),S(n)) be the ac-
cess complexity, client-space complexity and server-space
complexity respectively of the underlying ORAM used and

USENIX Association

29th USENIX Security Symposium 2441

let (¢(n),c(n),s(n)) be the access complexity, client-space
complexity and server-space complexity respectively of the
underlying oblivious dictionary used. The server space re-
quired is always S(x-N) 4 s(N). Now, assuming the client
keeps, along with the oblivious dictionary state, the ORAM
states locally, the search complexity for a keyword w is

x-N
and the client space is 2%-C(x-N/2%) +¢(N). Assuming the
client does not keep ORAM states locally and just downloads
and re-encrypts to the server, the search complexity for w is

t(N) +x-|D(w)] -maX{T (xziv) ¢ (xziv>}

and the client space is just ¢(N). Whether one chooses to
store the local states locally or outsource them depends on the
parameter o.. For small values of a it is better to keep them lo-
cally, while for larger values of o it might worth outsourcing.

Implementing ADJ-ORAM-o. We implement each small
ORAM in ADJ-ORAM-« with Path-ORAM [46]. Recall that
the cost of Path-ORAM for accessing n blocks of size B is
Blogn for accessing the path and O(log? n) for recursively
updating the position map. In our case we apply Path-ORAM
on N /2% blocks of size around 21og N bits (log N bits for stor-
ing keyword w and log N bits for storing the id) and therefore
our total cost is O(logNlog(N/2%) +log*(N/2%)).

Implementing SEAL (o, x). For SEAL(a.,x), apart from
ADJ-ORAM-u as described above, we also use an oblivious
dictionary ODICT (for storing iy ||cnt,,) implemented with
an oblivious AVL tree [50] (this requires blogzN additional
additive cost where b is the bitsize of i, ||cnt,). In case the
number of keywords/attributes |W/| in small, we choose to
keep the dictionary locally—this requires around 3|W|log N
bits which in practice is a few megabytes and is a common
assumption in Dynamic SE [8, 10,21,47]. Our experiments
in the next section assume the dictionary is kept locally. Note
that even if we do not keep the dictionary locally, we only
require one oblivious access to it per query w. This is most of
the times subsumed by the required |D(w)| ADJ-ORAM-a.
queries, especially when |D(w)| is large (e.g., Q(log? N)). In
any case we can always reduce the above cost with an ad-
justable oblivious dictionary at the expense of leaking o bits
of the search pattern. Finally, in case the worst-case overhead
of SEAL(0,, x) becomes higher than sequential scan (which
has no leakage), we perform a sequential scan.

4.4 New Constructions for Point/Join Queries

In Section 3 we presented/reviewed three constructions
for point and join queries on encrypted databases that
use SE as a black box: (i) POINT-SE, a construc-
tion for point queries on encrypted data; (ii) JOIN-SE

and JOIN-SE-PRECOMPUTE, two constructions for join
queries on encrypted data.

Our proposed new constructions reduce the leakage of the
above constructions by using SEAL(a,x), instead of sim-
ple SE. By doing this replacement we have the following
constructions, for various parameters of o and x,

1. POINT-ADIJ-SE, and 2) JOIN-ADJ-SE.

Note that JOIN-ADIJ-SE can be instantiated either by using
JOIN-SE or JOIN-SE-PRECOMPUTE as basis.

4.5 New Constructions for Range Queries

The first adjustable construction that we propose for range
queries, RANGE-ADJ-SE-(a,x), is based on the “naive"
construction RANGE-SE from Section 3.3, where instead of
simple SE we use SEAL(a,x).

Our second construction, RANGE-SRC-SE-(a, x) com-
prises two modifications of LOGARITHMIC-SRC-1[15] so
that the potential attack presented in Section 3.3 is mitigated.
Recall the attack works by exploiting volumes exposed by
tree 7 (the tree T} stores metadata required to search tree 7).

Our first modification of LOGARITHMIC-SRC-1is a
simple one: Instead of outsourcing tree 77 using SE, keep
tree 77 locally unencrypted and therefore previously exposed
volume information will not be available. The only downside
is the O(|W|) client storage that is required to store 77, where
W is the set of values of the range attribute. In practice this
storage is minimal, e.g., none of the ranges of the attributes
shown in Table 1 of our evaluation exceed 1MB. (Of course,
if strictly necessary, we can outsource tree 77 to the server via
an oblivious dictionary without any leakage, increasing the
search time by a polylog factor.)

RANGE-SRC-SE-(a, x). However, the above modification

addresses the leakage only in 77. But 75 can also leak infor-
mation. For example, (a) if the same tree node is accessed
twice, there is nonzero probability that the same range is be-
ing queried, and (b) the result size (or an upper bound of it)
is leaked from accessing 7>. To reduce the effect of leakages
(a) and (b), one could reduce the number of sizes observed
by the adversary by implementing the encrypted index for 7,
using SEAL(a,x) instead of simple SE.

Our second modification that yields our final scheme
RANGE-SRC-SE-(a., x) does almost that, but it does not use
ADJ-PADDING for reducing the volume pattern leakage—this
would blow up the space to O(xNlog(xN)). Instead RANGE-
SRC-SE-(a,x) reduces the number of sizes that are being
observed to log, N + 1 by storing only as many equally dis-
tributed levels from T,. E.g., for x = 2 all levels are stored,
for x = 4 half of the levels are stored, while for x = 16 one
fourth of the levels are stored. Note that by this approach the
search complexity is O(x - r) and the space is O(Nlog, N).

2442 29th USENIX Security Symposium

USENIX Association

5 Evaluation Against Attacks

To benchmark the effectiveness of our proposed ad-
justable constructions POINT-ADJ-SE, JOIN-ADJ-SE and
RANGE-SRC-SE, we could use existing state-of-the-art
leakage-abuse attacks [11,13,25,28,32,36]. However, these
attacks are very sensitive to the exact overlapping or volume
pattern (e.g., for ordering the records in range queries), which
is not available in our adjustable constructions.

We introduce instead a new class of attacks where the
adversary tries to work with only the available bits of leakage,
and at a high level, tries to guess the rest of the bits. Also,
our adversary is quite powerful, having plaintext access to
the input dataset. We stress that this is a “heavy” benchmark
that already covers known attacks [11,13,25,28,32,36]. This
is because if our adjustable constructions reduce the success
rate of such a powerful attacker, a more realistic attacker with
partial knowledge of the dataset would perform even worse
(assuming the same attack strategy is followed). We now
describe the attacker model in detail.

5.1 Attacker Model

Our model considers a single-client setting (we do not sup-
port a multi-client scenario with multiple parties accessing
the data). We assume that our adversary: (i) is the system
provider that hosts the encrypted database (including the en-
crypted index) and performs the encrypted query execution;
(ii) is honest-but-curious (i.e., tries to infer information during
the execution of the protocol, but does not deviate from the
protocol, e.g., to give a “tampered” answer); (iii) has full visi-
bility of the server-side execution and memory; (iv) acquires
all the possible leaked information from query execution—
observing all possible queries at least once; (v) has access to
100% of the plaintext database. Our adversary has two goals:

1. First, to perform a query recovery attack, namely de-
crypting the client encrypted queries;

2. Second, to perform a database recovery attack, that re-
quires to map plaintext values (for the queried attribute)
to the tuples of the encrypted database.

We stress that this a strong attacker model, one that we
believe is beyond most real-world adversaries’ capabilities.
This was a deliberate design decision as our main goal is to
evaluate our proposed mitigation techniques against a strong
adversary. On the other hand, our analysis does not capture
cases where the attacker has information about the query
distribution.

Note here that a database recovery attack in the case of SE
(oo = logN) is trivial, since the identifiers of the encrypted
records reveal the desired mapping to the plaintext records
directly. This task becomes more challenging for smaller
values of o where this information is not given in its entirety.

ORsr <+ QueryRecoveryAttack(T, {1, |q| }4e0)
Input: Plaintext tuples 7 and tokens ¢, along with their
volumes |g|.
Output: The success rate QRsr of the attack.
1: Set T <— ADJ-Padding(x, 7).
2: Set CORRECT = 0.
3: for each token 7, do
4: Choose ¢’ at random from the set {¢’ : |7 (¢')| =
lql}-
Remove ¢’ from 7.
if ¢’ is the correct decryption for 7, then
CORRECT+H+.
return CORRECT/|Q)|.

A

Figure 7: Query Recovery Attack for Point Queries.

In addition, note that the database recovery attack becomes
also trivial if SEAL does not re-randomize or assign new
tuple ids to encrypted tuples; which is not the case in SEAL
(see Line 6 of the used ADJ-ORAM-).

For our experiments, we define the query recovery success
rate QRgg as the ratio of the number of correctly decrypted
queries over the total number of considered queries. We also
define the database recovery success rate DRsg as the ratio
of the number of encrypted tuples that have been correctly
mapped to the plaintext tuples.

5.2 Experimental Setup

Our experiments were conducted on a 64-bit machine with
an Intel Xeon E5-2676v3 and 64 GB RAM. We utilized the
JavaX.crypto and the bouncy castle library [2] for the cryp-
tographic operations. Our java implementation does not use
hardware supported cryptographic operations. However, this
does not affect our conclusions. The use of hardware sup-
ported cryptographic operations can further improve the ab-
solute time for construction and search, but it will not affect
the comparison for different parameters o and x.

We consider the following two datasets in our experi-
mental evaluation. For attacking POINT-ADJ-SE- (o, x), we
use a real dataset consisting of 6,123,276 tuples with 22 at-
tributes of reported incidents of crime in Chicago [3]. For at-
tacking POINT-ADJ-SE-(a, x), JOIN-ADJ-SE-(a,x), and
RANGE-SRC-SE-(a,x), we used the TPC-H benchmark
[4] with scaling factor 0.1 which is widely used by the
database community’. TPC-H consists of eight separate
tables (PART, SUPPLIER, PARTSUPP, CUSTOMER, NA-
TION, LINEITEM, REGION, ORDERS). Our attacks take
as input the leakage of all possible queries (worst-case leak-
age). The same attacks can be run with less queries, leading
to lower success rate. When evaluating the performance of

3We do not provide an evaluation for group-by queries since the results are
identical to those for point queries (after observing all the distinct queries).

USENIX Association

29th USENIX Security Symposium 2443

DRgg < DatabaseRecoveryAttack(T,enc(T),{t4,54}qc0)

a-bit identifiers).

Output: The success rate DRgy of the attack.
1: Set 7 < ADJ-Padding(x, ‘7).
2: Set CORRECT = 0.
3: for each pair (1,,5,) do

for each encrypted tuple e € S, do
Let id be the a-bit identifier of e.

Remove ¢ from enc(7).

D A

10: CORRECT++.
11: Remove ¢’ from T.

12: return CORRECT/ Y. |S,|.

Input: Plaintext tuples 7, encrypted tuples enc(7’) and tokens #, along with respective set S, of encrypted tuples (and their

Choose ¢’ at random from the set {¢’ : |7 (¢')| = |S4|}-

Choose at random a tuple ¢ from enc(7) that has id as the first o bits of its identifier.

if encrypted tuple ¢ has value ¢’ at the queried attribute then

Figure 8: Database Recovery Attack for Point Queries.

SEAL(a,x) we store the oblivious dictionary locally.
We denote with x = L the lack of padding, where the at-
tacker can observe up to N distinct result sizes.

5.3 Attacking POINT-ADJ-SE

We evaluate the effectiveness of POINT-ADJ-SE-(a,x)
against our new query/database recovery attacks. In both at-
tacks we consider one attribute of one table at a time.

Our query recovery attack (see Figure 7) is very simple
and uses only volume pattern leakage. Having access to the
plaintext table 7, the adversary computes the new padded
table for the queried attribute (Line 1 in Figure 7) using the
padding parameter x. Now, for a given encrypted query g with
size |¢| the adversary uses 7 to find the candidate plaintext
values which have size |g|, and chooses one of them at random
(see Line 4 in Figure 7). Note that the higher the value of x
is, the larger the set of possible values in Line 4 is therefore
reducing the success rate of the attack.

The database recovery (see Figure 8) works as follows.
First the adversary decrypts which keyword we are querying,
as before—say this keyword is ¢’. Now, the goal is to map
the value ¢’ to the correct encrypted tuples in enc(7), where
enc(‘T) is the encrypted database produced by the SETUP
algorithm of SEAL. The adversary knowing from £, leakage
the oi-bits of each returned encrypted tuple, chooses at random
for each of them one tuple from enc(‘7') with same o bits as
prefix and maps ¢’ to this tuple. Finally, the adversary removes
the chosen tuples 7 from enc(7). The adversary is successful
if after this process the encrypted tuple ¢ has value ¢’ at the
queried attribute. Clearly, the smaller o is, the more bits the
adversary will have to guess (the larger the set of tuples with
same o bits as prefix is) and therefore the less successful the
attack is going to be.

Query recovery attack evaluation. Figures 9(a), and 9(b)
show the evaluation of POINT-ADJ-SE-(a., x) against the
query recovery attack. We only vary x since o does not af-
fect the effectiveness of the attack. Figure 9(a) demonstrates
the evaluation for the LINEITEM table (TPC-H), while Fig-
ure 9(b) presents the results for the Crime dataset. In all
figures, we report the attacker’s query recovery success rate if
she just maps encrypted queries to plaintext values at random,
i.e., 1/|W|—ideally, the success rate of our attack should be
as close as possible to this “Random” approach.

In Figure 9(a), for x =2 (only a 2x overhead in search
time and storage), we see that our scheme forces the attacker
to perform very close to “Random" for 14 out of 16 attributes.
We observe that QRgy for attribute 8 is close to Random for
x = 16, while for attribute 4 greater values of x are needed. Let
us look why this is the case for, say, attribute 8: There are only
three values that can be queried with highly-skewed result
sizes |q1]| =1, |¢2| =1,000 and |¢3| =100,000. Therefore the
larger the number of padded sizes is, the more likely it is that
each g; will be mapped to a distinct padded size, allowing the
attacker to still distinguish them. We observe similar patterns
for the tables of TPC-H and we report the results for tables
ORDERS and PART in Figure 10.

In Figure 9(b) we repeat the same experiment for the 22
attributes of the crime dataset, and we observe that in 17 out
of 22 attributes for x =4 (up to 4 x performance degradation)
the attacker’s QRgsg significantly drops and is close to the
Random approach. For attributes 6,8, 10, 12, 15 greater values
of x are needed again due to the small number of values that
these attributes have. Finally, we observe that in attributes 15
and 18, QRgp is higher for x = 64 than for x = 4, which is
counterintuitive. This is because the query sizes of the values
in these attributes are distributed in a way that for x = 4 there
are less distinct sizes than for x = 64.

2444 29th USENIX Security Symposium

USENIX Association

b rﬂ\/_x_x ‘ ' ‘T
S e B . 09 \ / L]
0.9 | [=—No Padding] 0.8 { /| |l
\ . /
0.8 |22 | 07 “\ > Mo Padding
0.7 16 | x=16
%06 ——Random 9 0.6 | —E{ZSAd
iy 05 | —Random
G 05 o | 711
. |
0.4 “ . |4
0.3 0.3 | |\
0.2 0.2 A [
0.1 . 0.1 WAy AVANN
=4 -)
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 18 20 22
Attribute i Attribute i

(a) LINEITEM (TPC-H) (b) Crime Dataset

Figure 9: Query Recovery Attack against POINT-ADJ-SE
for various x.

1 ¥ ¥ 1 .
0.9 \ 0.9 |
0.8 A 0.8 ! \ -
0.7 —No Padding 0.7} [Topaddng) | J
« = « = /
506 x=4 % 0.6 x=4 \ /
—+—x=16 ——x=16 \
G 05 —Random _ G 0.5} |——Random \
0.4 / \ 0.4 / \ /
0.3 0.3 / v
0.2 0.2 |
0. o1 /\\ :
2 3 4 5 6 7 8 T 2 3 4 5 6 7 8
Attribute i Attribute i

(a) ORDERS (TPC-H) (b) PART (TPC-H)

Figure 10: Query Recovery Attack against POINT-ADJ-SE for
various x.

Database recovery attack evaluation. The database recov-
ery attack is based on the query recovery one. Thus, due to
lack of space we focus on the 22 attributes of the crime dataset
in which QRgsr is higher than the one in the TPC-H dataset.
Figure 11 shows the attacker’s success rate for the database
recovery attack (DRgg) for oo = (17,19,21,23) (o = 23 cor-
responds to SEAL(log N, x)) and for x = L and x = 2. Recall
that in our threat model the attacker has plaintext access to the
input dataset, so for the database recovery attacks we report
as a reference point a greedy strategy that the adversary may
follow, in which she maps all encrypted tuples to the most
frequent plaintext value (guessing heuristically). E.g., for a bi-
nary attribute if the most frequent value appears in the 70% of
the tuples/tuple-ids then the adversary achieves DRsg = 70%
by following the greedy strategy. Ideally, the goal is to find o
as close as possible to log N and the smallest possible value
of x, while DRgp is below the greedy strategy. As is shown
in Figure 11 for o =1logN — 2 = 21 and x = 2 the attacker’s
success rate is always below the success rate of the greedy
strategy. In Figure 12, we provide a more detailed evaluation
for 4 specific attributes of the crime dataset for o € [0,log N]
andx= 1,2,3,4.

5.4 Attacking JOIN-ADJ-SE

We evaluate the effectiveness of JOIN-ADJ-SE-(«, x) using
the database recovery attack proposed for point queries (see
Figures 8). Since the database schema and the size of each
table are usually not considered private information, we do
not consider join query recovery attacks.

ey T —

THoeaml9 pomsmmmmy 1H-a=19
09/ 4758 Vol ool Bt | 1]
0.8|—Greedy| f | | 0.8 |—Greedy| |
IO7 “‘ /,'Y “‘ ‘\ \‘ IO.7 |
g [l L] e
. | | | | | a 05 I
0.4 | I |/l 04 | P
03 | VN 03 \ N\
0.2) / WA 02 INY /A
0.1 "',K "D,,* /* i/ | 0.1 /3 =, \
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Attribute i Attribute i

(@x=1 (b) x=2

Figure 11: Database Recovery Attack against POINT-ADJ-
SE for the Crime Dataset. We show all attributes.

0.18

——No Padding
e xX=2

. . / 0.9
0.16 x10° 2 1
014}~ 250] | 08|~ x4 813
2f / ——Greed 0.1
0.12 15f / /AT 07 08 e 4
z 0.4 1 ol 06 ==y
& 0.5 A 05 102
o 008 15 20 | S e 15 20 |
0.06 } 03 /
0.04 / 02 //
0.02 / ’ 7|
e 0.1 e
0 5 10 15 20 0 5 10 15 20
a v
(a) Attribute 4 (b) Attribute 7
0.9 ~><—N02Paddmg | 0.08 ——No Padding ‘g‘
= %107 [0071|=733 x10° f
0.8f|—+—x4 8 / x4 12 /
0.7 | [=Greedy 6 0.06 [——Greed 8 f“‘ o
R 0.05 6 Sl
520 2 1 s 8 S A4
o 05 / o 0.04 | s /
9 04 15 20 = 15 20
- | 0.03 /
0.3 002
0.2 / ’ /
0.1 / 0.01 —
«/ L /d’g;
5 10 15 20 5 10 15 20

a a

(c) Attribute 11 (d) Attribute 20

Figure 12: Database Recovery Attack against POINT-ADJ-
SE for the Crime Dataset. Attributes 4,7,11,20.

Attack evaluation. Figure 13 demonstrates the database
recovery attack for foreign-key join queries. We con-
sider foreign-key joins between tables (i) SUPPLIER and
NATION—Figure 13(a), and (ii) CUSTOMER and NATION;
the TPC-H benchmark contains only foreign-key joins. We
observe in Figure 13(b) the DRsg for a = [0,logN], and
x=1,2,3,4. For . =0 and x = L, DRgg is 65% in Fig-
ure 13(a) and 97% in Figure13(b), but for o = log N — 1 and
x =2, DRgg drops below 6%. We conducted all the possible
foreign-key joins and we observe the same pattern.

5.5 Attacking RANGE-SRC-SE

We evaluate the effectiveness of RANGE-SRC-SE-(a., x)
scheme for various x against slightly modified versions of the
attacks for point queries (Figures 7 and 8). In particular in
Line 2 of both Figure 7 and 8, we do not perform padding
but we recreate 7> in plaintext with only log, N 4 1 evenly
distributes levels. We report as a baseline a scheme that does
not perform padding but hides the entire overlapping pattern
leakage. For the case of query recovery attack we set o0 =
logN for RANGE-SRC-SE-(a,x), since varying a does not
affect the effectiveness of the attack.

USENIX Association

29th USENIX Security Symposium 2445

0.6 | [=—No Padding A 1t :;q:;adding
-G 0.14—— / =] 14—
/ —xe)
05 4 %5/ / 0.8 == 0.1
0.08f / P 8.82
o 04 LRI 0.6 0,04 b—s—s =5+
o« 6 8 10/ o 10 12 14
[=}
a 03 / 04
0.2 /
/ 0.2
0.1) o
_ - . — — — e
0 2 4 6 8 10 0 5 10

(a) SUPPLIER XINATION

Figure 13: Database Recovery Attack for Foreign-key Join
Queries for the TPC-H Benchmark.

(b) CUSTOMER XNATION

Attribute #Queries # Correctly Decrypted Queries
Baseline RANGE-SRC-SE

x=2 x=4 x=8
PS_SupplyCost 500500 73446 14 6 2
P_Size 1275 1184 10 5 2
P_RetailPrice 519690 19555 18 5 2
L_Tax 45 45 8 5 3
L_Quantity 1275 1263 10 4 3
L_Discount 66 66 8 4 1

Table 1: Query Recovery Attack for Range Queries
(ORsg = # Correctly Decrypted Queries /#Queries)

Attack evaluation. We focus on numeric attributes
PS_SupplyCost from table PARTSUPP; P_Size and
P_RetailPrice from PART; L_TAX, L_QUANTITY,
L_DISCOUNT from LINEITEM. Table | presents for each
attribute the number of all possible range queries and the
number of the correctly decrypted ones using the baseline
(Column 3 of Table 1), and RANGE-SRC-SE for x = 2,
x =4 and x = 8 (Columns 4, 5, 6 of Table 1). We observe that
x = 8 drastically reduces the number of correctly decrypted
queries. We omit the presentation of the database recovery
attacks for ranges, since DRgp, is primarily based on the result
of the query recovery attack, and we see in Table | that even
for x =2 QRgp is small.

5.6 Efficiency of Adjustable Constructions

In Figure 14(a), we fix a database with size 222 records, and

we show the largest slowdown (across all the possible result
sizes—1,2,3...N) of SEAL(a,x) compared to a SE scheme
which has the maximum leakage. Similarly, in Figure 15(a),
we show the smallest speedup achieved by our construction
SEAL(a,x) (for various values of a and x) compared to an

approach that performs sequential scan and has no leakage.

Because, we consider the worst-case speedup from the most
secure solution (&0 = 0 and x = N), sequential scan provides
a more efficient approach than the use of worst-case padding
with ORAM which is also achieves the same security. We do
an analysis of these plots in the next section.

We highlight again that neither SE nor sequential scan
are competitors of SEAL, since (i) SEAL encapsulates those
schemes (e.g., for & = 0 and x = N becomes sequential scan
and for oo = log N and x = | becomes SE scheme), and (ii)

—<—No Padding
—a—x=2

Slow-down
> 3 =)
™ > >

Slow-down

——RANGE-SRC-SE-(logN,x)
L= RANGE-ADJ-SE-(0,x)

5 10 15 20
log,(x)

(a) SEAL(at,x)

(b) Range Schemes

Figure 14: Slowdown from SE.

—%—No Padding
——x=2

——RANGE-SRC-SE-(logN,x)
——RANGE-ADJ-SE-(0,x

Speed-up
= =) 3 3>
> % > >

10 15
log,(x)

(a) SEAL(0,x) (b) Range Schemes

Figure 15: Speedup from sequential scan.

for non-trivial o and x they provide different security level.
We provide those experiments only as reference points of
SEAL’s performance compared with the most and least se-
cure solutions. In addition, Figures 14(a),15(a) can be used
in combination with Figures 9-13 and Table 1: For a given
query type and attack we can specify good values for o, x (for
mitigating the attack) from Figures 9-13 and Table 1,and for
those values we can see the relative performance of SEAL
compared with SE and sequential scan in Figures 14(a),15(a).

Figure 14(b) and 15(b) evaluate RANGE-ADJ-SE-(0,x)
and RANGE-SRC-SE-(logN,x). Note that both schemes
hide the overlapping pattern, the first by using ORAM, the
second by construction. Also both schemes are using the
same x, allowing the adversary to observe the same number
of different sizes (but not necessarily the same sizes). Note
that RANGE-SRC-SE performs much better than RANGE-
ADJ-SE. This is to be expected given RANGE-SRC-SE
has more leakage—the search pattern, which however we do
not know how to use in an attack here.”

We provide additional experiments regarding the perfor-
mance of our SEAL scheme for the crime dataset. We show
experiments for values of o and x that significantly mitigate
the proposed attacks and achieve good performance (as we
also discuss in the next section). In Figure 16, we evaluate
the required index size and construction time of SEAL for
x = 1,2,3,4. Finally, in Figures 17 and 18 we evaluate the
end-to-end search time of our SEAL scheme for two attributes
of the crime dataset for o = 20,21,22,23 and x = 1,2,3,4.

6 Although the search pattern (combined with the access pattern) has been
used in recent work by Kornaropoulos et al. [35] to attack RANGE-SE, it is
not clear how it can be used for RANGE-SRC-SE-(a, x).

2446 29th USENIX Security Symposium

USENIX Association

10
- 800
g {[=~No,Padding ——No Padding
X 700 H—e-x=2
8 x=3 x=3
o 600 f|—x=4
3 6 @500
@ s
@ 5 400
E 4 3
IS
3 300
> 200
] 100 /

1 2 3 4 5 6
Dataset Size (#tuples) x10°

(b) Index Size

2 3 4 5 6
Dataset Size (#tuples) %108
(a) Construction Time

Figure 16: Index Costs - Crime Dataset

——ADJ-SE(23 X
o~ ADJ-SE(22.X

ADJ-SE(21x)
— ADJ-SE(20.

——ADJ-SE(23x)
—o~ADJ-SE(22)x)
102 ADJ-SE(21.x)

—ADJ-SE(20:X

Time (msec)
3
>

0 100 200 300 400 0 100 200 300 400
Queries Queries

(@ x=1 (b) x=2

0 100 200 300 400 0 100 200 300 400
Queries Queries

() x=3 d) x=4
Figure 17: Search costs - Crime Dataset (Attribute 5)

5.7 Setting Parameters o and x in Practice

From the above findings, it should be evident that finding
appropriate parameter values is heavily data-dependent. In
particular, it depends on the size of the database, number
of distinct values, and the distribution of a given searchable
attribute. One way for users to tune these parameters is to use
our attacks as an estimator, e.g., provide their databases as
input and try different values of & and x in order to set their
desirable success rate thresholds against our attacks (before
outsourcing the database). Below, we provide more general
guidelines on how one can set these parameters based on our
evaluation.

Setting parameter x. Parameter x solely controls the success
rate of the query recovery attack for point, range (RANGE-
SRC scheme) and group-by queries. The query recovery at-
tack tries to map the encrypted queries to plaintext ones based
on the volume leakage. For instance, if a database contains
only two values a and b and the volume of the former value
is greater than the latter, i.e., |g(a)| > |g(b)|, the adversary
can correctly map with certainty the encrypted query with the
greater volume to a and the other one to b. Now, assuming
that both values have the same volume, the adversary cannot

[~—ADJSE[3)

ADJ-SE(21.X)
—ADJ-SE(20X)

——ADJ-SE(23x)

—+—ADJ-SE(22'x
ADJ-SE(21 x

—ADJ-SE(20:x

0 50 100 150 0 50 100 150
Queries Queries
(a) x=_1 (b) x=2

10* F—AbTSEm3a 10 —

——ADJ-SE(23,x)| +ADJ-SE(23,X%

! e e

- X, - X,

fADJ-SESZO.xe fADJ-SE(ZO,x%

Time (msec)
Time (msec)

102 102
0 50 100 150 0 50 100 150
Queries Queries
() x=3 (d) x=4

Figure 18: Search costs - Crime Dataset (Attribute 8)

distinguish the encrypted queries and is forced to guess. In-
creasing the parameter x, we try to have more queries with
the same size in order to increase the adversary’s uncertainty,
but finding a good value of x also depends on the distribu-
tion of the searchable value. For instance, attribute 9 of the
crime dataset is a binary attribute (it has 2 distinct values),
in which |g(a)| = 4374175 and |g(b)| = 1749100. We ob-
serve that for x = 2 these queries still will have different
volumes, but for x = 3 they obtain the same volume (i.e.,
|g'(a)] = |¢'(b)| = 4782969) and they will be indistinguish-
able. Attribute 10 of the crime dataset, which is also a binary
attribute, has |g(a)| = 5337429 and |q(b)| = 785846 and in
order to make these sizes indistinguishable higher values of x
are needed, i.e., x = 14. Again, this kind of analysis can be
performed locally, prior to outsourcing the dataset.

Setting parameter o. Parameter o affects the success rate of
the database recovery attacks for point, range (RANGE-SRC
scheme), join and group-by queries. The success of this attack
firstly depends on the outcome of the query recovery attack.
Thus, tuning the parameter x in order to increase the uncer-
tainty of the adversary is very important. Nevertheless, param-
eter o controls how many tuples are indistinguishable from
each other. For example, setting o = log N — 1 our scheme
creates N/2 ORAM:s of size 2—thus every tuple is indistin-
guishable from another one (all the tuples that are in the same
ORAM are indistinguishable from each other). Therefore,
even if the query recovery attack has 100% success rate and
we are trying to find the correct mapping of plaintext tuples to
encrypted ones, the success rate of this attack will be at most
50% for oo = log N — 1. However, in our proposed database
recovery attack, we treat the case when encrypted and plain-
text tuples have the same searchable value but differ in the
rest of the attributes as a success. Due to this, the distribution

USENIX Association

29th USENIX Security Symposium 2447

of an attribute will also affect the success of the database
recovery attacks. For instance, for point queries attribute 9
of the crime dataset (which has 2 values— |q(a)| = 4374175
and |g(b)| = 1749100) forx = L and oo =1logN — 1 =22, our
attack has success rate around 87%, because the success rate
of the query recovery attack is 100% and the adversary has
uncertainty only when the same ORAM contains both tuples
with value a and b.

Finally, we provide some general conclusions from the anal-
ysis that we performed on our chosen datasets. We observe
that for point and join queries setting & = logN —3 and x =4
significantly reduces both QRsg and DRsr (e.g., attributes 4,5
of LINEITEM and attributes 13,14 of crime dataset for point
queries; SUPPLIERXNATION and CUSTOMERNXNATION
for join queries), while for these values the smallest speedup
from sequential scan is more than 262,000 and the maxi-
mum slow-down from SE is 32x. There are rare cases that
attributes with skewed distribution and small number of dis-
tinct values, e.g., binary attributes, require higher values of x,
such as x = 16 or x = 64 (e.g., attribute 9 of LINEITEM and
attributes 9,10 of the crime dataset for point queries). In the
cases of range queries, we observe that our RANGE-SRC-
SE-(logN,x) for x = 8 significantly mitigates our all-powerful
query recovery attack (e.g., L_Tax and L._Discount attribute—
the success rate of the attack drops from 100% below 7% and
2% respectively) and achieves a maximum 48x slowdown
from plain RANGE-SE.

6 Challenges for Dynamic Databases

Our work only focuses on static databases. We believe that
a very interesting problem for future work is to extend this
work for dynamic databases, an approach that introduces more
leakage and makes the problem more challenging. Towards
this goal, we know from the literature of SE how we can
support dynamic point queries (there is an extensive liter-
ature on dynamic schemes that achieve forward/backward
privacy [10, 14, 19,21, 33, 44]—the state-of-the-art security
definitions for dynamic SE. A first challenge towards dynamic
databases is to study if these security definitions for point
queries are suitable for other query types (such as range, joins
and group-by queries), as well as to find schemes that achieve
those definitions. A second challenge is that prior ORAM
and our ADJ-ORAM schemes require initializing at setup the
worst-case memory size—modifying them for the dynamic
case (without having to set a-priori a large upper bound) is a
non-trivial problem. A third challenge is how we could effi-
ciently use our ADJ-Padding technique, since new updates
will continuously change the distribution of the searchable
attribute. Predicting the required padding size (without extra
costly bookkeeping) for a certain keyword without knowing
future updates would be very challenging.

One approach for handling dynamic point queries would be
to explore whether our ADJ-ORAM can be used as a drop-in

replacement in existing dynamic ORAM-based SE schemes
(e.g., ORION from [21]), obtaining a good efficiency/security
trade-off. However, this would require addressing the afore-
mentioned second and third challenges. An alternative di-
rection that avoids these challenges is to use existing tech-
niques that transform static SE to dynamic ones (e.g., SD,
from [14]). At a high level, this requires storing the result of N
updates in a sequence of log N + 1 separate indexes (with size
20, ... 21°¢N) ‘where each update is first stored in the small-
est index and whenever two indexes of the same size exist
they are downloaded and merged to a larger new index by the
client. Search queries are executed at all encrypted indexes
independently. Such techniques that periodically rebuild the
encrypted indexes do not require defining a maximum capac-
ity during setup. Moreover, they allow the client to update
the parameters o and x depending on how the database has
evolved. However, the main drawback of this approach is up-
dates, since it has a (amortized) O(logN) update cost. While
de-amortization is possible, it is not trivial, especially in our
adjustable setting, and we believe that it is a very interesting
problem for future work.

7 Conclusion

In this work we show the necessity of new defense mech-
anisms (beyond SE) for encrypted databases. We propose
SEAL, a family of new SE schemes with adjustable leakage
which can be used for building efficient encrypted databases
(for point, range, group-by and joins queries). In our evalu-
ation we show that for our tested datasets SEAL is robust
against all-powerful attacks with a reasonable performance
overhead. Finally, we believe SEAL can serve as a bench-
mark for measuring the effectiveness of existing and future
leakage-abuse attacks.

Acknowledgements

This work was supported in part by NSF awards #1514261
and #1652259, the National Institute of Standards and Tech-
nology, Hong Kong RGC grant ECS-26208318, and by a
Symantec Research Lab Graduate Fellowship. We thank Nor-
tonLifeLock Inc. for its support, Niels Provos for shepherding
the paper and the anonymous reviewers for their valuable
suggestions and comments.

References

[1] Attack of the week: searchable encryption and the
ever-expanding leakage function. https://blog.
cryptographyengineering.com/. Accessed: 2019-
06-06.

[2] Bouncy castle. http://www.bouncycastle.org.

2448 29th USENIX Security Symposium

USENIX Association

https://blog.cryptographyengineering.com/
https://blog.cryptographyengineering.com/

[3] Crimes 2001 to present (city of chicago).
https://data.cityofchicago.org/ public-safety/crimes-
2001-to-present/ijzp-q8t2.

[4] Tpc-h benchmark. http://www.tpc.org/tpch.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order Pre-
serving Encryption for Numeric Data. In Proceedings
of the 2004 ACM SIGMOD international conference on
Management of data, pages 563-574. ACM, 2004.

[6] S. Bajaj and R. Sion. Trusteddb: a trusted hardware
based database with privacy and data confidentiality. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 205-216.
ACM, 2011.

[7] L. Blackstone, S. Kamara, and T. Moataz. Revisiting
leakage abuse attacks. In Proc. of NDSS, 2020.

[8] R. Bost. Sofos: Forward Secure Searchable Encryption.
In CCS, 2016.

[9] R. Bost and P.-A. Fouque. Thwarting leakage abuse
attacks against searchable encryption—a formal approach
and applications to database padding. Technical report,
Cryptology ePrint Archive, Report 2017/1060.

[10] R. Bost, B. Minaud, and O. Ohrimenko. Forward
and backward private searchable encryption from con-
strained cryptographic primitives. In CCS, 2017.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-
abuse attacks against searchable encryption. In CCS,
2015.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable Symmetric Encryption: Improved Defini-
tions and Efficient Constructions. Journal of Computer
Security, 2011.

[13] J. L. Dautrich Jr and C. V. Ravishankar. Compromis-
ing Privacy in Precise Query Protocols. In Proceed-
ings of the 16th International Conference on Extending
Database Technology, pages 155-166. ACM, 2013.

[14] 1. Demertzis, J. Ghareh Chamani, D. Papadopoulos, and
C. Papamanthou. Dynamic searchable encryption with
small client storage. In NDSS, 2020.

[15] 1. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, and M. Garofalakis. Practical Private Range
Search Revisited. In SIGMOD, 2016.

[16] 1. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, M. Garofalakis, and C. Papamanthou. Practi-
cal private range search in depth. TODS, 2018.

[17] 1. Demertzis and C. Papamanthou. Fast searchable en-
cryption with tunable locality. In SIGMOD, 2017.

[18] I. Demertzis, R. Talapatra, and C. Papamanthou. Ef-
ficient searchable encryption through compression.
PVLDB, 2018.

[19] M. Etemad, A. Kiipgii, C. Papamanthou, and D. Evans.
Efficient dynamic searchable encryption with forward
privacy. PETS, 2018.

[20] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu,
and M. Steiner. Rich Queries on Encrypted Data: Be-
yond Exact Matches. In ESORICS, 2015.

[21] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou,
and R. Jalili. New constructions for forward and back-

ward private symmetric searchable encryption. In CCS,
2018.

[22] O. Goldreich and R. Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 1996.

[23] L. Granboulan and T. Pornin. Perfect block ciphers with
small blocks. In International Workshop on FSE, 2007.

[24] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Pater-
son. Learning to reconstruct: Statistical learning theory
and encrypted database attacks. 2019.

[25] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. Paterson.
Pump up the volume: Practical database reconstruction
from volume leakage on range series. In CCS, 2018.

[26] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your
encrypted database is not secure. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
HotOS 2017, Whistler, BC, Canada, May 8-10, 2017,
pages 162-168, 2017.

[27] Z. Gui, O. Johnson, and B. Warinschi. Encrypted
databases: New volume attacks against range queries.
In CCS, 2019.

[28] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference
attack against encrypted range queries on outsourced
databases. In Proceedings of the 4th ACM conference
on Data and application security and privacy, pages
235-246. ACM, 2014.

[29] S. Kamara and T. Moataz. Encrypted multi-maps with
computationally-secure leakage. 2019.

[30] S. Kamara and T. Moataz. Sql on structurally-encrypted
databases. ASIACRYPT, 2019.

[31] S. Kamara, T. Moataz, and O. Ohrimenko. Structured
encryption and leakage suppression. In CRYPTO, 2018.

USENIX Association

29th USENIX Security Symposium 2449

[32] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.
Generic attacks on secure outsourced databases. In
CCS, 2016.

[33] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim.
Forward secure dynamic searchable symmetric encryp-
tion with efficient updates. In CCS, 2017.

[34] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
Data recovery on encrypted databases with k-nearest
neighbor query leakage. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019, pages 1033-1050. IEEE, 2019.

[35] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
The state of the uniform: Attacks on encrypted databases
beyond the uniform query distribution. IEEE SSP 2020,
2020.

[36] M.-S. Lacharité, B. Minaud, and K. G. Paterson. Im-
proved reconstruction attacks on encrypted data using
range query leakage. In SP, 2018.

[37] M.-S. Lacharité and K. G. Paterson. Frequency-
smoothing encryption: preventing snapshot attacks on
deterministically encrypted data. JACR Transactions on
Symmetric Cryptology, 2018.

[38] M. Liberatore and B. N. Levine. Inferring the source of
encrypted http connections. In CCS, 2006.

[39] E. A. Markatou and R. Tamassia. Full database recon-
struction with access and search pattern leakage. ISC
2019, 2019.

[40] B. Morris and P. Rogaway. Sometimes-recurse shuffle
- almost-random permutations in logarithmic expected
time. In EUROCRYPT, 2014.

[41] M. Naveed, S. Kamara, and C. V. Wright. Inference
Attacks on Property-Preserving Encrypted Databases.
In CCS, 2015.

[42] S. Patel, G. Persiano, M. Raykova, and K. Yeo.
Panorama: Oblivious ram with logarithmic overhead.
In FOCS, 2018.

[43] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakr-
ishnan. CryptDB: Protecting Confidentiality with En-
crypted Query Processing. In SOSP, 2011.

[44] E. Stefanov, C. Papamanthou, and E. Shi. Practical
Dynamic Searchable Encryption with Small Leakage.
In NDSS, 2014.

[45] E. Stefanov and E. Shi. Fastprp: Fast pseudo-random
permutations for small domains. JACR, 2012.

[46] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path Oram: An Extremely Sim-
ple Oblivious Ram Protocol. In CCS, 2013.

[47] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad,
V. Vo, and S. Nepal. Practical backward-secure search-
able encryption from symmetric puncturable encryption.
In CCS, 2018.

[48] S. Tu, M. F. Kaashoek, S. Madden, and N. Zel-
dovich. Processing analytical queries over encrypted
data. PVLDB, 6(5):289-300, 2013.

[49] S. Wagh, P. Cuff, and P. Mittal. Differentially private
oblivious ram. Proceedings on Privacy Enhancing Tech-
nologies, 2018.

[50] X.S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Ste-
fanov, and Y. Huang. Oblivious data structures. In CCS,
2014.

[51] Y. Zhang, J. Katz, and C. Papamanthou. All Your
Queries Are Belong to Us: The Power of File-Injection
Attacks on Searchable Encryption. In USENIX 2016.

2450 29th USENIX Security Symposium

USENIX Association

	Introduction
	Premiliminaries
	Encrypted Databases from Searchable Encryption & Attacks
	SE-based Point Queries
	SE-based Join Queries
	SE-based Range Queries

	SEAL: Adjustable Searchable Encryption & Derived Constructions
	Adjustable Oblivious RAM
	Adjustable Padding
	SEAL
	New Constructions for Point/Join Queries
	New Constructions for Range Queries

	Evaluation Against Attacks
	Attacker Model
	Experimental Setup
	Attacking POINT-ADJ-SE
	Attacking JOIN-ADJ-SE
	Attacking RANGE-SRC-SE
	Efficiency of Adjustable Constructions
	Setting Parameters and x in Practice

	Challenges for Dynamic Databases
	Conclusion

