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Abstract
Once compromised, server firmware can surreptitiously and
permanently take over a machine and any stack running
thereon, with no hope for recovery, short of hardware-level
intervention. To make things worse, modern firmware con-
tains millions of lines of unnecessary code and hundreds of
unnecessary modules as a result of a long firmware supply
chain designed to optimize time-to-market and cost, but not
security. As a result, off-the-shelf motherboards contain large,
unnecessarily complex, closed-source vulnerability surfaces
that can completely and irreversibly compromise systems.

In this work, we address this problem by dramatically and
automatically reducing the vulnerability surface. DECAF is
an extensible platform for automatically pruning a wide class
of commercial UEFI firmware. DECAF intelligently runs
dynamic iterative surgery on UEFI firmware to remove a
maximal amount of code with no regressive effects on the
functionality and performance of higher layers in the stack
(OS, applications).

DECAF has successfully pruned over 70% of unnecessary,
redundant, reachable firmware in leading server-grade moth-
erboards with no effect on the upper layers, and increased
resulting system performance and boot times.

1 Introduction

Millions of lines of C, assembly, and microcode compose the
binaries residing on today’s motherboards.

Firmware is essential in managing and running the un-
derlying hardware. Yet, due to the complicated and inher-
ently market-driven process of hardware manufacture and
sale, much of the firmware delivered with modern mother-
boards is not necessary for the hardware on which it ships.

Manually customizing firmware for a given motherboard
and application is simply not practical. It can take thousands
of hours of work to do right and is not scalable to constantly
changing hardware, purchasing decisions, environments, and
applications of modern consumers and corporations.

As a result, a typical supply chain for Unified Extensi-
ble Firmware Interface (UEFI) firmware starts with EDK
II [3], the open source reference UEFI implementation from
TianoCore. The EDK II project measures up to roughly 2.5
million lines of code. Vendor specific implementations tend to
be even larger. A motherboard firmware company (American
Megatrends, Phoenix Technologies, etc.) adds the necessary
modules from Intel for a particular chipset along with any
other modules needed for their base design. Motherboard
manufacturers (Dell, ASUS, etc.) then add further modules
required to enable proprietary hardware or management fea-
tures, further bloating the firmware which ultimately ships
with the hardware. More details about the firmware layout
and the role of modules are given in Section 2.2

Due to the nature of this supply chain, the firmware trades
hands numerous times before it is delivered to a board and
ultimately to an end user. At each stage, modules are added to
the firmware, but typically, for time and cost reasons, nothing
is optimized or removed, including any generic modules that
do not apply to the specific hardware being delivered.

Furthermore, firmware fixes are often neglected even for
motherboards only 6-12 months old. Worse still, even when
acting in good-faith, it is difficult for manufacturers to fix
bugs which may originate in a module from an upstream,
generic firmware vendor that propagate down to specific moth-
erboards. Addressing this problem is not trivial and places
security-conscious users in a difficult position.

Most importantly, very large portions of existing firmware
are unnecessary, significantly increasing the vulnerability
surface of a system and degrading performance. A bloated
firmware code base is not only a problem in terms of perfor-
mance and boot time, but also has major security implications.
A recent study has shown that because of the predictable
supply chain, the numerous additional modules in UEFI im-
ages, and large amount of code reuse between images, certain
attacks can be easily and reliably automated [45].

This is not a problem unique to firmware. In today’s highly
over-provisioned systems, it is simply cheaper and easier to
pile onto an existing code base than to design from the ground
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up. Modern software is bloated and routinely uses only a few
percentage points of the binary code. A recent study has
shown that only 10% of the shared libraries in Ubuntu 16.04
are used by actual programs [32].

To make matters worse, in the case of firmware, exploits can
completely compromise an entire system, including any trust
chains and security mechanisms such as “secure boot” [11].
Short of physical intervention and hardware reflashing, users
are often left with completely insecure systems, without any
ability to even detect the breach.

One of the first steps that can be taken is to reduce this
vulnerability surface by eliminating any unnecessary bloat.
This results in a linear reduction of the overall vulnerability
surface and availability of exploits.

In this work we propose to automatically and dynamically
prune significant amounts of unnecessary binary code from
a large class of COTS firmware without impacting the func-
tionality of the upper layer of the stack (OS, applications).

1.1 UEFI Has a Quality Problem

Bloat is not the only problem with UEFI. There are a great
many vulnerabilities in the wild that are completely avoid-
able, but exist due to manufacturer negligence. Many common
attack vectors on UEFI have modern mitigations that manu-
facturers fail to properly configure.

In a survey of firmware vulnerabilities [29] covering 2015-
2017, not only are the total numbers concerning, but there
is also an increasing trend in the number of vulnerabilities
due to lack of proper configurations of increasingly numerous
security options.

Firmware expert Nikolaj Schlej, perhaps best known as the
author of the widely used and popular UEFITool [36], has
been sounding the alarm for years through various of talks
and presentations. For example, in [38] numerous vulnerabil-
ities for off the shelf firmware are introduced. Compelling
arguments are made for users to immediately patch their own
systems rather than wait for manufacturer firmware updates
which may never come and rarely address bugs in time. "[I]f
the firmware can still boot your OS - it’s fine to have [...]
components removed".

Unfortunately, this is easier said than done. For users (ei-
ther consumer or enterprise) of off-the-shelf firmware, it is
effectively a proprietary black box. Users do not have the
expertise and tools to properly prune a BIOS. They are thus
often left with 3-5 year old firmware with no recourse. This
is one of the main motivators behind DECAF, namely em-
powering non-expert users to easily remove old, unwanted or
buggy functionality from their firmware.

Since much of the firmware is closed-source, it is difficult
to precisely evaluate firmware code quality and whether it is
that much better than the abysmal industry average featuring
multiple bugs for every hundred lines of code [25].

Yet, analysing open-source Intel code provides some in-
sight into what might be going on behind the scenes [37]. For
example, for the Intel Galileo board, using only a static code
analyzer restricted to search only for "obviously incorrect
code fragments" numerous bugs can be found, which appear
to be the result of lazy copy-pasting.

1.2 DECAF
Debloating is perfectly suited to firmware hardening because
of the previously described supplier model. If done properly,
as a result of the UEFI structure, it can be applied at module
granularity to any motherboard, even without access to the
source code.

DECAF is an extensible platform for automatically prun-
ing a wide class of commercial UEFI firmware. It utilizes a
configurable set of validation tests to tailor the retained func-
tionality to a particular use-case and intelligently performs a
dynamic iterative surgery process on UEFI binary firmware
to remove a maximal amount of code with no effect on func-
tionality and performance of higher layers in the stack (OS,
applications).

DECAF also supports module white and black listing to
take advantage of prior knowledge of the target firmware. For
example, an in-BIOS DHCP implementation is needed (for
example, for PXE boot), and the given firmware contains two
implementations: one from the EDK II standard and one from
the manufacturer. In this case, we can, for example, black list
the implementation from the manufacturer and white list the
open source one.

We evaluated DECAF experimentally in two configura-
tions: one targeted at running cloud hypervisors, and one
targeted at maximal byte removal (booting off of local media).
Results show that up 30% of the codebase can be pruned
automatically in the first case and up to 70% in the latter with
no impact on the upper layers. The resulting firmware boots
significantly faster as well.

At first, it may seem that code that does not affect func-
tionality is unreachable, and thus its removal may be of little
security benefit. This, however, is not the case. Most firmware
contains active, reachable code that is simply unused by the
upper layers but poses significant vulnerability challenges
(e.g. multiple network stacks, obsolete drivers for tens of pe-
ripherals/USB/VGA, entire GUIs, etc.). Indeed, the fact that
pruned firmware boots significantly faster than original im-
ages is incontrovertible evidence that the execution path is
modified. In summary:

1. DECAF is the first extensible platform for automatically
pruning commercial UEFI firmware.

2. DECAF can automatically prune up to 70% of a UEFI
image.

3. DECAF includes a framework for automatic testing of
UEFI images on real boards.
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4. DECAF operates on binaries (no need for source code)
and can easily integrate with and operate on new moth-
erboards.

5. DECAF has been successfully applied on multiple (6)
motherboard lines; more are added periodically.

6. DECAFed firmware has been successfully running
in a production-grade data center environment since
mid 2017.

7. UEFI firmware can be easily customized to retain or
remove only desired functionality.

2 Background

2.1 UEFI
UEFI (originally EFI) was developed to replace legacy BIOS
with a more standardized solution in order to improve inter-
operability between vendors.

UEFI splits the lifetime of platform initialization into 4
distinct phases: (1) Security (SEC), (2) Pre-EFI Initialization
Environment (PEI), (3) Driver Execution Environment (DXE),
(4) Boot Device Selection (BDS).

The SEC stage is the root of trust of the system and
does very early hardware initialization and validation of the
firmware image. It then bootstraps and hands execution off to
the PEI stage. The PEI stage finalizes hardware initialization.
It enumerates platform information into a series of Hand Off
Blocks (HOBs) that are handed off to the DXE stage. The
PEI stage execution is heavily dependent on the processor
architecture as it only initially uses resources on the CPU
until main memory (RAM) is configured. Indeed, it is up to
the firmware to initialize the main memory (which happens in
the PEI stage under the UEFI spec). The code residing in this
stage is generally designed to be as simple as possible, while
the more advanced logic is handled later in the DXE stage.

The DXE stage loads what could be considered the user
space UEFI environment. Driver interfaces are installed onto
the initialized hardware to be used in the process of booting
the operating system and during OS runtime. It is respon-
sible for discovering, loading, and executing drivers in the
correct order. Finally, the DXE stage passes control to the
BDS where the OS boot loader takes over execution. A visual
representation of this process can be seen online [41].

In the context of this project, pruning is performed on the
modules executed in the PEI and DXE stages.

2.2 Firmware Layout
At a high level, UEFI firmware is composed of a flash de-
scriptor region that identifies other regions in the image. This
may include firmware for the IntelR© Management Engine, or
e.g. the network interfaces. The region of interest here is the
BIOS region that follows afterwards.

The BIOS region space is split up into firmware volumes,
each containing a collection of modules, Figure 1. Typically
modules are grouped into a volume by their execution stage
in UEFI. So, for example, one volume will contain the core
start-up module for the DXE stage along with all of the other
DXE modules to be executed.

A module contains one or more sections. Most importantly,
some modules, but not all, contain a PE32 binary section that
will be executed by the system at runtime.

BIOS Region

Firmware Volume

Module

Section

Firmware Volume

Module

Module

Section

Figure 1: UEFI BIOS region layout

This project aims to exploit the modular nature of UEFI
firmware in order to reduce the attack surface area of all moth-
erboards that conform to the UEFI specification. Individual
modules can be removed, with the BIOS region and firmware
volumes rebuilt into a new, pruned image.

In 2017, Intel made a statement that they would be ending
support for legacy BIOS compatibility by 2020 [23]. With
manufacturers abandoning older proprietary legacy BIOS,
this approach will continue to be valid for new motherboards.

2.3 Modules and Dependencies
For executable UEFI modules, one of the sections will contain
a PE32 binary image. This is a standalone executable that is
dispatched by the firmware. Executable modules will also con-
tain a dependency (DEPEX) section, which will determine the
order in which the modules are executed. During execution,
modules will install pointers to functions using UEFI system
functions. The installed functions are called protocols and
are identified by Globally Unique Identifiers (GUIDs). Other
modules use these GUIDs to look up the installed protocols
and call into them. This is how standalone modules inter-link.

Each module has a DEPEX section that tells the DXE
dispatcher what modules and protocols need to be initialized
prior to executing it. If the DEPEX expression evaluates to
true (i.e., required modules and protocols have already been
loaded), the module can be loaded, otherwise it is postponed.

Unfortunately, the dependency section is not very helpful in
determining which modules actually depend on one another.
Protocols may be listed in the dependency section strictly to
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change the dispatching order, not because the binary actually
looks up the protocol and uses it. Likewise, protocols used
by a module do not need to be listed in the DEPEX section if
the protocol will already be installed by the time the module
runs. A module may also have a soft dependency where it
looks up a protocol, but still performs some valid behavior
even if it is not present. The DEPEX section may be omitted
entirely, in which case the module can be loaded right away.
What is more, dependencies can be changed at runtime (when
the DEPEX expression is evaluated), depending on various
events in the environment. In short, the dependency section is
only a reliable source of information for dispatch order, not
for determining actual dependencies between modules.

There has been some work in reverse engineering these
dependency lookups, but in a somewhat limited fashion. The
method in [8] involved setting up a fake UEFI environment
and then executing individual modules within that environ-
ment. Unfortunately, this does not fully account for system
state when the modules are loaded, and modules that interact
directly with hardware will not function properly. The only
way to fully identify these dependencies would be to mon-
itor the installation and lookup of protocols in the context
of the real system. We detail this approach and explain our
implementation of it in Section 4.3.

3 Pruning Strategy

3.1 Considerations

The selection of a pruning strategy should have two primary
concerns: its runtime and the quality of the results it produces.

The property of a particular pruning strategy that most af-
fects runtime is the number of test iterations that must be
performed. The time required to perform a single test of a par-
ticular pruned state is on the order of minutes, so exhaustive
searches simply aren’t feasible.

As for quality, the number of modules removed is the metric
most directly affected by choice of strategy; any strategy will
remove one module at a time, and the order in which modules
are removed determines how many modules are kept, due
to the nature of inter-module dependencies. Therefore, the
primary metric considered when comparing the results of
different strategies is the number of modules removed. In
Section 3.3, we discuss how other metrics, such as final image
size and boot time can be incorporated as search heuristics,
and in some cases may even lead to a reduction in runtime.

In Section 3.2, we present a few different representations
of the search problem, considering factors such as module
inter-dependency and the percentage of modules that can suc-
cessfully be removed from the firmware. We then compare
the average number of attempts performed and modules re-
moved by a few natural pruning strategies and use the results
to design a suitable pruning workflow.

3.2 Comparison of Existing Strategies

Assuming each trial takes a constant amount of time, the
performance of any pruning strategy is proportional to the
number of tests that must be performed.

One could consider subset-based reduction approaches like
those used in delta debugging [46]. Delta debugging is typi-
cally used to find bugs rather than minimize software, how-
ever the principle is applicable to minimization. Delta debug-
ging works by finding the "deltas"–lines changed, functions
added/removed, etc.–between a program that passes a test and
one that fails. The deltas are then recursively divided into sub-
sets and tested in order to find a minimal set of deltas required
to get the failing program to pass. In the context of DECAF,
the passing program would be the original firmware image,
the failing program would be an empty firmware image, and
the deltas would be the UEFI modules.

However, these approaches rely on spatial coherence in
the input, which in this case is a set of files in the firmware
volume whose order have no real correlation to their remov-
ability. Delta debugging works best on well-structured inputs,
and most approaches that utilize it rely on improving the co-
herency of the structure through high-level analysis [28] [40].

Another natural approach is to use a hill-climbing type
algorithm that seeks to incrementally improve an existing
solution by removing more modules and backtracking on
failures. Hill-climbing can easily be used to incrementally
improve the results of other strategies.

Another approach that will be considered as a baseline is
to incrementally build a removal set R, initially empty. We
consider one module m at a time, and if m+R can be removed,
we add m to R. We call this strategy linear removal.

As discussed in Section 2.3, some UEFI modules depend on
others. The dependency graphs are Directed Acyclic Graphs
(DAGs). The structure of the graphs themselves is not very
interesting; they are simply very dense graphs. A few mod-
ules are referenced by nearly all others, and a few have no
edges. However, the presence of these dependencies affects
the runtime and removal level of the previously described
strategies differently.

Consider Figure 2 where the dependency connectivity q
is varied. q refers to a number of DAG edges to be selected
randomly between the p removable modules. Assuming that
roughly 60% of the firmware modules are removable, it can
be observed that as expected, hill-climbing is able to fully
prune the firmware regardless of the module connectivity, and
the performance of the linear removal and delta debugging
approaches is inversely proportional to q.

In order to achieve similar levels of module removal, linear
removal methods could take on one of two approaches. They
could repeat until the dependency tree is fully unwound, rais-
ing the complexity on an order of magnitude relative to the
height of the DAG, or they could perform a linear removal
to remove obvious candidates, followed by hill-climbing to
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clean up the rest of the removable tree.

Figure 2: Average Number of Modules Removed with p=180
Modules Removable of n=300 Modules and Varying

Dependency Connectivity (q)

Figure 3: Average Number of Required Tests to Remove p of
n=300 Modules with Connectivity q=25

Using an estimated value of q = 25 for the connectivity,
a comparison of hill-climbing and linear removal with hill
climbing methods can be seen in Figure 3. The linear removal
with hill climbing is favored because repeatedly applying a lin-
ear removal approach results in repeated, redundant re-testing
of modules that cannot be removed, while hill-climbing opti-
mizes against re-selecting these modules.

3.3 Search Heuristics
Since exhaustive searches are infeasible, DECAF makes use
of search heuristics: each module is assigned a weight that is
updated throughout the runtime of the pipeline.

One can imagine a number of search heuristics that can
be used to improve the runtime or results of a given pruning
strategy. For example, if reduction of the overall image size
is a primary goal, one can assign a higher removal chance
to large firmware modules. If instead reducing the boot time

of the final image is desirable, a module can be assigned a
higher removal chance if removing it is observed to lower the
boot time. This heuristic has the added benefit of reducing
the time for a single trial, reducing overall runtime. Another
potentially interesting heuristic would be one that runs some
form of static analysis on the modules prior to pruning, giving
a high removal chance to modules that are likely to contain
some kind of bug or exploitable code.

One heuristic used to great effect in DECAF involves run-
time UEFI module dependency. As described in 4.3, we inject
two modules into the firmware image before the pruning pro-
cess that report which modules install which protocols, and
which modules subsequently look up those protocols during
the boot process. This information can be useful in several
ways. For example, a module with no dependencies may be
assigned a high removal chance, while a module with many
dependencies may receive a low one.

DECAF also halves the chance of a module being removed
if a removal set including that module fails to pass the valida-
tion targets. The assumption is that modules that have failed
previously are more likely to fail again. The intuition is as fol-
lows: a module can fail to be removed because (1) it directly
provides functionality needed to boot the image or satisfy the
validation targets or (2) its removal causes another module to
fail, either preventing the image from booting or producing
different validation results. If a module fails because it meets
criteria (1), it will always fail. The potential for a module
to fail because of reason (2) is mitigated by the dependency
analysis and unwinding discussed Section 4.3.

3.4 The DECAF Pruning Strategy

DECAF deploys a single linear pass followed by a few rounds
of hill-climbing, as it produces the best performance for
firmware that roughly conforms to the model in which mod-
ules are either: removable, not removable, or removable if all
of their dependencies are removed.

The workflow is aimed at finding a minimal image that
passes validation targets. This is done by iterating across
configurations of the search space until no further changes
can be made (any change would cause validation tests to fail).
The first iteration of the pipeline, performed on the vanilla
image (empty removal set) will perform several extra steps:

1. Determine board manufacturer and configure various
parameters (MAC/IP addresses, login credentials, etc)

2. Boot into an OS with the unmodified image and deter-
mine the hardware configuration (initial run for valida-
tion component).

3. Inject the dependency discovery modules (further de-
scribed in Section 4.3) and generate the dependency
graph based on runtime analysis.
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After these tasks are completed, the pruning process can
start. Having the dependency information, the removal proba-
bilities are initialized. Initially, all modules are equally likely
to be selected, excepting those that are present in the depen-
dency graph. Modules that are part of the dependency graph
have a smaller initial removal chance than the rest. The set of
modules is then split in half recursively until the set contains
only one module, at which point module removal is attempted.

Every iteration involves flashing the image to the mother-
board, powering the motherboard, waiting for the OS to boot,
and running the validation targets. If, at any point, a failure
is encountered, the corresponding module’s chance of being
removed again is decreased by half.

After the modules are tried individually, the results are
merged in the following fashion: if only one module set was
removed successfully, return that set. If both succeeded, at-
tempt to remove the union of the sets. If the removal succeeds,
return the union of the sets. If the removal fails, return the
larger of the two sets. The total number of removal attempts
is the geometric sum N + N

2 + N
4 + ...= 2N.

The returned modules are then used as the initial solu-
tion for an incremental high-climbing approach to further
improve the result. Modules are selected for removal based
on a weighted random approach, using the weights calculated
from the module dependency and failure information. This
weighted approach is important because of the nature of de-
pendencies between UEFI modules. A modified firmware
image may fail because the removed module was a depen-
dency of some other module, however that dependent module
may not be essential. Further in the execution, the root of
the dependency tree may be removed successfully, and as a
result, all of the leaf modules can now also be removed. It
is necessary to go back and retry modules that have failed
because of this case. The weighting helps to ensure that less
tested modules are more likely to be checked first while still
preserving the option to retry previously failed modules.

4 Architecture and Software Stack

An overview of the architecture is in Figure 4. DECAF is
composed of multiple modules, each responsible for a sub-
task of the overall pruning process.

DECAF needs to be capable of managing a physical board
in order to control and monitor power, flash firmware images,
and monitor overall hardware health. It needs to be able to
prune firmware images and generate candidates to be tested
during the reduction. These images need to be booted and
validated in order to iteratively converge to a minimal image.

4.1 Workflow Engine
The Luigi [39] workflow engine (represented by A in Figure
4) was chosen for the high level management of the pruning
process. The use of a workflow engine to manage the process

serves a few purposes. It provides a high level task overview
that can be used to monitor and manage the pipeline iterations.
It also provides the ability to link tasks together with cached
target data that is stored on the file system. This is a long-
running process, which means that failures outside the scope
of the pipeline may occur. A network or power outage are
possible during this period and a recovery option is needed so
that the progress is not lost. Because the workflow engine has
the native function of caching its progress, the pruning process
can simply be resumed at any point. Luigi’s native concept
of workers and dependencies also makes parallelization easy
when multiple identical boards are available.

4.2 Firmware Pruning

A modified version of UEFITool lies at the core of the
firmware pruning module. UEFITool is a mature UEFI
firmware image editing application written in C++ with Qt. It
is able to enumerate the contents of UEFI firmware as well
as manipulate and insert modules and sections into firmware
volumes. It works and is tested on a wide range of firmware
across a variety of vendors.

We implemented a scriptable Python layer that utilizes the
C++ backend of UEFITool, allowing for headless traversal
and pruning of firmware images. This is a powerful tool (rep-
resented by B in Figure 4) for automating what was typically
done meticulously by hand in UEFITool’s user interface. The
Python layer offers support for listing, inserting and removing
modules while producing a structurally valid UEFI image.

4.3 Generating Firmware Dependency Graph

An analysis on the firmware image needs to be run in order
to determine any dependency information. Our approach to
identify these dependencies involves monitoring the protocol
installations and look-ups in the context of the real system.
Given the structure of an EFI image, modules can not only be
pruned, but also appended to the binary.

DECAF appends two modules to the original image: (i)
dependency probe, and (ii) dependency dump. The result is
the "Dependency discovery image" in step 2 (Figure 4).

Figure 4: Overview of the DECAF platform architecture
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Dependency probe is used to hijack several protocols that
modules use frequently when interacting with each other
(such as EFI_INSTALL_PROTOCOL_INTERFACE). The
protocols are stored as function pointers in a structure that
is passed to each module’s main function. Overwriting these
pointers very early in the DXE phase will cause all mod-
ules executing after this to use the hijacked functions instead.
The hijacked protocols are simply wrappers over the original
functions that also log the GUID of the calling module.

Collected data is stored in memory. Because the depen-
dency probe is loaded at the earliest possible point in the
boot sequence, right after the DXE Core, there is no way to
transmit the information yet (serial/USB drivers/TCP stack
are not loaded). Instead, the probe publishes its own custom
communication protocol that exposes a pointer to the data.

The dependency dump module is loaded as late as possible,
after the network stack has been initialized. At this point,
most (if not all) module interaction has been recorded via
the hijacked protocols. A look-up is necessary to find the
information stored by the first probe. This information is then
forwarded to an external server (represented by D in 4).

After the dependency discovery image is successfully
booted and the data is collected (steps 4 and 5 from Figure 4),
a directed graph is built from the module dependencies.

There are multiple approaches that can be taken at this
point. Depending on the desired outcome, modules present in
the graph can be excluded from the pruning process (this will
result in a bigger final image, but it would attempt to preserve
the original execution flow as recorded at runtime).

Another approach is to update the removal chance based
on the degree of each node. All nodes found in the graph
are less likely to be removed than modules that we have no
information about (and were not recorded as active at runtime).
Nodes with higher degree are less likely to be removed than
those with smaller degree. The reason behind this it that a
node with many incoming edges (or a module that is looked
up and interacts with many other modules) is very likely to
produce a failure if removed first, before the dependent nodes.

Figure 5 shows a zoomed in sample of a dependency graph.

Figure 5: A sample dependency graph

Generally, there is a lot of inter-module interaction, and there
are even some self-loops. This can represent a module that
awaits an event in the environment, and periodically probes
itself. Removing a module that is called by one or more of its
peers will increase the chance of failure. A good strategy for
the pruning process is to first remove modules that have no
or only a few incoming edges (such as EventLogsSetupPage
or Ofbd in Figure 5), and only afterwards attempt to remove
nodes that are deeper in the graph.

In this particular case, the graph from Figure 5 is generated
from the firmware of SuperMicro A1SAi-2550F. The original
image contains 244 modules while the full graph has 147
nodes (modules) and 3881 edges (inter-module interaction).
This leaves 97 modules that have no recorded interactions at
runtime, but they are not necessarily unused: they may not
interact with other modules, or they may only be called during
very early initialization, before our hook is introduced. Out
of the 147 recorded modules, 100 nodes have an in degree of
0 (i.e., no dependents), making them the second best removal
candidates after the modules that have no data recorded. 21
modules have an in degree of 147. These modules are likely to
contain core functionality as they interact with all others. Re-
moving them will likely produce bad images. These statistics
will of course vary for different firmware images.

Some modules are named, while others are represented by
their associated GUID. Generally, named modules are well
known and provide standard functionality (and are reused
across models/vendors), while the others may be custom. For
example CsmVideo adds graphic support for backwards com-
patibility with older BIOS features, while the Whea modules
(Windows Hardware Error Architecture) provide error man-
agement and log information for the OS [35].

As the graph is generated before pruning, knowing module
names and interactions can provide valuable information to
the user looking to white/black list certain functionality.

4.4 Board Management

Testing changes to the UEFI firmware is not a goal that
can be simply achieved using virtualization tools, such as
QEMU [43], because QEMU does not really virtualize the
hardware below the guest OS. The guest can only see a mem-
ory map where accessing particular addresses will result in
various side effects (such as manipulating hardware via regis-
ters). QEMU replicates this behaviour, while mimicking the
side effects the OS would normally see on dedicated machines.
The UEFI environment itself, placed lower in the software
stack, is more difficult to virtualize and QEMU does not sup-
port hardware profiles compatible with modern UEFI systems.
Indeed, QEMU only supports two x86 chipsets: i440FX and
Q35. Both are quite old (1996 and 2007, respectively), and
there do not exist many (if any; we were unable to find one)
compatible UEFI motherboards.

Open Virtual Machine Firmware (OVMF) is a project that
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enables UEFI support in virtual machines [14]. It is based on
the EDK II implementation of the standard, and we have used
it for various tests and prototyping. But ultimately, the goal of
DECAF is to work on a large number of COTS platforms, and
the OVMF image provides only a limited and considerably
different simulation of a real board. Taking this into account,
the only way to test whether a pruned firmware image is func-
tioning correctly is to flash it onto the motherboard and boot
an operating system to validate that everything is still working
as expected by running a test suite. This requires controlling
the motherboard in an automated fashion to accomplish a few
tasks: (1) power control, (2) power monitoring, (3) flashing
firmware images, and (4) providing boot media.

For convenience, motherboards with a BMC (Board Man-
agement Controller) that provides IPMI (Intelligent Platform
Management Interface) were selected for DECAF since they
offer all of the services required. We developed a unified
Python API (represented by C in Figure 4) for interfacing
with the motherboard IPMI services, hiding vendor specific
behavior. IPMI is typically only present on server-grade hard-
ware, but the same thing can be accomplished on consumer
hardware with an external flash programmer, a GPIO con-
troller for monitoring and controlling the power, and physical
or PXE boot media. When implemented behind the API, this
would work seamlessly with the rest of the components.

Because the aim of DECAF is to harden trusted code base
residing at the firmware level, it is worth mentioning that
the various IPMI implementations are not really secure, as
emphasized by [9]. This is consistent with some of our ini-
tial findings when developing the vendor specific extensions.
Nevertheless, this does not represent a liability for our goals,
as the pruning operation is a one time process and the re-
sulting image can be flashed on boards that have the IPMI
disabled. Also, as previously mentioned, the presence of IPMI
is a convenience, not a necessity.

4.5 Validation

The first priority in validation is to make sure that a moth-
erboard flashed with modified firmware actually manages
to boot into an operating system (ArchLinux 2018-11-01
was used to produce the images described in this paper). On
boards that support it, POST (power-on self test) codes are
monitored through the board management API to monitor
early execution. This is done as a time-saving measure. If a
timeout is reached and the operating system has not booted,
the firmware is considered broken, and the process backtracks
and continues down a different pruning path. However, by
monitoring the POST codes, it can sometimes be determined
that a firmware image is broken without waiting for the entire
duration of the timeout period. The whole pruning process
tends to run over the course of a few days, so any time savings
that can be obtained are valuable.

The IPMI controller monitors the network and waits for

the Linux boot media to bring the motherboard’s network
interfaces up and negotiate DHCP. It then provides the IP ad-
dress of the booted host to the validation engine (represented
by F in Figure 4), which uses SSH to remotely access the
operating system where it can perform tests. At the beginning
of the pruning process, the stock firmware image is flashed
and the validation component collects information from the
known-good booted operating system. This is used as a base-
line when comparing the collected data from the modified
images. For example, the PCI hardware configuration of the
image is recorded so that on subsequent tests it can be deter-
mined if any of the hardware components on the board were
not brought up properly.

Once the operating system is up and SSH connection is
established, any sort of tests can be performed. The validation
component is meant to be flexible and extensible. We use
docker to ensure portability and extensibility: each validation
target is a docker container which is built at the beginning
of the pipeline and copied to the booted OS over the net-
work. The container is run and the output is compared to
that of the baseline firmware. If there are any differences,
the flashed firmware is considered invalid, so any tolerable
differences must be filtered out by the container itself. For
example, in the dmidecode validation target discussed later in
this section, we check only memory and CPU configuration
types. This is because dmidecode was specifically added to
preserve memory timings and clock frequency early on in
our data center pruning efforts. Other System Management
BIOS (SMBIOS)/Desktop Management Interface (DMI) in-
formation (OEM strings, system configuration options, etc.)
are not strictly necessary to the functionality of the device,
but of course can be easily included if a user desires.

As will be discussed further in Section 5, the pruning
pipeline was run with two profiles, "aggressive" and "data
center." The functional difference here is the motherboards
are booted off of virtual media provided through the IPMI
interface in aggressive mode and over iPXE in data center
mode. Therefore, iPXE and related components (e.g. network
drivers) will be preserved in the data center pruning, while
they may be removed in the aggressive pruning. Each profile
uses the same set of validation targets, detailed below:

1. dmidecode is used to decode the DMI table, which
is hardware configuration information reported by the
firmware to inform the operating system of the hardware
present in the system and facilitate management. This en-
sures important information such as configured memory
speed is preserved.

2. lspci is used to validate that detailed information about
PCI buses and related interactions is preserved.

3. /proc/acpi is checked to ensure the operating system
will be able to perform ACPI power management.

4. Intel’s CHIPSEC security suite is run to check the se-
curity of pruned images.

1720    29th USENIX Security Symposium USENIX Association



The security of the pruned firmware images is of utmost
importance. With the goal of improving security by reducing
the byte surface area, it must be ensured that removing certain
modules does not introduce new known vulnerabilities into
the firmware. For example, there may be a module responsible
for write protecting the SPI flash chip containing the firmware,
which prevents attackers that manage to infect the operating
system from permanently taking over the hardware at a low
level. Another may serve as a lock box, putting the S3 resume
script into safe memory so that attackers cannot use it to
penetrate the system [31].

Intel’s CHIPSEC framework is used to monitor and val-
idate the security integrity of these modified images [24].
CHIPSEC scans the system for known firmware level vulner-
abilities and reports them; these reports are compared against
the report from the original image to ensure that no addi-
tional vulnerabilities are introduced by the pruning process.
Each vanilla image had a few failures, such as the SPI chip
being writable or Spectre/Meltdown style attacks being possi-
ble. Further, e.g., our HP server contains four critical errors:
one stemming from Spectre-style vulnerabilities, and three
from improperly configured protections that may allow an at-
tacker to modify the bootflow, overwrite SMRAM via Direct
Memory Access (DMA) attacks, or even overwrite the BIOS
through the SPI chip.

DECAF prunes modules but does not (yet) patch modules
(i.e., to fix such vulnerabilities in remaining modules). As a
result the CHIPSEC vulnerabilities cannot be fixed automati-
cally by DECAF.

Any additional protections can be added manually [38]. In
future releases, DECAF may automatically handle this.

If DECAF is being run with a certain objective in mind,
tests can be specifically crafted in a manner that assures the
desired functionality is preserved. This guarantees that the
user’s needs are satisfied, while potentially increasing the
number of modules pruned.

Indeed, one can imagine any number of tests that may be
considered essential to a certain application. If more complex
tests need to be run, it is possible that the time required to val-
idate a single pruning profile may increase substantially (e.g.,
if some sort of stress/performance test needs to be performed).
The initial use case for DECAF was for hardware running in
cloud data centers for compute-as-a-service where features
such as USB support, VGA support, etc., are not necessary,
and thus validation can be performed rather quickly.

Certain hardware features, while present, may not be re-
quired for a user’s application, allowing for even greater prun-
ing. There are two methods for achieving this. First, if the
user has prior knowledge on what modules are responsible
for the functionality that is no longer needed, the modules can
be removed from the start via the blacklist. If this is not the
case, the user can make sure that the validation layer ignores
the respective feature (e.g., ignore that the device associated
with the serial port is no longer listed in the OS).

5 Results

The pruning process was run with two profiles: "aggressive"
pruning, where only booting from physical media (or physi-
cal media emulated by the board’s BMC) was required, and
"data center" pruning, where the boards were pruned for the
purpose of running in cloud data centers offering compute-as-
a-service, booting over iPXE.

A visualization of the aggressive pruning process can be
seen in Figures 6 and 7 on firmware from two different
motherboards: the SuperMicro A1SAi-2550F and the Tyan
5533V101, respectively. Here, the markings indicate the result
of attempting to prune the board, with blue (BIOS Post) indi-
cating that the firmware did not boot, red (OS Probe Failure)
indicating that one or more of the validation targets failed,
and green (OS Probe Success) indicating that the valida-
tion targets passed. The SuperMicro board is based on an
Intel R©Atom C2000TM chipset, and the Tyan board was based
on an Intel R©Core i3TM Haswell chipset.

The results of the aggressive pruning pipeline and the data
center pruning pipeline can be seen in Tables 1 through 4. The
aggressive pipeline was able to remove a much larger portion
of the firmware than the data center pipeline, removing over
70% of the firmware bytes from the SuperMicro motherboard
and almost 40% from the Tyan and HP motherboards. The
pruned image boots more quickly as well. The SuperMicro
motherboard booted 13 seconds faster on average, and the
Tyan motherboard booted 7 seconds faster on average with
the pruned firmware.

Data Center. One major DECAF application has been to
prune images for a cloud data center. The Tyan 5533V101,
the SuperMicro A1SAi-2550F, and other models have been
successfully used as part of an OpenStack deployment, in a
production data center successfully since 2017, with perfor-
mance and reliability metrics higher than standard firmware
across hundreds of thousands of instance allocations. For data
center pruning, the results are also, strong, ranging from about
7% to about 30%. More recent results suggest this figure is
closer to 40% (e.g., on the HP motherboards).

Security metrics are evaluated later in this section.

5.1 Comparison Between EFI Images

Testing with a large number of boards and vendors has proven
difficult. The IPMI based communication is not necessarily
standard (nor too well documented) for each vendor. This
means that the API exposed by the IPMI is different, and
the submodule of the project that deals with this needs to be
adjusted for each vendor accordingly. Secondly, virtualization
does not produce good results: the virtualized environment
is highly different from a real board in terms of BIOS: the
modules loaded are different and the hardware emulated is
different (and not customizable enough for our purposes).

Because of this, a different testing direction was taken: an-
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Figure 6: Percentage of bytes removed and number of
iterations over time for SuperMicro A1SAi-2550F firmware

Figure 7: Percentage of bytes removed and number of
iterations over time for Tyan 5533V101 firmware

alyze just the binary images from a number of vendors and
assess their similarities. It is valuable to determine to what de-
gree these images are overlapping. Taking into consideration
the structure of a UEFI image, it is convenient to compare
the number of modules that are present in multiple versions,
from different vendors. There is no direct and unbiased bit-
wise comparison method for binary images, as often enough
there will be areas padded with 0 (or other characters, various
encodings, etc). Also, without having access to the source
code of the firmware images, bitwise comparison is made
even more difficult by the compilation process: different opti-
mization levels and architectures will result in vastly different
binaries, even if the code base is identical, or highly similar.

Instead we take advantage of the GUID. While an EFI
module is not necessarily uniquely identified by a GUID, we
can argue that the base functionality between modules with
the same identifier is largely the same. A GUID is a 128 bit
random generated quantity that is uniquely associated to each
module, and is aimed to work similarly to a hash, according

to [1]. For more information on GUIDs see [2].
Two images can be compared by extracting the list of

GUIDs present in each, and determining the common ones. It
is important to note that all motherboards have inherently sim-
ilar functionality, and their firmware is based on a common
open source implementation. This aspect will cause a rather
high overlap rate in images, even from different vendors. We
are interested in how high the match rate is, and if it supports
the claim that firmware is being mass produced and bloated.

In order to keep the comparison unbiased, the motherboards
models were chosen at random. Some are for desktops, some
for laptops. There was no prior knowledge about their func-
tionality and possible similarities.

Our case study was done with three different scenarios in
mind. First, we compared the similarities between 5 randomly
chosen EFI images, from 5 different vendors. Second, we
wanted to explore the usage of the same modules within 5
different EFI images that were created by the same vendor.
Lastly, we took a closer look at how often UEFI firmware
updates actually change modules present in a given image.

Table 6 shows a comparison of 5 different products, picked
from various vendors. The first number represents the mod-
ules in common, and the second value represents the percent
of common modules between the two images, with respect to
the larger image.

For example, 257/26% tells us that the Asus and the AS-
Rock motherboards have 257 modules in common, or 26%
of the bigger image (ASRock) is found in the smaller one
(Asus). As we can observe there are several cases where the
smaller image is over 50% identical with the larger one.

Similarly, Table 7 contains a comparison of 7 of the most
popular motherboards from ASRock. The boards were chosen
from different product lines, and firmware images from the
same series are almost identical. It can be observed that these
motherboards have a rather large number of EFI modules
on average (up to 900 in some cases). This causes an even
bigger similarity between the binary images. Given the sizable
number of modules, out of which many are overlapping, it is
probable that after the pruning process, a substantial decrease
in the image size would be obtained.

Table 8 contains a comparison between the patch versions
of the same model (ASRock IMB186 motherboard). As ex-
pected, these patches produce very little change from version
to version. We can observe that the original 257 modules were
propagated until the current version (v2.3). Also there is a
100% match between several versions (this happens because
the changes are below modular granularity).

The data collected indicates a considerable percent of code
is being reused across various modules, as initially asserted.
We can observe that in some cases up to 70% of a firmware
image is found on a different model from a different ven-
dor (see Table 6, Asus vs ASRock). Furthermore, between
the models of the same vendor, the matching percent can
go up to 100% (having 2 different motherboards run very
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similar firmware). There is almost no difference between dif-
ferent patch versions of the same model (generally a few new
modules added). Given the large amount of overlap between
different UEFI firmwares, it is easy to see why a vulnerability
found in a single firmware may be reproducible across a wide
variety of mass-produced hardware (as discussed in [45]).

5.2 Benefits of Reduced Vulnerability Surface
Benefits of code reduction include: reduced TCB – at the
industry-average of 1.5-5% bugs per line of code [27], this
can add up to thousands of (undiscovered) bugs and hundreds
of exploits – reduced boot time, the ability to fit the firmware
onto a smaller SPI chip etc, removal of physical attack vectors
such as over peripherals (e.g., USB), and a reduction in the
number of Return Oriented Programming (ROP) gadgets etc.
In this section, we provide an analysis of these benefits.

5.2.1 Industry Standard BPLOC Metrics

The number of bytes generated from one line of pre-processed
C code by an optimized compiler has been estimated [16] at
around 14. This allows an estimation of the number of source
code lines used to produce the firmware images. We can then
calculate the number of lines removed using the reduction in
byte surface area (Table 4).

The industry-average number of bugs per line of code
(BPLOC) [27] has been estimated as 1.5-5%. This allows
an estimation of the number of undiscovered, removed de-
fects for different motherboards. Under aggressive pruning,
an estimated 2261 bugs were removed from the SuperMicro
A1SAi, and 2791 from the Tyan. Under data center pruning,
the number is as high as 1005 (Table 5).

5.2.2 Removing Infrequently Used Features

Further, removing rarely used features (features likely to be
removed by the DECAF pipeline) provides a proportionally
higher benefit. Rarely used features are more likely to contain
errors, since the resulting bugs are less likely to be discovered
and therefore less likely to receive development attention
beyond in-house testing [22].

5.2.3 Pruned Code is not Unreachable

At first glance, it may seem that any code whose removal
does not affect functionality is unreachable. This is not the
case with a vast majority of DECAF-pruned modules and can
be validated by the significant reduction in boot time which
shows modules are part of the control flow.

Further, there are numerous vectors by which an attacker
indirectly gains access to code that is not entirely run in a
standard boot sequence. For example, consider a firmware
image that contains two DHCP modules: one from the EDK
II standard and one from the manufacturer. Suppose the EDK

II module contains an exploit, but the manufacturer module is
loaded by default. If an attacker can cause the manufacturer
module to fail to execute (perhaps because it contains a less
significant defect), then the EDK II module will be loaded
when another module looks up the DHCP protocol.

Similarly, ROP gadgets can be used to load a normally
unused module directly (Section 5.3).

Finally, consider the case of a driver for an obsolete pe-
ripheral. This code may not execute during a normal boot
sequence, but may be executed if the booted operating sys-
tem requests such a driver. If the module contains a serious
exploit, an attacker that gains control of the operating system
can cause the driver to be executed, escalating an operating
system attack to a firmware attack. This could pose a serious
permission escalation if, for example, the hardware owner’s
intention was to prevent the OS from accessing the firmware
payload on the SPI chip (e.g., for bare-metal cloud).

5.3 Mitigating Existing Attacks
Finding and directly patching existing known firmware bugs
is not within the scope of this work. Indeed as noted in Section
4.5, no CHIPSEC reported bugs disappeared after pruning.
The goal of DECAF is to maximally reduce the vulnerability
surface of the hundreds of bugs that are still unknown.

In fact firmware vulnerabilities (some fatal [38]) do not
receive anywhere near as much attention, publicity, and track-
ing when compared with OS and software vulnerabilities.
A search for "UEFI" reveals only 23 results in the CVE
database [6], many of which are related to a single USB issue.
Searches for specific models or product lines we pruned re-
veal a few more, but virtually all relate to the BMC and not
the firmware itself.

Nevertheless, in addition to reducing the overall vulnera-
bility surface, DECAF also helps mitigate a number of com-
mon attack vectors including: Return Oriented Programming
(ROP), USB attacks, SMM attacks, and network attacks.

5.3.1 Return Oriented Programming (ROP)

ROP allows an attacker to hijack the control flow of a program
by executing a specific set of instructions that are already
found within the original code. This type of attack is based on
gadgets (short sequences of instructions followed by a return)
assembled together through stack-originated calls. There are
two similar classes of attacks, Call Oriented Programming
(COP) and Jump Oriented Programming (JOP). These are
similar to ROP but make use of call and jump instructions,
respectively. Attacks start with a buffer overflow hijacking
the control flow, e.g., by sending malformed network packets
processed by a faulty UEFI driver.

Using the buffer overflow, a function pointer or some part
of the executable memory is overwritten with a malicious
sequence. By manipulating the stack, the attacker can then
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jump into a gadget, and each gadget indirectly branches to
another, allowing execution of arbitrary code, subverting the
original control flow of the application.

Crucially, gadget-style attacks are (sometimes exponen-
tially) easier with increasing code base. A single gadget may
modify the control flow or program memory in a limited way.
However, chained gadgets can be made Turing complete [34].

Firmware contains large numbers of potentially exploitable
gadgets. However, not all gadgets are equal in terms of useful-
ness when mounting an attack. Gality [4] is a tool that seeks to
analyze the entire set of gadgets available in a binary and deter-
mine how many of them are "high-quality." Table 2 and Table
3 illustrate the numbers obtained using this tool on several
firmware images. DECAF pruning reduces the total gadgets
available by 12 to 64% and reduces the high-quality gadgets
available by 11 to 62%. Gadget quality is evaluated based on
type (arithmetic, logic, control flow, etc), pre-conditions and
side effects on the stack, and whether popular known attacks
are possible with the given gadget collection [15].

5.3.2 USB Attacks

Another extremely common attack vector is a motherboard’s
USB port. There are many known USB attacks, many requir-
ing no further user interaction than plugging in the device,
and some are even able to re-flash the firmware [30]. For data
center scenarios, DECAF routinely prunes USB and other
unnecessary peripherals, completely eliminating the attack
vector (Section 5.4).

5.3.3 SMM Attacks

System Management Mode (SMM) is a privileged execution
mode. During the DXE phase, System Management Interrupt
(SMI) handlers are loaded into SMRAM. When an SMI is
trigged, the handler runs in this highly privileged state. The
handlers can communicate with the operating system through
a shared buffer. This presents two new attack vectors: 1) if
an attacker can overwrite SMRAM, she can execute arbitrary
code in a highly privileged state, and 2) if she can gain access
to the SMM communication buffer, and there exists an exploit
in an SMI handler, she can escalate an OS attack into a BIOS
attack.

Kallenberg et al. [20] construct an attack of the latter type.
The firmware in question (Dell Latitude E6400, BIOS revi-
sion A29) provides an SMI routine that allows flashing of
the BIOS from the OS. The routine reads packets from the
SMM communication buffer, reconstructs the BIOS update
image, and verifies its integrity. However, a flaw in the packet
handling allows for a stack smashing style attack, which the
authors show can be used to flash a malicious, unsigned BIOS
image. DECAF can (likely automatically) prune the mod-
ule that installs the BIOS update SMI routine. The BIOS
menu can be kept, thus removing this exploit vector while

still allowing BIOS updates from the BIOS itself.
The above exploit is CVE-2013-3582 [19]. A search for

SMM related CVEs [5] reveals 24 other potential applications
for DECAF. However, many are self-disclosed (e.g., by HP
and others etc) and do not provide attack details.

5.3.4 Network Attacks

Other important attack vectors center around the (sometimes
multiple) network stacks present in the firmware. The network
stack is needed by services such as DHCP, FTP, and PXE in
the pre-boot environment. Simple attacks include, for exam-
ple, exploiting the lack of signatures and authentication in
certain DHCP servers: preempting a legitimate DHCP server,
and inducing the BIOS to boot a malicious image and take
over the existing operating system. This has been demon-
strated by Matt Weeks at Defcon 19 [42]. DECAF prunes any
unnecessary network stacks and can also be used to remove
associated services (e.g., DHCP) to thus completely remove
an attack vector often exposed by sysadmin negligence.

5.4 Feature-Specific Pruning

While the primary use-case of DECAF is to produce the most
efficient, minimal images retaining a desired set of functional-
ity, it can also be used to instead remove one or more desired
features while retaining as much of the original image as pos-
sible. For example, some features may not be desirable on
certain critical hardware; removing USB or GPIO support in
order to prevent physical access to a device is a common sce-
nario in security sensitive contexts. Another example would
be disabling unused hardware components to save power.

For this approach a goal can be set for a maximal image
that will behave like the original with the exception of the one
removed feature. To this end, DECAF runs up to the point
where the target feature is pruned. After this, the process is
reversed and modules are inserted back incrementally until
the original image is as close to the original as possible, while
still missing the target feature. Inter-module dependencies
still represent a constraint here and this is the reason why
DECAF cannot simply add everything back after the target
feature is disabled. It is important to note that there is no
guarantee the target feature can be disabled by removing a
single module from the image; a set of modules might be
removed in order to achieve the desired effect.

Further, to disable the support for a given feature, other
side effects may appear – e.g., DECAF may not be able to
remove a single USB port; only all USB ports.

As an example, consider the SuperMicro A1SAi-2550F
motherboard. Pruning to eliminate USB support results in a
removal of 6 modules out of a total of 244.
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6 Discussion

6.1 Limits of BPLOC as a security metric

Industry-average BPLOC (bugs per line of code) [27] as a
security metric has obvious limitations.

Primarily, it does not really address or represent any ex-
isting known vulnerability. No CVE entry will be related to
generally reducing vulnerability surface.

Secondarily, psychologically it is easy to overlook and posit
that if only developers are more careful, this rate will go down.
Yet, unfortunately this is not true. Even extremely rigorous
processes such as put in place by Microsoft still yield “about
10 - 20 defects per 1000 lines of code [KLOC] during in-house
testing, and 0.5 defect per KLOC in released product”.

Thirdly, not all of the 1.5-5.0 average bugs introduced for
every hundred lines of code can be turned into viable exploits.
Yet, even if only 1% of them do, this results in tens of zero
day vulnerabilities for even the simplest firmware we tested.

6.2 Limits ROP as a security metric

Using ROP as a security metric in previous works has gar-
nered some criticism. Crucially, ROP gadgets are almost never
eliminated entirely, and therefore the benefit of reducing their
count is reduced by the fact that the remaining gadgets may
still provide viable exploit paths.

[10] shows that in the case of the source code trimming
tools CHISEL and TRIMMER tools, debloating can in fact
introduce new gadgets, including some that are even more
exploitable than what existed previously.

Note, however, that this is only true of intra-source code
trimming techniques, which may result in wildly different
instructions in the final binary. Since DECAF prunes entire,
self-contained binaries, it does not rewrite code nor does it
rearrange the existing control graph in binary blobs, and thus
introduces zero new gadgets. This also means that the reduced
gadget count really represents the removal of entire attack
vectors. Removing a module with high quality gadgets means
none of those gadgets can be used to craft an exploit.

Nevertheless, existing ROP-reduction related criticism still
holds: as long as some gadgets are left, ROP may still be
feasible albeit in a more limited form.

6.3 Limitations of Validation

There are, of course, limitations to automated removal. For
example, only the functionality required by the validation
tests is guaranteed to be preserved and special edge cases may
be challenging to handle. For example, a module may depend
on other error handling modules only in the case of hardware
errors (which are not triggered or emulated during pruning).
Pruning the error handling modules may result in undefined
behaviour. This hypothetical may require special handling,

however we note that no such examples can be found in the
core EDK II codebase.

Overall, 100% test case coverage for outlier scenarios is
obviously not feasible. This is why special care must be taken
to ensure that the validation targets match the intended use
cases of a particular pruned firmware. For example, if the
firmware is intended to be used in a NAS box, validation
targets will test RAID functionality, read/write speeds, and
(simulate) hardware (e.g., disk I/O) failures. Indeed, the vali-
dation requirements are simplest (and the pruning potential
greatest) where limited functionality is required, such as our
aggressive profile or Data Center pruning (Section 5).

Finally, we note that BIOS functionality is to be minimal
anyway. Apart from driving highly esoteric motherboard-
specific hardware (which would likely employ non-UEFI
firmware anyway), most functionality is often taken over by
OS drivers which are more powerful and up to date.

In our experience of successfully running heavily pruned
images in production data centers since 2017, having the OS
successfully boot and pass basic sanity checks is sufficient for
thousands of even the most demanding enterprise applications
running on top.

7 Future Work

In ongoing work, DECAF is being augmented to perform
static analysis and binary module payload reduction on indi-
vidual modules. We’ll use existing work [7] as well as newly
designed mechanisms for symbolic execution to further opti-
mize pruning.

In addition to analyzing and pruning at sub-module level,
DECAF would be greatly enhanced by the ability to patch
modules to enable certain platform protections where they
are missing, such as the ones described in Section 4.5.

Expanding and perfecting our set of validation targets is
something we are continuing to work on. One validation
target that we experimented with was the Firmware Test Suite
(fwts).

fwts [21] is a comprehensive set of tests of operating sys-
tem/firmware interactions. It executes 113 test suites that in-
clude all CHIPSEC tests, ACPI, error reporting mechanisms,
CPU and memory states, and hand-off to the main OS. We
were able to achieve similar pruning percentages without any
degradation on the test results using only fwts.

To mitigate long running validations, the pipeline will be
extended to allow specific validation targets to run only in
certain cases (e.g., after a certain pruning size etc), backtrack-
ing to the last passing profile if the target fails. This allows
for longer-running validation targets to be included without
dramatically increasing the overall pipeline runtime.
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8 Related Work

Program slicing allows programmers to obtain the minimal
software form that provides a particular behavior [44]. This
approach is typically used for specific purposes such as testing,
debugging, compiler optimization, or software customization.
The reduction of a program can be done either statically, e.g.,
by determining the Control Flow Graph and removing unused
nodes, or dynamically, e.g., by decomposing the program
execution, typically while debugging, and identifying only
statements/variables of interest.

Debloating software is a mechanism that focuses on deter-
mining the unused code of a program and removes it. Modern
compilers already implement functions to eliminate dead code
through static analysis, hence, most recent work focuses on
dynamic elimination. Heo et al. present a novel approach
to program debloating using reinforcement learning [17]. In
their work, they present motivating examples wherein static
analysis and dynamic analysis alone cannot remove all the
dead code and security vulnerabilities in the code.

Both program slicing and debloating software mechanisms
can be used to improve our pruning mechanism, however there
are two important aspects to be considered before one can
adopt and adapt them. First, existing research focuses on trim-
ming a self-contained program that can be run independently
of other system components, while UEFI firmware initializes
system hardware. An error may prevent the operating system
from using some hardware features, but the UEFI firmware
itself will still continue to run without problem. Second, the
problem of hand-written assembly code in UEFI firmware
is not tackled by most of the existing literature. The EDK II
project contains about 1.4M lines of C/C++/Header code and
19K lines of assembly, a small but not insignificant amount.

Rastogi et al. use dynamic analysis techniques to auto-
matically debloat and harden docker containers, removing
unused resources and partitioning the executeables within the
container based on the resources they access [33]. They use
system call logs to determine resource access which is similar
to our approach of hooking into the UEFI protocol look-up
method discussed in Section 2.3.

Bazhaniuk et al. use symbolic execution to find vulner-
abilities within UEFI firmware by analyzing a snapshot of
SMRAM [7] . Their setup can generate 4000 test cases in 4
hours, which can be later repeated on an actual real board.
Their testing environment makes use of a generic and open
source UEFI implementation, and replicating it on a closed
source UEFI might not be possible, given the difficulty in
emulating non-generic hardware.

The article from [22] presents an extremely similar ap-
proach, but focused on debloating the Linux Kernel instead.
In this case, the argument made shows that the kernel will
contain a very large set of features, out of which only a small
number will be used by a specific end user. The developers
include all available functionalities in the kernel, even if sup-

port for certain exotic features is used by only a few users.
In a similar manner to our work, a set of usage scenarios
are defined in order to determine what parts of the code are
reached within the targeted kernel. This is achieved by ana-
lyzing the function call graph at runtime during a use case.
The functions are traced back to the source code, allowing the
creation of a custom configuration. According to this work
the Linux Kernel has roughly 11,000 configuration options,
which will be automatically tailored to minimize the code
base while maintaining the functionality determined in the
usage scenarios, removing up to 70% of it.

RedDroid [18] is a project that targets software bloat in the
Android world. Here redundancy is defined as either compile-
time or install-time, depending on when it can be determined.
The first category comes from included libraries (because
each application runs inside a Java Virtual Machine, there
is no static or dynamic linking). The second one refers to
various platform dependent files (which can only be deter-
mined as redundant when installing on a specific platform).
The software debloating is realized by static code analysis
(for compile-time redundancy; reachable code is determined,
removing the rest) and a set of shell scripts (for install-time
redundancy; the scripts will remove any unnecessary platform
specific files). On average the APK size can decrease by 42%.
It is important to note that RedDroid does not necessarily
focus on security, but rather on saving hardware resources.

The work at [13] presents a large scale experiment on em-
bedded firmware images (note: in this context firmware does
not necessarily mean UEFI environments but, rather any form
of software that may be found on various embedded/IoT de-
vices). A large number of binaries was collected (roughly
32000 through web crawling). These images were processed
using simple static analysis and correlation techniques. By
comparing various binaries, known vulnerabilities were be
detected on various devices that were previously not known to
be affected. 38 new CVEs were also submitted, as the frame-
work also attempts to extract and crack password hashes,
private keys and certificates, find back doors and target vari-
ous other common hot spots. An interesting result is that two
different classes of products had the same vulnerability (44
surveillance camera models and 3 firmware images for home
routers). It turns out that they all used a System on a Chip
(SoC) for networking devices from the same vendor. This
particular scenario shows how vulnerable software is reused
in different applications, and a pruning framework (such as
DECAF) can potentially remove such threats.

Of particular interest to many security-conscious users is
the Intel Management Engine (ME), which is co-processor in-
tegrated into almost all Intel-based motherboards since 2006.
It enables many Intel Features which may be attractive to
some enterprise users, but requires full access to the host sys-
tem’s memory to do so. For users not needing the advanced
management features, the ME is simply another poorly un-
derstood attack vector. Multiple vulnerabilities have been
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identified in the Intel ME in the past, including CVE-2017-
5689 [26], which can give an attacker full access to the host
system, including installing persistent malware and modi-
fying firmware. The open source project me_cleaner [12]
contains scripts for patching the ME firmware to disable it
on a wide variety of motherboards. me_cleaner, in conjunc-
tion with patching and removing parts of the UEFI BIOS that
depend on the ME, was used to disable Intel ME in certain
SuperMicro boards used in cloud data centers.

9 Conclusions

DECAF is the first extensible modular platform capable of
automatically pruning a wide class of commercial, off-the-
shelf UEFI motherboard firmware, in some cases by over
70%, significantly limiting attack surface areas and hardening
the resulting stack. DECAF is available freely for the research
community to use.
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Appendix: Pruning Results

Table 1: Modules removed

Motherboard Pruning Mode Original modules Remaining modules Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 244 90 63.11%

Tyan 5533V101 Aggressive 194 60 69.07%
HP DL380 Gen10 Aggressive 643 323 49.77%

SuperMicro A1SAi-2550F (V827) Data Center 241 124 48.55%
SuperMicro A2SDi-12C-HLN4F Data Center 313 194 38.02%

SuperMicro A2SDi-H-TP4F Data Center 313 206 34.19%
SuperMicro X10SDV-8C-TLN4F Data Center 316 286 9.49%

Table 2: Gadgets removed

Motherboard Pruning Mode Original Pruned Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 78389 28414 63.75%

Tyan 5533V101 Aggressive 73203 40212 45.07%
HP DL380 Gen10 Aggressive 369663 216831 41.34%

SuperMicro A1SAi-2550F (V827) Data Center 77929 46680 40.10%
SuperMicro A2SDi-12C-HLN4F Data Center 89736 64267 28.38%

SuperMicro A2SDi-H-TP4F Data Center 90566 64177 29.14%
SuperMicro X10SDV-8C-TLN4F Data Center 109680 96239 12.25%

Table 3: Gadgets removed (high quality)

Motherboard Pruning Mode Original Pruned Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 37846 14240 62.37%

Tyan 5533V101 Aggressive 38776 20317 47.60%
HP DL380 Gen10 Aggressive 183677 105116 42.77%

SuperMicro A1SAi-2550F (V827) Data Center 37735 23055 38.90%
SuperMicro A2SDi-12C-HLN4F Data Center 43593 31003 28.88%

SuperMicro A2SDi-H-TP4F Data Center 44121 31024 29.68%
SuperMicro X10SDV-8C-TLN4F Data Center 51534 45724 11.27%
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Table 4: Byte surface area reduction

Motherboard Pruning Mode Byte SA (kb) Remaining byte SA (kb) Reduction
SuperMicro A1SAi-2550F (V519) Aggressive 3013 903 70.91%

Tyan 5533V101 Aggressive 4520 1916 39.82%
HP DL380 Gen10 Aggressive 46102 27809 39.68%

SuperMicro A1SAi-2550F (V827) Data Center 3000 2108 29.76%
SuperMicro A2SDi-12C-HLN4F Data Center 3618 2680 25.91%

SuperMicro A2SDi-H-TP4F Data Center 3645 2766 24.12%
SuperMicro X10SDV-8C-TLN4F Data Center 4519 4209 6.87%

Table 5: Estimated defects removed

Motherboard Pruning Mode LoC (est.) LoC Removed (est.) Defects removed (est.)
SuperMicro A1SAi-2550F (V519) Aggressive 215235 150755 2261

Tyan 5533V101 Aggressive 322870 186049 2791
HP DL380 Gen10 Aggressive 318571 55071 826

SuperMicro A1SAi-2550F (V827) Data Center 214307 63736 956
SuperMicro A2SDi-12C-HLN4F Data Center 258429 67000 1005

SuperMicro A2SDi-H-TP4F Data Center 260357 62786 942
SuperMicro X10SDV-8C-TLN4F Data Center 322786 22143 332

Table 6: Comparison of EFI images from different vendors

ASRock Asus EVGA Gigabyte SuperMicro
Number of modules 962 362 443 461 386

ASRock X 257/25% 108/11% 280/29% 198/20%
Asus X 135/30% 256/55% 183/47%

EVGA X 106/23% 77/17%
Gigabyte X 245/53%

Table 7: Comparison of 7 random firmware images from ASRock

ASRock AB350M B365M B450 Fatal1ty_Z370 H110M-HDV IMB-390-L Z390
Number of modules 466 883 641 942 605 328 941

AB350M_Pro4_DASH X 212/24% 452/70% 210/22% 200/33% 196/42% 208/22%
B365M_Pro4 X 394/44% 860/91% 540/61% 269/30% 856/90%

B450_Steel_Legend X 392/41% 302/47% 190/29% 392/41%
Fatal1ty_Z370 X 557/59% 267/28% 850/90%

H110M-HDV_R3.0 X 294/48% 530/56%
IMB-390-L X 270/28%

Table 8: Comparison between different patches of ASRock IMB186 motherboard

ASRock V1.1 V1.4 V1.5 V1.6 V1.7 V1.8 V1.9 V2.1 V2.3
Number of modules 257 257 257 289 268 268 268 299 299

V1.1 X 100% 100% 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.4 X 100% 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.5 X 257/88% 257/95% 257/95% 257/95% 257/85% 257/85%
V1.6 X 258/89% 258/89% 258/89% 289/96% 289/96%
V1.7 X 100% 100% 268/89% 268/89%
V1.8 X 100% 268/89% 268/89%
V1.9 X 268/89% 268/89%
V2.1 X 100%
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