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Abstract
Recently studies show that adversarial examples (AEs) can
pose a serious threat to a “white-box” automatic speech recog-
nition (ASR) system, when its machine-learning model is
exposed to the adversary. Less clear is how realistic such a
threat would be towards commercial devices, such as Google
Home, Cortana, Echo, etc., whose models are not publicly
available. Exploiting the learning model behind ASR system
in black-box is challenging, due to the presence of compli-
cated preprocessing and feature extraction even before the
AEs could reach the model. Our research, however, shows that
such a black-box attack is realistic. In the paper, we present
Devil’s Whisper, a general adversarial attack on commercial
ASR systems. Our idea is to enhance a simple local model
roughly approximating the target black-box platform with a
white-box model that is more advanced yet unrelated to the
target. We find that these two models can effectively com-
plement each other in predicting the target’s behavior, which
enables highly transferable and generic attacks on the target.
Using a novel optimization technique, we show that a local
model built upon just over 1500 queries can be elevated by
the open-source Kaldi Aspire Chain Model to effectively ex-
ploit commercial devices (Google Assistant, Google Home,
Amazon Echo and Microsoft Cortana). For 98% of the target
commands of these devices, our approach can generate at
least one AE for attacking the target devices1.

1 Introduction
With the advance of automatic speech recognition (ASR) tech-
nologies, intelligent voice control (IVC) devices become in-
creasingly popular. Today, smart speakers like Google Home,
Amazon Echo, Apple HomePod are already part of our daily

∗Part of this work was done during the author’s visit at IIE, CAS.
†The first two authors contributed equally to this work.
‡Corresponding author. chenkai@iie.ac.cn
1Attack demos are available on the website

(https://sites.google.com/view/devil-whisper), and the source code can be
found on Github https://github.com/RiskySignal/Devil-Whisper-Attack.

life. Also the availability of ASR services such as Google
Cloud Speech-to-Text [10], Amazon Transcribe [4], Microsoft
Bing Speech Service [16] and IBM Speech to Text [12] en-
able their users to conveniently integrate their APIs to control
smart devices, conduct long-form audio transcription, text
analysis, video analysis and etc. More recently, Amazon in-
troduces Auto SDK [2] that allows drivers to interact with
vehicles using voice commands. However, the extensive use
of voice for critical system control also brings in security con-
cerns, whose implications have not yet been fully understood.

AE threats to ASR. More specifically, voice is an open chan-
nel and therefore the commands received by IVC devices
could come from any source. In recent years, researchers
have shown that unauthorized voice commands can be in-
jected into wireless signals [28], in the form of noise [19]
or even inaudible ultrasound [41], to stealthily gain control
of the IVC devices. Recently, attempts have been made to
utilize adversarial examples (AEs), which are found to be
effective against image processing systems [36], to exploit
ASR systems. Particularly, Carlini et al. [20] have success-
fully attacked DeepSpeech (the open-source ASR model of
Mozilla) using AEs, with the full knowledge of model param-
eters. Yuan et al. proposed CommanderSong [40] that auto-
matically generates AEs embedded into songs to attack open-
source Kaldi Aspire Chain Model [14] over-the-air. These
approaches demonstrate that the real-world ASR systems are
vulnerable in a white-box model, when their internal param-
eters are exposed to the adversary. Less clear is the security
risks the commercial ASR systems such as Google Home,
Microsoft Cortana, Amazon Echo and Apple Siri are facing.
Recently, Taori et al. have made the targeted adversarial attack
by treating DeepSpeech as a black-box [37]. However, so far
no success has been reported when it comes to generating
AEs against the deep learning models behind commercial,
close-source ASR systems, up to our knowledge.

Black-box AE attacks on ASR systems are difficult. In ad-
dition to the challenge introduced by the lack of information
about the target’s model and parameters, as also faced by the
black-box attacks on image processing [32], an ASR system
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tends to be more complicated than an image recognition sys-
tem, due to its complicated architecture, including feature
extraction, acoustic model and language model, and the de-
sign for processing a time series of speech data. As evidenced
in our study, when directly applying the existing technique to
build a substitute on the data labeled by the target [32], we
found that about 24 hours training set (require around 5100 or-
acle queries with each audio around 25 seconds), even with a
target-based optimization (Section 4.2.1), only gives us a sub-
stitute model with merely 25% transferability against Google
Colud Speech-to-Text API command_and_search model (Sec-
tion 6.4). By comparison, prior research reports that the simi-
lar attack on image recognition systems like Google, Amazon
and MetaMind APIs using simple datasets like MNIST with
800 queries to achieve a transferability rate over 90% [32].

Devil’s Whisper. We demonstrate that a black-box attack on
the commercial ASR system and even device is completely
feasible. Our attack, called Devil’s Whisper, can automatically
generate audio clips as AEs against commercial ASR systems
like Google Cloud Speech-to-Text API. These “hidden” target
commands are stealthy for human being but can be recognized
by these systems, which can lead to control of commercial
IVC devices like Google Home. Our key idea is to use a
small number of strategic queries to build a substitute model
and further enhance it with an open-source ASR, which helps
address the complexity in the target system. More specifically,
to construct the substitute, we utilize Text-to-Speech (TTS)
API to synthesize commands audio clips, then we enlarge the
corpus by tuning audio clips before sending them as queries to
the target. This allows us to focus on the types of the data most
important to the success of our attack and makes the substitute
model more approximate to the target. The substitute model
trained over the data is then used in an ensemble learning
together with an open-source ASR model (called base model).
The AEs cross-generated by both models are systematically
selected to attack the target.

In our experiment, we build substitute models approximat-
ing each of the four black-box speech API services (Google
Cloud Speech-to-Text, Microsoft Bing Speech Service, IBM
Speech to Text and Amazon Transcribe). Just over 4.6-hour
training data (about 1500 queries with each audio about 25
seconds) is needed to ensure successful conversion of nearly
100% target commands into workable AEs2 when attacking
most of the API services. Our AEs can also attack the corre-
sponding black-box IVC devices3 (Google Assistant, Google
Home, Microsoft Cortana and Amazon Echo) over-the-air
with 98% of target commands successful. Furthermore, our

2In this paper, we consider an AE “workable” or “successful” if it can
either 1) be decoded by the target API service (converted into text) as expected
in an API attack, or 2) cause the target IVC device to execute the target
commands at least twice when playing the AE against the device over-the-air
for no more than 30 times. Note that an over-the-air attack on device can be
sensitive to environmental factors like volume, distance, device etc., while
the attack on APIs is usually stable.

3We have contacted the vendors and are waiting for their responses.

AEs can be successfully transferred to other black-box plat-
forms, which have no public API services (e.g., Apple Siri).
The user study on Amazon Mechanical Turk shows that none
of the participants can identify any command from our AEs
if they listen to them once.
Contribution. The contributions of this paper are as follows.
• Physical adversarial attacks against black-box speech
recognition devices. We conduct the first adversarial attack
against commercial IVC devices. With no prior knowledge
of the targets’ machine-learning models and their parameters,
our generated AEs can successfully fool the acoustic model
and language model utilized in ASR systems after bypassing
their feature extraction procedures, which is quite different
from attacking black-box image processing systems. Our AEs
are stealthy enough to be perceived by human being.
• New techniques. We design a novel approach to generate
AEs to attack a black-box ASR system. Our idea is to enhance
a simple local substitute model roughly approximating the
target model of an ASR system with a white-box model that
is more advanced yet unrelated to the target. We find that
these two models can effectively complement each other, thus
enabling highly transferable and generic attacks on the target.
Moreover, the substitute model can be trained in an optimized
fashion using much less data, allowing much fewer queries to
the target system.

2 Background and Related Work
In this section, we provide the background on speech recogni-
tion systems and elaborate adversarial examples. Finally we
discuss the related work.

2.1 Speech Recognition System
ASR enables machines to understand human voice and greatly
changes the way people interact with computing devices. In
addition, Text-to-Speech (TTS) services of Google, Microsoft,
Amazon, and IBM have been exposed to the public to develop
their own voice-assistant applications. Besides these commer-
cial black-box systems, there also exist popular open source
ASR platforms such as Kaldi, Mozilla DeepSpeech, etc.

The architecture of a typical speech recognition system in-
cludes three main procedures: pre-processing, feature extrac-
tion and model-based prediction (including acoustic model
and language model). After receiving the raw audio, the pre-
processing filters out the frequencies out of the range of hu-
man hearing and the segments below certain energy level.
Then, ASR system will extract acoustic features from the pro-
cessed audio for further analysis. Common acoustic feature
extraction algorithms include Mel-Frequency Cepstral Coeffi-
cients (MFCC) [31], Linear Predictive Coefficient (LPC) [27],
Perceptual Linear Predictive (PLP) [26], etc. The acoustic fea-
tures will be examined according to the pre-trained acoustic
model to predict the most possible phonemes. Finally, relying
on the language model, ASR system will refine the results
using grammar rules, commonly-used words, etc.
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2.2 Adversarial Examples
Recently, neural network has been widely used in the predic-
tion algorithms in image classification, speech recognition,
autonomous driving and etc. Although it has significantly
improved the accuracy of prediction, neural network suffers
from adversarial examples (AEs) as first indicated by Szegedy
et al. [36]. Formally speaking, one neural network can be de-
fined as y=F(x), which maps the input x to the corresponding
output y. Given a specific y′, the original input x and the corre-
sponding output y, it is feasible to find such an input x′ so that
y′ = F(x′), while x and x′ are too close to be distinguished by
human. The above example x′, together with its prediction y′,
is considered as target adversarial (TA) attack. Such attacks
have potential impact since the prediction results could be
manipulated by the adversary. Compared to TA attacks, untar-
geted adversarial (UTA) attack identifies the input x′, which is
still close enough to the original input x, but has different out-
put than that of x. Such UTA attack is less powerful since the
adversary could only make the target machine misrecognize
the input, rather than obtaining the desired output.

AE attacks on black-box image processing models. Recent
researches proposed various algorithms to generate targeted
AEs towards different image recognition systems [23, 36].
Specifically, there are substantial researches towards compro-
mising black-box image processing systems. Liu et al. [30]
proposed the ensemble-training approach to attack Clari-
fai.com, which is a black-box image classification system.
Papernot et al. [32] proved that by training a local model to
substitute remote DNN using the returned labels, they can
attack Google and Amazon Image Recognition Systems.

2.3 Related Work
Researchers have found that the ASR systems could be ex-
posed to different types of attacks. We classify the existing
attacks against ASR systems into four categories as below.

Speech misinterpretation attack. Recently, third-party ap-
plications and skills for IVC systems become increasingly
popular, while the lack of proper authentication raises secu-
rity and privacy concerns. Previous studies show third-party
applications are facing misinterpretation attacks. Kumar et
al. [29] present an empirical analysis of the interpretation
errors on Amazon Alexa, and demonstrate the adversary can
launch a new type of skill squatting attack. Zhang et al. [42]
report a similar attack, which utilizes a malicious skill with
the similarly pronounced name to impersonate a benign skill.
Zhang et al. [43] developed a linguistic-guided fuzzing tool
in an attempt to systematically discover such attacks.

Signal-manipulation based attacks. The adversary can
compromise the ASR system by either manipulating the input
signal or exploiting the vulnerability of the functionalities
in pre-processing. For instance, Kasmi et al. [28] find that
by leveraging the intentional electromagnetic interference
(IEMI) of the headset cord, voice commands can be injected

into the FM signals that will be recovered and understood by
the speech recognition systems on the smart phone. Dolphin
Attack [41] exploits the hardware vulnerabilities in micro-
phone circuits (served as the recorder for IVC devices), so
the completely inaudible ultrasonic signal carrying human
speech will be demodulated and interpreted as desired mali-
cious commands by the target IVC device including Apple
Siri, Google Now and Amazon Echo.
Obfuscation based attacks. Different from the signal-
manipulation based attacks, the obfuscation based attacks
explore the way that the feature extraction of ASR systems
could be manipulated. Vaidya et al. [38] showed that by invert-
ing MFCC features of the desired command audio, they can
get malicious audios that can be interpreted as the command
by Google Now assistant running on a smartphone. Further-
more, Carlini et al. [19] proposed hidden voice commands
which improve the efficacy and practicality of the attack on
Google Now in [38] with the background noises, while the
commands are unintelligible to human beings. More recently,
Abdullah et al. [18] developed four different perturbations to
create the malicious audio samples, based on the fact that the
original audio and the revised audio (with perturbations) share
similar feature vectors after being transformed by acoustic
feature extraction algorithms.
Adversarial example based attacks. For the TA attacks,
the attacker can craft an original audio into the adversarial
samples, and human beings cannot tell the differences be-
tween it and the original audio. These adversarial samples
can be misunderstood by the target ASR systems and inter-
preted as malicious commands. Hidden voice commands [19]
proposed to generate such adversarial audio samples against
ASR systems with a GMM-based acoustic model. Yuan et
al. [40] proposed the CommanderSong attack, which em-
beds the malicious commands into normal songs. The open-
sourced speech recognition platform Kaldi was used as the
white-box tool, implementing the gradient descent algorithm
on the neural network to craft adversarial audio examples.
Carlini et al. [20] generated the adversarial samples against
the end-to-end Mozilla DeepSpeech platform [25]. Schönherr
et al. [34] showed that they can use psychoacoustic hiding
to make imperceptible adversarial samples towards the WSJ
model of Kaldi platform. Recently, Qin et al. succeeded in
generating the imperceptible and robust AEs to attack Lingvo
ASR system in real world [33]. Although all the above attacks
showed excellent results on the white-box platforms, whether
AEs can attack the black-box ASR systems, especially the
commercial IVC devices, is still unknown.

3 Overview

3.1 Motivation
In the era of Internet of Things (IoT), the voice-enabled cen-
tralized control devices are becoming more and more pop-
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ular, e.g., Google Home, Amazon Echo, etc. Various smart
home devices, like smart lock, smart light, smart switch can
be paired to such “hub”, which allows them to be controlled
naturally via voice. Moreover, the voice-assistant applications
on smartphones or tablets, e.g., Google Assistant, Apple Siri,
etc., offer a convenient way for people to use their mobile
devices. In this paper, we use IVC devices to refer to all the
above mentioned voice-enabled centralized control devices
and smartphones or tablets.

An example for the potential security risk to the IVC system
is smartphone navigation, which is widely used today to help
drive through unfamiliar areas. Previous work [39] shows that
the FM radio channel can be controlled by attackers to broad-
cast their malicious signals. Therefore, if the attackers craft
their AE hiding a hostile navigation command and broadcast it
on the selected FM radio channel, those who run smartphone
navigation while listening to the corresponding FM channel
will be impacted. Actually, our experimental results show that
“Okay Google, navigate to my home” can stealthily command
Google Assistant on smartphones through music and none
of the participants in our user study were able to identify the
hidden command even after listening to the AE twice. This
attack, if successful, will put both drivers and passengers to
serious danger. Given the pervasiveness of the commercial
IVC systems, it is important to understand whether such an
attack is indeed realistic, particularly when the adversary has
little information about how such systems work. Our research,
therefore, aims at finding the answer.

To hack the commercial IVC devices in the real world
successfully, there are generally two requirements for the
attacks: (R1) effectiveness (towards device) and (R2) conceal-
ing (towards human). Both of the two requirements emphasize
the practical aspects of such attacks, that is, to deceive those
devices successfully but uninterpretable by human. Unfortu-
nately, most of existing adversarial attacks fail either (R1) [20]
or (R2) [19] in some extents. Hence, we concentrate on the
research question “whether it is possible to hack those com-
mercial IVC devices (mostly black-box based) in the real
world with both (R1) and (R2) satisfied” in this paper.

3.2 Threat Model
Since our target is the commercial IVC devices, they are black-
box to us by default. Specifically, we have no knowledge of
the internals of the speech recognition systems, e.g., model
parameters or hyperparameters. Instead, we assume the corre-
sponding online Speech-to-Text API services, i.e., providing
real time decoding results from input audio, are open to public.
This assumption is valid for most of the popular IVC devices
available on the market, e.g., Google Cloud Speech-to-Text
API, Microsoft Bing Speech Service API, etc4. Either free

4However, as the paper is written, we could not find such API service
from Apple yet. Communication with Apple Siri developers confirmed that
Apple has not released their speech API service to the public. In this work,
we proposed an alternative approach to hack such IVC devices without
corresponding API service available, like Apple Siri, in Section 6.3.

or pay as you go, such services are accessible to third party
developers. We further assume that for the same platform, the
ASR system used to provide online speech API service and
that used for the IVC devices are the same or similar5, e.g.,
Microsoft Bing Speech Service API and Microsoft Cortana.

Once the attack audio is generated, we assume it will be
played by speakers (either dedicated speakers or speakers on
radio, TV, smartphone, computer, etc.), which is placed not
quite far away (e.g., 5~200 centimeters) from the target IVC
devices. For example, the methods proposed in [39] can be
used to remotely control the contents played by the radio.
Furthermore, we do not have the knowledge of the speakers,
or the microphones of the target devices. Once the attack is
successful, an indicator could be observed. For instance, the
attack audio with the command of “Echo, turn off the light”
is successful by observing the corresponding light off.

3.3 Technical Challenges
Currently there are several methods to attack black-box mod-
els. First, attackers can probe the black-box model by con-
tinuously querying it with different inputs, analyzing the cor-
responding outputs, and adjusting the inputs by adding per-
turbations to craft the workable AEs. However, such method
normally suffers from the problems of uncertainty in terms of
probing process and timing cost, especially for a commercial
IVC device whose models are quite complex for approxi-
mation. Another method is “transferability” based, i.e., AEs
generated on a known Model A are used to attack the tar-
get Model B, as long as those two models are similar in the
aspects of algorithm, training data and model structure. If
Model A is hard to find, a local model can be trained based
on the algorithm and training data to approximate the target
Model B, to implement the “transferability”. However, since
the target Model B is black-box, the similarity is hard to de-
termine and the algorithm as well as the training data may not
be available.

4 Approaches
In this section, we present our approach of AE based attacks
against the commercial black-box IVC devices. Figure 1 gives
the details of our approach. We start by transferability based
approach (Step 1© in Figure 1), via an enhancement over the
existing state-of-the-art work generating AEs against ASR
systems. Then we describe the novel approach of “Alternate
Models based Generation” (Step 2©, 3©, and 4© in Figure 1).

4.1 Transferability Based Approach
For the black-box AE based attacks, the knowledge about the
internal model is not known, so a straightforward method is
to generate AEs based on a white-box model and transfer the
AEs to the black-box model. The success of the transferability

5Based on our experiments, Amazon seems like an exception, which will
be discussed in Section 6.2.
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Figure 1: Architecture of general adversarial attack against ASR API service and IVC devices.

based attacks depends on the similarity between the inter-
nal structure and parameters of the white-box and black-box
models. Recent research demonstrates that the transferability
could work on heterogeneous models through the improve-
ment of AE generation algorithm [32].
Initial try. To implement the transferability-based approach,
we start by adopting Kaldi ASpIRE Chain Model as the white-
box model, and refer to the idea of “pdf-id matching algorithm”
proposed in CommanderSong [40] to generate AEs. We make
such choices because (i) CommanderSong is the state-of-
the-art AE generation work based on white-box model as
this paper is written; (ii) the AEs generated in Commander-
Song demonstrates transferability to iFLYTEK application—
a black-box ASR system—running on smartphone, when
played over-the-air; and (iii) the white-box model used in
CommanderSong is accessible and popular.

We tested the AEs generated using the above approach
on our target black-box ASR systems such as the Google
Cloud Speech-to-text API, and find that only few AEs can be
partially recognized as “Google”, “Hey Google”, “phone”, etc.
The success rate of the transferability on Amazon Transcribe,
the API service offered by Amazon, is even lower. This is
not surprising, since CommanderSong was not designed to
transfer across different systems.
Enhancement. We analyzed the approach proposed in Com-
manderSong and enhanced it by applying the Momentum
based Iterative Fast Gradient Method (MI-FGM) to improve
the transferability of the AEs. The momentum method was
introduced in [23], which can accumulate a velocity vector
in the gradient direction during iterations. In each iteration,
the gradient will be saved, and then combined using a decay
factor with the previously saved gradients. The work [23] also
demonstrated that by combining these gradients together, the
gradient direction will be much more stabilized and the trans-
ferability of AEs could be enhanced. Furthermore, we added
random noise into the samples in each iteration to improve the
robustness of the AEs, similar as in CommanderSong [40].

Specifically, let gt+1 be the gradient in the (t + 1)th iter-
ation, and g0 be start gradient 0. Let x∗t denote the AE gen-
erated in the (t)th iteration, and x∗0 be original audio. Clipε

is a function clipping the values exceeding the pre-defined

maximum and works in each iteration. Therefore, x∗t+1 within
the ε vicinity can be obtained based on MI-FGM as below:

gt+1 = µ ·gt +
J(x∗t ,y)

‖5xJ(x∗t ,y)‖1
(1)

x∗t+1 = x∗t + Clipε (α ·gt+1) (2)

where y is the probability value of the target pdf-id sequence
of x∗t , µ is the decay factor for the momentum, α is the step fac-
tor6, J(x∗t ,y) is the loss function. Intuitively, MI-FGM uses the
gradient of the loss function to determine the direction, along
which the loss function itself can be minimized. Compared
with normal FGM, MI-FGM replaces the current gradient
with the accumulated gradients of all previous steps.

Based on our evaluation, the enhanced approach helps to
generate a few AEs attacking black-box ASR API services
(e.g., Google Cloud Speech-to-Text API) with low success
rate and works even poorer on IVC devices (see Section 6.2).
The main reason is that the approach to generate AEs mainly
depends on the sample’s transferability to other black-box
systems. Thus, we consider the transferability based approach
has one major limitation: the crafted AEs are generated more
towards the white-box model. However, the decision bound-
aries may vary between the white-box model used to generate
the AEs and the target black-box model.

4.2 Alternate Models based Generation
Approach overview. First, we propose to build our carefully
augmented corpus to train a local model approximating the
target black-box model on the desired commands. As the AEs
generated from Kaldi ASpIRE Chain Model can be trans-
ferred to the target black-box model in some extent, we take
it as the large base model, and use it to enhance the small
substitute model to generate the AEs. Therefore, the large
base model can generate most of the acoustic features of the
desired command (Step 1© in Figure 1). Furthermore, the last
generated AE of the base model will be fed into the substitute

6Dong et al. evaluated the success rate of AEs for different decay factors
and found 1.0 is the optimal value [23]. Carlini et al. used Adam optimizer
to minimize the loss function where the default step factor α is set as 100 [5].
In this paper, we set those two factors based on the above two works.
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model (Step 2© in Figure 1). Thus, the unique features of
the desired command on the target model can be adjusted
in a fine-grained manner by the substitute model (Step 3© in
Figure 1), since it was trained based on an augmented corpus
(details in Section 4.2.1) that can be well recognized by the
black-box model. During the AE generation process under
each model, we use a small subset of AEs to query the target
ASR API service according to our query reduction method
(Step 5© and Step 6© in Figure 1). If none of these AEs works,
the last crafted audio (an unsuccessful AE) from the substi-
tute model will be fed to the base model as the input for the
next epoch (Step 4© in Figure 1). Finally, we select the effec-
tive AEs to compromise the target IVC devices (Step 7© in
Figure 1). Below we detail such approach.

4.2.1 Local Model Approximation
Training set with limited number of phrases. Generally,
the commercial black-box models are trained with signifi-
cantly large proprietary dataset, and the structure of the neural
network can be quite complicated. Therefore, it is extremely
difficult to obtain the corpus or even infer the details about
neural network. In other words, training a local substitute
model completely approximating the target commercial black-
box system is almost unpractical. However, since our ultimate
goal is to hack the commercial IVC devices and in turn lever-
age it to compromise the victim’s digital life, we are only
interested in a limited number of selected phrases such as
“open my door”, “clear notification”, etc. A side product of
selecting those phrases is that, based on our experiences, the
IVC devices are trained to be quite robust to those phrases,
e.g., “open my door” on Amazon Echo, “what is the weather”
and “play music” on Microsoft Cortana and Google Assistant.
Hence, we just need to train a local model partially approxi-
mating the target system on the most frequently used phrases,
also the ones we are highly interested in, on IVC devices. We
use Text-to-Speech services to generate TTS audio clips for
our desired phrases (details in Section 5.3) as the training set
for local model approximation.

Training set augment. The above observation inspired us the
idea of the local partial approximation. However, the training
set has two problems: the number of phrases in the training
set is too limited for training; and the robustness of an IVC
device to a phrase is unknown. To solve these problems, we
augment the training set by tuning the TTS audio clips, i.e.,
either changing the speech rate of and adding noises to them.
Based on our experience, the changing of the speech rate and
the noise amplitude is quite unique to different ASR systems,
e.g., a specifically tuned audio might be decoded correctly
with high confidence by one ASR system, but incorrectly by
the other. Hence, we believe that those tuned but still cor-
rectly decoded audio clips can help to uniquely characterize
different ASR systems, and that training an ASR system with
plenty of such audio clips will guide it towards the target ASR
system on the desired phrases in the audio clips.

Obviously, not all the tuned audios can still be decoded
correctly by the target black-box system. In our research, we
assume that the speech recognition mechanisms of the IVC
devices are similar to that of the API service provided by the
same company7. Hence, we query the corresponding online
speech API service on them, and filter out those either not cor-
rectly decoded, or decoded correctly but with low confidence
values. The magnitude of the corpus augmented in this way
is not very big, usually 3~6 hours for ten selected phrases,
which can be finished in about 1500 queries on the target
speech API service.

4.2.2 AE Generation
Generating AEs with base model and substitute model.
After the local substitute model is trained based on the aug-
mented dataset, we ensemble it with the large base model for
the alternate models generation summarized in Algorithm 1.
Specifically, Line 3 and Line 4 are for the AE generation on
the large base model and the small substitute model respec-
tively. The AE generation is the same for two models and
defined as the function “AEGENERATION” in Line 8~24.

Algorithm 1 Alternate Models Generation Algorithm
Require: The original audio x0, the target label y, ftarget is the func-

tion to get output from black-box model, the black-box query
interval times Tinterval , the maximum allowed epoch E pochMax.

Ensure: A set of adversarial example collection X∗, all with label
y under classifier ftarget .

1: x∗0 = x0 ; g0 = 0 ; CurrentE poch = 0 ; T ∗interval = Tinterval
2: while CurrentE poch < E pochMax do
3: AEgeneration (Base Model Settings);
4: AEgeneration (Substitute Model Settings);
5: CurrentE poch++;
6: end while
7: return X∗

8: function AEGENERATION(Model Settings)
9: Reset T ∗interval = Tinterval ;

10: for each t ∈ [0,T −1] do
11: Take x∗t for current model f and get the gradient;
12: Update gt+1 by Eq. 1;
13: Update x∗t+1 by Eq. 2;
14: if t mod T ∗interval = 0 then
15: Input x∗t+1 to ftarget and get ftarget(x∗t+1);
16: if ftarget(x∗t+1) match y then
17: Put x∗t+1 into X∗;
18: else
19: Update T ∗interval by Eq. 3;
20: end if
21: end if
22: end for
23: Set x∗0 = x∗T ;
24: end function

7Although previous studies [29, 42] show that it is possible to recover
Speech-to-Text functionality from some IVC devices like Echo, their ap-
proaches cannot obtain the confidence values for the decoded results, which
are required in our approach.
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In each iteration of the f or loop starting at Line 10, the
gradient is updated in line 12 based on Eq. 1 and the audio
sample is crafted in line 13 based on Eq. 2. To successfully
attack the target black-box model, we need to query the target
speech API service and validate whether the decoded result
of the crafted audio sample is as expected or not. An intuitive
way is to submit the sample generated in each iteration, so
any potential effective AE will not be ignored. However, such
method will incur a significant amount of queries sent to the
API service, which could be costly and at the same time suspi-
cious. Therefore, we implement the query reduction algorithm
(will be detailed at the end of this subsection), which aims to
reduces the number of queries to the target black-box system.
At Line 1, we set the Tinterval as the number of iterations be-
tween two consecutive queries to the target black-box system,
and then at Line 19, it is updated based on Eq. 3, according
to the recognition results from the target black-box system.

If after T iterations, effective AE is still not generated (i.e.,
Line 16 always returns false), we assume the transferability
based attack does not work well towards the target black-box
system. We will use the output x∗ from the last iteration as the
input to the local substitute model, then use the same gradient
algorithm to craft the adversarial sample under the substitute
mode settings. If after we reach the T iterations and the lo-
cal substitute model approximation approach still does not
succeed in generating the AE for the target command, we go
back to Line 2 to restart the whole algorithm. The E pochMax
parameter can restrain the number of total alternations. For
Line 16~17, we will not break the “AEGENERATION” func-
tion even if the Line 16 returns “True” and an effective AE is
crafted towards the target ASR API service. This is because
the successful sample to attack the target ASR API service
does not necessarily indicate the success towards IVC devices.
Therefore, instead of breaking the function, once a successful
AE is found, we save it towards the target ASR API service.
Finally, we can return a set X∗, where we preserve all potential
effective AEs towards target IVC devices.
Efficient query of the black-box API. Intuitively, we can
query the black-box server after a few iterations, instead of
every iteration. We compare the decoded transcript of the
current sample from the black-box model with the desired
transcript, and use it as a reference to determine when the next
sample should be sent to the black-box server. Suppose we
set the number of iterations between two queries to the target
black-box model as Tinterval , and there are s words from the
decoded transcript of AE that match the desired commands
(e.g., s = 2 if “the door” is decoded from the current iteration
for the desired command “open the door”). Then T ∗interval
should be updated by Eq. 3.

T ∗interval = bTinterval×
1

s+1
c (3)

Actually when examining the word match, we check the
phonetic similarity of the words, rather than character-by-
character match, since the language model of the speech recog-

nition systems will refine the phonetic-similar words based on
semantics. Hence, we applied SoundEx [35], a tool to encode
homophones with the same representation even though they
have minor differences in spelling. Thus, s will be updated
by comparing the SoundEx code of the decoded command
and the target command. For example, “inter” is encoded
by SoundEx as “I536” and “pay Internet fee” is encoded as
“P000 I536 F000”. We consider one match (the code “I536”)
when comparing such decoded output and desired command,
so s will be set as 1 in this case.

4.2.3 Understanding the Attack
Although our approach works effectively in a black-box at-
tack, which will be demonstrated in our experiments (Sec-
tion 6.2), theoretic analysis of the technique are nontrivial,
just like the attempt to interpret adversarial learning in gen-
eral. Following we provide high-level intuition behind our
approach through an example.

At a high level, our approach is based upon the observa-
tion that different ASR systems have some similarity in their
classification models, which allows us to utilize a white-box,
well-trained base model to move an instance towards the tar-
get model’s decision boundary, though it is likely different
from that of the white-box model. This difference is further
addressed using the substitute that fine-tunes the instance
based upon the features of the target, including those related
to its decision boundary. In this way, we can utilize both
the information learnt from the target by the substitute and
that shared between the base model and the target to build a
successful AE.

For example, consider an attack on the Alexa Transcribe
API using the approach proposed in Section 4.2. The target
command is “clear notification”. According to the experimen-
tal results, we found that the generation process (the base
model->substitute model->base model) helped find the re-
sults that came closer to the target (recognized as “I don’t”
by Alexa Transcribe API). These results were then further
adjusted by the substitute model towards the target. They
became “notification” in the 10th~30th iterations, and were
recognized as “clear notification” in the 48th~60th iterations.
We believe that the transformation from “I don’t” to “clear no-
tification” is attributed to the fact that the substitute is trained
to simulate the behavior of the Alexa Transcribe API on “clear
notification”.

5 Implementation
5.1 Target IVC Devices and ASR Systems
Since we are developing a general approach generating AEs
against commercial black-box IVC devices, we plan to ex-
amine the AEs on most of the popular IVC devices currently
available on the market. In particular, we consider the speech
recognition devices/systems from Google, Microsoft, Ama-
zon, Apple, and IBM into the following three categories. First,
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we can find the ASR API services associated with the cor-
responding IVC devices, e.g.,Google Assistant and Google
Cloud Speech-to-Text API8 (Category 1). Second, IVC device
is available, but ASR API is not, e.g., Apple Siri (Category 2).
Last, ASR API is available, but IVC device is not, e.g., IBM
Speech to Text API (Category 3).

Regarding Category 2, since there does not exist online
ASR API service required by local model approximation,
we attack such IVC devices mainly via transferability as in
Section 4.1. As for Category 3, since we cannot find the IVC
device of IBM, we simulate such scenario by playing the AE,
recording it and then using the ASR API service to decode the
recorded audio as in Section 6.3. All the available ASR API
services return the decoded transcripts and the corresponding
confidence level for the decoding.

5.2 Phrase Selection
Since the aim of our approach is to attack the commercial
IVC devices like Google Home, we only focused on the spe-
cific commands frequently used on these devices, e.g., “turn
off the light”, “navigate to my home”, “call my wife”, “open
YouTube”, “turn on the WeMo Insight”, etc. For each target
model, we selected 10 such commands and further appended
the default wake-up words for different systems (Google
Home, Amazon Echo and Microsoft Cortana) before each
of them. For the IBM Speech to Text API without commercial
IVC devices available, we utilized daily conversation sen-
tences. The full list of the phrases used on the target platforms
are presented by Table 10 and Table 11 in Appendix G.

5.3 Local Model Approximation
Model selection. In our experiment, we chose the Mini Lib-
rispeech model9 as the substitute model to approximate the
target models. Specifically, we used the default architecture
and hyper-parameters of Mini Librispeech to train all four
substitute models in our paper. These models were found to
be highly effective in our study (Section 6.2). On the other
hand, we acknowledge that even better performance could
be achieved by tuning model parameters, a mostly manual
and time-consuming procedure. So, our attack should only
be viewed as a lower bound for the security threats these
commercial systems are facing.

Corpus preparation. To enrich our corpus, we use 5 TTS
(Text-to-Speech) services to synthesize the desired command
audio clips, i.e., Google TTS [11], Alexa TTS [3], Bing

8There are four models in Google Cloud Speech-to-Text API, e.g.,
“phone_call model”, “video model”, “command_and_search model” and “de-
fault model”. In detail, “phone_call model” is used to translate the recorded
audio from phone call; “command_and_search model” is used for voice
command and short speech searching; “video model” is used for the video;
“default model” is not designed for a specific scenario. We use the com-
mand_and_search model to label our corpus since our corpus are more suit-
able for voice command and search application.

9Both Mini Librispeech and Kaldi ASpIRE (used as the base model) use
chain model, and Mini Librispeech is easy to implement.

TTS [6], IBM TTS [13] and an unnamed TTS [9], with 14
speakers in total including 6 males and 8 females. After using
the above TTS services to generate the desired command au-
dio clips, we enrich it by adding background noise or twisting
the audio. For the former, we add white noise to the original
audio, and set the amplitude of the added white noise to be
α. For the latter, we twist the original audio by changing its
speech rate either slower or faster. We define the twist-rate as
β (β = original_audio_duration/twisted_audio_duration).
Finally, we use the target black-box model to recognize the
tuned audio and filter it based on the correctness and the con-
fidence level of the decoded results. The values of α, β and
the size of the corpus after filtering are shown in Table 5 in
Appendix A.

We constructed the training corpus by combining the tuned
TTS audio clips (generated from the queries on the target
model) and the supplemental corpus from Mini Librispeech.
This is because the tuned TTS audio clips alone would cause
the substitute model to overfit to the set of commands used
in the queries (in the tuned TTS audio clips). As a result,
the AEs found from the less generalized substitute model
can be less effective at attacking the target models. On the
other hand, solely relying on the supplemental corpus is not
effective either, since the substitute trained without the in-
formation from the target will behave very differently from
the target, as confirmed by our experiment (alternate models
based generation without approximation) in Section 6.4.

Furthermore, we evaluate the impact of different sizes of
supplemental corpus on Microsoft Bing Speech Service API
in Appendix B, and the results show that 3~40 hours size of
the supplemental corpora are all effective for our approach,
while with 1 hour supplemental data cannot generate AEs for
all of the target commands. For the four substitute models
of the target black-box platforms, we use the default Mini
LibriSpeech corpus (7.35 hours) as the supplemental corpus.

Training the substitute model. To train the substitute model,
we need to label the audio clips in the training corpus. Also,
as mentioned in Section 4.2, retrieving the pdf-id sequence
of the target commands is critical in our attack. However, we
found that some words (such as Cortana, WiFi, Bluetooth,
YouTube, WeMo, TV, etc.) are not included in the dictionaries
of the Mini Librispeech model and the ASpIRE Chain model,
so we cannot directly label these words and get the pdf-id
sequences of the corresponding commands. Simply extend-
ing the vocabulary of the language models [15] requires the
entire language models be retrained. To address this prob-
lem, we leveraged some linguistically similar phrases, based
upon the prior research [29, 42], to label those undocumented
ones10, which allows us to identify the pdf-id sequences of
their commands and further generate their AEs.

10The phrases like “Cort tana”, “why fi”, “blue tooth”, “you too boo”,
“we mow” and “T V” are used to replace “Cortana”, “WiFi”, “Bluetooth”,
“YouTube”, “WeMo” and “TV”, respectively.
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6 Evaluation
6.1 Experiment Setup
Hardware. We conduct the experiment on the sever equipped
with four Nvidia Tesla K40m GPUs and 2 x 10 core Intel
Xeon E5-2650 2.30GHz processors, with 131 Gigabytes of
RAM and 1 Terabyte Hard Drive. We use a laptop (Lenovo
W541/Dell XPS 15/ASUS P453U) and a phone (iPhone
SE/iPhone 8) connected to a speaker (JBL clip 2/3 portable
speaker) to play out AEs. The target IVC devices are Google
Home Mini, Amazon Echo 1st Gen and voice assistants on
phones (Google Assistant App on Samsung C7100/iPhone
SE and Microsoft Cortana App on Samsung C7100/iPhone
8)11. The transferability of the AEs on Apple Siri is tested on
iPhone 8 and iPhone XR. The AEs on IBM WAA tests are
recorded by Huawei P30.
The original audio. Similar to CommanderSong, our attack
utilizes songs as the carrier for the AE produced. Specifi-
cally, we used the dataset released by the CommanderSong
project [8], which contains 5 songs in each of the soft, popular,
rock and rap categories. Among them, we selected the songs
in the soft and popular categories, which are less noisy, al-
lowing the integrated perturbations more likely to overwhelm
the background music and be decoded correctly by the target
IVC devices. To further evaluate the 10 songs, we utilized two
commands “Okay Google, navigate to my home” and “Hey
Cortana, turn off the bedroom light”, and ran our approach
to embed the commands into the songs, against the speech
recognition APIs provided by Google and Microsoft Bing.
The results show that all the 10 songs can serve as carriers
for the commands to ensure their recognition by the APIs.
However, when listening to these AEs, we found that four
instances using soft songs and one using a popular song were
less stealthy than the other 5 manipulated songs and therefore
selected the latter for all follow-up experiments. Our exper-
imental results show that for each target command of each
target platform, there are at least 2 music clips across these 5
songs that can be crafted as effective and stealthy AEs. Fur-
ther we studied the songs more likely to be good candidates
for covering different commands (Section 7.1).

Besides the songs, we also tried other types of sounds as our
carriers for malicious commands in the experiments, e.g., am-
bulance siren sound, train passing sound, etc. We found songs
perform best in both effectiveness and stealthiness among
those sounds. Therefore, we choose the songs as our carrier.

6.2 Effectiveness
We evaluate the effectiveness of AEs generated by trans-
ferability based approach (TBA) and those generated by
alternate models generation approach (AGA) on the com-
mercial Speech API services and IVC devices. The target
commands for every black-box platform are listed in Ta-
ble 10 and Table 11 in Appendix G. Similar to the existing

11In Table 11, we elaborate the hardware used for each test.

works [20, 34, 40], we use SNR12 to measure the distortion of
AE to the original song.

Speech-to-Text API services attack. We feed our adversar-
ial examples (AEs) directly into the corresponding API ser-
vices, and observe the results. For the four models of Google
Cloud Speech-to-Text API (Section 5), we show the results
of “phone_call model” and “command_and_search model”,
since according to our tests the former is similar to “video
model” and the latter is similar to “default model”.

When attacking Speech-to-Text API, since we do not need
to wake up the IVC devices, we consider the AE successfully
attacks the target if the returned transcript matches the desired
command. The results are shown in Table 1, with the SNR
being the average of all commands on each black-box plat-
form (The result of each individual command can be found
in Table 10 in Appendix G). Specifically, the effectiveness of
our approach is evaluated using the success rate of command
(SRoC), that is, the number of successful commands vs. the
total number of the commands evaluated on a target service.
Here a successful command is the one for which we can gener-
ate at least one workable AE using our approach. The results
show that the AEs produced by TBA work well on Google
phone_call model with 100% SRoC, but fail on Google com-
mand_and_search model and Amazon Transcribe. Also the
AEs generated by AGA achieve an SRoC of 100% for all
Speech-to-Text API Services except Amazon Transcribe.

Table 1: The overall SRoC results on API services.
Black
-box

Google Micros-
oft Bing

Amazon
Transcribe

IBM
STTPhone Command

TBA 10/10 0/10 2/10 1/10 3/10
AGA 10/10 10/10 10/10 4/10 10/10
SNR
(dB) 11.97 9.39 13.36 11.21 10.06

Note: (1) “Phone” and “Command” represent the “phone_call model”, “com-
mand_and_search model” of Google Cloud Speech-to-Text API, respectively.
(2) “Microsoft Bing” represents the Microsoft Bing Speech Service API. (3)
“IBM STT” represents the IBM Speech to Text API. (4) The results were all
based on the tests conducted in October 2019.

As for Amazon Transcribe API service, we only crafted
successful AEs on 4 out of 10 target commands using AGA
method (details in Table 10 in Appendix G). We then per-
formed more tests on Amazon Transcribe API and found that
the API service cannot even recognize some plain TTS audio
clips for the target commands correctly. In contrast, these com-
mands can always be recognized by Amazon Echo. There can
be reasons for such difference. First, different models could
be used by Amazon Transcribe API and Echo device. Second,
the developers of Amazon Echo may set lower threshold to
identify voice commands, thus it is more sensitive to the voice

12SNR, defined as the ratio of the original signal power to the noise power,
can be expressed as follows: SNR(dB) = 10 log10 (Px(t)/Pδ(t)), where Px(t)
represents the average power of the original signal and Pδ(t) represents the
average power of the distortion. It can be seen that a larger SNR value
indicates a smaller perturbation.
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commands when used physically.
IVC devices attack. We selected the AEs that can success-
fully attack the API service with high confidence score (≥ 0.6)
to attack the IVC devices. Specifically, since the AEs work-
ing poorly on Amazon Transcribe API are not necessarily
working poorly on Amazon Echo as we identified before, we
decide to test the AEs on Amazon Echo directly, even if they
failed on Amazon Transcribe API. In our experiment, if the
devices respond to the played AE in the same way as the
regular voice command from human being, we consider the
AE for this command successful.

As shown in Table 2, the average SRoC of TBA is 26%. In
contrast, the average SRoC of AGA over all IVC devices can
be improved to 98%, which shows the proposed approach is
very effective in attacking real-world IVC devices. Based on
our evaluation, we find that for most of the black-box models,
we can always find the AEs that can successfully attack their
corresponding IVC devices from the ones that have fooled
the ASR API services. However, Amazon Transcribe API
and Amazon Echo are the exception. We find that although
attacking Amazon Transcribe API is difficult, we can always
generate AEs with 100% SRoC for the 10 target commands to
attack Amazon Echo. The full list of successful commands on
different IVC devices are shown in Table 11 in Appendix G.
As we can see, some of those commands can cause safety or
privacy issues, e.g., “Okay Google, navigate to my home”,
“Okay Google, take a picture”, “Echo, open my door”, etc.

Table 2: The overall SRoC results on IVC devices.
Black
-box

Google Microsoft
Cortana

Amazon
Echo

IBM
WAAAssistant Home

TBA 4/10 4/10 2/10 0/10 3/10
AGA 10/10 9/10 10/10 10/10 10/10
SNR
(dB) 9.03 8.81 10.55 12.10 7.86

Note: (1) “WAA” is used to represent “Wav-Air-API” attack. (2) The results
were all based on the tests conducted in October 2019.

We used a digital sound level meter “SMART SENSOR
AS824” to measure the volume of AEs. The background noise
was about 50 dB, and the played audios were about 65~75 dB,
compared to some special cases of the sound level presented
in [7, 17], e.g., talking at 3 feet (65 dB), living room music
(76 dB). We also conducted experiments to test our AEs in
realistic distance. For example, the AE with the command
“Echo, turn off the light” can successfully attack Echo as far
as 200 centimeters away, and the AE with the command “Hey
Cortana, open the website” can successfully attack Microsoft
Cortana as far as 50 centimeters away.
Robustness of the attack. To evaluate the robustness of our
attack, we define the success rate of AE (SRoA) as the ratio
of the number of successful tests to the total number of tests
if an AE has been repeatedly played. Table 11 shows SRoA
measured over 30 tests for each target command. The results
show 76% (38/50) of the commands have SRoAs over 1/3,
showing that our attack is quite robust.

6.3 Attacking Other Platforms
Over-the-air attack against IBM Speech to Text API. As
stated in Section 5.1, we use “Wav-Air-API” (WAA) to simu-
late the IVC device of IBM. The results are shown in Table 2.
Overall, such WAA attack demonstrates similar performance
as other IVC devices, which further indicates the effectiveness
and generality of our proposed approach.
AEs attack against Apple Siri. Since there is no online
speech-to-text API service available from Apple, we tried two
methods to attack Apple Siri: (1) we generate AEs directly
using the transferability based approach; (2) we “borrow” the
AEs demonstrating good performance on the other IVC de-
vices. As shown in Table 9 in Appendix F, only the command
“What is the weather?” generated from TBA can attack Apple
Siri successfully. For the other commands, we rely on the
help from AEs generated from AGA for other IVC devices13.
From Table 9, we find all the seven AEs can successfully
attack Siri, which demonstrates the transferability of AGA14.

6.4 Evaluation of Possibly Simple Approaches
Local model approximation with a larger corpus. Appar-
ently, if the local model is trained by a larger corpus of tuned
TTS audio clips, it could approximate the target black-box
model better (Certainly a larger corpus means a larger amount
of queries to the online API service, which could be suspi-
cious.). Below we describe a preliminary evaluation of the
AEs generated by such local model.

We choose Google command_and_search model as our
target system. Then we pick up four commands that the AEs
generated by our approach can be decoded by Google com-
mand_and_search model with 100% SRoC. The details of
the commands are shown in Table 7 in Appendix C. As in
Section 4.2.1, we use TTS to generate regular speech of those
commands, and extend the corpus by tuning TTS audio clips.
Finally the corpus is filtered out by the labeling from Google
command_and_search model with the same confidence level
as that in our approach. Hence, we obtain a corpus of about
23.86 hours (5100 oracle queries), almost 5.17 times larger
than that used in our approach. After the local model is trained
with the larger corpus, we use the “MI_FGM” algorithm to
generate AEs and evaluate them on the target.

The results show only one command “OK Google, turn
off the light” succeeds on Google command_and_search
model, but still fails on Google Home. The other commands
do not have any successful AEs generated for Google com-
mand_and_search model and Google Home/Assistant. Based
on the results of the preliminary testing, even if the adversary
could afford the cost of preparing larger corpus and a larger
amount of queries, the AEs generated from such simplified

13When testing AEs from the other IVC devices on Apple Siri, we ignore
the wake up words, e.g., “OK Google, play music” should be truncated to
“Play music”.

14The test was conducted in January 2019. However, we found that the
AEs cannot work on Apple Siri since July 2019 (details in Section 7.3).
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Table 3: Results of the comparison tests with different approaches.

Black
-box Target command Plain

TTS
Command

-erSong

Original song + TTS Devil’s Whisper
SRoA of
Group1

SNR
(dB)

SRoA of
Group2

SNR
(dB) SRoA SNR

(dB)
Google

Assistant
Okay Google, take a picture. 10/10 0/10 6/10 7.15 9/10 6.45 5/10 6.45

Okay Google, navigate to my home. 10/10 0/10 3/10 4.08 0/10 11.98 4/10 12.02
Google
Home

Okay Google, turn off the light. 10/10 0/10 6/10 4.05 0/10 10.75 7/10 10.73
Okay Google, play music. 10/10 0/10 2/10 4.53 0/10 11.63 3/10 11.61

Microsoft
Cortana

Hey Cortana, open the website. 10/10 0/10 6/10 0.21 0/10 12.01 8/10 12.03
Hey Cortana, make it warmer. 10/10 0/10 9/10 3.38 0/10 9.38 9/10 9.34

Amazon
Echo

Echo, turn off the computer. 10/10 0/10 6/10 3.39 0/10 14.29 7/10 14.28
Echo, call my wife. 10/10 0/10 4/10 -0.78 0/10 10.78 3/10 10.88

Note: (1) The success rate “A/B” indicates that there are A tests success to trigger the command on the black-box platforms in B tests. (2) The results were all
based on the tests conducted in July 2019. (3) Hardware settings: we used ASUS P453U as the audio source and JBL Clip 2 as the speaker for all test cases.
Google Assistant and Microsoft Cortana were tested on Samsung C7100. Amazon Echo and Google Home were tested on Echo 1st gen and Google Home Mini.
Volume of AEs is about 70 dB and distance ranges 5~15 centimeters.

approach is not as effective as our proposed alternate models
based generation with approximation approach.
Alternate models based generation without approxima-
tion. Another intuitive approach is based on the assumption
that if one AE works on multiple models, it is highly possible
that it works on the target model, without the need to approx-
imate the target. We kept the ASpIRE Chain model as the
base model, and trained the Mini Librispeech model without
the tuned TTS corpus. Specifically, we selected four target
commands from Table 10 in Appendix G to attack Google
command_and_search model and Google Assistant/Home.
We ran the proposed alternate models based generation ap-
proach based on those two models (ASpIRE Chain model and
Mini Librispeech model) to craft AEs. However, as shown
in Table 8 in Appendix D, only one out of four commands
works on Google command_and_search model and Google
Assistant, while all the four commands fail on Google Home.
Other straightforward approaches. We conducted exper-
iments to compare our Devil’s Whisper attack with other
straightforward approaches, i.e., “Plain TTS”, the AEs of
CommanderSong, the “Original song + TTS”. Specifically, we
selected eight target commands frequently used on four IVC
devices, as shown in Table 3. Each command was covered by
the same original song for different cases. Particularly, sam-
ples in “Original song + TTS” were generated by combining
the song and the TTS command with Adobe Audition soft-
ware [1]. Note that for such a simple combination, whether
the injected command can be clearly heard and therefore in-
terpreted by the IVC depends heavily on the strength of the
signal from the song (in terms of its volume) vs. that of the
command in the TTS audio. To evaluate the perturbation of
the TTS audio on the original song, we calculated the SNR of
the combinations by treating the TTS audio (the command)
as noise and the song as signal.

The results of our experiment are shown in Table 3. Over-
all, the AEs from the Devil’s Whisper attack can effectively
attack the target IVC devices using those commands. Without
any surprise, the “Plain TTS” audios triggered the devices

to act on those commands each time. The AEs produced by
CommanderSong, which is not designed for the black-box
attack, failed to achieve a single success on these devices. As
stated in Section 4.1 under “Initial try”, sometimes Comman-
derSong AEs can be partially recognized as “Hey Google”,
thus waking up Google Assistant/Home. Occasionally, part of
the commands can be recognized by a woken Google Assis-
tant or a Microsoft Cortana. However, none of the AEs (with
the SNR between 2 and 14) could cause the IVC devices to
act on the injected commands.

To produce the samples of “Original song + TTS” case,
we set the volume of each TTS audio clip (the command) to
the same level as in “Plain TTS” case, while adjusting the
volume of the song as follows: (1) to achieve a similar success
rate (SRoA) as our attack AEs (see the column in Table 3
under Group 1), and (2) to keep a similar SNR level as the
AEs (Group 2). As we can see from the table, under a similar
SRoA, all except one combined audio clips (Group 1) have
much lower SNR levels compared with our AEs, indicating
that the commands they include are likely to be much more
perceivable and thus much less stealthy, which has been con-
firmed in our user study (see Section 6.5, Table 4). The only
exception is featured by a similar SNR as our AE. When tun-
ing the SNR to a level of our AEs, we can see that the SRoA
of most samples (all except one) go down to zero (Group 2).
Also interestingly, even though the SRoA of our AE appar-
ently is below that of the “Original song + TTS” audio clip
for the command “Ok Google, take a picture”, we found that
60% of human users in our study could identify the hidden
command, compared with 0% for our AE.

6.5 Human Perception.
SNR describes the relative strengths between signal and noise,
which is traditionally used to measure the perturbation to data
(e.g., an image) [22]. Naturally, it can also model the distor-
tion to the song caused by an AE (with the song being signal
and the command being noise), and therefore gives an intu-
itive and rough estimate of the AE’s stealthiness: the smaller
SNR is, the larger distortion to the song is imposed, so the
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Table 4: Results of the human perception evaluation on Devil’s Whisper and original song combined with TTS command.
Black-box Approach Normal (%) Noise (%) Talking (%) Once-recognize (%) Twice-recognize (%)

Google
Assistant

Devil’s Whisper 14.3 74.3 11.4 0 0
Song & TTS 7.1 2.9 90 37.1 64.3

Google
Home

Devil’s Whisper 14.3 65.7 20 0 1.4
Song & TTS 1.4 2.9 95.7 61.4 77.1

Microsoft
Cortana

Devil’s Whisper 15.7 64.3 20 0 1.4
Song & TTS 2.9 1.4 95.7 31.4 54.3

Amazon
Echo

Devil’s Whisper 25.7 61.4 12.9 0 2.86
Song & TTS 0 5.7 94.3 41.4 62.9

Average Devil’s Whisper 17.5 66.4 16.1 0 1.4
Song & TTS 2.9 3.2 93.9 42.9 64.7

Note: (1) “Song & TTS” is used for the abbreviation of “Original song + TTS”. (2) “Once-recognize” and “Twice-recognize” represent that the users can
recognize over half of the hidden command when they listen to the AEs for once and twice, respectively.

more likely the source of the distortion – a hidden command
can be perceived by human. This is largely in line with the
findings from our user study as below. However, the metric
will be less accurate, for example, when the distortion fits
well in other background noise, becoming less easy to notice,
even when the SNR is low. In general, human perception of
hidden commands is complicated, depending on individuals’
experience, the context of a conversation, etc. Finding an ac-
curate measurement is still an open question. Therefore, we
conducted a survey15 on Amazon Mechanical Turk to eval-
uate human perception of the AEs generated by the Devil’s
Whisper attack, and compare the result with that of “Original
song + TTS”. Specifically, we used the audio clips in Group
1 since they have the similar SRoA as Devil’s Whisper when
attacking the target models.

The results of this user study are shown in Table 4. Here,
the column “Normal” shows the percentage of the users who
consider a sample to be normal music, and the column “Noise”
gives the percentage of the users who find noise in songs. The
column “Once-recognize” and the column “Twice-recognize”
describe the percentages of the users able to recognize over
half of the hidden command words16 after listening to the
audio once or twice, respectively. As we can see from the
table, 16.1% participants think that somebody is talking in the
background when they listen to Devil’s Whisper, but nobody
could recognize any command when an AE was played to
them. By comparison, over 93% of the participants think
that someone is talking when listening to the audio clips in
“Original song + TTS”, and nearly 42.9% of them recognizes
over half of the command words first time when they listened.
Even if the participants were exposed to the same AEs for the
second time, only 1.4% of them could tell over 50% words
in the target commands in the Devil’s Whisper attack, while
the ratio goes up to 64.7% in “Original song + TTS”. This

15This survey will not cause any potential risks to the participants, such
as psychological, social, legal, physical, etc. We do not ask any confidential
information about the participants in the questionnaires. The IRB Exempt
certificates were obtained from our institutes.

16We assume that 50% of the words in the command would be enough to
raise user’s attention.

indicates that, the samples from “Original song + TTS” are
much more perceptive to users. Furthermore, by analyzing the
SNR in Table 3 and human perception results, we found that
SNR was largely in line with human perception but not always
(see the exception described in Section 6.2). The details of
the survey study are presented in Appendix E.

7 Discussion
7.1 Selection of Songs
In order to find what types of songs are good candidates for
our attack in terms of both effectiveness and stealthiness, we
conducted a preliminary evaluation using all the 20 songs
from CommanderSong, including the 5 rock and 5 rap songs
that we did not use in our attack (see Section 6.1). The target
commands were the same as those used in the previous ex-
periments for Google and Microsoft Bing. In the evaluation,
a song is considered to be suitable for AE generation if it
helped produce effective AEs (for both commands) in the
first epoch (based model -> substitute model). Note that an
effective AE is stealthy, as determined by humans (authors
and other group members in our research) who listened to it.
Through the evaluation, we classified the 20 songs into three
categories: (1) easy to generate successful AEs but noticeable
to human (2) easy to generate successful AEs and unnotice-
able to human (3) hard to generate successful AEs. Obviously,
the songs in the second category are good candidates for our
attack. These songs are characterized by the similarity in the
energy distributions of their spectra, as discovered in our re-
search. We here present an example to show its spectral power
distribution in Figure 2.

Further we looked into the Top 100 Billboard songs in the
week of 11/04/2018, embedding the commands “Hey Cortana,
what is the weather?” (Command A) and “Hey Cortana, make
it warmer” (Command B) into each of them, in an attempt
to attack the Microsoft Bing Speech Service API, and “Ok
Google, turn off the light” (Command C) and “Ok Google,
navigate to my home” (Command D) to attack the Google
Cloud Speech-to-Text API. During the attack, we selected the
segment between the 60th second to the 63th second (roughly
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Figure 2: Representative original song spectrum (a) Type
1: easy to be generated as successful AEs and perceived by
human (b) Type 2: easy to be generated as successful AEs
but difficult to be perceived by human (c) Type 3: hard to be
generated as successful AEs.

the middle of the songs) for each song as the carrier for the
commands. For Command A, B, C, D, we successfully gener-
ated AEs based on 59, 56, 58 and 60 songs, respectively. Then
we asked 20 students to listen to the successful AEs generated
and reported the commands that could be recognized. In the
end, again, we classified all the 100 songs into these three
categories. Most of their frequencies and energy distributions
were found to be in consistent with those discovered in the 20
songs (see the example in Figure 2). This indicates that indeed
a more systematic way to select ideal carriers for the attack is
possible, which will be explored in the future research.

7.2 Discussion on Possible Defense
We discuss three potential defense mechanisms to mitigate
our Devil’s Whisper attack.
Audio downsampling. Audio downsampling was proposed
in CommanderSong [40] to effectively mitigate the AEs. Even
though the audio can be recorded in different formats (such
as m4a, mp3, wav) at different sampling rates (e.g. 8000Hz,
16000Hz, 48000Hz), we can always first downsample it to
a lower sampling rate and upsample it to the sampling rate
that is accepted by the target black-box model. During such
downsampling/upsampling process, the added adversarial per-
turbations may be mitigated, which makes the AEs fail to
be recognized by the target black-box model. For instance,
we choose the recorded audios, which can succeed in WAA
attack on IBM Speech to Text API. Then they are downsam-
pled to 5600Hz, and upsampled to 8000Hz, which are sent
to IBM Speech to Text API. Only 20% of them can be rec-
ognized as the target commands. When first downsampled to
5200Hz and then upsampled to 8000Hz, none of them can
succeed. In contrast, the regular recorded human voice and
TTS audio clips can still be recognized correctly even after
such downsampling/upsampling. Hence, audio downsampling
could be one effective way in detecting speech AEs. However,
if an attacker know the dawnsampling/upsampling rates of
the defense, he could train an AE robust against it.
Signal smoothing. Since the effectiveness of our AEs is
highly dependent on the carefully added perturbations by
gradient algorithm, we can conduct local signal smoothing
towards AEs to weaken the perturbations. Specifically, for a

piece of audio x, we can replace the sample xi with the more
smooth value according to its local reference sequence, i.e.
the average value of the k samples before and after xi. Hence,
the added perturbations may be mitigated by this method.
Audio source identification. Audio source identification
aims to identify the source of the audio, e.g., from an elec-
tronic speaker or human. Such defence is based on the as-
sumption that the legitimate voice commands should only
come from human rather than an electronic speaker. There-
fore, if the audio is detected not from human, the audio signal
will be simply ignored. Previous works [21,24] show that they
can identify the audio source by either examining the electro-
magnetic wave from the audio or training a model to label the
audio. Such defence mechanism could work for most of the
existing speech AEs that require a speaker to play. However,
the attacker could play the samples over a long range, which
might evade the detection.

7.3 Limitations
It is known that AEs are rather sensitive to the change made
on the deep neural network models behind ASRs: even a small
update could cause a successful AE to stop working. This is
also true for our approach. For instance, the previous work-
able AEs (in January 2019) cannot work effectively towards
Apple Siri since July 2019 (See Section 6.3)17. A potential
solution is to fine-tune the existing model in the hope of cap-
turing the impact of the change, which will be studied in the
future research. In addition, the practical attack against IVC
devices is sensitive to various environmental factors, such
as the volume when playing AEs, the distance between the
speaker and the IVC device, even the brand of the speakers,
etc., which may significantly affect the SRoA. Hence, how to
improve the robustness of the AEs in diverse environments is
still an open research question. Finally, although user study
shows that none of the participants can identify any command
from our AEs if they only listen to them once, a few partici-
pants felt our AEs noisy/abnormal. Therefore, improving the
stealthiness of AEs is on demand.

8 Conclusion
We present Devil’s Whisper, a general adversarial attack on
commercial black-box ASR systems and IVC devices, and
the AEs are stealthy enough to be recognized by humans.
The key idea is to enhance a simple substitute model roughly
approximating the target black-box platform with a white-box
model that is more advanced yet unrelated to the target. The
two models are found to effectively complement each other
for generating highly transferable and generic AEs on the
target, which only requires around 1500 queries on remote
services to ensure a nearly 100% success rate of command on
attacking most popular commercial ASR systems.

17We further used eight samples of the case “Original song + TTS” from
Table 3 to attack Siri and only 1 out of 8 samples can work. So, we consider
that Siri may have updated the system to ignore the speech with music
background.
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Appendix

A Tuned TTS
Table 5 shows the parameters of tuning18 and the size of the
corpus after filtering for each target black-box model. Note
that the filtered corpus for Amazon Transcribe API is less than
other platforms even with a much lower confidence. Therefore,
we think this model may not be sensitive to our TTS audios
of these commands, which is stated in Section 6.2.

Table 5: Preparing corpus for the substitute model.
Black-

box
Corpus
(hours)

Added-noise
(α)

Twist rate
(β)

Confi-
dence

Google 4.61 0.097 0.77~1.15 > 0.8
Microsoft 6.83 0.094 0.68~1.15 > 0.8
Amazon 3.11 0.066 0.69~1.13 > 0

IBM 4.26 0.038 0.76~1.12 > 0.8

B Impacts of Supplemental Corpus
As mentioned in Section 5.3, we used the open source corpus
of Mini Librispeech as supplement to enrich the features of
the tuned TTS corpus. To evaluate the impact of various sizes
of the supplemental corpus, we trained several substitute mod-
els by combining the tuned audios for Microsoft Bing Speech
Service API (6.83 hours) with different scales of supplemental
corpus as the training corpus. The sizes of the supplemental
corpus include 1-hour, 3-hours, 5-hours, 20-hours, 40-hours,
respectively19. Consequently, we obtained five different sub-
stitute models for Microsoft Bing Speech Service API, and
generated AEs based on them. The embedded commands are
the ten target commands of Microsoft Bing Speech Service
API listed in Table 10 in Appendix G.

Table 6: Effect of different size of supplemental corpus on
Microsoft Bing Speech Service API.

Training corpus Success rate of
command (SRoC)

Pdf-id
numbersTTS Extra

6.83
hours

1-hour 8/10 417
3-hours 10/10 1632
5-hours 10/10 2088

7.35-hours 10/10 2200
20-hours 10/10 2808
40-hours 10/10 2928

The results are shown in Table 6. The column “Pdf-id num-
bers” indicates the total number of the probability distribution
function identifiers of the phonemes’ features. It can be seen
that, except the substitute model trained with 1-hour supple-
mental corpus, the AEs generated from the other models can

18We use “SoX – Sound eXchange” to generate noise, and the maximum
amplitude is 1.

19Since the size of the entire corpus of the Mini Librispeech is 7.35 hours,
so the oversized corpus of 20-hours and 40-hours were randomly chosen
from Librispeech corpus (about 1000 hours).
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all attack the target successfully. Probably the reason is that
the substitute model trained with 1-hour supplemental corpus
does not learn enough features.

C Local Model Approximation with a Larger
Corpus.

In Table 7, we show the commands and effectiveness for
“local model approximation with a larger corpus” method
introduced in Section 6.4.

Table 7: Results of using a large corpus trained substitute
model.

Command G1 G2 G3
Okay Google, play music. X X X

Okay Google, take a picture. X X X
Okay Google, turn off the light. X X X

Okay Google, navigate to my home. X X X

Note: “G1”, “G2” and “G3” are used for the abbreviation of “Google
command_and_search model”, “Google Assistant” and “Google Home”,
respectively.

D Alternate Models based Generation with-
out Approximation

In Table 8, we show the commands and effectiveness for
“alternate models based generation without approximation”
method introduced in Section 6.4.

Table 8: Results of alternate models based generation without
approximation.

Command G1 G2 G3
Okay Google, call 911. X X X

Okay Google, take a picture. X X X
Okay Google, set an alarm on 8 am. X X X
Okay Google, navigate to my home. X X X

Note: “G1”, “G2” and “G3” are used for the abbreviation of “Google
command_and_search model”, “Google Assistant” and “Google Home”,
respectively.

E Details of Human Perception Survey

The participants were asked to listen to each audio
and answer the question whether they think it is a
weird song. The details of the survey can be found in
https://github.com/RiskySignal/Devil-Whisper-Attack. At the
end of the questionnaire, we added one plain TTS audio ask-
ing the participant to write down the clearly pronounced num-
ber. Such attention question at the end will help us filter out
the questionnaires with random responses. In addition, we
also recorded how many times each audio was played. Finally,
we got 70 effective questionnaires from 120 participants after
filtering.

F Transferability of the AEs on Apple Siri

We test the AEs of other platforms on the wakened Apple
Siri. If Siri can recognize the hidden command correctly, we
consider the AE for the target command successful. Detailed
commands can be found in Table 9.

Table 9: Transferability of the Devil’s Whispe AEs on Apple
Siri.

Command Black-box TBA/AGA
Call 911. Google X /X

Play music. Google X /X
Set an alarm on 8 am. Google X /X
Navigate to my home. Google X /X
Turn on airplane mode. Google X /X
What is the weather? Microsoft X/X

Call my wife. Amazon X /X

G Detail Results of the Target Commands

Detail results of our approach on the target commands are
shown in Table 10 and Table 11 for Speech-to-Text API ser-
vices attack and IVC devices attack.
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Table 10: Detail results of the Speech-to-Text API services attack.

Black-box Command SNR
(dB)

Attack type
(TBA/AGA)

Okay Google, turn off the light. 14.32 X/X
Okay Google, play music. 15.17 X/X

Okay Google, take a picture. 13.92 X/X
Okay Google, call 911. 12.82 X/X

Google Okay Google, turn on airplane mode. 11.91 X/X
phone_call API Okay Google, navigate to my home. 14.28 X/X

Okay Google, set an alarm on 8 am. 12.40 X/X
Okay Google, open Youtube. 7.19 X/X

Okay Google, turn on the WiFi. 8.21 X/X
Okay Google, turn on the bluetooth. 9.44 X/X

Okay Google, turn off the light. 13.13 X /X
Okay Google, play music. 10.07 X /X

Okay Google, take a picture. 9.11 X /X
Google Okay Google, call 911. 12.80 X /X

command_ Okay Google, turn on airplane mode. 8.01 X /X
and_search API Okay Google, navigate to my home. 13.36 X /X

Okay Google, set an alarm on 8 am. 5.82 X /X
Okay Google, open Youtube. 8.46 X /X

Okay Google, turn on the WiFi. 5.99 X /X
Okay Google, turn on the bluetooth. 7.11 X /X

Hey Cortana, send a text. 14.30 X /X
Hey Cortana, make it warmer. 14.97 X/X

Hey Cortana, open the website. 13.4 X /X
Hey Cortana, where is my phone? 13.52 X /X

Microsoft Bing Hey Cortana, what is the weather? 14.45 X /X
Speech Service API Hey Cortana, turn off the computer. 14.11 X/X

Hey Cortana, turn on the coffee maker. 13.72 X /X
Hey Cortana, turn off the bedroom lights. 13.55 X /X

Hey Cortana, set the temperature to 72 degrees. 9.73 X /X
Hey Cortana, add an appointment to my calendar. 11.85 X /X

Echo, play music. 12.25 X /X
Echo, call my wife. NA X /X

Echo, open my door. NA X /X
Echo, where is my car. 10.92 X /X

Amazon Echo, turn off the light. NA X /X
Transcribe API Echo, clear notification. 13.27 X /X

Echo, what is the weather? NA X /X
Echo, turn off the computer. 8.39 X/X

Echo, turn on the TV. NA X /X
Echo, turn on the WeMo Insight. NA X /X
Education is provided by schools. 12.51 X /X

Teachers are trained in normal schools. 13.72 X /X
What would you recommend? 12.30 X/X

The economist provides news and information. 11.54 X/X
IBM Business is the activity of making money. 13.86 X /X

Speech to Text API Share the new version. 11.28 X /X
This article is about the profession. 8.08 X/X

All governments have an official form. 6.10 X /X
Children are divided by age groups into grades. 6.75 X /X

A partnership is a business owned by two or more people. 4.41 X /X

Note: (1) We mark the success of the command with “X”, and the failure with “X”. (2) As we filter the TTS audios for the corpus of
the substitute model, we find that Amazon Transcribe API is harder to recognize the TTS than other API services, especially the word
“Echo”. The results show that attacking Amazon Transcribe is difficult, which is because that the recognition of the Amazon Transcribe
API is much rigorous. (3) All tests were conducted in October 2019. (4) We did not find any detailed software version of API from service
provider’s documentation/website.
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Table 11: Detail results of the IVC devices attack.
Black-

box and
software
version

Command SNR
(dB)

Attack
type

(TBA/AGA)
SRoA Speaker Device Audio

Source

Okay Google, call 911. 9.50 X /X 19/30
Okay Google, set an alarm on 8 am. 8.08 X /X 4/30

Okay Google, take a picture. 5.85 X/X 5/30
Okay Google, turn off the light. 10.75 X/X 16/30

Google Okay Google, play music. 11.62 X /X 8/30 JBL iPhone Lenovo
Assistant Okay Google, turn on airplane mode. 8.30 X /X 19/30 Clip 2 SE W541
Version- Okay Google, navigate to my home. 12.02 X /X 18/30 default

0.1.18794 Okay Google, open YouTube. 9.49 X/X 4/30 media player
5513 Okay Google, turn on the Bluetooth. 9,44 X /X 15/30

Okay Google, turn on the WiFi. 5.27 X/X 12/30 JBL Clip3 iPhone 8 Dell XPS 15
Okay Google, play music. 11.62 X /X 28/30

Okay Google, turn off the light. 10.75 X /X 15/30
Okay Google, turn on airplane mode. 8.30 X /X 18/30

Google Okay Google, call 911. 12.79 X /X 25/30
Home Okay Google, set an alarm on 8 am. N/A X /X N/A JBL Google iPhone SE

Version- Okay Google, take a picture. 5.85 X/X 24/30 Clip 3 Home default
1.42.171 Okay Google, navigate to my home. 7.62 X/X 26/30 Mini media player

861 Okay Google, open YouTube. 9.49 X/X 22/30
Okay Google, turn on the WiFi. 5.16 X /X 6/30

Okay Google, turn on the Bluetooth. 7.67 X/X 21/30
Hey Cortana, send a text. 11.71 X /X 21/30

Hey Cortana, make it warmer. 9.28 X/X 18/30
Hey Cortana, open the website. 12.44 X /X 29/30

Hey Cortana, where is my phone? 11.67 X /X 6/30
Microsoft Hey Cortana, what is the weather? 9.92 X /X 15/30 JBL iPhone 8 ASUS
Cortana Hey Cortana, turn off the computer. 10.07 X/X 7/30 Clip 2 P453U
Version- Hey Cortana, turn on the coffee maker. 10.73 X /X 15/30 default

3.3.2.2682 Hey Cortana, turn off the bedroom lights. 9.63 X /X 13/30 media player
Hey Cortana, set the temperature to 72 degrees. 10.24 X /X 9/30

Hey Cortana, add an appointment to my calendar. 9.77 X /X 14/30
Echo, play music. 13.43 X /X 21/30

Echo, call my wife. 10.86 X /X 17/30
Echo, open my door. 11.36 X /X 17/30

Echo, where is my car. 11.31 X /X 23/30 ASUS
Amazon Echo, turn off the light. 12.36 X /X 28/30 JBL Echo P453U

Echo Echo, clear notification. 12.45 X /X 10/30 Clip 2 1st gen default
Version- Echo, what is the weather? 11.13 X /X 30/30 media player

647588720 Echo, turn off the computer. 14.28 X /X 11/30
Echo, turn on the TV. 11.56 X /X 6/30

Echo, turn on the WeMo Insight. 12.21 X /X 14/30
Education is provided by schools 9.21 X /X 4/30

Teachers are trained in normal schools. 13.74 X /X 10/30
What would you recommend? 12.24 X/X 25/30

The economist provides news and information. 8.07 X/X 24/30
IBM Business is the activity of making money. 4.07 X /X 24/30 JBL Huawei iPhone SE

(WAA) Share the new version. 7.89 X /X 12/30 Clip 2 P30 default
This article is about the profession. 7.82 X/X 26/30 media player

All governments have an official form. 5.33 X /X 13/30
Children are divided by age groups into grades. 6.55 X /X 18/30

A partnership is a business owned by two or more
people. 3.72 X /X 2/30

Note: (1) We mark the success of the command with “X”, and the failure with “X”. (2) The practical IVC devices tests were conducted in two
meeting rooms about 12 and 20 square meters, 4 meters high. (3) The AE of “Ok Google, turn on the WiFi” was tested on iPhone 8 using JBL Clip 3
speaker, while it cannot succeed on iPhone SE as the other AEs. (4) The volume of AEs is about 65~75 dB measured by SMART SENSOR AS824.
The distance ranges 5~50 centimeters (5~200 centimeters for Echo). (5) In the tests, the language of the devices needs to be English (US) only and
the region/location needs to be US only (if apply). (6) All tests were conducted in October 2019. (7) IBM didn’t provide software version for IBM
Speech to Text API.
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