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Abstract
Smartphone loss affects millions of users each year and causes
significant monetary and data losses. Device tracking services
(e.g., Google’s “Find My Device”) enable the device owner to
secure or recover a lost device, but they can be easily circum-
vented with physical access (e.g., turn on airplane mode).
An effective loss prevention solution should immediately
lock the phone and alert the owner before they leave without
the phone. We present such an opensource, real-time system
called Chaperone that does not require additional hardware.
Chaperone adopts active acoustic sensing to detect a phone’s
unattended status by tracking the owner’s departure via the
built-in speaker and microphone. It is designed to robustly
operate in real-world scenarios characterized by bursting high-
frequency noise, bustling crowds, and diverse environmental
layouts. We evaluate Chaperone by conducting over 1,300
experiments at a variety of locations including coffee shops,
restaurants, transit stations, and cars, under different testing
conditions. Chaperone provides an overall precision rate of
93% and an overall recall rate of 96% for smartphone loss
events. Chaperone detects these events in under 0.5 seconds
for 95% of the successful detection cases. We conduct a user
study (n = 17) to investigate participants’ smartphone loss
experiences, collect feedback on using Chaperone, and study
different alert methods. Most participants were satisfied with
Chaperone’s performance for its detection ability, detection
accuracy, and power consumption. Finally, we provide an
implementation of Chaperone as a standalone Android app.

1 Introduction

Smartphone loss is a serious security risk that has affected mil-
lions of users. News articles on such incidents are abound. In
2018, Kaspersky Lab [8] reported that on average, 23,000 An-
droid devices are being lost or stolen each month. In 2016, half
a million UK residents had a mobile phone stolen, and 35% of
these phones were stolen while they were being left out and
unattended [21]. Most stolen phones are never recovered—
e.g., 68% US users failed to retrieve their phones in 2014 [11].

Users are more likely to lose their smartphones in public
places, e.g., coffee shops and bars, where strangers can steal
them [4]. In 2019, smartphones were the most commonly lost
item in the ride-hailing service Uber [28]. Wiese et al. [32] ob-
serve that 49% of office workers put their phone unattended on
a desk, which incurs unauthorized access of co-workers to sen-
sitive data [24]. Beyond privacy threats, stolen or lost devices
can also significantly affect enterprise security [2, 18, 25].

Many solutions have been designed to secure an unattended
smartphone or its data. We term these solutions as post-loss
solutions. Some solutions aim to prevent unauthorized ac-
cess to the sensitive data stored on the unattended device.
This goal is mostly achieved by locking the phone’s screen
after a configurable idle period. However, an adversary, like a
co-worker, may be able to pick up the phone before it locks.
Ideally, the phone screen should be locked as soon as its owner
steps away. Proximity-based solutions [6, 19, 33] target this
goal by making the owner carry an additional device, and use
RFID or Bluetooth to detect proximity to the phone. However,
these solutions do not provide a very accurate measure of
distance [12]. Another alternative is continuous authentica-
tion [9], which tries to detect when a non-owner is using the
phone, and subsequently locks the phone. However, it may fail
in certain cases, in particular, against mimicry attacks [10].

Some other solutions assist with the recovery of lost de-
vices. “Find My iPhone” and “Find My Device” are device
tracking services available from Apple and Google, respec-
tively. Once the device owner realizes that they have lost the
device, they can use these services to locate, recover, or dis-
able their smartphone. Usually there is some delay between
the device loss event and the owner’s realization of it. For de-
vices lost in public places, this delay is sufficient for strangers
to steal the device and turn on airplane mode to render such
solutions ineffective. Therefore, a phone that is about to be-
come unattended in a public place should try to prevent this
loss by alerting its owner (e.g., playing an alarm sound), in
addition to locking its screen.

The main challenge for a device locking and loss prevention
solution is to make the phone track the user’s departure in a
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contactless way, where the phone senses the user’s motion
without the user carrying it. In addition, the solution should
satisfy the following requirements: (1) detect device loss in
real-time, i.e., the device must react before its owner has left
the premise; (2) work on common off-the-shelf smartphones
without requiring additional hardware or OS root privileges;
(3) perform robustly across common device loss scenarios,
e.g., noisy and crowded public places, offices, and cars; and
(4) have sufficiently low error rates for everyday device usage.

Given that smartphones are equipped with at least a pair of
microphone and speaker, they are capable of active acoustic
sensing. Li et al. [13] proposed iLock to automatically lock a
device based on the user-device distance estimated by the Fre-
quency Modulated Carrier Wave-based sensing technique [1].
However, iLock was only evaluated in two relatively ideal
environments: a lab and a library. Our experiments show
that it fails to work reliably in some common scenarios due
to environmental factors (see Figure 1, and details in §4).
High-frequency noise, movement of nearby people, and the
presence of obstacles may interfere with iLock’s distance es-
timation and result in false positives. For the loss prevention
scenario, a false positive results in an unnecessary alert, like
an alarm sound, which not only annoys the phone owner but
also nearby people. Thus it is critical to ensure a low false
positive rate for loss prevention.

We present Chaperone, a real-time smartphone locking
and loss prevention solution using active acoustic sensing.
Chaperone focuses on capturing a user’s departure patterns
and addresses the aforementioned challenges by tracking the
departure procedure of the device owner across three dimen-
sions (in reference to the smartphone): the motion state of
the owner, the intensity of the motion, and the distance of
the owner from the device. By incorporating multiple factors,
Chaperone provides a robust real-time mechanism to detect
when the user is about to leave the premise.
Contributions.

1. We design and implement Chaperone, a standalone, ac-
tive acoustic sensing-based system that detects possible
smartphone loss incidents in real-time on commodity
smartphones. Chaperone requires no per-user training to
operate in a new situation. Although it needs access to
the device’s microphone and speaker, Chaperone’s stan-
dalone nature preserves privacy of the device owner and
bystanders, as our carefully designed implementation
does not offload any computation from the smartphone.

2. We conduct 1,345 experiments to demonstrate Chap-
erone’s ability to operate under different conditions
(including device orientations and positions, user
leaving speeds, distances to nearby stranger, close
objects, and concurrent sensing by multiple devices),
and cover various real-world scenarios characterized by
high-frequency ambient noise, crowded locations, and
diverse layouts (including academic venues, restaurants,
offices, cars, and transit stations). This is the first

such comprehensive evaluation of active acoustic
sensing in real-world scenarios compared to existing
literature [3, 13, 15, 16, 22, 23, 27, 30, 36–40].

3. Chaperone provides an overall precision of 93% and
an overall recall of 96%, outperforming iLock [13]
(see §6 for details) by 14% in both precision and recall
scores. Specifically, in complex real-world scenarios
(e.g., lounge and bus stop), the performance gain is up to
32% in the recall score. For 95% of the successful loss
detection experiments, Chaperone can lock the phone
and alert the owner within 0.5 seconds. The experimen-
tal results provide strong indication that Chaperone is
robust and effective in many everyday scenarios.

4. We conduct a user study (n = 17) to investigate people’s
smartphone loss experiences, collect feedback on using
Chaperone, and study user perceptions of different alert
methods for smartphone loss prevention. The results
indicate that the participants are satisfied with the detec-
tion performance of Chaperone. We also report on the
suitability of five alert methods for different locations.

5. We release Chaperone as an opensource, standalone
Android app, and our collected dataset from both
lab and real-world experiments, to help reproduce
our findings, and improve acoustic sensing-based
device loss prevention solutions. The project link is
https://github.com/cryspuwaterloo/chaperone.

2 Related Work

Smartphone loss detection. Academic (e.g., [7]) and com-
mercial (e.g., [19, 33]) solutions are available that require
an additional device to detect proximity to the smartphone.
Despite the overhead cost of additional hardware, these solu-
tions do not provide a very accurate measure of distance [12].
Consequently, they may not be effective when the user leaves
e.g., a ride without their smartphone. Yang et al. [34] pro-
pose Surround-See, a smartphone equipped with an omni-
directional camera that enables peripheral vision. One sug-
gested application is warning users when they leave their
phone behind. However, such special purpose cameras are
unavailable on current smartphones. Mirsky et al. [17] study
the scenario where an attacker picks up an unattended phone
and starts using it. They show that within seven seconds, con-
tinuous authentication can detect the change in behaviour and
lock the phone. However, the attacker may be able to mimic
the owner’s behavior [10] to prevent the phone from locking.
In comparison, when the owner leaves, Chaperone can detect
and lock an unattended phone within 0.5 seconds.

Liu et al. [14] focus on detecting pickpocket and grab-and-
run phone theft events with machine learning. Their solution
is limited to these two theft events and does not address unat-
tended phone scenarios, making it complementary to Chap-
erone. Yu et al. [35] present a post-loss solution that uses
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emergency call mechanisms to allow the device owner to
wipe their device remotely after a loss. This solution works
even if a thief removes the SIM card from the device. How-
ever, the solution is not designed to prevent the physical loss
of the device. In terms of methodology, more close to our
work is iLock by Li et al. [13], which uses active acoustic
sensing for automated locking of the device. We conduct ex-
tensive experiments to show that Chaperone performs better
in most real-world scenarios than iLock (see §7.1 and §8).
WiFi and acoustic sensing on smartphones. WiFi signals
have been used to recognize human activities by detecting
changes in the channel state [29, 31, 41]. However, it is diffi-
cult to extract WiFi channel state information on commodity
smartphones [41]. WiFi-based approaches also require
separate sender and receiver devices, and impose placement
requirements, which makes them infeasible for loss detection
in public places. In contrast to WiFi sensing, acoustic sensing
works reliably using only a single device. In active acoustic
sensing, a device generates a sound signal and senses the
echo [3]. There has been extensive work on performing a
variety of acoustic sensing tasks with commodity off-the-shelf
smartphones; such tasks include: ranging [13], gesture track-
ing or recognition [23,30,36,40], object detection [16,27,38],
and user authentication [39]. However, no past approach
has explored the feasibility of active acoustic sensing for
smartphone locking and loss prevention, considering diverse
background noise, crowd, and location layout conditions.

3 Threat Model

Our focus is the threat posed to an unattended smartphone by
nearby opportunistic attackers. To start with, the smartphone
is placed stationary on a surface intentionally (e.g., the owner
puts it on a table), or unintentionally (e.g., the phone slips
from the owner’s pocket). Its microphone and speaker are not
covered by other objects so that the transmission of sound is
not blocked. (We examine the impact of nearby objects that
partially block sound transmission in §8.3.1.) We assume the
device owner is initially closer to the phone than others, in-
cluding nearby people and the attacker, and the initial distance
between the owner and the device is under 1m. This condi-
tion ensures that the device is initially in a relatively secure
context compared to the later unattended status. We discuss
more complicated situations in §10 (e.g., when a stranger is
closer to the device than the owner).

After the initial placement, the owner may move away from
the device, thereby exposing it to theft or unauthorized access.
The attack may happen within a few seconds after the phone
becomes unattended (i.e., when the owner moves away from
the phone). A potential smartphone loss is defined as a smart-
phone owner leaving the phone behind in a public or untrusted
place. We propose a preventive approach that can detect a
potential smartphone loss situation, lock the phone, and gen-
erate an alert before the owner leaves the place. More than
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Figure 1: Potential factors that affect acoustic sensing. The
green area depicts the detection range. The smartphone owner
enters the detection-blind area caused by the obstacle while
still being within the distance threshold, making the detector
fail to follow the owner and track a nearby person instead.

just putting a threshold on the distance from the smartphone,
our approach detects the owner’s departure and absence from
the phone (i.e., the owner keeps moving away from the phone
and is eventually absent). Therefore, in our experiments, we
do not have a specific attacker role given that the detection
should occur before the attack happens. Instead, we consider
the influence of nearby people on our sensing approach, which
captures the reflected signals from the owner (see §5) and
other people and objects. Note that we use the terms owner
and user interchangeably.

4 Design Goals

An effective smartphone locking and loss prevention solution
should have the following desirable properties:
Standalone. While it is possible to leverage specialized hard-
ware (e.g., Surround-See [34]), a solution that works on com-
mon off-the-shelf smartphones is more likely to be adopted.
Similarly, while an accessory (e.g., a smartwatch) connected
to the smartphone can detect smartphone loss, a standalone
solution relieves users from carrying an additional device.
Low detection delay with low energy consumption. We
use the term detection delay to refer to the time period during
which the owner is unaware of the device loss. For post-loss
solutions, this delay may be large as they are dependent on
the owner’s realization of the device loss. In a loss prevention
solution, the detection delay corresponds to the time duration
between the device owner leaving, and the solution realizing
that the owner is not present near the device, in turn, locking
the phone. Thus, it is desirable to have low detection delay.
However, low detection delay requires frequent sensing to
ensure real-time detection. The local analysis of the acoustic
data on the mobile device could be computationally intensive
and consume significant battery power. Thus, we need to
balance detection performance and energy consumption.
Few false positives and false negatives. A closely related
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Figure 2: Workflow of Chaperone.

usability aspect is the number of false positives. For example,
the smartphone owner may move to grab something from
across the table in a restaurant, which may be misconstrued
as the owner leaving by a solution with low detection delay.
False positives are inconvenient and may negatively affect the
adoption of a solution. Therefore, the solution should notify
the user in real-time, while limiting the number of false pos-
itives. Similarly, the solution should have few false negatives,
i.e., failure to detect actual user leave events. False negatives
may cause device loss; therefore, the system should minimize
false negatives even at the cost of increasing false positives.
Robust. In practice, smartphones are lost at a variety of loca-
tions including coffee shops, restaurants, cars, etc. [4,28]. Lo-
cation diversity implies different levels of background noise,
nearby moving people, and obstacles in the physical layout
of the location. Figure 1 shows an example of these factors
in a small lounge scenario. In terms of background noise,
active acoustic sensing for smartphones usually uses the high-
frequency band up to 24kHz (see §5), and as a result, high-
frequency background noise poses a threat. Such noise is
often encountered in real-world scenarios, e.g., slamming of
a door. A high-frequency noise source may emit noise for a
short period of time, but it is likely to happen more often at
certain locations (e.g., a restaurant). Therefore, it is important
for a robust system to deal with high-frequency noise. The
movements of other nearby people introduce more reflections
of sound signals, and thus require careful consideration. In
terms of layout, a location’s physical layout may introduce
obstacles, limiting the effective operational range of acoustic
sensing. In Figure 1, the range where active acoustic sensing
can effectively receive the echoes is limited by the lounge
layout since the acoustic signal is blocked or reflected by the
obstacles. If the owner follows the blue arrow, the phone fails
to track the echo from the owner after the owner moves be-
hind the obstacle. In summary, the solution should robustly
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Figure 3: Signal processing in the acoustic sensing module
(note: magnitude in the figure is normalized).

operate across a variety of locations, and require minimal or
no location and environment-specific tweaking.

5 Chaperone: Design and Implementation

We leverage active acoustic sensing based on a high-
frequency acoustic signal, which is inaudible to most humans
and is not interfered by common noise in the lower-frequency
band. The speed of sound is orders of magnitude greater
than the speed of a person moving away from the device—
sufficient for real-time detection. Chaperone consists of four
main modules: trigger, acoustic sensing, user tracking, and
decision making module; see Figure 2.

5.1 Trigger Module
Chaperone does not need to continuously perform active
acoustic sensing for many scenarios including the following:
(1) The user is holding the device, or it is on the user’s body.
Google’s Activity Recognition API provides this information
using low-power sensors.1 (2) The user is using the device
while it is lying on a surface, e.g., playing a video while the
device is on a desk. This can be determined by querying
the device state to establish whether the device screen is off
and it is in idle state. (3) The device is at a trusted location,
e.g., the user’s home; such locations can be configured by
the device owner. The trigger module invokes active acoustic
sensing only when the device is not in use (i.e., idle), not
on the user’s body, and in a potentially untrusted or public
environment. This reduces the acoustic sensing overhead.

5.2 Acoustic Sensing Module
This module performs active acoustic sensing to keep track
of the user’s movement. It sends a particular acoustic signal,
and processes the received echo signal to make meaningful
conclusions about the user’s movement (if any). It consists of
an acoustic signal generator, audio manager (controlling the
speaker and the microphone), and a signal processor.

The signal generator produces an inaudible acoustic signal
based on sampling rate, frequency, length, and signal type,

1https://developers.google.com/location-context/activity-
recognition
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(a) Magnitude heatmap. (b) Differential heatmap. (c) Outliers and distance estimate.

Figure 4: Distance estimation procedure: (a) the bright part represents the captured echoes from nearby objects and people; (b)
after excluding echoes from static objects, the user’s movement from time 0–2.5s is highlighted, but we can still observe the
echo from nearby people, e.g., 85cm away from the device during the time period 2.5–5s; (c) by using our candidate selection
algorithm, we can track the user’s movement and predict the movement when there is no valid observation (e.g., at time 3s).

and then passes the audio data to the audio manager. We use a
sampling rate of 48kHz for supporting the acoustic signal up
to 24kHz and a sensing period (i.e., a frame) of 50 millisec-
onds for real-time detection. In the first phase of the sensing
period, the device emits a 1,200-sample acoustic signal and
keeps recording the sound; see Figure 3a. In the following
1,200-sample idle phase, the device emits no signal but contin-
ues to sense for the reflection of the signal emitted during the
first phase. The default acoustic signal used in Chaperone is a
frequency sweep from 19–23kHz with fading at the start and
the end of the signal, which is inaudible to most humans [5].

The audio manager interfaces with the smartphone’s
speaker and microphone. It simultaneously uses the speaker
to periodically play the acoustic signal and the microphone
to record the sound; see Figure 3b for an example of the raw
sound. Since the recorded sound covers the whole frequency
range, including environmental noise, the audio manager con-
tinuously passes the raw sound data to the signal processor to
extract the reflected acoustic signal.

The signal processor is designed to obtain a magnitude
vector m of the echoes. It first applies two filters, a band-pass
filter and a matched filter, to the raw sound data to match
the original acoustic signal. The band-pass filter keeps the
dedicated frequency band, and the matched filter highlights
the original acoustic signal by calculating the convolution
of the filtered sound signal and the reversed original acoustic
signal. Since it is impossible for an echo to occur before
the direct transmission, we only keep the samples after the
first peak (i.e., the sample with the locally highest magnitude
caused by the direct transmission from the speaker to the
microphone), and then obtain the processed acoustic data; see
Figure 3c. The signal processor then calculates the magnitude
vector m for the clipped signal. Since the delay of an echo is
the round-trip time of sound traveling between the phone and
an object (or user), each index of the vector can be mapped
to the corresponding distance d according to the following
time-of-flight distance measurement formula: d = Mc

2 fs
· i,

where c is the speed of sound, fs is the sampling rate of the
acoustic signal and M is the downsampling rate. For example,
given that c = 340 m/s, fs = 48kHz and M = 4, the 10th

element of vector m is the magnitude of the matched signal
that is approximately 0.142m away from the phone. Finally,
the signal processor passes the magnitude vector m for the
current frame to the user tracking module.

5.3 User Tracking Module

This module locates the user by filtering echoes reflected from
surrounding objects and background noise, and tracking the
user among other moving bodies.
Pre-processing. In the first step, the pre-processing sub-
module filters the echoes reflected from other objects. Fig-
ure 4a shows that the magnitude vectors capture echoes
from the user as well as objects. We remove echoes from
static objects by using the differential magnitude vector
∆mt =|mt −mt−1 |, t ∈ N∗, which is the absolute difference
between the current and the previous magnitude vectors. Fig-
ure 4b shows that this step excludes static objects and high-
lights echoes from the user. The pre-processing sub-module
also determines if the current frame is affected by background
noise. The overall magnitude of the differential magnitude
vectors at the corresponding moments may become irregu-
larly large due to high-frequency noise (see §4); we thus set a
threshold on the average value to exclude such noisy frames.
Note that if a frame is regarded as noisy, there is no valid ob-
servation at that moment. This error is adjusted by predicting
the current distance based on the values from the previous
frames using a Kalman filter.
Outlier detection. This sub-module detects potential dy-
namic movements of the user. Intuitively, an outlier (i.e., an
exceptionally large magnitude) in a differential magnitude
vector implies the existence of motion at the corresponding
distance. We use median-absolute-deviation (MAD) outlier
detection to obtain the outliers in the current frame. However,
our outlier detection may be negatively affected by the mo-
tion of the user’s body parts and the motion of other nearby
people. Specifically, the intense motion of a user’s body parts
results in a non-trivial number of outliers; see the blue dots in
Figure 4c. We handle these outliers by clustering them based
on their relative distance, so that they are merged into a single
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Algorithm 1 Candidate Selection Algorithm

Input: All m candidate tuples Cm = {(sm,hm, lm)} where s is
starting distance, h: peak magnitude, l: cluster size; d̂: pre-
dicted distance ; n history speeds ṽ = {v0,v1, . . . ,vn−1};
Rmax: max range; q: base discount

Output: Observed distance obs

1: function CANDIDATE_SELECTION(C, d̂, ṽ)
2: obs←−1, pmax←−1,e← 0 . Initialization
3: κ0← getDirection(vn−1)
4: for i← n−2 to 0 do
5: κ← getDirection(vi)
6: if κ = κ0 and κ 6= 0 then . If direction changes
7: e← e+1 . Add to discount exponent
8: else break
9: for i← 0 to m−1 do

10: si,hi, li←Ci, r← qeRmax . discounted range r
11: if | si− d̂ |≤ r or | si + li− d̂ |≤ r then
12: if hi > pmax then
13: obs← si, pmax← hi

return obs

candidate.
Candidate selection and Kalman filter. From the clustered
candidates, we choose the candidate that corresponds to the
user and use it to estimate the user-device distance and the
user’s speed. For the first frame (at t = 1), we choose the
candidate closest to the phone, assuming that the user is the
closest, and then feed the corresponding distance into the
Kalman filter as the initial distance. Once the user is in motion,
our assumption that the user is closest to the device may no
longer be valid. For example, in Figure 4c, we can observe
movement of another person at the distance mark of 0.8m
(and at time 2.5s), while the user is actually 1.7m away from
the phone. To address this scenario, we make the candidate
selection and the Kalman filter work together to decide which
candidate point to choose as the observed distance dt at time
t. The Kalman filter is also used to estimate both distance and
speed. For candidate selection among the following frames,
we reduce the candidate selection range if the user keeps the
previous motion state; see Algorithm 1.

Since the Kalman filter itself predicts the current distance
and speed at each round, we incorporate the a priori estimate
of distance d̂t|t−1 (i.e., “predicted distance”) from the Kalman
filter to calculate the possible range for the next distance. The
candidate selection module chooses the most consistent can-
didate based on the magnitude and uses its corresponding
distance as the observed distance. Then, the Kalman filter
updates the a posteriori estimate of distance d̂t|t and speed v̂t|t
at time t. (We denote them as “estimated distance” and “esti-
mated speed”.) Note that if the user is stationary, or out of the
detection range, there might be no matching candidate points.
In that case, the Kalman filter is fed with the previous distance
as the observation, assuming that the user is idle. After com-

High Variance

Static Object

Hot Area

Fluctuation

(a) Magnitude Heatmap (b) Differential Heatmap

Figure 5: Example of distance tracking failure: the user track-
ing module can only track the user up to about 85cm.

bining multiple frames, we obtain a trace of the user’s move-
ment based on the distance estimated by the Kalman filter (the
yellow line in Figure 4c). All the distance and speed values, to-
gether with the magnitude vectors, are passed to the decision
making module to determine whether to generate an alert.

5.4 Decision Making Module
This module detects whether the user is about to leave the
device, based on the information obtained from the acoustic
sensing and user tracking modules. As noted in §4, several
environmental factors can limit the detection capabilities in
real-world scenarios; see Figure 5, where the user tracking
module fails when a distance-only approach is employed
with the distance threshold set at 1m. As a result, a simple
distance-only approach is unable to determine whether the
user is stationary at that point or is behind the wall. There-
fore, dealing with obstacles requires a more comprehensive
analysis than relying on the estimated distance alone.
Classifiers for user state estimation. We rely on three clas-
sifiers: the motion state classifier determines whether the user
is approaching, leaving, or stationary; the activity intensity
classifier determines whether the user’s activity is intense or
moderate; and the user presence classifier determines whether
the user is close to the device or far away. The features for
these classifiers are derived from distance, speed, magnitude
vector and differential magnitude vector estimates of the user
tracking module; Table 1 lists our features and their usage
in the classifiers. Feature values are populated by combining
data from multiple continuous frames into one window. The
window size w is set to five frames (i.e., 250ms), containing
sufficient information to perform meaningful analysis without
affecting the real-time capability of Chaperone. Within each
window, we denote the first frame as t1 and the last frame as
tw. As for the (differential) magnitude vectors, we focus on
movements in the 15cm–1m range. A lower bound of 15cm
excludes any direct transmissions from the speaker to the mi-
crophone, and our experiments show that an upper bound of
1m provides sufficient data to reliably detect smartphone loss.
Features for classification. Intuitively, speed and distance
features are correlated to the user’s motion and presence state.
From the user tracking module, we know whether it has a
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Features Formula or Description C1 C2 C3

IsObserved
whether user tracking module makes
a valid observation

Distance

Observed distance: dobs =
tw
∑

i=t1
di/w

Estimated distance: dest =
tw
∑

i=t1
d̂i|i/w

Difference from median:
∆dest = dest−median{dt}
∆dest = dest−median{dt|t}

Speed

Observed speed: vobs = (dtw −dt1)/w
Est. speed: vest = (d̂tw|tw − d̂t1|t1)/w

Numerical avg. speed: v̄ =
tw
∑

i=t1
v̂i|i/w

Fluctuation # of direction changes in est. speed

Magnitude m̄ =
tw
∑

i=t1

r
∑

j=d0

∆mi, j/wr

Hot area rate h =
tw
∑

i=t1

r
∑

j=d0

1{∆mi, j > θ}/wr

Row variance
σd =

tw
∑

i=t1
(mi,d−µd)

2/w,

µd =
tw
∑

i=t1
mi,d/w

Static object # of static objects changed in m

Table 1: Features for three classifiers. C1: motion state; C2:
activity intensity; C3: user presence. A circle means a classi-
fier uses the corresponding feature (empty indicates no use).

valid observation on the user’s motion, and then we can obtain
both observed and estimated distances and speeds. We also
calculate the relative distance to the median of historical user-
device distances, approximating the user’s initial distance
to reduce fluctuations caused by the user’s activity. Besides,
we employ the average speed, which is the slope of the line
connecting the distances of the first and the last frames.

We also consider intensity-related features. Figure 5b
shows that when the user is performing activities, such as
typing or standing up, the movement of different body parts
leads to the average differential magnitude close to the phone
being dramatically larger (called a “hot area”) than the am-
bient magnitude. Therefore, to describe the user’s activity
intensity, we use the average differential magnitude and the
hot area rate, the proportion of the area whose magnitude is
larger than a threshold θ. Besides, these activities may result
in some fluctuations in the speed and distance estimation,
which can be observed in frequent changes of the direction.

The magnitude vector also provides information about user
presence; see Figure 5a. Even slight movement of the user
can still cause an increase of variance in magnitude at the
corresponding distance, implying the user’s presence. Further-
more, it is possible to infer the user’s presence based on the
static objects nearby. When the user is near the phone, parts
of the acoustic signal will be blocked by the body, and the
objects behind the user may not appear on the spectrum. But
after the user has left, these objects will begin to reflect the
signal, and thus change the raw magnitude vector.
Decision maker. This sub-module determines the user state,

and reacts based on the classification results of the three clas-
sifiers. We adopt a sliding window mechanism to make a
decision across three windows, which improves the detection
accuracy without sacrificing the real-time nature of the sys-
tem. The decision maker uses the following criteria to decide
whether a departure activity of the user happens: The user
is leaving (i.e., the motion state classified as “leaving”), the
activity intensity is fading (i.e., the activity intensity changed
from “intense” to “moderate”), and lastly the user is no longer
close to the device (i.e., the user presence state changed from
true to false). Only when the user’s movements satisfy all cri-
teria, Chaperone will make a positive detection. This strategy
helps reduce false positives by a distance-only approach.

As a reaction to a potential smartphone loss, Chaperone
locks the phone immediately and triggers an appropriate alert
method using, e.g., a ringtone, vibration, notification sound,
or screen flashing. The alert scheme is chosen based on the
contextual information collected by the trigger module. For
example, if the environmental noise level is low, a gentle
ringtone will be sufficient to get the user’s attention. In §9, we
systematically investigate user preferences for alert methods
in terms of effectiveness and annoyance in different scenarios.

5.5 Implementation
We implement a Chaperone prototype as a standalone Android
app. To help reproducibility, we also implement a remote-
mode option, where the smartphone is responsible only for
acoustic sensing, and a remote server stores and analyzes the
raw acoustic data for user tracking and decision making.

For acoustic sensing, we use LibAS [26], an opensource
framework for the rapid development of acoustic sensing apps.
LibAS outputs the acoustic signal used by Chaperone and
performs acoustic sensing. The operations required for user
tracking and decision making (see Figure 2) are not provided
by LibAS, so we had to implement them ourselves. The mini-
mum SDK supported by Chaperone is API level 21. Audio
data is collected in raw audio mode for Android 7 and up or
using the microphone audio source for below Android 7.
Support for different smartphones. For most experiments,
we use a Google Pixel (2.15GHz quad-core CPU, 2016) for
data collection to train the classifiers in the decision making
module. We successfully tested the prototype on Samsung
S8, Huawei AL-10, and Google Pixel, Pixel 3, Nexus 5x,
and Nexus 6P phones. Because of hardware differences, the
magnitude scales of acoustic signals vary on different devices.
To make Chaperone work on different devices, an additional
configuration step is needed. First, we adjust the volume of
the target phone to approximate the original acoustic signal
strength to the Pixel. Then, we sample the received signal and
map the magnitude scale of the target phone to it. This one-
time configuration step is needed before deployment so that
the classifiers can be used on other devices without retraining.
Latency. To balance detection performance and signal pro-
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cessing overhead, we set the sensing period to 50 ms (see §5.2)
and implement filters in native C for efficiency. It takes 25–
35ms on the Pixel to generate raw magnitude vectors from the
acoustic signal. User tracking considers echoes only within
two meters from the device, which is sufficient for device loss
detection, and takes less than 1ms to extract features. The
decision making module uses pre-trained models and takes
about 1–2ms for classification (see §6 for details). As a result,
the overall latency of Chaperone for each sensing period is
about 45ms on the Pixel. On the Nexus 5x (1.8GHz hexa-
core CPU, 2015), processing takes 60ms, while on the Pixel 3
(2.5+1.6GHz octa-core CPU, 2018), it takes only 35ms. There-
fore, Chaperone is effective for new and old devices.
Silent mode. When acoustic sensing is triggered on a device
in silent mode, the media volume is set to high for exclusively
sending inaudible acoustic signals. The ringtone volume re-
mains on silent. Since silent mode implies that the user is in a
quiet environment, Chaperone can adopt vibration or flashing
for alerts, instead of a ringtone. When acoustic sensing is
terminated, the device resumes the normal silent mode.

6 Evaluation Setup

Logistics. To evaluate the detection performance of Chap-
erone, we conducted experiments that simulated different
smartphone loss scenarios. For the ground truth, we need
labelled acoustic data that indicates when a user is at a certain
distance from the device. This requires at least an experi-
menter and an observer. The experimenter acted as the device
owner and performed a series of departing and everyday
activities. We include scenario-specific everyday activities
as they may introduce false positives (see §8 for details).
The observer was responsible for real-time labelling of the
departure events, td , and absence events, ta. The departure
event indicates that the experimenter is leaving the device,
and the absence event indicates that the experimenter is 1m
away from the device. The observer also labeled the user state
information, which is used for the model training for the three
classifiers. In total, eight experimenters (one undergraduate
student and one graduate student who have no security back-
ground, six graduate students who have security background)
simulated the device loss events in the experiments and one
observer labeled the events for consistency.
Data collection. Our objective is to collect data from a di-
verse set of evaluation conditions and scenarios. We first
controlled device orientation and the user’s departing speed
in lab experiments. Intuitively, when the microphone is facing
the user, the echo reflected from the user is most effectively
captured. But if a user puts the phone horizontally (i.e., 90◦)
on a table, the received echo signal is likely weak. As for
departing speed, if the user departs quickly, the system’s reac-
tion time may be inadequate for real-time alerts. We collected
135 departure and 135 everyday activity events from an ex-

perimenter to evaluate nine combinations of these conditions
(see §7.1). Another aspect that requires careful control is the
effect of a nearby stranger on Chaperone—e.g., whether the
departure of a nearby stranger results in a false positive, or the
existence of the stranger when the user has departed results
in a false negative. We collected 54 user-departure events and
54 nearby stranger-departure events with an experimenter and
a stranger separated by three distances in a lab-based setup
(see §7.2). Finally, we evaluated real-world conditions with
varying factors (e.g., crowd, noise, and physical layout) at
eight locations (library, office, restaurant, coffee shop, lounge,
bus stop, in-vehicle, and academic venue). Eight volunteers
helped to collect 366 departure events and 391 idle events;
see Table 2. We comment on the environmental conditions of
each location when we present the results in §8. In addition,
we evaluated the effects of other interference factors by col-
lecting 75 departure events in close-object experiments and
135 departure events in concurrent sensing experiments.

Each data collection experiment consists of two parts. In
each scenario, the experimenter put the phone on a surface
(e.g., dining table at a restaurant) within one-arm distance
from the body. In the first part, the experimenter performed
some everyday activities matching the given scenario. In
the second part, the experimenter left at the requested speed.
Each activity is about 2.5–10 seconds long. For layouts with
multiple departing paths, the experimenter also took different
paths. The observer was far away from the experimenter
(more than 2m for lab experiments, at least 1m for real-world
experiments) to capture the departing procedure. Finally, to
measure the performance of Chaperone over longer idle pe-
riods, we collected 15–20 minutes of data in locations where
the user stayed for a long time, such as libraries, meeting
rooms, or restaurants. For these experiments, we count the
total number of false positives in the given time duration.
Algorithms for comparison. We compare Chaperone with
iLock’s user-phone distance estimation approach [13]. We
contacted the iLock authors for their implementation. Al-
though we did not receive it, they provided implementation
details missing from the paper. Combining with details from
the related papers [1, 13], we implement iLock’s distance es-
timation approach including background subtraction, peak
finding, and a Kalman filter with outlier rejection. Given the
available details, our implementation is close to the one by
Li et al., although there may be minor differences. We la-
bel this algorithm as “iLock” for simplicity. We assume the
phone will be locked and an alert will be raised whenever
the estimated distance exceeds the threshold of 1m, as set by
iLock [13]. iLock is prone to raise a positive detection for
more involved scenarios to avoid false negatives. For example,
when more than two users’ movements are detected but only
one exceeds the threshold, iLock locks the device without
knowing whether it was the owner who crossed the threshold;
this causes many false positives in the real-world experiments
(see §8). To reduce false positives, we merge the candidate
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Figure 6: The ROC curve of the three classifiers.

selection strategy from Chaperone into iLock, which we label
as “iLock++”. This change improves the peak selection of
iLock to better track the owner’s movement.

Metrics. To evaluate the detection performance, we use pre-
cision and recall. We denote a departing activity as a positive
instance and an idle activity as a negative instance. We define
a successful detection as one made after the moment td when
the user starts to leave. Precision is the fraction of successfully
detected departing activities in all the positively detected ones,
while recall is the fraction of successfully detected departing
activities in all the positive instances. Note that if a positive
detection is made before td due to false tracking, it is counted
as both a false positive and false negative (i.e., it creates a
false alarm and fails to detect the true event). We also evaluate
the time delay of the alerts. We use human observations as
reference points and correct them based on acoustic sensing
to offset the human reaction time. An alert is deemed valid if
it is sent after td . We use the moment ta when the user is ob-
served to pass the 1m line as the zero-point for calculating the
delays. Then the detection delay can be calculated as t̂d− ta,
where t̂d is the time when Chaperone detects the departure.
A negative delay means an early detection before the human
observation of the user passing the 1m line.

Hyper-parameter tuning. Our three classifiers are respon-
sible for interpreting the user’s current status from a variety
of features. The performance of the classifiers is critical for
the final decision making. Therefore, it is necessary to tune
the hyper-parameters of these classifiers before conducting
the experiments. We adopt Randomized Search Cross Valida-
tion [20] to tune the three hyper-parameters of the Random
Forest algorithm: tree size d, minimum sample number for
splits ns, and minimum sample number of each leaf nl . We
use the lab experiment dataset for tuning, and manually label
6,118 data points (i.e., windows) with the current user state.
This dataset is also used to train the model used in real-world
experiments. The tuning objective is to maximize the area
under the receiver operating characteristic curve (AUROC).
Figure 6 shows the average ROC curve of 20-fold cross-
validation with the best hyper-parameter settings for the three
classifiers. In the following experiments, we always adopt the
hyper-parameters for model training listed in Figure 6.

iLock
iLock+

+

Chaperone
iLock

iLock+
+

Chaperone
iLock

iLock+
+

Chaperone
0.0

0.5

1.0

precision recall

(45°, fast) (90°, normal) (90°, fast)

Figure 7: Precision and recall of iLock, iLock with Chaper-
one’s candidate selection strategy (iLock++), and Chaperone.

7 Lab Experiments

7.1 Device Orientation and Departure Speed
We conducted experiments on nine different combinations of
the following two factors—three phone orientation angles:
0◦ (vertical), 45◦, and 90◦ (horizontal); and three departure
speeds for the experimenter: slow, normal, fast. The logged
departing speeds were experimenter dependent, and the av-
erage speeds were 1.25m/s (slow), 1.67m/s (normal), and
2.22m/s (fast). These experiments were conducted in a lab
with a 70cm high desk. For each experiment, the phone was
placed at the given angle on the desk in front of the experi-
menter and the experimenter stood at the desk about 20cm
away from the phone. For each angle-speed combination, we
logged 15 departure and 15 idle events.

Since Chaperone requires training the three classifiers, we
use ten-time four-fold cross-validation to evaluate its detec-
tion performance. Namely, we split the data for all combi-
nations into four subsets where data samples from different
combinations are evenly distributed. We use three subsets
for training and the fourth one for testing. The splitting is
repeated for ten times, and eventually, we calculate the aver-
age precision and recall for each angle-speed combination.
For iLock and iLock++, which are model-free, we directly
evaluate their performance over each combination.

For angle-speed combinations (0◦, fast/normal/slow), (45◦,
normal/slow), (90◦, slow), all three algorithms achieved both
100% precision and 100% recall. Figure 7 shows the eval-
uation results for the three algorithms under the other three
combinations. Even when the user departed at a fast speed and
the phone orientation angle was 90◦, the precision and the re-
call of Chaperone are 100% and 89%, respectively—a strong
indication of robustness against different phone orientation
angles and departure speeds. In comparison, if the user left at a
normal or fast speed and the phone orientation angle was 90◦,
the recall scores of iLock and iLock++ decrease significantly.
For the (90◦, fast) combination, the recall score of iLock drops
to only 29%, and iLock++’s is about 35% with successfully
tracking two more departing activities based on the improved
tracking strategy. The reason for the drop is that the strength
of echoes from the user becomes weaker when the angle is
larger, and the detection window is reduced due to the fast de-
parting speed, where few valid measurements can be made by
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Figure 9: One-hour energy consumption
when Chaperone is continuously sensing.
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Figure 11: Detection delay. Negatives in-
dicate detection before crossing 1m.

iLock and iLock++. They lost track of the user’s trace before
the 1m threshold under these conditions, which shows the
ineffectiveness of the distance-only approach. Chaperone can
still detect such situations based on the user state classifiers of
the decision making module. All three algorithms have a very
high precision score (i.e., no false positives for iLock++ and
Chaperone), because the idle events performed in the ideal
experiments were always close to the phone, which are easy
to differentiate from a departure event. The experiment has
shown that Chaperone, with the help of both the user track-
ing and decision making modules, outperforms iLock and
iLock++ when handling a more complicated situation.

Figure 8 shows the detection delay for the three algorithms.
Ideally, we expect an alert to be emitted within 1–2 seconds
after leaving the phone to get the user’s attention on time,
i.e., while the user is still close. Chaperone consistently reacts
within 400ms (95th percentile) for all nine combinations after
the user passed the 1m line; in contrast, iLock and iLock++
can react within 200ms due to their simpler detection strat-
egy. Chaperone’s window-based decision mechanism incurs
a delay of 400ms, but it is still fast enough for real-time use.

In summary, Chaperone performs significantly better under
several angle-speed combinations. Both iLock and iLock++
perform poorly when the orientation angle is large and the
user’s departing speed is high. Chaperone handles this sit-
uation well by tracking the user’s departure pattern instead
of relying on user-phone distance only. All three algorithms
manage to detect departure events in real time.

7.2 Effects of a Nearby Stranger
We conducted controlled lab experiments to investigate how
a nearby stranger affects the detection performance. We used
the same layout as in §7.1, and conducted the experiments as
follows: Both the stranger and the user initially stood at the

desk, and kept distances of 30cm, 75cm, and 100cm between
them for different tests. The phone was vertically placed 20cm
in front of the user on the desk. The user and the stranger were
asked to alternatively depart from their positions.

For all three distance settings, Chaperone is able to detect
all departure events with no false positives (precision and
recall of 100%). iLock and iLock++, which are designed
to defend against nearby attackers, also perform very well:
among the 108 events, both algorithms had two false positives
and one false negative for the 75cm user-stranger distance,
and one false positive and one false negative for the 100cm
user-stranger distance. The results show that interference
from a nearby stranger has little impact on the detection
in the lab environment. However, in real-world scenarios,
there may be more than one person near the user. In addition,
the activities from nearby people are unpredictable in terms
of direction, intensity, timing, etc. Therefore, we further
studied the potential of false positives/negatives resulting
from nearby people in the real-world experiments; see §8.

7.3 Energy Consumption

Active acoustic sensing of Chaperone is triggered only when
the Trigger module detects a potentially vulnerable context
(e.g., at a bus stop). If the phone is in a private environment,
e.g., home, Chaperone’s processing needs will be negligent
(i.e., no active acoustic sensing). However, Chaperone may
still be occasionally triggered for a long period of time—e.g.,
the user is attending a conference, while leaving the phone
on a table. Therefore, we use Android Battery Historian2 to
profile Chaperone’s energy consumption on the Pixel with a
2770mAh battery. We fully charged the phone and kept it idle
with no other applications running, except Chaperone and

2https://github.com/google/battery-historian
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Location Departure Idle iLock iLock++ Chaperone
Precision (FP) Recall (FN) Precision (FP) Recall (FN) Precision (FP) Recall (FN)

library 46 50 0.98 (1) 0.98 (1) 1.00 (0) 0.96 (2) 0.96 (2) 0.96 (2)
office 54 87 0.70 (20) 0.85 (8) 0.89 (6) 0.94 (3) 0.84 (10) 0.94 (3)
restaurant 71 93 0.89 (8) 0.90 (7) 0.95 (3) 0.89 (8) 1.00 (0) 0.99 (1)
coffee shop 36 42 0.79 (8) 0.86 (5) 0.94 (2) 0.86 (5) 0.92 (3) 0.94 (2)
lounge 50 59 0.78 (9) 0.64 (18) 0.81 (7) 0.60 (20) 0.87 (7) 0.96 (2)
bus stop 45 27 0.68 (15) 0.71 (13) 0.88 (5) 0.78 (10) 0.92 (3) 1.00 (0)
in-vehicle 58 33 0.72 (18) 0.79 (12) 0.88 (7) 0.91 (5) 1.00 (0) 0.91 (5)
acad. venue 6 0 - 0.8 (1) - 0.8 (1) - 1.0 (0)

Table 2: Precision and recall of three algorithms in eight locations (FP: # of False Positives, FN: # of False Negatives).

User # Departure Idle Precision (FP) Recall (FN) Location (# of cases)
1 50 67 0.87 (7) 0.90 (5) office (69), in-vehicle (39), bus stop (9)
2 31 21 1.00 (0) 0.97 (1) in-vehicle (52)
3 39 44 0.93 (3) 0.95 (2) coffee shop (50), lounge (33)
4 17 31 0.84 (3) 0.94 (1) library (20), coffee shop (28)
5 50 52 0.98 (1) 0.98 (1) library (20), restaurant (44), lounge(38)
6 108 110 0.93 (8) 0.99 (1) library (39), restaurant (92), bus stop (49), lounge (38)
7 29 30 0.96 (1) 0.93 (2) library (17), restaurant (28), bus stop (14)
8 42 36 0.93 (3) 0.95 (2) office (72), acad. venue (6)

Table 3: Per-user results of Chaperone and case distribution in eight locations (FP: # of False Positives, FN: # of False Negatives).

system services. We placed the phone on a table with the max-
imum volume, while Chaperone was continuously conducting
detection; the battery level dropped from 100% to 92.3% in
an hour—see Figure 9. The peak discharging rate was about
0.2% per minute, with an average of 0.13% per minute. For
comparison, one-hour music playing with the same volume
consumed about 4% of the battery, while one-hour movie
playing consumed about 9% (the idle phone took about
0.3%). Although Chaperone’s battery consumption during
active acoustic sensing is significant, it is still acceptable for
daily use with help of the trigger module — low-frequency
sensing with motion and location sensors can help avoid
unnecessary acoustic sensing and save battery. Our survey
(see § 9) also showed that the extra battery consumption was
acceptable for most participants considering their smartphone
usage habits and Chaperone’s trigger mechanism.

8 Real-World Experiments

Summary. We evaluated Chaperone against a variety of real-
world scenarios. We did not employ scenario-specific data
for training the classifiers. Instead, we trained them using the
data that we collected from one experimenter during the lab
experiments (§7.1), following our “Robust” design goal (§4,
require minimum tweaking for unseen scenarios). Figure 10
shows the overall detection performance of the three algo-
rithms over 366 departing activities and 391 idle activities in
real-world scenarios. The precision and recall scores of Chap-
erone are 93% and 96%, respectively, compared to iLock’s
79% and 82%, respectively. With using Chaperone’s candi-
date selection strategy, the precision of iLock++ increases up

to 91% and the recall is slightly improved to 85%. Figure 11
shows the cumulative distribution function of the delay for
the three algorithms; over 95% successful detection instances
happen within 500 ms after the user crosses the 1m threshold.
Although Chaperone has a longer delay than iLock, the delay
gap is still acceptable. These results demonstrate Chaperone’s
efficacy in previously unseen real-world scenarios. Table 3
shows the precision and recall scores of eight experimenters
in different locations. The three classifiers were trained with
only one experimenter’s (i.e., #3) data collected during the lab
experiments. From the results, we can see that the pre-trained
classifiers worked well for all eight experimenters, indicat-
ing that Chaperone is user-independent. We now discuss the
results for the individual scenarios (summarized in Table 2).

8.1 Evaluation under Different Scenarios
Library. The experimenter shared a group study table with
two or three students at our university library. Occasionally,
strangers passed by near the table. The background noise
came from people’s chatting and the building’s ventilation.
The everyday activities involved reading and writing by the
experimenter. In this environment, the detection rates of the
three algorithms are mostly identical. As this scenario is
close to the setting in the ideal experiments but with a few
nearby strangers, iLock and iLock++ can also handle it well.
The three algorithms shared a common false negative, caused
by the simultaneous movements from both the user and a
passer-by. The false positives were caused by interference
from a nearby stranger’s abrupt movements.
Office. The experimenter was alone in a narrow office cubicle
and performing activities, such as using the keyboard and
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monitor, and standing up to fetch documents from a shelf.
There was background noise from computers, typing, and a
regular office swivel chair. The cubicle has a semi-open struc-
ture, and we placed the phone at different positions on the
table. When it was placed close to a cubicle divider, the acous-
tic signals were partially blocked. iLock has significantly
lower precision and recall scores since it failed to handle
partially blocked signals well, or was misled by changes in
the magnitude of the echoes from the chair. With Chaperone’s
tracking strategy, iLock++ has the same recall score as Chap-
erone and a slightly higher precision score. For Chaperone,
ten false positives were a result of the user’s movements
matching the preset departure pattern of Chaperone. For
example, three false positives came from the eight document
fetching cases—when the experimenter momentarily came
close to the 1m line and then returned. All the three false neg-
atives were related to the false positives in departure activities
where Chaperone sent alerts before td (see “Metrics” in §6).
Restaurant and coffee shop. Since the layouts and results
for the restaurant and coffee shop scenarios (one restaurant
and two coffee shops) are similar, we present them together.
For these scenarios, the experimenters were eating/drinking
at different tables (e.g., round, corner, bar counter), and
shared the tables with one or two nearby people (within
1m). Both types of places were noisy, crowded, and other
customers were passing by. There was high-frequency noise
from the entrance door, dragging of chairs, and dining carts in
the restaurant; an espresso machine also sometimes produced
high-pitched noise in the coffee shops. Chaperone performs
very well in the restaurant: precision 100% and recall 99%.
In coffee shops, three false positives from two experimenters
have been observed when they temporally moved away
from the counter seat, but the precision score is still 92%.
iLock’s precision is lower in the coffee shop than in the
restaurant because of the interference from the occasional
high-frequency noise from the espresso machine, while
iLock++ is less affected. However, both iLock and iLock++
do not perform well in tracking the departure activities in
some specific layouts where the experimenters passed by a
near obstacle (e.g., a pillar) on their departure trace.
Lounge. We used a spacious, quiet lounge, where the
experimenter was sitting on a couch, and the phone was
placed either on a coffee table, or a couch (to simulate the
phone being dropped from the pocket). The couch was shared
with a stranger, and occasionally, there were people passing
by. iLock and iLock++ do not perform well in the lounge with
low recall scores of 64% and 60%. Due to the combination
of the environmental factors (signal partially blocked by
the furniture), and the user’s departure trace (walking in a
direction where the signal transmission is weak), iLock and
iLock++ can hardly capture the user’s movement as they
highly rely on distance estimation. In contrast, Chaperone
detects 96% of the departure activities. We record six false
positives (including two in actual departure activities but

where Chaperone sent alerts before td) for situations where
the user reclined on the couch while the smartphone was on
the coffee table. Similar to the document fetching cases in
the office scenarios, the body reclining movement pattern
is similar to the departure pattern, which misled Chaperone.
One false positive is recorded when the smartphone was left
on the couch and the user stood up from the couch, where
a significant moving-away event was captured by Chaperone.
Bus stop. We experimented at two types of bus stops: an
open-air bench and a small glass-enclosed waiting area. The
experimenter left the phone either on the bench or a seat in the
waiting area. There was high-frequency noise from passing
vehicles and alert signals from trams. Several other people
were also waiting for a bus or passing by. In this scenario,
Chaperone significantly outperforms iLock and iLock++, de-
tecting all the departure activities (recall: 100%). We note four
false positives for Chaperone (the precision is still 92%) when
the phone was placed between a stranger and the user, where
the stranger-phone distance was very close to the user-phone
distance. When the stranger moved away, Chaperone tracked
their movement and resulted in a false positive. iLock and
iLock++ were prone to be misled by the stranger’s movement,
especially when the user’s movement range was intersected
by the stranger’s. In addition, the high-frequency noise
sometimes interfered with the detection of iLock and iLock++
and produced false positives. Chaperone was unaffected
by such high-frequency noise thanks to its noise handling
strategy. Results from this scenario strongly suggest that
Chaperone can operate reliably in such noisy environments.
In-vehicle. Since a significant number of smartphone losses
happen during ride hailing [28], we specifically target this
scenario, which includes several challenges: the car space is
much smaller than other scenarios, and the leaving procedure
is very short—the user opens the car door, steps out, and
closes the door. Also, when exiting the car, friction noise is
produced by clothes and the seat, as well as the clunking noise
from the car door. We simulated the cases where the user
leaves the phone on either the front or back seat in a sedan
with different noise conditions for the state of the engine,
radio, and air-conditioner. Chaperone has no false positives,
and the recall reached 91%, outperforming iLock and
iLock++. The false positives for iLock and iLock++ were the
result of noise in the narrow car space when the user was sta-
tionary. However, the common noise in the car did not affect
Chaperone’s user tracking (due to the incorporation of noise
detection, candidate selection algorithms and three user state
classifiers). The false negatives for Chaperone primarily came
from the short leaving procedure, and the movement of the car
door when the user was closing it. To reduce false negatives,
one possible solution is to shorten the decision window when
the phone detects that it is in a vehicle. Nevertheless, Chap-
erone provides overall good performance for the car scenario.
Academic venue. We collected data at a workshop (a lecture
room with over 50 people), and a conference keynote (a large
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hall with over 900 people). We tested the keynote scenario
at the end of the talk when the conference participants were
leaving from the hall (crowded and very noisy). Due to the
limited data collection time, we only collected three departing
activities for each place. Chaperone worked well without
any false negatives. One common false positive for iLock and
iLock++ in the keynote hall is that they lost track of the user
because the echo strength dropped quickly to the same level
as the noise before the user was reaching the 1m line.
Summary. For real-world conditions iLock resulted in more
false positives than in lab experiments. Using Chaperone’s
candidate selection strategy, iLock++ offers higher precision,
especially in restaurant and coffee shop scenarios where
environmental factors introduced more noise; iLock++ also
improved in detecting more departure activities in office
and in-vehicle scenarios. Chaperone outperforms both iLock
and iLock++ in complicated scenarios like the lounge and
bus stop. The decision making module determines the
user’s departure activities based on user’s motion state and
activity intensity, rather than estimating user-phone distance
only. In general, Chaperone consistently performs well in
terms of recall rate. However, among the eight locations,
Chaperone has lower precision scores in the office and lounge
scenarios, apparently, because users have a large movement
range in these scenarios, and some specific activities (e.g.,
document fetching) are similar to the preset departure pattern
of Chaperone. A possible solution is to enable different
departure patterns for different types of locations.

8.2 Evaluation under Longer Idle Periods
The experiments in §8.1 evaluated false positives during ev-
eryday activities of short duration. In some scenarios, acoustic
sensing may be triggered for a longer period of time while the
phone is idle on a table with the user around, e.g., in a meeting
room at an untrusted place. In this case, a false positive can
be quite annoying. Therefore, we evaluated false positives
with Chaperone running for 15–20 minutes in the following
scenarios: office, library, restaurant, and meeting room. We
configured Chaperone to continue to run after detecting a
departure event. The experimenter performed everyday activi-
ties matching the scenarios. We observed no false positives in
the office, library, and restaurant scenarios, while two false
positives occurred in the meeting room scenario. Both false
positives happened when the user was stationary, and the clos-
est colleague, sitting around 30cm away, did some movements
(e.g., adjusted their seat), misleading the detection. Overall,
the false positive rate of Chaperone is acceptable for longer
acoustic sensing sessions under different situations.

8.3 Effects of Other Interference Factors
As Chaperone relies on acoustic sensing, it may be affected
by the following scenarios: 1) The sound transmission is

partially blocked by an object very close to the speaker and
microphone of a smartphone; 2) Multiple nearby Chaperone-
enabled smartphones are conducting acoustic sensing concur-
rently. We evaluate these cases by running Chaperone in the
standalone mode with the trained classifier models used in
the real-world experiments. In each experiment, the smart-
phone(s) are placed in front of the experimenter with 0 degree
orientation angle (i.e., vertical) and the experimenter moves at
a normal speed. For each setting, we conduct 15 experiments.

8.3.1 Close-object Experiments

For the real-world experiments, we did not control the envi-
ronment, including the presence/absence of nearby objects.
We further perform controlled experiments to study the ef-
fect of nearby objects that partially block transmission. The
Pixel phone that we use in these experiments, utilizes the
bottom speaker and microphone for acoustic sensing. (We
discuss smartphones with different hardware layouts in § 10.)
Intuitively, if an object that is wider and thicker than the smart-
phone is placed very close to the bottom of the smartphone,
the sound transmission will at least be partially blocked.

Although many factors, such as object numbers, surface
materials, and placements, may affect the sound transmission,
our main focus is to test Chaperone under different blocking
effects. Therefore, we change the distance between the object
and the phone to study the blocking effects. We conducted
the close-object experiments in an office, and placed the Pixel
(8.5mm thick) on a desk with a laptop on its left side and
two books on its right (within 50cm to the phone). We in-
vestigated the effect of a single object in front of the bottom
speaker and microphone. We used two objects—a 200-page
notebook (landscape-oriented, height: 19mm, width: 266mm)
and a 16-oz steel coffee mug (height: 198mm, width: 84mm),
and phone-object distances of 5cm and 15cm. Besides, we
tested the situation where the notebook was stacked on top
of the Pixel (placed at the notebook’s centre) with an 8mm
gap between the desk and the notebook. When the notebook
was placed 5cm away from the phone, the departure of the
experimenter was detected in 13/15 cases; for the coffee mug
at the same distance, 11/15 cases were detected. Since the cof-
fee mug has a larger surface than the notebook to reflect the
signal, it becomes more difficult to track the user’s movement.
However, when the mug was placed 15cm away, 14/15 cases
were detected. When the phone was covered by the notebook,
Chaperone detected 12/15 cases. Overall, Chaperone can still
function when signal transmission is partially blocked.

8.3.2 Concurrent Sensing Experiments

Another situation of interest is when multiple Chaperone-
enabled devices conduct acoustic sensing with the same acous-
tic signal at the same time. Intuitively, the interference caused
by the direct transmission (from the speaker of a phone to
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the microphone of the other) can be offset by the differential
magnitude, since both acoustic signals have identical period,
and the overlying signals are constant in each sensing period.
Our pilot tests show that the acoustic signal generated by an-
other phone, together with its echoes, could also be detected
as additional noisy frames by Chaperone, which is not con-
sidered in our design. One solution is to adopt a higher noise
threshold when Chaperone detects another identical acoustic
signal close-by. In the experiments, we tuned the threshold
and made no other changes in the noise detection sub-module
to handle concurrent sensing.

We follow the basic setting used in the nearby stranger
experiments: two Chaperone-enabled phones (the Pixel and
Pixel 3, using the same classifiers) are placed in parallel on
the desk and two experimenters stand in front of the two
phones and leave alternatively. Each experimenter repeats
the departure activity for 15 times. The shoulder-to-shoulder
distance between the two users was 30cm, while the distance
between the two phones was 75cm. No false positives were
detected, while one false negative on the Pixel 3 and three
false negatives on the Pixel were observed. To simulate the
case where two Chaperone users are very close to each other,
we reduced the distance between the phones and the distance
between the users by 10cm: to 65cm and 20cm, respectively.
Both phones detected 11/15 cases without any false positives.
In comparison, when only the Pixel was conducting acoustic
sensing, and the other conditions remained the same, we still
observed five false negatives. Since the two users shared a
largely overlapping activity range, it became more difficult to
distinguish them. Nevertheless, there is no significant change
in detection performance brought by concurrent sensing.

We added another Pixel (and an experimenter) to conduct
concurrent sensing experiments with three devices by placing
them in parallel, 75cm apart, with the Pixel 3 in the middle.
For the 45 experiments, there was one false negative on each
Pixel and three false negatives on the Pixel 3, with no false pos-
itives on any device. These results indicate that Chaperone can
function concurrently on multiple devices with limited perfor-
mance penalty. Similar to the close-object experiments, we
cannot exhaust all possible settings and related factors, such
as more smartphones (and users) and different placements.
However, our experimental results have shown the feasibility
of Chaperone in common concurrent sensing situations.

9 User Study

Our real-world device loss experiments show promising re-
sults for Chaperone. To validate the subjective nature of some
of the results (e.g., the acceptability of the detection delay to
the users) and to understand users’ concerns for the adoption
of Chaperone, we conducted an IRB approved user study.

9.1 Objectives and Methodology

We divide our objectives for the user study into three main
themes: investigating device loss experiences and users’ re-
actions, acceptability of Chaperone, and effective alert mech-
anisms for device loss. For device loss experiences, we col-
lected data about the occurrence, location, reaction, and the
final outcome of the event. For the acceptability of Chaper-
one, we collected data on detection ability, detection accuracy,
power consumption, and overall effectiveness. We also col-
lected data on what participants liked or disliked about Chap-
erone and whether they would use Chaperone on their devices.
Finally, we asked participants regarding their preferred alert
mechanisms for different environments based on perceived
effectiveness and annoyance.

To achieve these objectives we conducted a three-part study:
a semi-structured interview on smartphone loss experiences,
a hands-on experience of Chaperone, and a semi-structured
interview for their feedback on Chaperone. While a longer
field study may have provided better insights, the nature of
smartphone loss events cannot be controlled in a field study.

We recruited participants from the campus (excluding our
research lab) and local community through word-of-mouth.
We did not require participants to have experienced smart-
phone loss. For a realistic evaluation of Chaperone, the user
study was held in a busy campus cafeteria during weekdays.
At the cafeteria, participants responded to a brief demographic
survey and the smartphone loss experiences interview.

For the hands-on experience, participants were asked to
test Chaperone with real-time distance-tracking display on
both the Pixel and the Pixel 3. They could test Chaperone
freely and/or under the guidance of the investigator. At this
stage, Chaperone alerted the user only through a pop-up mes-
sage when it detected a potential smartphone loss. Then, we
enabled a ringtone-and-vibration based alert without telling
the participants about it, asked the participants to simulate
a smartphone loss scenario, and observed their reaction to
the alert. We chose the Pixel’s “Nudge” as the alarm sound
with alarm volume at 100%. We then demonstrated partici-
pants different alert methods including a strong ringtone (i.e.,
Pixel’s “Classic Bell”), screen flashing, and notification sound
to get their feedback on their preferences for each method for
different locations. Finally we conducted the semi-structured
interview to get their feedback on the acceptability of Chap-
erone and their preference for alert methods. We provide
detailed interview questions in our project link.

9.2 Findings from the User Study

We have 17 participants (7 females, 10 males) in the study.
13 participants are 18–25 years old, and the rest are 26–30
years old; 15 are with Computer Science or IT background.
Smartphone loss and unattended experiences. In the first
semi-structured interview, 11/17 participants reported having
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Figure 12: Participants’ rating of Chaperone on a 5-point
Likert scale (5: Very satisfied, 1: Not satisfied at all)

experienced smartphone loss. Four participants reported more
than one loss. Among the 15 reported loss cases, two were due
to pickpocketing (beyond Chaperone’s threat model), ten were
due to participants forgetting their phones, and three were
due to phones slipping out of participants’ pockets. Besides,
7/17 participants reported that they had unintentionally left
their phones unattended to do something quick (e.g., go to a
washroom) in public places. None of these unattended phone
cases resulted in device theft or unauthorized access. Thus,
we focus on the 15 smartphone loss cases.

The reported locations of the loss incidents include: library
(four cases), street (three), washroom (two), in-vehicle (two)
and one each for bus stop, meeting room, semi-open dormi-
tory area, and gym. The participants realized the absence of
the phone within 30 minutes for five cases (including two
pickpockets), and more than one hour for eight cases. In two
cases, the participants realized only when someone found the
phone and returned it. Except two pickpockets and a forgot-
ten phone in the semi-open dormitory area (later stolen by
someone), the participants eventually recovered their phones.

In nine cases, participants went back to all possible places
to look for their phone, which reportedly took them another
one hour (four cases), or more than two hours (three cases)
to recover their phone. Three participants used “Find My
Device” services; one of them managed to recover the lost
phone, while the other two failed.

This short survey indicates the importance of a preventive
approach: finding lost/forgotten phones is time-consuming,
and in some cases, such phones may never be found.
Feedback on Chaperone. For the device loss simulation, the
researcher noted that 11/17 participants reacted (e.g., stopped
leaving, turned/moved back) to the ringtone-and-vibration
based alarm and another five participants mentioned that they
had heard the alarm but they thought it was from somebody
else’s phone. (Recall that tests were done in a busy cafeteria.)
In practice, Chaperone users would be aware of their alert
sound so this confusion would unlikely happen; we did not
inform participants about the type of alert to prevent them
from explicitly waiting for it and biasing the results. 15
participants heard only the ringtone, but not the vibration;
only one participant reported hearing the vibration. As for
the inaudible acoustic sensing signal, all participants reported

not noticing it during the whole demonstration.
During the interview, when asked what participants liked

about Chaperone, all reported liking the idea of alerting a
smartphone user when leaving the phone behind to prevent
smartphone loss. In terms of dislikes, nine participants sug-
gested the ringtone used in the hands-on experience should be
more noticeable. Five thought the real-time distance tracking
was not very accurate because they noticed small fluctuations
in the real-time trace display although they did not lead to any
false positive or false negative.

To measure Chaperone’s acceptability, participants rated
Chaperone on a 5-point Likert scale, as shown in Figure 12
(a higher score means a higher satisfaction), for its overall
effectiveness (Assuming that you want to use a device loss
prevention solution, do you think Chaperone is an effective
system?), detection ability (How do you rate the Chaperone’s
ability to capture a smartphone loss?), and detection accuracy
(How do you rate the Chaperone’s detection accuracy?
(a counterexample is that Chaperone sends an unwanted
alert when the owner is not actually leaving). The average
effectiveness score is 4.2, the average detection ability score
is 4.2, and the average detection accuracy score is 4.5. The
results show that the participants were satisfied with the
performance of Chaperone.

For the power consumption, we first shared with partic-
ipants the battery consumption rate of Chaperone conducting
detection reported in §7.3, and then explained that it is
only triggered when all conditions (see §5.1) in the trigger
module are satisfied; i.e., the real power consumption will
depend on smartphone usage habits. Therefore, we asked
the participants to rate the impact of Chaperone’s power
consumption based on their habits from 1 (i.e., significant) to
5 (i.e., negligible). The average score is 3.88, implying that
the power consumption is acceptable for most participants.
Participants mentioned that they usually do not spend a
long time in untrusted or public places, and therefore, the
extra power consumption by Chaperone is still acceptable
considering the potential benefits. Two participants rated the
power consumption impact as 2. Their reported reason was
that they are heavy smartphone users and their smartphones
can hardly accommodate any additional battery consumption.
Alert. We also asked participants to comment on the alert
they received during the hands-on experience. Among 16
participants who perceived it, twelve thought the timing of
the alert was good to attract their attention, three thought
the alert was a little late and they might miss it if the alarm
sound was not loud enough in a noisy environment, and one
participant thought Chaperone sent the alarm a little early and
suggested to allow adjustable sensitiveness for the alert.

For participants’ rating of different alerts, 13 participants
rated the effectiveness of a strong ringtone as “Very effective”
or “Effective,” while eleven participants thought vibration was
“Not effective at all” since the vibration was too weak to alert
the user in a noisy environment. As for screen flashing, ten
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Figure 13: Participants’ preferences of alert methods for different locations.

participants rated it as “Not effective at all” since the phone
is usually behind a leaving user. Participants were also asked
to choose their preferred alert methods for seven location
types based on their perceived effectiveness and annoyance.
They were allowed to choose none or multiple alert methods
for each location. Most participants chose noticeable alert
methods like strong ringtones for noisy places, while for the
quiet places gentle ringtones and vibrations were preferred;
see Figure 13. Five participants chose screen flashing for the
in-vehicle scenario as a complementary alert method since
it can make the phone noticeable in a dark environment. The
results suggest that the trigger module can help Chaperone
to determine an appropriate alert method based on the
current context. Ten participants mentioned they needed a
customized ringtone for device loss and nine participants
expected the volume of the ringtone to be automatically
adjusted based on the ambient noise level. Three participants
requested further actions like e-mail notifications if the user
failed to respond to the alert within a pre-specified time.
These comments and suggestions are useful in designing a
context-aware alert mechanism for Chaperone.
Adoption. We asked the participants: Would you like to install
Chaperone as a device loss prevention app on your phone?
(Yes/No/Maybe). 8/17 participants answered “yes” because
they thought Chaperone helped reduce the risk of smartphone
loss. Eight participants answered “maybe”; four of them be-
lieved they had a good habit of always keeping their phones
with them but they still wanted to try it to record how often
they leave their phones behind, two had privacy concerns due
to Chaperone requesting the microphone permission, one was
worried about the effectiveness of the alarm in very noisy
environments, and the other one expected that Chaperone
could learn from a user’s habits to trigger the sensing smartly
and save battery. Only one participant answered “no” as they
did not need a device loss prevention application due to the
perceived low probability of losing the device.
Threats to validity. Our user study has some reasonable
limitations similar to other studies involving human subjects
including the limitation of scope to people willing to partici-
pate, self reported and subjective views, and participants might
be inclined to provide favorable responses to the researchers.
More specific limitations follow. Most of our participants
are current undergraduate or graduate students in Computer
Science, lacking diversity in participants’ background.
Although we did not require participants to have smartphone
loss experiences, the advertised content for the user study

mentions the study is to “test the context-aware techniques
on smartphones to prevent smartphone loss”, which may
have attracted users with such experiences. Another threat
to validity is that the first interview about smartphone loss
experiences may have primed participants for adoption of
Chaperone. During the user study, we used a Pixel and a Pixel
3 as the demonstration phones. The participants reported
their perceptions of different alert methods based on their ex-
perience of using these two devices. These results may not be
fully applicable to other devices due to hardware differences
(e.g., max volume difference, vibrator difference). In addition,
since our user study focuses on collecting smartphone users’
perception about Chaperone and its alert mechanism based on
one demo session, it may not cover potential issues regarding
long-term usage of a product-ready Chaperone.

10 Discussion

We discuss a few issues relevant to the deployment and usage
of Chaperone, including limitations of our current prototype.
Very close attackers. In §3, we assume that the attacker is
initially farther away from the phone than the owner. Li et
al. [13] consider an attacker who is initially closer to the
device than the owner. The potential consequence is that the
system may track the wrong person since it assumes that the
initially closest person is the owner. To defend against such an
attacker, Li et al. adopt a dedicated approach that requires two
microphones and inertial measurement sensors to distinguish
the attacker from the owner. However, it provides acceptable
accuracy only when the owner and the attacker are facing
each other, i.e., not side-by-side. Their approach also requires
the owner following a straight path away from the phone with
a consistent relative user-phone orientation (unlike Chaper-
one). Finally, both microphones may not always be available
at the same time, since the top or rear microphone could be
covered when the phone is lying on a surface. For Chaperone,
a potential defense against such an attacker is to trigger
sensing right after the user puts down the phone on a surface
to track the user’s hand movement immediately, assuming
the user’s hand is the closest moving object at that moment.
Active attackers. As mentioned in the threat model (§3),
Chaperone targets nearby opportunistic attackers, not
Chaperone-aware active attackers. An active attacker may
attempt to disarm Chaperone so that the auto-lock and alert
mechanisms are not triggered. We briefly discuss two types
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of active attacks here. 1) Jamming attack: If an attacker
continuously generates loud noise over the inaudible high-
frequency band used by Chaperone, the echo of Chaperone’s
own acoustic signal will be lost. However, it is possible to
measure the ambient noise to detect such an attack and alert
the user before conducting acoustic sensing. 2) Misleading
attack: A nearby attacker makes significant movements to
produce strong reflected signals so that Chaperone tracks
the attacker instead of the user. When the owner is leaving,
the signal reflected by the owner becomes weaker and the
nearby attacker’s movements overlap the owner’s departure
trace. Note that, the attacker must be very close to the target
smartphone (i.e., within one meter) and make significant
movements before the owner moves too far away. For a better
defence against the misleading attack, a potential avenue
is to improve the motion tracking algorithm (e.g., include
motion history), or use additional detection methods (e.g.,
RF sensing [29]) to distinguish different people.
False positives and negatives. We noticed some common
false positives caused by (relatively) longer range user move-
ments (e.g., reclining on the couch) in the lounge scenarios,
and false negatives caused by moving objects (e.g., the car
door) in the in-vehicle cases. Since our models were trained
with data from the lab-based experiments, it was challenging
to handle these special cases. An apparent solution is to train
the models with more real-world data covering these situa-
tions. We use only lab data for our models to measure Chap-
erone’s robustness in newly encountered situations—which
we assume Chaperone to face frequently in practice.
Smartphone hardware differences. We focus on the envi-
ronmental factors that affect acoustic sensing. Most exper-
iments were conducted on a Pixel, while a few concurrent
sensing experiments were done with a Pixel 3. To support
different devices, we explain how to transfer the classification
model in § 5.5. A systematic study on how hardware differ-
ences affect Chaperone’s sensing ability and the necessary
parameter adjustments due to these differences is future work.
Two possible areas are the following: 1) Sensing ability: given
differences in microphones and speakers, the recording qual-
ity above 19kHz may vary on different smartphones, directly
affecting the magnitude of the received signal. 2) Hardware
layout: the positions of speakers and microphones may differ
for different smartphones. Even for the bottom microphones,
some may be placed on the bottom edge (e.g., Pixel) while
some may be on the bottom front (e.g., Pixel 3). Such differ-
ences may result in different sensing ranges because of the
directionality of microphones.
Measurement inaccuracies. During our data collection, a
human observer marked the reference points for the moment
ta when the user passes the 1m line. A standalone distance
sensor may have provided a more accurate labelling. However,
setting up such a sensor in public places, like restaurants and
coffee shops, is inconvenient, and therefore, we settled for
labelling by a human observer.

11 Conclusion

We present Chaperone as a standalone, opensource Android
app that uses acoustic sensing to detect smartphone loss and
lock the phone in real-time. Our real-world experiments show
that it can operate reliably in diverse real-world scenarios
characterized by high ambient noise, crowded locations, and
diverse physical layouts, without retraining our classifiers for
specific scenarios. Our user study provides positive evidence
that Chaperone can indeed be made into a practical tool to help
prevent device loss, and thereby reduce serious privacy and
security threats caused by lost smartphones. Beyond device
loss, Chaperone’s design and our extensive real-world datasets
will help advance acoustic sensing research.
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