
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

SANNS: Scaling Up Secure Approximate k-Nearest
Neighbors Search

Hao Chen, Microsoft Research; Ilaria Chillotti, imec-COSIC KU Leuven & Zama;
Yihe Dong, Microsoft; Oxana Poburinnaya, Simons Institute; Ilya Razenshteyn,

Microsoft Research; M. Sadegh Riazi, UC San Diego

https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hao

SANNS: Scaling Up Secure Approximate
k-Nearest Neighbors Search

Hao Chen
Microsoft Research

Ilaria Chillotti
imec-COSIC KU Leuven & Zama

Yihe Dong
Microsoft

Oxana Poburinnaya
Simons Institute

Ilya Razenshteyn
Microsoft Research

M. Sadegh Riazi
UC San Diego

Abstract
The k-Nearest Neighbor Search (k-NNS) is the backbone of
several cloud-based services such as recommender systems,
face recognition, and database search on text and images.
In these services, the client sends the query to the cloud
server and receives the response in which case the query
and response are revealed to the service provider. Such data
disclosures are unacceptable in several scenarios due to the
sensitivity of data and/or privacy laws.

In this paper, we introduce SANNS, a system for secure
k-NNS that keeps client’s query and the search result confi-
dential. SANNS comprises two protocols: an optimized linear
scan and a protocol based on a novel sublinear time clustering-
based algorithm. We prove the security of both protocols
in the standard semi-honest model. The protocols are built
upon several state-of-the-art cryptographic primitives such as
lattice-based additively homomorphic encryption, distributed
oblivious RAM, and garbled circuits. We provide several con-
tributions to each of these primitives which are applicable to
other secure computation tasks. Both of our protocols rely
on a new circuit for the approximate top-k selection from
n numbers that is built from O(n+ k2) comparators.

We have implemented our proposed system and performed
extensive experimental results on four datasets in two different
computation environments, demonstrating more than 18−
31× faster response time compared to optimally implemented
protocols from the prior work. Moreover, SANNS is the first
work that scales to the database of 10 million entries, pushing
the limit by more than two orders of magnitude.

1 Introduction

The k-Nearest Neighbor Search problem (k-NNS) is defined
as follows. For a given n-point dataset X ⊂ Rd , and a query
point q ∈ Rd , find (IDs of) k data points closest (with respect
to the Euclidean distance) to the query. The k-NNS has many
applications in modern data analysis: one typically starts
with a dataset (images, text, etc.) and, using domain expertise

together with machine learning, produces its feature vector
representation. Then, similarity search queries (“find k ob-
jects most similar to the query”) directly translate to k-NNS
queries in the feature space. Even though some applications
of k-NNS benefit from non-Euclidean distances [6], the over-
whelming majority of applications (see [7] and the references
therein) utilize Euclidean distance or cosine similarity, which
can be modeled as Euclidean distance on a unit sphere.

When it comes to applications dealing with sensitive in-
formation, such as medical, biological or financial data, the
privacy of both the dataset and the queries needs to be ensured.
Therefore, the “trivial solution” where the server sends the
entire dataset to the client or the client sends the plaintext
query to the server would not work, since we would like to
protect the input from both sides. Such settings include: face
recognition [30,60], biometric identification [9,23,31], patient
data search in a hospital [6, 62] and many others. One can
pose the Secure k-NNS problem, which has the same function-
ality as the k-NNS problem, and at the same time preserves
the privacy of the input: the server—who holds the dataset—
should learn nothing about the query or the result, while the
client—who has the query—should not learn anything about
the dataset besides the k-NNS result.

Secure k-NNS is a heavily studied problem in a variety of
settings (see Section 1.2 for the related work). In this paper,
we consider one of the most conservative security require-
ments of secure two-party computation [32], where the pro-
tocol is not allowed to reveal anything beyond the output of
the respective plaintext k-NNS algorithm. Note that we do
not rely on a trusted third party (which is hardly practical) or
trusted hardware such as Intel SGX1 (which is known to have
major security issues: see, e.g., [66]).

In this paper, we describe SANNS: a system for fast pro-
cessing of secure k-NNS queries that works in the two-party

1While the trust model of cryptographic solutions is based on computa-
tional hardness assumptions, Trusted Execution Environments (TEE)-based
methodologies, such as Intel SGX, require remote attestation before the
computation can begin. As a result, TEE-based solutions need to trust the
hardware vendor as well as TEE implementation.

USENIX Association 29th USENIX Security Symposium 2111

secure computation setting. The two main contributions under-
lying SANNS are the following. First, we provide an improved
secure protocol for the top-k selection. Second, we design a
new k-NNS algorithm tailored to secure computation, which
is implemented using a combination of Homomorphic Encryp-
tion (HE), Garbled Circuits (GC) and Distributed Oblivious
RAM (DORAM) as well as the above top-k protocol. Ex-
tensive experiments on real-world image and text data show
that SANNS achieves a speed-up of up to 31× compared to
(carefully implemented and heavily optimized) algorithms
from the prior work.

Trust model We prove simulation-based security of SANNS
in the semi-honest model, where both parties follow the pro-
tocol specification while trying to infer information about the
input of the other party from the received messages. This is an
appropriate model for parties that in general trust each other
(e.g., two companies or hospitals) but need to run a secure pro-
tocol due to legal restrictions. Most of the instances of secure
multi-party computation deployed in the real world operate in
the semi-honest model: computing gender pay gap [15], sugar
beets auctions [17], and others. Our protocol yields a sub-
stantial improvement over prior works under the same trust
model. Besides, any semi-honest protocol can be reinforced
to be maliciously secure (when parties are allowed to tamper
actively with the sent messages), though it incurs a significant
performance overhead [35].

1.1 Specific Contributions

Underlying SANNS are two new algorithms for the k-NNS
problem. The first one is based on linear scan, where we com-
pute distances to all the points, and then select the k closest
ones. The improvement comes from the new top-k selection
protocol. The second algorithm has sublinear time avoid-
ing computing all the distances. At a high level, it proceeds
by clustering the dataset using the k-means algorithm [47],
then, given a query point, we compute several closest clusters,
and then compute k closest points within these clusters. The
resulting points are approximately closest; it is known that
approximation is necessary for any sublinear-time k-NNS al-
gorithm [57]2. In order to be suitable for secure computation,
we introduce a new cluster rebalancing subroutine, see below.
Let us note that among the plaintext k-NNS algorithms, the
clustering approach is far from being the best [7], but we find
it to be particularly suitable for secure computation.

For both algorithms, we use Additive Homomorphic En-
cryption (AHE) for secure distance computation and garbled
circuit for the top-k selection. In case of our sublinear-time
algorithm, we also use DORAM to securely retrieve the
clusters closest to the query. For AHE, we use the SEAL
library [52] which implements the Brakerski/Fan-Vercauteren

2At the same time, approximation is often acceptable in practice, since
feature vectors are themselves merely approximation of the “ground truth”

(BFV) scheme [33]. For GC we use our own implemen-
tation of Yao’s protocol [70] with the standard optimiza-
tions [11, 12, 41, 71], and for DORAM we implement Flo-
ram [27] in the read-only mode.

Our specific contributions can be summarized as follows:
• We propose a novel mixed-protocol solution based on AHE,

GC, and DORAM that is tailored for secure k-NNS and
achieves more than 31× performance improvement compared
to prior art with the same security guarantees.

• We design and analyze an improved circuit for approximate
top-k selection. The secure top-k selection protocol within
SANNS is obtained by garbling this circuit. This improvement
is likely to be of independent interest for a range of other
secure computation tasks.

• We create a clustering-based algorithm that outputs balanced
clusters, which significantly reduces the overhead of oblivious
RAMs for secure random accesses.

• We build our system and evaluate it on various real-world
datasets of text and images. We run experiments on two com-
putation environments that represent fast and slow network
connections in practice.

• We make several optimizations to the AHE, GC, and DORAM
cryptographic primitives to improve efficiency of our protocol.
Most notably, in Floram [27], we substitute block cipher for
stream cipher, yielding a speed-up by more than an order of
magnitude.

1.2 Related Work
To the best of our knowledge, all prior work on the secure
k-NNS problem in the secure two-party computation setting
is based on the linear scan, where we first compute the dis-
tance between the query and all of n database points, and then
select k smallest of them. To contrast, our clustering-based
algorithm is sublinear, which leads to a substantial speed-up.
We classify prior works based on the approaches used for
distance computation and for top-k selection.

Distance computation SANNS computes distances using the
BFV scheme [33]. Alternative approaches used in the prior
work are:

• Paillier scheme [54] used for k-NNS in [9, 29–31, 60]. Unlike
the BFV scheme, Paillier scheme does not support massively
vectorized SIMD operations, and, in general, is known to be
much slower than the BFV scheme for vector/matrix opera-
tions such as a batched Euclidean distance computation: see,
e.g., [40].

• OT-based multiplication is used for k-NNS in [23] for k = 1.
Compared to the BFV scheme, OT-based approach requires
much more communication, O(n+d) vs. O(nd), respectively,
while being slightly less compute-intensive. In our experi-
ments, we find that the protocol from [53] that is carefully
tailored to the matrix operations (and is, thus, significantly
faster than the generic one used in [23]) is as fast as AHE on
the fast network, but significantly slower on the slow network.

2112 29th USENIX Security Symposium USENIX Association

Top-k selection SANNS chooses k smallest distances out of n
by garbling a new top-k circuit that we develop in this work.
The circuit is built from O(n+ k2) comparators. Alternative
approaches in the prior work are:

• The naive circuit of size Θ(nk) (c.f. Algorithm 1) was used
for k-NNS in [6, 61, 64]. This gives asymptotically a factor
of k slow-down, which is significant even for k = 10 (which
is a typical setting used in practice).

• Using homomorphic encryption (HE) for the top-k selection.
In the works [62, 63], to select k smallest distances, the BGV
scheme is used, which is a variant of the BFV scheme we use
for distance computations. Neither of the two schemes are
suitable for the top-k selection, which is a highly non-linear
operation. A more suitable HE scheme for this task would
have been TFHE [22], however, it is still known to be slower
than the garbled circuit approach by at least three orders of
magnitude.

We can conclude the discussion as follows: our experiments
show that for k = 10, even the linear scan version of SANNS
is at up to 3.5× faster than all the prior work even if we
implement all the components in the prior work using the most
modern tools (for larger values of k, the gap would increase).
However, as we move from the linear scan to the sublinear
algorithm, this yields additional speed-up up to 12× at a cost
of introducing small error in the output (on average, one out
of ten reported nearest neighbors is incorrect).

All the prior work described above is in the semi-honest
model except [61] (which provides malicious security). The
drawback, however, is efficiency: the algorithm from [61] can
process one query for a dataset of size 50000 in several hours.
Our work yields an algorithm that can handle 10 million data
points in a matter of seconds. All the other prior work deals
with datasets of size at most 10000. Thus, by designing better
algorithms and by carefully implementing and optimizing
them, we scale up the datasets one can handle efficiently by
more than two orders of magnitude.

Other security models Some prior work considered the se-
cure k-NNS problem in settings different from “vanilla” se-
cure two-party computation. Two examples are the works [58,
69]. The work [69] is under the two-server setting, which is
known to give much more efficient protocols, but the security
relies on the assumption that the servers do not collude. At
the same time, our techniques (e.g., better top-k circuit and
the balanced clustering algorithm) should yield improvements
for the two-server setting as well. In the work [58], a very ef-
ficient sublinear-time protocol for secure approximate k-NNS
is provided that provides a trade-off between privacy and the
search quality. One can tune the privacy parameter to limit the
information leakage based on the desired accuracy threshold.
As a result, their protocol can leak more than approximate
k-NNS results, i.e., one can estimate the similarity of two data
points based on the hash values (see Section 5 of [58] for
a formal bound on the information leakage).

1.3 Applications of Secure k-NNS

SANNS can potentially impact several real-world applica-
tions. At a high-level, our system can provide a an efficient
mechanism to retrieve similar elements to a query in any
two-party computation model, e.g., database search, recom-
mender systems, medical data analysis, etc. that provably does
not leak anything beyond (approximate) answers. For exam-
ple, our system can be used to retrieve similar images within
a database given a query. We analyze the efficiency of our
system in this scenario using the SIFT dataset which is a stan-
dard benchmark in approximate nearest-neighbor search [48].
Additionally, we consider Deep1B which is a dataset of image
descriptors [8]. We run SANNS on a database as big as ten
million images, whereas the prior work deals with datasets of
size at most 50000. As another application of secure k-NNS
consider privacy-preserving text search, which has been rig-
orously studied in the past [21, 37, 50, 55, 65]. One group of
these solutions support (multi)-keyword search [21, 50, 65]:
a client can receive a set of documents which include all (or
subset of) keywords queried by the clients. In a more power-
ful setting, text similarity search can be performed where all
documents that are semantically similar to a given document
can be identified while keeping the query and the database
private [37, 55]. In this context, we evaluate SANNS on the
Amazon reviews text database [51].

2 Preliminaries

2.1 Secret Sharing

In this work, we use a combination of secure computation
primitives to solve the k-NNS problem. We connect these
primitives via secret sharing, which comes in two forms:
an arithmetic secret sharing of a value x ∈ Zt is a pair
(〈x〉C,〈x〉S) of random values subject to 〈x〉C + 〈x〉S ≡ x
mod t, whereas a Boolean (or XOR) secret sharing of x ∈
{0,1}τ is a pair of random strings subject to 〈x〉C⊕〈x〉S = x.

2.2 Distributed Oblivious RAM (DORAM)

Previous solutions for secure k-NNS require computing dis-
tance between the query point and all points in the database,
which is undesirable for large databases. In order to avoid
this linear cost, we utilize a distributed version of oblivious
RAM (DORAM). In this scenario, two parties hold secret
shares of an array, and they can perform oblivious read and
write operations, with secret-shared indices. Typically one re-
quires the communication cost to be sublinear in the array size.
There are many known DORAM constructions [27,67,68,72],
among which we choose Floram [27] for efficiency reasons.
In this work, we use Floram in read-only mode, and we fur-
ther enhance its performance through careful optimizations.
At a high level, we implement and use two subroutines:

USENIX Association 29th USENIX Security Symposium 2113

• DORAM.Init(1λ,DB) → (kA,kB,DB). This step creates a
masked version of the database (DB) from the plaintext ver-
sion (DB) and outputs two secret keys kA and kB, one to each
party. Here λ is a security parameter.

• DORAM.Read(DB,kA,kB, iA, iB)→ (DB[i]A,DB[i]B).
This subroutine performs the read operation where address
i is secret-shared between two parties as iA⊕ iB = i. Both
parties acquire a XOR-share of DB[i].
In Section 4.3, we describe these subroutines and various
optimizations in a greater detail.

2.3 Additive Homomorphic Encryption
(AHE)

A (private-key) additive homomorphic encryption (AHE)
scheme is private-key encryption scheme with three additional
algorithms Add,CAdd and CMult, which supports adding two
ciphertexts, and addition / multiplication by constants. We re-
quire our AHE scheme to satisfy standard IND-CPA security
and circuit privacy, which means that a ciphertext generated
from Add, CAdd and CMult operations should not leak more
information about the operations to the secret key owner, other
than the decrypted message. This is required since in our case
the server will input its secret values into CAdd and CMult.
We chose to use the BFV scheme [33], and we achieve circuit
privacy through noise flooding [40].

2.4 Garbled Circuit (GC)

Garbled circuit (GC) is a technique first proposed by Yao
in [70] for achieving generic secure two-party computation
for arbitrary Boolean circuits. Many improvements to GC
have been proposed in literature, such as free-XOR [41] and
half-gates [71]. In addition, we use the fixed-key block ci-
pher optimization for garbling and evaluation [12]. Using
Advanced Encryption Standard (AES) as the block cipher, we
leverage Intel AES instructions for faster garbling procedure.

2.5 k-means Clustering

One of our algorithms uses the k-means clustering algo-
rithm [47] as a subroutine. It is a simple heuristic, which
finds a clustering X =C1∪C2∪ . . .∪Ck into disjoint subsets
Ci ⊆ X , and centers c1,c2, . . . ,ck ∈ Rd , which approximately
minimizes the objective function ∑

k
i=1 ∑x∈Ci ‖ci−x‖2.

3 Plaintext k-NNS Algorithms

Optimized linear scan Our first algorithm is a heavily op-
timized implementation of the linear scan: we compute dis-
tances from the query point to all the data points, and then
(approximately) select knn data points closest to the query. At

a high level, we will implement distance computation using
AHE, while top-k selection is done using GC.

Computing top-k naïvely would require a circuit built from
O(nk) comparators. Instead, we propose a new algorithm for
an approximate selection of top-k, which allows for a smaller
circuit size (see section 3.1) and will help us later when we
implement the top-k selection securely using garbled circuit.

Clustering-based algorithm The second algorithm is based
on the k-means clustering (see Section 2.5) and, unlike our
first algorithm, has sublinear query time. We now give a
simplified version of the algorithm, and in Section 3.3 we
explain why this simplified version is inadequate and provide
a full description that leads to efficient implementation.

At a high level, we first compute k-means clustering of the
server’s dataset with k = kc clusters. Each cluster 1≤ i≤ kc is
associated with its center ci ∈Rd . During the query stage, we
find 1≤ u≤ kc centers that are closest to the query, where u
is a parameter to be chosen. Then we compute knn data points
from the corresponding u-many centers, and return IDs of
these points as a final answer.

3.1 Approximate Top-k Selection
In both of our algorithms, we rely extensively on the fol-
lowing top-k selection functionality which we denote by
MINk

n(x1,x2, . . . ,xn): given a list of n numbers x1,x2, . . . ,xn,
output k≤ n smallest list elements in the sorted order. We can
also consider the augmented functionality where each value is
associated with an ID, and we output the IDs together with the
values of the smallest k elements. We denote this augmented
functionality by MINk

n. In the RAM model, computing MINk
n

is a well-studied problem, and it is by now a standard fact
that it can be computed in time O(n+ k logk) [16]. However,
to perform top-k selection securely, we need to implement
it as a Boolean circuit. Suppose that all the list elements are
b-bit integers. Then the required circuit has bn inputs and
bk outputs. To improve efficiency, it is desirable to design a
circuit for MINk

n with as few gates as possible.

The naïve construction A naïve circuit for MINk
n performs

O(nk) comparisons and hence consists of O(bnk) gates. Al-
gorithm 1 gives such a circuit (to be precise, it computes the
augmented functionality MINk

n, but can be easily changed to
compute only MINk

n). Roughly, it keeps a sorted array of the
current k minima. For every xi, it uses a “for” loop to insert xi
into its correct location in the array, and discards the largest
item to keep it of size k.

Sorting networks Another approach is to employ sorting net-
works (e.g., AKS [1] or the Zig-Zag sort [36]) with O(bn logn)
gates, which can be further improved to O(bn logk). However,
these constructions are not known to be practical.

Approximate randomized selection We are not aware of
any circuit for MINk

n with O(bn) gates unless k is a constant
(O(bn) gates is optimal since the input has bn bits). Instead,

2114 29th USENIX Security Symposium USENIX Association

Algorithm 1 Naive Top-k Computation

function NAIVETOPK((x1, ID1), . . . ,(xn, IDn), k)
OPT = [MAXVAL]k
idlist = [0]k
for i← 1 . . .n do

x← xi, idx← IDi
for j← 1 . . .k do

b← (x < OPT [j])
(OPT [j],x) = MUX(OPT [j],x,b)
(idlist[j], idx) = MUX(idlist[j], idx,b)

end for
end for
return (OPT, idlist)

end function
function MUX(a1,a2,b)

Returns (a1,a2) for b = 0, and (a2,a1) for b = 1
return (a1 +(a2−a1) ·b,a2 +(a1−a2) ·b)

end function

Algorithm 2 Approximate top-k selection

function APPROXTOPK((x1, ID1), . . . ,(xn, IDn), k, l)
for i← 1 . . . l do

(Mi, ĨDi)←
←MIN({(x(i·n/l+ j), ID(i·n/l+ j))}

n/l
j=1)

end for
return NAIVETOPK((M1, ĨD1), . . . ,(Ml , ĨDl), k)

end function

we propose a randomized construction of a circuit with O(bn)
gates. We start with shuffling the inputs in a uniformly random
order. Namely, instead of x1,x2, . . . ,xn, we consider the list
xπ(1),xπ(2), . . . ,xπ(n), where π is a uniformly random permu-
tation of {1,2, . . . ,n}. We require the output to be “approxi-
mately correct” (more on the precise definitions later) with
high probability over π for every particular list x1,x2, . . . ,xn.

We proceed by partitioning the input list into l ≤ n
bins of size n/l as follows: U1 = {xπ(1), . . . ,xπ(n/l)}, U2 =
{xπ(n/l+1), . . . ,xπ(2n/l)}, . . . , Ul = {xπ((l−1)n/l+1), . . . ,xπ(n)}.
Our circuit works in two stages: first, we compute the
minimum within each bin Mi = minx∈Ui x, then we output
MINk

l (M1,M2, . . . ,Ml) as a final result using the naïve circuit
for MINk

l . The circuit size is O(b · (n+ kl)), which is O(bn)
whenever kl = O(n).

Intuitively, if we set the number of bins l to be large enough,
the above circuit should output a high-quality answer with
high probability over π. We state and prove two theorems
formalizing this intuition in two different ways. We defer the
proofs to Appendix C.

Theorem 1. Suppose the input list (x1, . . . ,xn) is in uniformly
random order. There exists δ0 > 0 and a positive function
k0(δ) with the following property. For every n, 0 < δ < δ0,
and k ≥ k0(δ), one can set the number of bins l = k/δ such

Algorithm 3 Plaintext linear scan

function LINEARSCANKNNS(q,{pi}n
i=1, ID)

Uses hyperparameters rp, knn, ls from Figure 1
Randomly permute the set {pi}
for i← 1, . . . ,n do

di←‖q−pi‖2

di← b di
2rp c

end for
(v1, ID1), . . . ,(vknn , IDknn)←
APPROXTOPK(d1, ID(p1), . . . ,(dn, ID(pn),knn, ls)
return ID1, . . . , IDknn

end function

that the intersection I of the output of Algorithm 2 with
MINk

n(x1,x2, . . . ,xn) contains at least (1−δ)k entries in ex-
pectation over the choice of π.

This bound yields a circuit of size O(b · (n+ k2/δ)).

Theorem 2. Suppose the input list (x1, . . . ,xn) is in uniformly
random order. There exists δ0 > 0 and a positive function
k0(δ) with the following property. For every n, 0 < δ < δ0,
and k ≥ k0(δ), one can set the number of bins l = k2/δ such
that the output of Algorithm 2 is exactly MINk

n(x1,x2, . . . ,xn)
with probability at least 1−δ over the choice of π.

This yields a circuit of size O(b · (n + k3/δ)), which is
worse than the previous bound, but the corresponding correct-
ness guarantee is stronger.

3.2 Approximate Distances
To speed up the top-k selection further, instead of exact dis-
tances, we will be using approximate distances. Namely, in-
stead of storing full b-bit distances, we discard r low-order
bits, and the overall number of gates in the selection circuit
becomes O((b− r) · (n+ kl)). For the clustering-based algo-
rithm, we set r differently depending on whether we select
closest cluster centers or closest data points, which allows for
a more fine-grained parameter tuning.

3.3 Balanced Clustering and Stash
To implement the clustering-based k-NNS algorithm securely
while avoiding linear cost, we use DORAM for retrieval of
clusters. In order to prevent leaking the size of each cluster,
we need to set the memory block size equal to the size of the
largest cluster. This can be very inefficient, if clusters are not
very balanced, i.e., the largest cluster is much larger than a
typical cluster. Unfortunately, this is exactly what we observe
in our experiments. Thus, we need a mechanism to mitigate
imbalance of clusters. Below we describe one such approach,
which constitutes the actual version of the clustering-based
algorithm we securely implement. With cluster balancing, our

USENIX Association 29th USENIX Security Symposium 2115

Parameter Description
D

at
as

et

n number of data points in the dataset
d dimensionality of the data points

knn
number of data points we need to return
as an answer

C
lu

st
er

in
g

A
lg

or
ith

m

T number of groups of clusters

ki
c

total number of clusters for
the i-th group, 1≤ i≤ T

m largest cluster size

ui number of closest clusters we retrieve
for the i-th group, 1≤ i≤ T

uall = ∑
T
i=1 ui total number of clusters we retrieve

li
is the number of bins we use to speed up
the selection of closest clusters for
the i-th group, 1≤ i≤ T

α
the allowed fraction of points in large
clusters during the preprocessing

St
as

h s size of the stash

ls
number of bins we use to speed up
the selection of closest points for the stash

B
itw

id
th

bc
number of bits necessary to encode
one coordinate

bd
number of bits necessary to encode
one distance (bd = 2bc + dlog2 de)

bcid
number of bits necessary to encode

the index of a cluster (bcid =
⌈

log2

(
∑

T
i=1 ki

c

)⌉
)

bpid number of bits for ID of a point

rc
number of bits we discard when computing
distances to centers of clusters, 0≤ rc ≤ bd

rp
number of bits we discard when computing
distances to points, 0≤ rp ≤ bd

A
H

E

N the ring dimension in BFV scheme
q ciphertext modulus in BFV scheme

t = 2bd
plaintext modulus in BFV scheme and
the modulus for secret-shared distances

Figure 1: List of hyperparameters.

experiments achieve 3.3× to 4.95× reduction of maximum
cluster sizes for different datasets.

We start with specifying the desired largest cluster size
1 ≤ m ≤ n and an auxiliary parameter 0 < α < 1, where n
denotes the total number of data points. Then, we find the
smallest k (recall k denotes the number of centers) such that in
the clustering of the dataset X found by the k-means algorithm
at most α-fraction of the dataset lies in clusters of size more
than m. Then we consider all the points that belong to the said
large clusters, which we denote by X ′, setting n′ = |X ′| ≤ αn,
and apply the same procedure recursively to X ′. Specifically,
we find the smallest k such that the k-means clustering of
X ′ leaves at most αn′ points in clusters of size more than m.
We then cluster these points etc. The algorithm terminates
whenever every cluster has size ≤ m.

At the end of the algorithm, we have T̃ groups of clus-
ters that correspond to disjoint subsets of the dataset (as a
side remark, we note that one always has T̃ ≤ log1/α n). We
denote the number of clusters in the i-th group by ki

c, the clus-
ters themselves by Ci

1,C
i
2, . . . ,C

i
ki

c
⊆ X and their centers by

ci
1,c

i
2, . . . ,c

i
ki

c
∈Rd . During the query stage, we find ui clusters

from the i-th group with the centers closest to the query point,
then we retrieve all the data points from the corresponding
∑

T̃
i=1 ui clusters, and finally from these retrieved points we

select knn data points that are closest to the query.
We now describe one further optimization that helps to

speed up the resulting k-NNS algorithm even more. Namely,
we collapse last several groups into a special set of points,
which we call a stash, denoted by S⊆X . In contrast to clusters
from the remaining groups, to search the stash, we perform
linear scan. We denote s = |S| the stash size and T ≤ T̃ the
number of remaining groups of clusters that are not collapsed.

The motivation for introducing the stash is that the last
few groups are usually pretty small, so in order for them
to contribute to the overall accuracy meaningfully, we need
to retrieve most of the clusters from them. But this means
many DORAM accesses which are less efficient than the
straightforward linear scan.

Note that while the simplified version of Algorithm 3 is
well-known and very popular in practice (see, e.g., [38, 39]),
our modification of the algorithm in this section, to the best
of our knowledge, is new. It is interesting to observe that in
the “plaintext world”, clustering algorithm is far from being
the best for k-NNS (see [7] for the benchmarks), but several
of its properties (namely, few non-adaptive memory accesses
and that it requires computing many distances at once) make
it very appealing for the secure computation.

3.4 Putting It All Together
We now give a high-level summary of our algorithms and
in the next section we provide a more detailed description.
For the linear scan, we use the approximate top-k selection to
return the knn IDs after computing distances between query
and all points in the database.

For the clustering-based algorithm, we use approximate
top-k selection for retrieving ui clusters in i-th group for all
i ∈ {1, . . . ,T}. Then, we compute the closest knn points from
the query to all the retrieved points using the naive top-k
algorithm. Meanwhile, we compute the approximate top-k
with k = knn among distances between query and the stash.
Finally, we compute and output the knn closest points from
the above 2knn candidate points.

Note that in the clustering-based algorithm, we use exact
top-k selection for retrieved points and approximate selec-
tion for cluster centers and stash. The main reason is that the
approximate selection requires input values to be shuffled.
The corresponding permutation can be known only by the
server and not by the client to ensure that there is no addi-
tional leakage when the algorithm is implemented securely.
Jumping ahead to the secure protocol in the next section, the
points we retrieve from the clusters will be secret-shared.
Thus, performing approximate selection on retrieved points
would require a secure two-party shuffling protocol, which is

2116 29th USENIX Security Symposium USENIX Association

New Query q

Group 2

Group 1

Group 3

Cluster Center

Data Point

Cluster

Group 2. Distance
Computation

3. Approximate Top-𝒖𝒊 𝒊 = 𝟏…𝑻

Retrieve IDs

Oblivious RAM

4. Access Closest Clusters

5. Distance
Computation

Stash

k-NNS Result

7. Naïve Top-k

Cluster Centers

6. Approximate
Top-k Selection

1. Permutation of
Centers within Groups

6. Naïve Top-k

1

2

3
1

2

1

1 2 1 2 3 1

2 1 2 3 1 1

Figure 2: Visualization of SANNS clustering-based algorithm.

Algorithm 4 Plaintext clustering-based algorithm

function CLUSTERINGKNNS(q, Ci
j, ci

j, S, ID)
The algorithm uses hyperparameters in Figure 1
Randomly permute the cluster centers in each group
and all points in stash
for i← 1, . . . ,T do

for j← 1, . . . ,ki
c do

di
j←‖q− ci

j‖2

di
j← b

di
j

2rc c
end for
(v1, indi

1), . . . ,(vui , indi
ui)←

← APPROXTOPK((di
1,1), . . . ,(d

i
ki

c
,ki

c),u
i, li)

end for
C←

⋃
1≤i≤T

⋃
1≤ j≤ui

Ci
indi

j

for p ∈C∪S do
dp ←‖q−p‖2

dp ← b
dp
2rp c

end for
(a1, ĨD1), . . . ,(aknn , ĨDknn)←
← NAIVETOPK({(dp , ID(p))}p∈C,knn)

(aknn+1, ĨDknn+1), . . . ,(a2knn , ĨD2k)←
← APPROXTOPK({(dp , ID(p))}p∈S,knn, ls)

(v1, ÎD1), . . . ,(vknn , ÎDknn))←
←NAIVETOPK((a1, ĨD1), . . . ,(a2knn , ĨD2knn),knn)

return ÎD1, . . . , ÎDknn

end function

expensive. Therefore, we garble a naïve circuit for exact com-
putation of top-k for the retrieved points. Figure 2 visualizes
SANNS clustering-based algorithm.

Figure 1 lists the hyperparameters used by our algorithms.
See Figure 5 and Figure 6 for the values that we use for

various datasets. Our plaintext algorithms are presented in
Algorithm 3 and Algorithm 4.

4 Secure Protocols for k-NNS

Here we describe our secure protocols for k-NNS. For the
security proofs, see Appendix D. The formal specifications
of the protocols are given in Figure 6 and Figure 7. On a high
level, our secure protocols implement plaintext algorithms 3
and 4, which is color-coded for reader’s convenience: we
implemented the blue parts using AHE, yellow parts using
garbled circuit, and red parts using DORAM. These primi-
tives are connected using secret shares, and we perform share
conversions (between arithmetic and Boolean) as needed.

4.1 Ideal Functionalities for Subroutines

Here we define three ideal functionalities FTOPk, FaTOPk, and
FDROM used in our protocol. We securely implement the first
two using garbled circuits, and the third using Floram [27].

Parameters: array size m, modulus t, truncation bit size r, output size k,
bit-length of ID bpid
Extra parameter: returnVal ∈ { f alse, true} (if set to true, return secret
shares of (value, ID) pairs instead of just ID.)

• On input Ac and idlistc from the client, store Ac.
• On input As, idlists from the server, store As and idlist.
• When both inputs are received, compute A = (As +Ac) mod t =
(a1, . . . ,an) and set a′i = [ai/2r], idlist = idlistc⊕ idlists. Then, let

(b,c) = MINk
n(a
′
1,a
′
2, . . . ,a

′
n, idlist,k). Sample an array w of size

k with random entries in {0,1}bpid , output c⊕w to the client, and
w to the server. If returnVal is true, sample a random array s of size
k in Z2t , output b− s to client and s to the server.

Figure 3: Ideal functionality FTOPk

USENIX Association 29th USENIX Security Symposium 2117

Parameters: array size m, modulus t, truncation bit size r, output size k,
bin size l, ID bit length bpid.
Extra parameter: returnVal ∈ { f alse, true} (if set to true, return (value,
ID) instead of just ID.)

• On input Ac ∈ Zm
t from the client, store Ac.

• On input As ∈ Zm
t and idlist from the server, store As and idlist.

• When both inputs are received, compute A = As + Ac
mod t = (a1, . . . ,an). and set a′i = [ai/2r]. Let (b,c) =
APPROXTOPK(a′1, . . . ,a

′
n, idlist,k, l). Sample an array w of size

k with random entries in {0,1}bpid . Output c⊕w to the client, and
w to the server. If returnVal is true, sample a random array s of size
k, output b− s to client and s to the server.

Figure 4: Ideal functionality FaTOPk

Parameters: Database size n, bit-length of each data block b.
• Init: on input (Init,DB) from the server, it stores DB.
• Read: on input (Read, ic) and (Read, is) from both client and

server, it samples a random R∈{0,1}b. Then it outputs DB[(is+ ic)
mod n]⊕R to client and outputs R to server.

Figure 5: Ideal functionality FDROM

4.2 Distance Computation via AHE

We use the BFV scheme [33] to compute distances. Compared
to [40], which uses BFV for matrix-vector multiplications,
our approach avoids expensive ciphertext rotations. Also, we
used the coefficient encoding and a plaintext space modulo a
power of two instead of a prime. This allows us to later avoid
a costly addition modulo p inside a garbled circuit.

More precisely, SIMD for BFV requires plaintext modu-
lus to be prime p ≡ 1 mod 2N. However, it turns out our
distance computation protocol only requires multiplication
between scalars and vectors. Therefore we can drop the re-
quirement and perform computation modulo powers of two
without losing efficiency. Recall that plaintext space of the
BFV scheme is Rt := Zt [x]/(xN + 1). The client encodes
each coordinate in to a constant polynomial fi = q[i]. As-
sume the server points are p1, . . . ,pN for simplicity. It en-
codes these points into d plaintexts, each encoding one coor-
dinate of all points, resulting in gi = ∑ j p j+1[i]x j. Note that
∑

d
i=1 figi = ∑

N
j=1〈q,p j〉x j−1. The client sends encryption of

fi. Then the server computes an encryption h(x) = ∑i figi,
masks h(x) with a random polynomial and sends back to the
client, so they hold secret shares of 〈q,p j〉 modulo t. Then,
secret shares of Euclidean distances modulo t can be recon-
structed via local operations.

Note that we need to slightly modify the above routine
when computing distances of points retrieved from DORAM.
Since the server does not know these points in the clear, we
let client and server secret share the points and their squared
Euclidean norms.

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N, plain modulus t, ID bit
length bpid, bin size ls.
Inputs: client inputs query q ∈Rd ; server inputs n points and a list idlist
of n IDs.

1. Client calls AHE.Keygen to get sk; server randomly permutes its
points. They both quantize their points into q′,p′i ∈ Zd

2bc .
2. Client sends ci = AHE.Enc(sk,q′[i]) for 1≤ i≤ d to the server.
3. Server sets pik = p′kN+1[i]+p′kN+2[i]x+ · · ·+p′(k+1)N [i]x

N−1, sam-
ples random vector r ∈ Zn

t and computes for 1≤ k ≤ dn/Ne

fk =
d

∑
i=1

AHE.CMult(ci,pik)+ r[kN : (k+1)N]

.
4. Server sends fk to client who decrypts them to s ∈ Zn

t .
5. Client sends −2s + ||q′||2 · (1,1, . . . ,1) to FaTOPk, server sends

idlist and (−2ri+ ||p′i||2)i to FaTOPk, with parameters (k, ls, f alse).
They output [id]c, [id]s ∈ {0,1}bpid . Server sends [id]s to client,
who outputs id = [id]c⊕ [id]s.

Figure 6: SANNS linear-scan protocol ΠANNls .

4.3 Point Retrievals via DORAM

We briefly explain the functionality of Floram and refer the
reader to the original paper [27] for details.

In Floram, both parties hold identical copies of the masked
database. Let the plaintext database be DB, block at address i
be DB[i], and the masked database be DB. We set:

DB[i] = DB[i]⊕PRFkA(i)⊕PRFkB(i),

where PRF is a pseudo-random function, kA is a secret key
owned by A and kB is similarly owned by B. At a high level,
Floram’s retrieval functionality consists of the two main parts:
token generation using Functional Secret Sharing (FSS) [34]
and data unmasking from the PRFs. In Floram, FSS is used to
securely generate two bit vectors (one for each party) uA and
uB such that individually they look random, yet uA

j ⊕uB
j = 1

iff j = i, where i is the address we are retrieving. Then, party
A computes

⊕
j uA

j ·DB[i] and, likewise, party B computes⊕
j uB

j ·DB[i]. The XOR of these two values is simply DB[i].
To recover the desired value DB[i], the parties use a garbled
circuit to compute the PRFs and XOR to remove the masks.3

We implemented Floram with a few optimizations de-
scribed below.

Precomputing OT To run FSS, the parties have to execute
the GC protocol log2 n times iteratively which in turn requires
log2 n set of Oblivious Transfers (OTs). Performing consecu-
tive OTs can significantly slow down the FSS evaluation. We
use Beaver OT precomputation protocol [10] which allows to
perform all necessary OTs on random values in the beginning
of FSS evaluation with a very small additional communication
for each GC invocation.

3The retrieved block can be either returned to one party, or secret-shared
between the parties within the same garbled circuit

2118 29th USENIX Security Symposium USENIX Association

Public Parameters: coefficient bit length bc, number of items in the
database n, dimension d, AHE ring dimension N, plain modulus t.
Clustering hyperparameters: T , ki

c, m, ui, s, li, ls, bc, rc and rp.
Inputs: client inputs query q ∈ Rd ; server inputs T groups of clusters
with each cluster of size up to m, and a stash S; server also inputs a list of
n IDs idlist, and all cluster centers ci

j .
1. Client calls AHE.Keygen to get sk.
2. Client and server quantize their points and the cluster centers.
3. Server sends all clusters with one block per cluster, and each point

accompanied by its ID and squared norm, to FDROM.Init, padding
with dummy points if necessary to reach size m for each block.

4. The server performs two independent random shuffles on the clus-
ter centers and stash points.

5. For each i ∈ {1, . . . ,T},
• The client and server use line 3-5 in Figure 6 to compute

secret shares of the vector (||q− ci
j||22) j .

• Client and server send their shares to FaTOPk with k = ui,
l = li and returnVal = false, when server inputs the default
idlist = {0,1, . . . ,ki

c−1}. They obtain secret shares of in-
dices ji

1, . . . , ji
ui

.
6. Client and server input secret shares of all cluster indices {(i, ji

c) :
i ∈ [1,T],c ∈ [1,ui]} obtained in step 5 into FDROM.Read, to re-
trieve Boolean secret shares of tuples (p, ID(p), ||p||2) of all points
in the corresponding clusters. They convert p and ||p||2 to arith-
metic secret shares using e.g. the B2A algorithm in [23].

7. Client and server use line 3-6 in Figure 6 to get secret shares of a
distance vector for all points determined in step 6. Then, they input
their shares of points and IDs to FTOPk with returnVal = true, and
output secret shares of a list of tuples (dCluster

i , IDCluster
i)k

i=1.
8. For the stash S, client and server use line 3-6 in Figure 6 to obtain

the secret shared distance vector. Then, they input their shares
(while server also inputs IDs of stash points and client input a zero
array for its ID shares) to FaTOPk with parameters (k, ls, true), and
output shares of (dStash

i , IDStash
i)k

i=1.
9. Each party inputs the union of shares of (point, ID) pairs obtained

from steps 7-8 to FTOPk with returnVal=false, and outputs secret
shares of k IDs. Server sends its secret shares of IDs to the client,
who outputs the final list of IDs.

Figure 7: SANNS clustering-based protocol ΠANNcl .

Kreyvium as PRF Floram implemented PRF using AES.
While computing AES is fast in plaintext due to Intel AES
instructions, it requires many gates to be evaluated within a
garbled circuit. We propose a more efficient solution based
on Kreyvium [20] which requires significantly fewer number
of AND gates (see Appendix B for various related trade-offs).
Evaluating Kreyvium during the initial database masking adds
large overhead compared to AES. To mitigate the overhead,
we pack multiple (512 in our case) invocations of Kreyvium
and evaluate them simultaneously by using AVX-512 instruc-
tions provided by Intel CPUs.

Multi-address access In Floram, accessing the database at k
different locations requires k log2 n number of interactions. In
our case, these memory accesses are non-adaptive, hence we
can fuse these accesses and reduce the number of rounds to
log2 n which has significant effect in practice.

4.4 Top-k Selection via Garbled Circuit
We implement secure top-k selection using garbled circuit
while we made some further optimizations to improve the per-
formance. First, we truncate distances by simply discarding
some lower order bits, which allows us to reduce the circuit
size significantly (see Section 3.2). The second optimization
comes from the implementation side. Recall that existing
MPC frameworks such as ABY [23] require storing the entire
circuit explicitly with accompanying bloated data structures.
However, our top-k circuit is highly structured, which allows
us to work with it looking at one small part at a time. This
means that the memory consumption of the garbling and the
evaluation algorithms can be essentially independent of n,
which makes them much more cache-efficient. To accomplish
this, we developed our own garbled circuit implementation
with most of the standard optimizations [11,12,41,71]4, which
allows us to save more than an order of magnitude in both
time and memory usage compared to ABY.

5 Implementation and Performance Results

5.1 Environment
We perform the evaluation on two Azure F72s_v2 instances
(with 72 virtual cores equivalent to that of Intel Xeon Plat-
inum 8168 and 144 GB of RAM each). We have two sets of
experiments: for fast and slow networks. For the former we
use two instances from the “West US 2” availability zone (la-
tency 0.5 ms, throughput from 500 MB/s to 7 GB/s depending
on the number of simultaneous network connections), while
for the latter we run on instances hosted in “West US 2” and
”East US” (latency 34 ms, throughput from 40 MB/s to 2.2
GB/s). We use g++ 7.3.0, Ubuntu 18.04, SEAL 2.3.1 [52]
and libOTe [59] for the OT phase (in the single-thread mode
due to unstable behavior when run in several threads). For
networking, we use ZeroMQ. We implement balanced clus-
tering as described in Section 3.3 using PyTorch and run it on
four NVIDIA Tesla V100 GPUs. It is done once per dataset
and takes several hours (with the bottleneck being the vanilla
k-means clustering described in Section 2.5).

5.2 Datasets
We evaluate SANNS algorithms as well as baselines on four
datasets: SIFT (n = 1000000, d = 128) is a standard dataset
of image descriptors [48] that can be used to compute similar-
ity between images; Deep1B (n = 1000000000, d = 96) is
also a dataset of image descriptors [8], which is built from fea-
ture vectors obtained by passing images through a deep neural
network (for more details see the original paper [8]), Amazon
(n = 220, d = 50) is dataset of reviews [51], where feature
vectors are obtained using word embeddings. We conduct the

4For oblivious transfer, we use libOTe [59]

USENIX Association 29th USENIX Security Symposium 2119

evaluation on two subsets of Deep1B that consist of the first
1000000 and 10000000 images, which we label Deep1B-
1M and Deep1B-10M, respectively. For Amazon, we take 220

Amazon reviews of the CDs and Vinyls category, and cre-
ate a vector embedding for each review by processing GloVe
word embeddings [56] as in [5]. SIFT comes with 10000 sam-
ple queries which are used for evaluation; for Deep1B-1M,
Deep1B-10M and Amazon, a sample of 10000 data points
from the dataset are used as queries. For all the datasets we
use Euclidean distance to measure similarity between points.
Note that the Deep1B-1M and Deep1B-10M datasets are nor-
malized to lie on the unit sphere.

Note that all four datasets have been extensively used in
nearest neighbors benchmarks and information retrieval tasks.
In particular, SIFT is a part of ANN Benchmarks [7], where a
large array of NNS algorithms has been thoroughly evaluated.
Deep1B has been used for evaluation of NNS algorithms in,
e.g., [8, 39, 49]. Various subsets of the Amazon dataset have
been used to evaluate the accuracy and the efficiency of k-NN
classifiers in, e.g., [28, 44].

5.3 Parameters

Accuracy In our experiments, we require the algorithms to
return knn = 10 nearest neighbors and measure accuracy as
the average portion of correctly returned points over the set of
queries (“10-NN accuracy”). Our algorithms achieve 10-NN
accuracy at least 0.9 (9 out of 10 points are correct on aver-
age), which is a level of accuracy considered to be acceptable
in practice (see, e.g., [43, 45]).

Quantization of coordinates For SIFT, coordinates of points
and queries are already small integers between 0 and 255, so
we leave them as is. For Deep1B, the coordinates are real
numbers, and we quantize them to 8-bit integers uniformly
between the minimum and the maximum values of all the
coordinates. For Amazon we do the same but with 9 bits. For
these datasets, quantization barely affects the 10-NN accuracy
compared to using the true floating point coordinates.

Cluster size balancing As noted in Section 3.3, our cluster
balancing algorithm achieves the crucial bound over the max-
imum cluster size needed for efficient ORAM retrieval of
candidate points. In our experiments, for SIFT, Deep1B-10M,
Amazon and Deep1B-1M, the balancing algorithm reduced
the maximum cluster size by factors of 4.95×, 3.67×, 3.36×
and 3.31×, respectively.

Parameter choices We initialized the BFV scheme with pa-
rameters N = 213, t = 224 for Amazon and t = 223 for the
other datasets, and a 180-bit modulus q. For the parameters
such as standard deviation error and secret key distribution we
use SEAL default values. These parameters allow us to use
the noise flooding technique to provide 108 bits of statistical

circuit privacy.5 The LWE estimator6 by Albrecht et al. [2]
suggests 141 bits of computational security.

Here is how we set the hyperparameters for our algorithms.
See Figure 1 for the full list of hyperparameters, below we
list the ones that affect the performance:

• Both algorithms depend on n, d, knn, which depend on the
dataset and our requirements;

• The linear scan depends on ls, bc and rp,
• The clustering-based algorithm depends on T , ki

c, m, ui, s, li,
ls, bc, rc and rp, where 1≤ i≤ T .

We use the total number of AND gates in the top-k and
the ORAM circuits as a proxy for both communication and
running time during hyperparameter search phase (this is due
to the complexity of garbling a circuit depending heavily on
the number of AND gates due to the Free-XOR optimiza-
tion [41]). Moreover, for simplicity we neglect the FSS part
of ORAM, since it does not affect the performance much.
Overall, we search for the hyperparameters that yield 10-NN
accuracy at least 0.9 minimizing the total number of AND-
gates. In Figure 5 and Figure 6 of Appendix A, we summarize
the parameters we use for both algorithms on each dataset.

5.4 SANNS End-to-End Evaluation

Single-thread We run SANNS on the above mentioned four
datasets using two algorithms (linear scan and clustering) over
fast and slow networks in a single-thread mode, summarizing
results in Table 1. We measure per-client preprocessing of
Floram separately and split the query measurements into the
OT phase, distance computation, approximate top-k selection
and ORAM retrievals. For each of the components, we report
communication and average running time for fast and slow
networks. We make several observations:

• On all the datasets, clustering-based algorithm is much faster
than linear scan: up to 12× over the fast network and up to
8.2× over the slow network.

• For the clustering algorithm, per-client preprocessing is very
efficient. In fact, even if there is a single query per client,
clustering algorithm with preprocessing is faster than the
linear scan.

• In terms of communication, distance computation part is neg-
ligible, and the bottleneck is formed by the top-k selection
and ORAM (which are fairly balanced).

• As a result, when we move from fast to slow network, the time
for distance computation stays essentially the same, while
the time for top-k and ORAM goes up dramatically. This
makes our new circuit for approximate top-k selection and
optimizations to Floram absolutely crucial for the overall
efficiency.

Multi-thread In Table 2 we summarize how the performance

5We refer the reader to [40] for details on the noise flooding technique
6We used commit 3019847 from https://bitbucket.org/malb/

lwe-estimator

2120 29th USENIX Security Symposium USENIX Association

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

of SANNS depends on the number of threads. We only mea-
sure the query time excluding the OT phase, since libOTe is
unstable when used from several threads. We observe that
the speed-ups obtained this way are significant (up to 8.4×
for the linear scan and up to 7.1× for clustering), though
they are far from being linear in the number of threads. We
attribute it to both of our algorithms being mostly memory-
and network-bound. Overall, the multi-thread mode yields
query time under 6 seconds (taking the single-threaded OT
phase into account) for our biggest dataset that consists of ten
million 96-dimensional vectors.

5.5 Microbenchmarks

As we discussed in the Introduction, all the prior work that has
security guarantees similar to SANNS implements linear scan.
Thus, in order to provide a detailed comparison, we compare
our approaches in terms of distance computation and top-k
against the ones used in the prior work.

Top-k selection We evaluate the new protocol for the ap-
proximate top-k selection via garbling the circuit designed
in Section 3.1 and compare it with the naïve circuit ob-
tained by a direct implementation of Algorithm 1. The lat-
ter was used in some of the prior work on the secure k-
NNS [6, 61, 64]. We assume the parties start with arithmetic
secret shares of n = 1000000 24-bit integers. We evaluate
both of the above approaches for k ∈ {1,5,10,20,50,100}.
For the approximate selection, we set the number of bins l
such that on average we return (1−δ) · k entries correctly for
δ ∈ {0.01,0.02,0.05,0.1}, using the formula from the proof
of Theorem 1. For each setting, we report average running
time over slow and fast networks as well as the total commu-
nication. Table 4 summarizes our experiments. As expected,
the performance of the approximate circuit is essentially in-
dependent of k, whereas the performance of the naïve circuit
scales linearly as k increases. Even if we allow the error of
only δ = 0.01 (which for k = 100 means we return a single
wrong number), the performance improves by a factor up to
25 on the fast network and up to 37 on the slow network.

The works [62, 63] used fully-homomorphic encryption
(FHE) for the top-k selection. However, even if we use
TFHE [22], which is by far the most efficient FHE approach
for highly-nonlinear operations, it will still be several orders
of magnitude slower than garbled circuits, since TFHE re-
quires several milliseconds per gate, whereas GC requires
less than a microsecond.

Distance Computation The most efficient way to compute n
Euclidean distances securely, besides using the BFV scheme,
is arithmetic MPC [23] based on oblivious transfer (one other
alternative used in many prior works [9, 29–31, 60] is Pail-
lier AHE scheme, which is known to be much less suitable
for the task due to the absence of SIMD capabilities [40]).
Let us compare BFV scheme used in SANNS with the OT-

based distance computation from [23] with an optimization
from [53]. The latter allows to compute n l-bit distances be-
tween d-dimensional vectors (l = 24 for Amazon, l = 23 for
all the other datasets), using ndl(l +1)/256 OTs of 128-bit
strings. We perform those OTs using libOTe for each of our
datasets and measure time (over fast and slow networks) as
well as communication. The results are summarized in Ta-
ble 3. As expected, the communication required by OT-based
multiplication is much larger than for AHE (by a factor up
to 127×). As a result, for the slow network, OT-based multi-
plication is noticeably slower, by a factor up to 7.5×; for the
fast network, OT-based approach is no more than 4% faster
than AHE.

5.6 End-to-End Comparison with Prior Work

We have shown that individual components used by SANNS
are extremely competitive compared to the ones proposed
by the prior work. Here, we provide the end-to-end perfor-
mance results on the largest dataset we evaluated SANNS on:
Deep1B-10M. For the fast network, our linear scan requires
395 seconds per query (taking the OT phase into account),
and clustering requires 31 seconds; for the slow network, it is
1720 and 194 seconds, respectively (see Table 1).

One issue with a fair comparison with the prior work is that
they are done before the recent MPC and HE optimizations
became available. Based on the benchmarks in the previous
section, one can definitively conclude that the fastest protocol
from the prior work is from [23]. Namely, we compute dis-
tances using OT with the optimization from [53], and perform
the top-k selection using garbled circuit with the naïve circuit
in Algorithm 1. To estimate the running time of this protocol,
we use Table 3 for distances and we run a separate experiment
for naïve top-k for n= 107 and k = 10. This gives us the lower
bound on the running time of 578 seconds on the fast network
and 6040 seconds on the slow network, and the lower bound
of 240 GB on the communication.

Overall, this indicates that our linear scan obtains a speed-
up of 1.46× on the fast network and 3.51× on the slow net-
work. The clustering algorithm yields the speed-up of 18.5×
on the fast network and 31.0× on the slow network. The
improvement in communication is 4.1× for the linear scan
and 39× for the clustering algorithm.

Note that these numbers are based on the lower bounds for
the runtime of prior work and several parts of the computa-
tion and communication of their end-to-end solution are not
included in this comparison. In particular, just computing dis-
tances using the original implementation from [23] on SIFT
dataset takes 620 seconds in the fast network, more than 32×
higher compared against our assumed lower bound of 19.1
seconds in Table 3. When scaling their implementation to ten
million points, the system runs out of memory (more than 144
GB of RAM is needed). In conclusion, the speed-up numbers
we reported reflect running the best prior algorithm using our

USENIX Association 29th USENIX Security Symposium 2121

Algorithm Per-client
Preprocessing OT Phase Query

Total Distances Top-k ORAM

SI
FT

Linear scan None
1.83 s / 21.6 s

894 MB
33.3 s / 139 s

4.51 GB
19.8 s / 25.6 s

98.7 MB
13.5 s / 111 s

4.41 GB None

Clustering
12.6 s / 24.7 s

484 MB
0.346 s / 4.34 s

156 MB
8.06 s / 59.7 s

1.77 GB
2.21 s / 3.67 s

56.7 MB
1.96 s / 18.0 s

645 MB
3.85 s / 38.1 s

1.06 GB

D
ee

p
1B

-1
M

Linear scan None
1.85 s / 20.6 s

894 MB
28.4 s / 133 s

4.50 GB
14.9 s / 20.6 s

86.1 MB
13.5 s / 112 s

4.41 GB None

Clustering
11.0 s / 20.6 s

407 MB
0.323 s / 4.09 s

144 MB
6.95 s / 47.8 s

1.58 GB
1.66 s / 3.13 s

44.1 MB
1.93 s / 16.6 s

620 MB
3.37 s / 27.9 s

920 MB

D
ee

p
1B

-1
0M

Linear scan None
20.0 s / 232 s

9.78 GB
375 s / 1490 s

47.9 GB
202 s / 201 s

518 MB
173 s / 1280 s

47.4 GB None

Clustering
86.0 s / 167 s

3.71 GB
1.04 s / 13.4 s

541 MB
30.1 s / 181 s

5.53 GB
6.27 s / 10.2 s

59.4 MB
7.22 s / 61.0 s

2.35 GB
16.5 s / 107 s

3.12 GB

A
m

az
on Linear scan None

1.99 s / 23.3 s
960 MB

22.9 s / 133 s
4.85 GB

8.27 s / 14.0 s
70.0 MB

14.6 s / 118 s
4.78 GB None

Clustering
7.27 s / 13.4 s

247 MB
0.273 s / 3.17 s

108 MB
4.54 s / 35.2 s

1.12 GB
0.68 s / 2.31 s

24.4 MB
1.64 s / 13.8 s

528 MB
2.22 s / 18.8 s

617 MB

Table 1: Evaluation of SANNS in a single-thread mode. Preprocessing is done once per client, OT phase is done once per query.
In each cell, timings are given for fast and slow networks, respectively.

Algorithm Threads Speed-up1 2 4 8 16 32 64 72

SI
FT

Linear scan
33.3 s
139 s

23.2 s
76.4 s

13.4 s
46.9 s

8.04 s
32.5 s

4.78 s
25.7 s

4.25 s
22.1 s

3.96 s
20.9 s

4.14 s
21.3 s

8.4
6.7

Clustering
8.06 s
59.7 s

4.84 s
35.2 s

3.16 s
23.6 s

2.18 s
24.4 s

1.65 s
20.1 s

1.55 s
14.2 s

1.44 s
11.1 s

1.47 s
12.1 s

5.6
5.4

D
ee

p
1B

-1
M

Linear scan
28.4 s
133 s

19.9 s
75.5 s

11.4 s
44.5 s

7.39 s
31.9 s

4.53 s
24.5 s

3.94 s
22.0 s

3.94 s
22.5 s

4.05 s
21.1 s

7.2
6.3

Clustering
6.95 s
47.8 s

4.20 s
28.5 s

2.62 s
22.0 s

2.03 s
23.0 s

1.52 s
18.4 s

1.43 s
14.7 s

1.37 s
11.0 s

1.39 s
11.5 s

5.1
4.3

D
ee

p
1B

-1
0M

Linear scan
375 s

1490 s
234 s
800 s

118 s
480 s

81.8 s
343 s

65.8 s
266 s

55.0 s
231 s

53.1 s
214 s

58.5 s*
216 s*

7.1
7.0

Clustering
30.1 s
181 s

18.0 s
97.5 s

10.8 s
60.0 s

7.21 s
54.5 s

4.85 s
48.1 s

4.58 s
37.2 s

4.23 s
30.3 s

4.25 s
28.4 s

7.1
6.4

A
m

az
on Linear scan

22.9 s
133 s

15.4 s
73.1 s

10.1 s
46.1 s

6.66 s
33.8 s

4.14 s
26.2 s

3.73 s
24.1 s

3.78 s
22.0 s

3.64 s
21.7 s

6.3
6.1

Clustering
4.54 s
35.2 s

2.66 s
21.4 s

1.87 s
14.9 s

1.40 s
16.8 s

1.17 s
14.2 s

1.15 s
11.5 s

1.12 s
10.8 s

1.16 s
9.19 s

4.1
3.8

Table 2: Evaluation of SANNS query algorithms in the multi-thread mode. Each cell contains timings for fast and slow networks.
Optimal settings are marked in bold. For the numbers marked with an asterisk, we take the median of the running times over
several runs, since with small probability (approximately 20− 30%), memory swapping starts due to exhaustion of all the
available RAM, which affects the running times dramatically (by a factor of ≈ 2×).

SIFT Deep1B-1M Deep1B-10M Amazon

AHE 19.8 s / 25.6 s
98.7 MB

14.9 s / 20.6 s
56.7 MB

202 s / 201 s
518 MB

8.27 s / 14.0 s
70 MB

OT-based (lower bound) 19.1 s / 181 s
8.83 GB

14.5 s / 153 s
6.62 GB

204 s / 1510 s
66.2 GB

8.59 s / 88.7 s
3.93 GB

Table 3: Comparison of AHE- and OT-based approach for computing distances. Each cell has two timings: for the fast and the
slow networks.

2122 29th USENIX Security Symposium USENIX Association

k Exact Approximate Speed-up
δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.1

1 11.1 s / 93.9 s
3.48 GB N/A N/A N/A N/A N/A

5 22.4 s / 249 s
9.62 GB

10.5 s / 90.6 s
3.48 GB

10.6 s / 88.8 s
3.48 GB

10.5 s / 94.5 s
3.48 GB

10.7 s / 90.6 s
3.48 GB 2.1 / 2.7

10 36.1 s / 448 s
17.3 GB

10.7 s / 86.9 s
3.48 GB

10.6 s / 91.2 s
3.48 GB

11.0 s / 89.6 s
3.48 GB

11.0 s / 91.3 s
3.48 GB 3.4 / 5.2

20 67.8 s / 821 s
32.7 GB

10.6 s / 95.2 s
3.50 GB

10.7 s / 94.0 s
3.49 GB

10.8 s / 92.9 s
3.48 GB

10.6 s / 93.8 s
3.48 GB 6.4 / 8.6

50 153 s / 2100 s
78.7 GB

11.1 s / 99.2 s
3.66 GB

10.6 s / 97.4 s
3.57 GB

10.5 s / 94.5 s
3.51 GB

10.5 s / 94.1 s
3.49 GB 14 / 21

100 301 s / 4130 s
156 GB

12.0 s / 113 s
4.22 GB

12.0 s / 98.3 s
3.85 GB

10.8 s / 96.0 s
3.62 GB

11.2 s / 98.6 s
3.55 GB 25 / 37

Table 4: Comparison of the exact and the approximate top-k selection protocols (selecting from one million values). Each cell
has two timings: for the fast and the slow networks. We report the speed-ups for fast and slow networks between the approximate
algorithm with error rate δ = 0.01 and the exact algorithm.

new optimized implementation, which leads to a more fair
comparison (SANNS speed-up is significantly higher if the
original implementations of prior works are considered).

6 Conclusions and Future Directions

In this work, we design new secure computation protocols
for approximate k-Nearest Neighbors Search between a client
holding a query and a server holding a database, with the
Euclidean distance metric. Our solution combines several
state-of-the-art cryptographic primitives such as lattice-based
AHE, FSS-based distributed ORAM and garbled circuits with
various optimizations. Underlying one of our protocols is a
new sublinear-time plaintext approximate k-NNS algorithm
tailored to secure computation. Notably, it is the first sublinear-
time k-NNS protocol implemented securely. Our performance
results show that our solution scales well to massive datasets
consisting of up to ten million points. We highlight some
directions for future work:

• Our construction is secure in the semi-honest model, but it
would be interesting to extend our protocols to protect against
malicious adversaries which can deviate from the protocol.

• One possible future direction is to implement other sublinear
k-NNS algorithms securely, most notably Locality-Sensitive
Hashing (LSH) [4], which has provable sublinear query time
and is widely used in practice.

• It is important to study to what extent k-NNS queries leak
information about the dataset and how much approximation in
the answers adds to this leakage. For instance, the client may
try to locate individual points in a dataset by asking several
queries that are perturbations of each other and checking if the
point of interest ends up in the answer. For low-dimensional
datasets there are known strong recovery attacks [42], but for
the high-dimensional case—which is the focus of this paper—

the possibility of such attacks remains open. Besides attacks,
an interesting research direction is how to restrict the client
(in the number of k-NNS queries or the degree of adaptivity)
so to minimize the dataset leakage.
That being said, let us state a few simple observations about
additional leakage that can happen due to approximation in
the results. There are two sources of approximation: approxi-
mate top-k selection and clustering-based k-NNS algorithm.
For the sake of simplicity, let us discuss the effects of these
components separately. For the former, one can show that the
probability that the element with rank l > k is included in
the output is exponentially small in l− k. For the latter, we
can notice the following. First, we never leak more than the
union of the sets of points closest to the query in the clusters
whose centers are closest to the query. Second, if the dataset is
clusterable (i.e., can be partitioned into clusters with pairwise
distances being significantly larger than the diameters of the
clusters) and queries are close to clusters, then the clustering
based k-NNS algorithm is exact and there is no additional
leakage due to approximation.

Acknowledgments

We would like to thank the anonymous reviewers for their
feedback and helpful comments. This work was partially done
while all the authors visited Microsoft Research Redmond.

The second-named author has been supported in part by
ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the FWO
under an Odysseus project GOH9718N and by the CyberSecu-
rity Research Flanders with reference number VR20192203.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the ERC or FWO.

USENIX Association 29th USENIX Security Symposium 2123

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn)
sorting network. In STOC, pages 1–9. ACM, 1983.

[2] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. Journal of Mathemati-
cal Cryptology, 9(3):169–203, 2015.

[3] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen,
and M. Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, pages 430–454, 2015.

[4] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and
L. Schmidt. Practical and optimal LSH for angular
distance. In NIPS, pages 1225–1233, 2015.

[5] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-
beat baseline for sentence embeddings. In International
Conference on Learning Representations, pages 43–52,
2017.

[6] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin.
Privacy-preserving search of similar patients in genomic
data. Proceedings on Privacy Enhancing Technologies,
2018(4):104–124, 2018.

[7] M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms. In International Conference
on Similarity Search and Applications, pages 34–49.
Springer, 2017.

[8] A. Babenko and V. Lempitsky. Efficient indexing of
billion-scale datasets of deep descriptors. In IEEE
CVPR, pages 2055–2063, 2016.

[9] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo,
R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Pi-
uri, F. Scotti, et al. Privacy-preserving fingercode au-
thentication. In ACM MM& Sec, pages 231–240, 2010.

[10] D. Beaver. Precomputing oblivious transfer. In
CRYPTO, pages 97–109. Springer, 1995.

[11] D. Beaver, S. Micali, and P. Rogaway. The round com-
plexity of secure protocols. In STOC, volume 90, pages
503–513, 1990.

[12] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In S&P,
pages 478–492. IEEE, 2013.

[13] D. J. Bernstein. The chacha family of stream ciphers.
https://cr.yp.to/chacha.html.

[14] D. J. Bernstein. The Salsa20 family of stream ciphers. In
New Stream Cipher Designs - The eSTREAM Finalists,
pages 84–97. 2008.

[15] A. Bestavros, A. Lapets, and M. Varia. User-centric
distributed solutions for privacy-preserving analytics.
Communications of the ACM, 2017.

[16] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. J. Comput.
Syst. Sci., 7(4):448–461, 1973.

[17] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, et al. Secure multiparty compu-
tation goes live. In Financial Cryptography and Data
Security, pages 325–343. Springer, 2009.

[18] J. Boyar and R. Peralta. A small depth-16 circuit for the
AES s-box. In SEC, pages 287–298, 2012.

[19] C. D. Cannière and B. Preneel. Trivium. In New Stream
Cipher Designs - The eSTREAM Finalists, pages 244–
266. 2008.

[20] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint,
M. Naya-Plasencia, P. Paillier, and R. Sirdey. Stream
ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In FSE, pages 313–333, 2016.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-
preserving multi-keyword ranked search over encrypted
cloud data. IEEE TPDS, 25(1):222–233, 2013.

[22] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene.
Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds. In ASIACRYPT, pages 3–33.
Springer, 2016.

[23] D. Demmler, T. Schneider, and M. Zohner. Aby-a frame-
work for efficient mixed-protocol secure two-party com-
putation. In NDSS, 2015.

[24] P. Diaconis and D. Freedman. Finite exchangeable se-
quences. The Annals of Probability, pages 745–764,
1980.

[25] J. Doerner. The absentminded crypto kit.
https://bitbucket.org/jackdoerner/absentminded-
crypto-kit.

[26] J. Doerner and A. Shelat. Floram: The floram
oblivious ram implementation for secure computation.
https://gitlab.com/neucrypt/floram.

[27] J. Doerner and A. Shelat. Scaling ORAM for secure
computation. In CCS, pages 523–535. ACM, 2017.

[28] Y. Dong, P. Indyk, I. Razenshteyn, and T. Wagner. Scal-
able nearest neighbor search for optimal transport. arXiv
preprint arXiv:1910.04126, 2019.

2124 29th USENIX Security Symposium USENIX Association

[29] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure
k-nearest neighbor query over encrypted data in out-
sourced environments. In ICDE, pages 664–675. IEEE,
2014.

[30] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft. Privacy-preserving face recognition.
In PETS, pages 235–253. Springer, 2009.

[31] D. Evans, Y. Huang, J. Katz, and L. Malka. Efficient
privacy-preserving biometric identification. In NDSS,
2011.

[32] D. Evans, V. Kolesnikov, M. Rosulek, et al. A prag-
matic introduction to secure multi-party computation.
Foundations and Trends® in Privacy and Security, 2(2-
3):70–246, 2018.

[33] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[34] N. Gilboa and Y. Ishai. Distributed point functions and
their applications. In EUROCRYPT, pages 640–658.
Springer, 2014.

[35] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC, pages 218–229. ACM,
1987.

[36] M. T. Goodrich. Zig-zag sort: A simple deterministic
data-oblivious sorting algorithm running in O(n logn)
time. In ACM STOC, pages 684–693, 2014.

[37] G. N. Gopal and M. P. Singh. Secure similarity based
document retrieval system in cloud. In ICDSE, pages
154–159. IEEE, 2012.

[38] H. Jegou, M. Douze, and C. Schmid. Product quantiza-
tion for nearest neighbor search. IEEE transactions on
pattern analysis and machine intelligence, 33(1):117–
128, 2011.

[39] J. Johnson, M. Douze, and H. Jégou. Billion-
scale similarity search with GPUs. arXiv preprint
arXiv:1702.08734, 2017.

[40] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
Gazelle: A low latency framework for secure neural
network inference. In USENIX Security, 2018.

[41] V. Kolesnikov and T. Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In ICALP, pages
486–498, 2008.

[42] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
Data recovery on encrypted databases with k-nearest
neighbor query leakage. In IEEE S& P, pages 1033–
1050, 2019.

[43] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In 2009 IEEE 12th in-
ternational conference on computer vision, pages 2130–
2137, 2009.

[44] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From
word embeddings to document distances. In ICML,
pages 957–966, 2015.

[45] H. Li, W. Liu, and H. Ji. Two-stage hashing for fast
document retrieval. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 495–500, 2014.

[46] Y. Lindell. How to simulate it–a tutorial on the simula-
tion proof technique. In Tutorials on the Foundations of
Cryptography, pages 277–346. Springer, 2017.

[47] S. Lloyd. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2):129–137,
1982.

[48] D. G. Lowe et al. Object recognition from local scale-
invariant features. In ICCV, volume 99, pages 1150–
1157, 1999.

[49] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 2018.

[50] C. M. Manoj and G. K. Mrs Sandhia. Privacy preserving
similarity based file retrieval through blind storage.

[51] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel.
Image-based recommendations on styles and substitutes.
In SIGIR, pages 43–52. ACM, 2015.

[52] Microsoft Research Redmond WA. Simple Encrypted
Arithmetic Library. http://sealcrypto.org, 10
2018. SEAL 3.0.

[53] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In IEEE
S& P, pages 19–38, 2017.

[54] P. Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In EUROCRYPT, pages
223–238, 1999.

[55] H. Pang, J. Shen, and R. Krishnan. Privacy-preserving
similarity-based text retrieval. TOIT, 10(1):4, 2010.

[56] J. Pennington, R. Socher, and C. D. Manning. Glove. In
EMNLP, pages 1532–1543, 2014.

[57] I. Razenshteyn. High-dimensional similarity search
and sketching: algorithms and hardness. PhD thesis,
Massachusetts Institute of Technology, 2017.

USENIX Association 29th USENIX Security Symposium 2125

http://sealcrypto.org

[58] M. S. Riazi, B. Chen, A. Shrivastava, D. Wallach, and
F. Koushanfar. Sub-linear privacy-preserving near-
neighbor search. arXiv preprint arXiv:1612.01835,
2016.

[59] P. Rindal. libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library. https://github.com/
osu-crypto/libOTe.

[60] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Ef-
ficient privacy-preserving face recognition. In ICISC,
pages 229–244. Springer, 2009.

[61] P. Schoppmann, A. Gascón, and B. Balle. Private nearest
neighbors classification in federated databases. IACR
Cryptology ePrint Archive, 2018:289, 2018.

[62] H. Shaul, D. Feldman, and D. Rus. Scalable secure
computation of statistical functions with applications to
k-nearest neighbors. arXiv preprint arXiv:1801.07301,
2018.

[63] H. Shaul, D. Feldman, and D. Rus. Secure k-ish nearest
neighbors classifier. arXiv preprint arXiv:1801.07301,
2018.

[64] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and
F. Koushanfar. Compacting privacy-preserving k-
nearest neighbor search using logic synthesis. In DAC,
pages 1–6. IEEE, 2015.

[65] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and
H. Li. Privacy-preserving multi-keyword text search in
the cloud supporting similarity-based ranking. In ASIA
CCS, pages 71–82. ACM, 2013.

[66] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-
order execution. In USENIX Security, pages 991–1008,
2018.

[67] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On
tightness of the goldreich-ostrovsky lower bound. In
CCS, pages 850–861. ACM, 2015.

[68] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi.
SCORAM: oblivious RAM for secure computation. In
CCS, pages 191–202. ACM, 2014.

[69] W. Wu, U. Parampalli, J. Liu, and M. Xian. Privacy pre-
serving k-nearest neighbor classification over encrypted
database in outsourced cloud environments. World Wide
Web, 22(1):101–123, 2019.

[70] A. C.-C. Yao. How to generate and exchange secrets.
In Foundations of Computer Science, pages 162–167.
IEEE, 1986.

[71] S. Zahur, M. Rosulek, and D. Evans. Two halves make
a whole - reducing data transfer in garbled circuits using
half gates. In EUROCRYPT, pages 220–250. Springer,
2015.

[72] S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner,
D. Evans, and J. Katz. Revisiting square-root ORAM:
efficient random access in multi-party computation. In
S&P, pages 218–234. IEEE, 2016.

A Chosen Hyperparameters in Clustering-
Based Algorithm

In Table 5 and Table 6, we summarize the parameters we use
for both of our algorithms on each of the datasets.

Linear scan Clustering

Pa
ra

m
s

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

ls 8334 8334 83 8739 262 210 423 84
bc 8 8 8 9 8 8 8 9
rp 8 8 9 7 8 8 8 6

Table 5: (Near-)optimal hyperparameters that are used both
by linear scan and the clustering-based algorithm.

Pa
ra

m
s

SI
FT

D
ee

p
1B

-1
M

D
ee

p
1B

-1
0M

A
m

az
on

T 4 5 6 5

ki
c

50810
25603
9968
4227

44830
25867
11795

5607 2611

209727
107417

39132 14424
5796 2394

41293
24143
9708

3516 1156
m 20 22 48 25

ui 50 31
19 13

46 31
19 13 7

88 46 25
13 7 7

37 37
22 10 7

s 31412 25150 50649 8228

li 458 270
178 84

458 270
178 84 84

924 458 178
93 84 84

364 364
178 84 84

rc 5 5 5 4
α 0.56 0.56 0.56 0.56

Table 6: (Near-)optimal hyperparameters that are specific to
the clustering-based algorithm.

B Stream Ciphers as PRF

In the original Floram construction [25–27], the PRF and the
PRG used in the read-only process are chosen by the authors
to be AES-128. The implementations of AES are highly opti-
mized, with less than 5000 non-free gates per block [18]. As

2126 29th USENIX Security Symposium USENIX Association

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

an alternative to AES, the authors also propose the streams
Salsa20 [14] and its variant Chacha20 [13]. However, other
symmetric ciphers can be used to obtain an efficient PRF/PRG.
In particular, we looked for a PRF with low number of AND
gates in order to decrease the communication between the
parties when it is evaluated in GC (in the Free-XOR set-
ting). Some of the most promising constructions are the block
cipher LowMC [3] and the stream cipher Kreyvium [20] (vari-
ant of Trivium [19]). In particular Kreyvium is flexible in
terms of input and output size, since there is no fixed block
size to respect, and its evaluation is very efficient in terms of
AND gates per output bit of stream. The advantage in using
Kreyvium starts showing when the size of the inputs starts
growing. In Table 7 we estimate the number of AND gates
that are executed by the different ciphers for 3 dataset sizes.
We compute 2 PRFs per input, so the actual number of AND
gates in Table 7 should be doubled.

128 bits 2.7 kB 6 kB

AES-128
5000 AND

(39 AND/bit)
865000 AND

(39.1 AND/bit)
1920000 AND

(39.06 AND/bit)

Chacha20
20480 AND

(160 AND/bit)
901120 AND

(40.7 AND/bit)
1966080 AND
(40 AND/bit)

Kreyvium
3840 AND

(30 AND/bit)
69810 AND

(3.15 AND/bit)
150912 AND

(3.07 AND/bit)

Table 7: Estimates on the number of AND gates for ciphers AES-128,
Chacha20 and Kreyvium for different input sizes. The estimates for Chacha20
refer to a naive implementation of the scheme: we believe that the scheme
would be more efficient in terms of non trivial gates in practice, but we did not
found such optimal estimates in the literature. We do not report the number
of AND gates for LowMC: they should be comparable to the estimates we
have for Kreyvium for an optimal choice of the parameters.

While our approach is more efficient in GC with respect to
Floram, the plaintext evaluation of Kreyvium is slower than
the (highly optimized) hardware implementation of AES. In
order to mitigate this issue, we vertically batch 512 bits and
we compute multiple streams in parallel (using AVX-512),
so we are able to process several hundreds of Mega Bytes of
information per second in single core.

C Proofs for Approximate Top-k

In this section, we give proofs for Theorem 1 and Theorem 2.

Proof of Theorem 1. First, suppose that we assign a bin for
each element uniformly and independently. For this sampling
model, it is not hard to see that the desired expectation of the
size of the intersection I is:
E [|I |] = l ·Pr[Ui contains at least one of the top-k elements]
= l ·

(
1−
(
1− 1

l

)k
)

, where the first step follows from the
linearity of expectation, and the second step is an immediate
calculation. Suppose that l = k/δ, where δ > 0 is sufficiently
small, and suppose that k→ ∞.
Then, continuing the calculation,

l ·
(

1−
(
1− 1

l

)k
)
= k

δ
·
(

1− ek·ln(1− δ

k)
)

= k
δ

(
1− e−δ+O(1/k)

)
= k·(1−e−δ)

δ
+O(1)

≥
k·
(

δ− δ2
2

)
δ

+O(1) = k ·
(

1− δ

2

)
+O(1),

where the second step uses the Taylor series of lnx, the third
step uses the Taylor series of ex and the fourth step uses the
inequality e−x ≤ 1− x+ x2

2 , which holds for small x > 0 .
To argue about the actual sampling process, where instead

of uniform and independent assignment we shuffle elements
and partition them into l blocks of size n/l, we use the main
result of [24]. Namely, it is true that the probability

Pr[Ui contains at least one of the top-k elements]

can change by at most O(1/l) when passing between two
sampling processes. This means that the overall expecta-
tion changes by at most O(1), and is thus still at least:
k ·
(

1− δ

2

)
+O(1). For a fixed δ, this expression is at least

(1−δ)k, whenever k is sufficiently large.

Proof of Theorem 2. As in the proof of the previous theorem,
we start with a simpler sampling model, where bins are as-
signed independently. Suppose that δ > 0 is fixed and k tends
to infinity. We set l = k2/δ. In that case, one has:
Pr[all top-k elements end up into different bins]
=
(
1− 1

l

)
·
(
1− 2

l

)
· . . . ·

(
1− k−1

l

)
=
(

1− δ

k2

)
·
(

1− 2δ

k2

)
· . . . ·

(
1− (k−1)·δ

k2

)
= exp

(
ln
(

1− δ

k2

)
+ ln

(
1− 2δ

k2

)
+ . . . + ln

(
1− (k−1)·δ

k2

))
= exp

(
− δ(1+2+...+(k−1))

k2 +O
(1

k

))
= e−δ/2 +O

(1
k

)
≥ 1− δ

2 +O
(1

k

)
,

where the fourth step uses the Taylor series of lnx and the
sixth step uses the inequality e−x ≥ 1− x. The final bound is
at least 1−δ provided that k is large enough.

Now let us prove that for the actual sampling pro-
cedure (shuffling and partitioning into l blocks of size
n/l), the probability of top-k elements being assigned
to different bins can only increase, which implies the
desired result. To see this, let us denote ci the bin
of the i-th of the top-k elements. One clearly has:
Pr[all top-k elements end up into different bins] =
∑distinct j1, j2, . . . , jk Pr[c1 = j1 ∧ c2 = j2 ∧ . . .∧ ck = jk].
Thus, it is enough to show that any probability of the form
Pr[c1 = j1 ∧ c2 = j2 ∧ . . .∧ ck = jk], where j1, j2, . . . , jk are
distinct, can only increase when passing to the actual sam-
pling model. This probability can be factorized as follows:
Pr[c1 = j1∧ c2 = j2∧ . . .∧ ck = jk]
= Pr[c1 = j1] ·Pr[c2 = j2 | c1 = j1] · . . .
·Pr[ck = jk | c1 = j1∧ . . .∧ ck−1 = jk−1].
For the simplified sampling model, each of these conditional
probabilities is equal to 1/l due to the independence of ci.
However, for the actual model, they are larger: if we condi-

USENIX Association 29th USENIX Security Symposium 2127

tion on t equalities, then the probability is equal to n
l(n−t) . This

implies the required monotonicity result.

D Security Proofs

We prove simulation-based security for our protocols for ap-
proximate k-NNS. First, we recall the definition (see e.g. [46])
of two party computation and simulation-based security for
semi-honest adversaries.

Definition 1. A two-party functionality is a possibly random-
ized function f : {0,1}∗×{0,1}∗ → {0,1}∗×{0,1}∗, that
is, for every pair of inputs x,y ∈ {0,1}n , the output-pair is
a random variable (f1(x,y), f2(x,y)). The first party (with
input x) obtains f1(x,y) and the second party (with input y)
obtains f2(x,y).

Let π be a protocol computing the functionality f . The
view of the i-th party during an execution of π on (x,y) and
security parameter λ is denoted by Viewπ,i(x,y,λ) and equals
the party i’s input, its internal randomness, plus all messages
it receives during the protocol.

Definition 2. Let f = (f1, f2) be a functionality and let π be
a protocol that computes f . We say that π securely computes
f in the presence of static semi-honest adversaries if there ex-
ist probabilistic polynomial-time algorithms S1 and S2 (often
called simulators) such that
(S1(1λ,x, f1(x,y)), f (x,y)) ≈ (Viewπ,1(x,y,λ), f (x,y)) and
(S2(1λ,y, f2(x,y)), f (x,y))≈ (Viewπ,2(x,y,λ), f (x,y)). Here
≈ means computational indistinguishability.

D.1 Ideal Functionalities
First, we define the ideal functionalities that our protocol
achieves. Note that the two protocols have slightly different
ideal functionalities. We will denote them by FANNcl (for
clustering) and FANNls (for linear scan).

Parameters: number of elements n, dimension d, bits of precision bc.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. Note that points are truncated to bc bits.

• Output: returns output of Algorithm 3 to client.

Figure 8: Ideal functionality FANNls

Parameters: number of elements n, dimension d, bits of precision bc, and
clustering-based hyperparameters T , ki

c, m, ui, s, li, ls, bc, rc and rp.
• Input: client inputs a query q ∈ Rd and server inputs database

DB = [(pi, IDi)]
n
i=1. The points are truncated to bc bits.

• Output: returns output of Algorithm 4 to client.

Figure 9: Ideal functionality FANNcl

D.2 Proofs

Theorem 3. Assuming the hardness of the decision-RLWE
problem, our linear scan protocol ΠANNls securely implements
the functionality FANNls in the FaTOPk hybrid model, with
semi-honest adversaries.

Proof. First, we construct a simulator for the client. The sim-
ulator generates a key sk for the AHE scheme and sends sk
to the client. Then, it simulates the server’s first message as
AHE.Enc(sk,ri) for random values ri. From the circuit pri-
vacy property of the AHE scheme, this is indistinguishable
from the first message in the real protocol. Next, the simulator
simply feeds {ri} to the ideal functionality FaTOPk and for-
wards the output to the client. This completes the simulation.

Next, we construct a simulator for the server. The simu-
lator generates a key sk for the AHE scheme. The first mes-
sage from the client to the server consists of the encryptions
AHE.Enc(sk,q[i]) in the real protocol. Instead, the simulator
just sends AHE.Enc(sk,0) for 1≤ i≤ d. Based on the RLWE
assumption, these views are indistinguishable. Finally, the
simulator generates random vector R = (r1, . . . ,rn) and sends
that to the server.

Theorem 4. Assuming the hardness of the decision-RLWE
problem, our clustering protocol ΠANNcl securely implements
the FANNcl functionality in the (FTOPk, FaTOPk, FDROM)-
hybrid model in the presence of semi-honest adversaries.

Proof. Again correctness is easy to verify. We first describe
simulator for the client. First, the simulator generates a secret
key sk for the AHE scheme and sends sk to the client. Next,
the simulator sends blocks of zero to FDROM.Init. Then, on
receiving the query message from the client, the simulator
does the following: for each i, j, it samples random values ri j
and generates AHE.Enc(sk,ri j). Using a similar argument as
in the previous proof, these ciphertexts are indistinguishable
from the client’s view of the first step of the secure protocol.
Then, the simulator forwards the ri j to FaTOPk and gets back
secret shares of indices, namely [i1], . . . , [iu]. Then, it feeds
these indices shares to FDROM.Read and forwards the output
to the client. Also, it samples random messages si and sends
AHE.Enc(sk,si) to the client. Later, when the simulator re-
ceives the shares m ·uall+s of (point, ID) pairs from the client,
it samples m ·uall + s random pairs of values and send the first
m ·uall values to FTOPk and the last s values to FaTOPk. Then,
it forwards the output to the client. Since the intermediate
values revealed to the client are all independent uniformly
random values, the view generated from simulator is indistin-
guishable from the real view. Now, the simulator for server
works in almost the same fashion, with the difference that in
contrast to the real client which sends AHE.Enc(sk,qi) for
1≤ i≤ d, the simulator simply sends d encryption of zeros.
This is indistinguishable from uniform, based on the RLWE
assumption.

2128 29th USENIX Security Symposium USENIX Association

	Introduction
	Specific Contributions
	Related Work
	Applications of Secure k-NNS

	Preliminaries
	Secret Sharing
	Distributed Oblivious RAM (DORAM)
	Additive Homomorphic Encryption (AHE)
	Garbled Circuit (GC)
	k-means Clustering

	Plaintext k-NNS Algorithms
	Approximate Top-k Selection
	Approximate Distances
	Balanced Clustering and Stash
	Putting It All Together

	Secure Protocols for k-NNS
	Ideal Functionalities for Subroutines
	Distance Computation via AHE
	Point Retrievals via DORAM
	Top-k Selection via Garbled Circuit

	Implementation and Performance Results
	Environment
	Datasets
	Parameters
	SANNS End-to-End Evaluation
	Microbenchmarks
	End-to-End Comparison with Prior Work

	Conclusions and Future Directions
	Chosen Hyperparameters in Clustering-Based Algorithm
	Stream Ciphers as PRF
	Proofs for Approximate Top-k
	Security Proofs
	Ideal Functionalities
	Proofs

